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ABSTRACT

The thesis consists of three:parts:, low noise amplifier, LNA with
notch filters and low-power.0scillator. mixer. These propose circuits are
fabricated using a standard TSMC 0.18: um RF CMOS process
technology.

The first part of the thesis isithe low power design of low noise
amplifier with notch filters. The measurement result of LNA shows the
power gain is more than 9.5dB in 3~10GHz, return loss is under -5.4dB,
NFin 1s 2.6dB, and power consumption exclude buffer is 6.8 mW. Then,
we use the design of the miniaturized notch filters realized by active
inductor, applied in the integration of LNA. The core area of LNA and
notch filters is only 0.0016 mm®. The measurement result of LNA with
notch filter shows the power gain is 8~12dB, return loss is under -7.5dB.
The suppressed performance of notch filters in 2.5GHz and 5.2 GHz are
19dB and 38dB. The power consumption is 10.3 mW. The simulation
results of minimum noise figure and P1dB are 2dB and -14.2dB.

The last part describes the combination of VCO and mixer. The
circuit uses current-reuse to reach low power consumption, and
furthermore a balun is integrated in this design. The total schematic
contains mixer, VCO, and on-chip balun. The chip area is Immx1.5mm.
The simulation results show the conversion gain are 15dB, return loss is
under -12dB, P1dB is -16dB. The phase noise is -105 dBc/MHz. The total
power consumption is 6mW.
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Chapter 1  Introduction
1.1 Motivation
Research and development in radio-frequency integration circuits

(RFICs) have become popular recently and this is being due mainly to
the high demand for wireless communication devices from the market.
Among the various integrated circuits fabrication technologies in use,
CMOS technology has become a very attractive option because of its
low-cost, low power and high integration. For these reasons, many
designs of CMOS RF circuits have been found in recent years. Due to
the concern of portable and battery durability is more and more
important. CMOS RFIC will become a new trend for the wireless
communication system.

The ambition of- the thesis- is. to research of low power
consumption and high integration-of the radio frequency circuits in
CMOS process technology. We will ‘focus on low noise amplifier,
LNA with notch filters and low-power oscillator mixer. A low noise
amplifier has very low noise figure and low power consumption by
some skills we will introduce. And then, we will use the design of the
miniaturized notch filters, applied in the integration of low noise
amplifier. It only needs more small size than other designs published
before. After the integration of low noise amplifier and notch filters,
we will describe how to mix a VCO, a mixer and a passive balun to

achieve low-cost and low lower consumption.



1.2 Thesis Organization

The thesis consists of five chapters. This chapter describes the
development and trend of wireless communication. In Chapter 2, we will
introduce some current-reused structures and fundamental knowledge of
LNA, active inductive, mixer and VCO. In Chapter 3, The design of LNA
with notch filters for UWB will be treated. The analysis of the integration
of mixer, VCO, and Balun will be studied in Chapter 4. Eventually, we

will draw some conclusions in Chapter 5.



Chapter 2 General Backgrounds
2.1 Current-reused Structure

A low power RF system becomes a tendency as applied in portable
wireless communication systems. Therefore, many designs for low power
are presented in recent years. The most popular method to save power
consumption is using current-reused structure. For example, current
reused LC VCO topologies have been presented [1]. By stacking the
switching transistors in series like a cascade, the proposed VCOs reuse
the dc current and the current consumptions can be cut in half compared

to those of conventional VCO topologies which is shown in Fig. 2.1

Q+ ]
] cp,l wglﬁ M&'\H Ml."l]l
-

C“"'ﬂ_

£ &

Fig. 2.1 current-reused quadrature VCO(QVCO)
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Another applied example of current-reused structure is for the
design of the mixer [2]. In the presented mixer topology the stage that
represents the voltage to current (V-I) converter and the switching stage
are connected in a way such that the switching transistors are folded with
respect to the transistors in the V-I converter which is shown in Fig. 2.2.

This connection method yields low-voltage operation.

¥=I converter Switching stape

e ms Em W W Ew A e e e e e e = e = W W W Em e s ome W R

e A RS e TH B R T SR Em wm mm Em Er M s e Em Em am am Em E — — —

Fig. 2.2 Folded-switching mixer with current-reuse
The major part of the DC current in the mixer flows through the
transistors in the V-I converter and only a small amount of the DC current
flows through the switching transistors, yielding low voltage drop across
the load resistors. In this way the problems that appear in the case of the
Gilbert cell mixer are avoided and folded-switching can be designed to
operate at low supply voltages. This is an efficient way to have a high

voltage gain and a low noise figure with low power dissipation.



Except for the one component of RF front-end, circuit combining
oscillator and mixer with current-reused application is also presented [3].
The stacked structure shown in Fig. 2.3 allows entire mixer current to be
reused by the VCO cross-coupled pair to reduce the total current

consumption of the individual VCO and mixer.

——
Voo
éﬁm ) RL."2$
— 0 Vie o—
'v"g VG Mixer
I{_RF 1 RG% J| Ra

e w -
e

Ly Vope L,
1 VoD

VC

Fig. 2.3 Circuit schematic of the down-conversion double-balanced

oscillator



2.2 The Direct Conversion Receiver

Because of the rapid growth in demand for broadband wireless
communications, wireless local area networks (WLAN) are becoming
more attractive not only to exchange large amount of data locally but also
as access points for the cellular infrastructure. The superheterodyne has
been the architecture of choice for wireless transceivers for many years.
On the other hand, due to the increase of the integration level of RF
front-ends, alternative architectures, targeting reduced power
consumption and minimization of the number of off-chip components,
have been considered, in the recent past. Among them, the direct
conversion receiver (DCR) or zero-IF receiver has increasingly gained
widespread attention due to.its potentially of low power consumption,
lower complexity, low manufacturing costs, and easy integrating with the
baseband circuits [4]-[8]. Fig. 2.4 shows. the-block diagram of the direct
conversion RF front-end, where the 'LO frequency is equal (or
approximate) to input carrier frequency and the LO will translate the

center of the desired signal to zero IF or low IF.

. Baseband
M LPF
\% et ADC
_® I % I—I >I
RF
Filter LNA T
90
AT P @ veo
0
l LPF Ba/ie];’énd
—Q 11—
Mixer

Fig. 2.4. Block diagram of direct conversion receiver architecture.



The most important advantage of the direct conversion receiver is
that the intermediate frequency (IF) passband filter can be neglected and
replaced by a low pass filter. Low pass filter is much easier to integrate in
standard semiconductor technology. However, some issues which do not
exist or are not serious in the heterodyne architecture become critical in
the direct conversion receiver. These drawback include DC offset, flicker
noise, even order distortion, I/Q mismatch, and so on. Among these the
DC offset generated by self-mixing is the most critical. The DC offset is
caused by carrier leakage from the local oscillator to the mixer input and
to the antenna as shown in Fig. 2.5. Interferer leakage will also cause a
DC offset at the mixer output as shown in Fig. 2.6. To overcome the
drawback of DC offset, the improving isolation between LO and RF ports
is important. The second-erder intermodulation distortion (IMD2) is a
fundamental problem, because: the-second-order intermodulation term
interferes the reception of thé'wanted signal as shown in Fig. 2.7. In a
perfectly balanced Gilbert cell mixer, the IMD2 is a common-mode
signal and therefore does not a serious problem. However, due to the
mismatch of device, the balance between the negative and positive branch
of the mixer is degraded and the IMD2 becomes a problem. About 1I/Q
mismatch, if the modulation is complex modulation, the I/Q mismatch
can equal to image interferer. This mismatches between the amplitudes of
the I and Q signal corrupt the constellation of the down converted signal.
Therefore influences the bit error rate. Finally, flicker noise or 1/f-noise
may be a problem in the mixer and subsequent filter because the signal is

converted directly to baseband.



RF
Filler ~ |NA Mixer LpF  Daseband

ADC
@A >

1

coswt

Fig. 2.5. LO signal leakage.

RF

Filter =~ INA Mixer LPF Bf:%’énd
X X

~Z »ﬂ\ X> ~Z >

it

coswt

Fig. 2.6. A strong interferer'signal leakage.
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Fig. 2.7. Even order distortion.



2.3 The Basic Low Noise Amplifier

2.3.1 The analysis of transistor noise model [9]

The dominant noise source in CMOS devices 1s channel noise,
which basically is thermal noise originated from the voltage-controlled
resistor mechanism of a MOSFET. This source of noise can be modeled
as a shunt current source in the output circuit of the device. The channel
noise of MOSFET is given by

2

i
(Ad_f):4kT7gdo (21)

where y is bias-dependent factor, and g,, is the zero-bias drain

conductance of the device. Another source of drain noise is flicker noise
and is given by equation 2.2.

= K g’ K
i P=— " Af x—. 7 A-Af 2.2
" T wLe?, £ 22)

Hence, the total drain noise source is given by

— K g,
Ind2 :4kT}/gd0Af +TmAf (23)

At RF frequencies, the thermal agitation of channel charge leads
to a noisy gate current because the fluctuations in the channel charge
induce a physical current in the gate terminal due to capacitive coupling.
This source of noise can be modeled as a shunt current source between

gate and source terminal with a shunt conductance g,, and may be

expressed as

in,> = 4KT g Af (2.4)

where the parameter g, is shown as

9, =—— (2.5)

and 0 is the gate noise coefficient. This gate noise is partially correlated
with the channel thermal noise because both noise currents stem from
thermal fluctuations in the channel, and the magnitude of the correlation



can be expressed as

.k

c=—2 L 0395] (2.6)

«
8]
=
S}

where the value of 0.395j is exact for long channel devices. Hence, the
gate noise can be re-expressed as

g = (inge +1rg,)” = 4KT GG AF [c[” +4KT g AF (1-[c) 2.7)

ng
where the first term is correlated and the second term is uncorrelated to

channel noise. From previous introduction of MOSFET noise source, a

standard MOSFET noise model can be presented in Fig. 2.8, where i’

is the drain noise source, i’

. 1s the gate noise source, and V,* is

thermal noise source of gate parasitic resistor r,

_|_

2y C::F‘g"r G)gm"ss £ (‘D;

S o— —0 §

Fig. 2.8. A noise model of MOSFET

2.3.2 The basic of low noise amplifier

Low noise amplifier is the first gain stage in the receive path so its
noise figure directly adds to that of the system. Therefore, there are
several common goals in the design of LNA. These include minimizing
noise figure of the amplifier, providing enough gain with sufficient
linearity and providing a 50 ohm input impedance to terminate an
unknown length of transmission line which delivers signal from antenna
to the amplifier [10]. Among LNA architectures, inductive source
degeneration is the most popular method since it can achieve noise and
power matching simultaneously, as shown in Fig. 2.9.

10



Fig. 2.9 common-source input stage with inductive source degeneration

2.4 Mixer Fundamentals
2.4.1 Principles of Mixer
The mixer is an essential building bloeck in the receivers, which is
responsible for frequency up-conversion and-down-conversion. It is also
an important component associated-with the linearity of the front-end
receivers. The first stage of mixer. must have high linearity to handle the
large input signals from LNA without significant intermodulation.
Nonlinearity causes many problems, such as cross modulation,
desensitization, harmonic generation, and gain compression, but
even-order nonlinearity can be easily reduced by differential architecture.
However, odd-order nonlinearity is difficult to be reduced, especially the
third-order intermodulation distortion (IMD3). IMD3 is the dominant part
of the odd-order nonlinearity.
Mixer is a three ports circuit, which are the RF port, the LO port and
the IF port. It 1s a multiplication of two signals which are the RF signal
amplified from the low noise amplifier and the signal from the local

oscillator (LO) to achieve the function of frequency transformation. This

11



is depicted by equation (2.8). Then the RF signal is down-converted to

the intermediate frequency (IF).
(Acosat)(Bcosam,t) = %I:cos(a)1 + o, )t+cos(w, -, )t] (2.8)

From the equation (2.8), the multiplication of two signals at the
frequencies of w1 and w2 together produce signals at the sum (0l1+w®2)
and difference (o1-®2) frequencies. The amplitudes are proportional to
the RF and LO amplitudes. The multiplications in the time domain would
result in convolutions in the frequency domain. Thus, the mixer can
responsible for frequency translation. In equation (2.8), signals at the
frequency of (m1+®2) can be easily filtered out because they are far away
from desired frequency in the frequency domain. The signals at the
frequency of (w1-w2) are our desired outputs. In circuit implementations,
the multiplication can be achieved by passing the input signal Acosw t
from RF through a switch driven by anether-signal Bcoswt from LO. If
the LO amplitude is constant, any‘amplitude modulation in the RF signal
is transferred to the IF signal.

The most important parameters for determining the performance of a
mixer are power conversion gain, and linearity. We will describe these

parameters in the subsequent contents.

2.4.2 Performance Parameters
2.4.2.1 Conversion Gain
One of important parameters of mixer’s characteristics is conversion
gain, which is defined as the ratio of the desired IF output to the value of

the RF input as shown in equation (2.9). In general, the conversion gain

12



of the mixer has two types: one is voltage conversion gain and the other is

power conversion gain.

The desired output IF power (2.9)
The input RF power

Conversion Gain=

Assuming input a sinusoidal signal and the output would include
signals at integer multiples of the frequencies of the input signal as
equation (2.10). In equation (2.10), the terms with the input frequency are
called the fundamental signal, and the higher order terms are called the

harmonics. The harmonics would cause performance degradations.

Vour () = @, (Acos at) +a, (Acos at ) +a, (Acosat)’ +.....

(2.10)

2 3
= (Acosa)t)+a2A (1+cos2wt)+a3A (3cos wt+cos3wt)+......
' 2 4

The output function of mixetsyista compressive function of input
levels. When the input level grows sufficiently high, the output eventually
saturates and the conversion ~gain’-begins- decreasing. If a3 holds a
negative value, this phenomenon ‘will happen. At small values of input
level A, the second term is negligible and the gain remains constant. The
gain starts decreasing when the input level gets large as shown in
equation (2.11).

2

Gain=a1+a3:‘ (2.11)

2.4.2.2 Linearity
The mixers are assumed to be linear and time-invariant. The
linearity is a significant parameter in the mixer design. Here we will
introduce two parameters of linearity: P1dB and I1P3.

The IF output is proportional to the RF input signal amplitude

13



ideally. However, as the input signal becomes large, the output signal
fails to exhibit this characteristic. We use the value departing the ideal
linear curve 1 dB as the referenced point, 1 dB compression point, shown
in Fig. 2.10. The dashed line in Fig. 2.10 shows our desired output
characteristics. The solid line shows the real characteristic. The 1dB
compression point characterizes the input level where the output level is
1dB less than our desired output level. A higher 1dB compression point
stands for a better linearity performance.

The linearity of a mixer can also be evaluated by intermodulations.
The two-tone third-order intercept is often used to characterize mixer
linearity. Ideally, each of two different RF input signals will be translated
without interacting with eachiother, and we can only gain the desired IF
signal from the output port=However, practical mixers will always exhibit
some intermodulation effects. This-is-because that two or more different
frequencies of input signals will degrade. the linear region of the system.
The third intercept point (IP3) is measured with two tone test. Two tones
are closely placed and injected as input simultaneously. If we consider the
region where the input level is small, the output characteristic is
approximately linear. The third-order intercept is the intersection of these
two curves as illustrated in Fig. 2.11 which is the extrapolation of the
signal line and the third-order harmonic line. The higher intercept, the

more linear.
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Fig:2.11 11P3.

2.4.2.3 Isolation

Another important parameter of mixer is isolation, which shows the
interaction among RF, IF and LO ports. The isolation between each two
ports of the mixer is important. The LO to RF feedthrough is means the
LO leakage to the LNA and (or) leakage to the antenna. The RF to LO
feedthrough allows strong interferers in the RF path to interact with the
LO driving the mixer. The LO to IF feedthrough is also important. If
substantial LO signal exists at the IF output, the following stage may be
desensitized. The feedthrough can be reduced largely by use double

balanced mixers. The RF to IF isolation means the signal in the RF path
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directly appears in the IF. In the homodyne receivers, this is a critical

issue with respect to the IMD2 problem.

2.4.3 Mixer Architecture

The implementation of CMOS down-conversion mixer can be
passive or active. The simple passive mixer is shown in Fig. 2.12. It is
usually using MOS transistor as a switch to modulate the RF signal by
LO signal and down convert to IF band. Because passive mixer operates
in the linear region, it has high linearity and excellent IIP3. But it
provides poor conversion gain and noise figure. The simple active mixer
is presented in Fig. 2.13. The active mixer provides better conversion
gain than passive mixer. Its conversion gain is decided by the product of
the input conductance gm-and load impedance to suppress the noise
contributed by the subsequent stages.-But the linearity of an active mixer

is worse than that of a passive ‘mixer.

Fig. 2.12 Passive mixer.

16



o I w0
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Fig. 2.13  Active mixer.

The Gilbert cell topology is a typical type used in active mixers. The
advantages of this topology are the high conversion gain, low LO power,
and low offset voltage. The Gilbert cell mixer consists of three stages:
transconductor stage, switching stage, and load stage. The linearity of
Gilbert mixer is dominated by the, transconductor stage as shown in Fig.

2.14.

~
N\ Switching
J/  stage

Transconductor
stage

Fig. 2.14 The prototype of the CMOS Gilbert mixer

The function of three stages is described as follow. RF input stage is
a differential pair that converts the RF wvoltage to current. The

transconductance of this stage directly affects the linearity and the gain of

17



the mixer. LO switch stage usually applies two differential pairs as
modulated switch to construct double balanced structure. To achieve the
goal that this two differential pairs completely switch the input power of
the LO port must be larger. The value of the LO port also affects the
conversion and the noise figure of the system. The output stage is load
stage.

If the switching stage is ideal switches, the linearity of Gilbert mixer
is dominated by the transconductor stage. Third-order input intercept
point (IIP3), second-order input intercept point (IIP2), and input 1-dB
compression point (P1dB) are the important parameters of linearity. 1IP3
and IIP2 are the effects of intermodulation terms in the nonlinear circuits.
P1dB is the ceiling of the input power. To improve linearity in Gilbert
mixer, many methods have' being- used: such as adding source
degeneration resistors below the- gain-stage [11], bisymmetric Class-AB
input stage [12], multiple gated transistor [13], and common-source and

common-emitter RF transconductors [14].

2.5 The Review of VCO
2.5.1 Principles of VCO
Voltage controlled oscillator is essential building block in
communication systems. The VCO is used as local oscillator to
up-conversion or down-conversion signals. The phase noise is the main

critical parameters for VCO. Therefore, how to get better phase noise is
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the most important.
Oscillator can transfer DC power to AC power. Oscillator is an

energy transfer device. For steady oscillation, the self-oscillating system

must be satisfied Barkhausen’s criteria: |H(jg)=1 and sH(jm)=0" (or

180° of dc feedback is negative). There are two types of analysis
methods: positive feedback and negative resistance. In the design of
oscillator, the important performance parameters are phase noise, output
power, tuning range, and thermal stability. Among these parameters, the
most important is the phase noise. Phase noise will influence the signal
quality in receiver as shown in Fig. 2.15. When a strong unwanted
adjacent channel signal and a weak.wanted signal input receiver, worse
phase noise will interfere oOther signal.and intermodulation to IF. This
interfere the weak wanted signal.” Thus,” phase noise is the most

important in VCO design.

Unrnenitedd
Acjacent .
Charnd Moise LD
A
I i 3o
Desgred
| Acrarnel i TF
—I— @ @
@ ﬁr , 0
— |
al I Moize LD
IF

Fig. 2.15. Phase noise in receiver.

LC tank voltage-controlled oscillator and ring oscillator are the two
most popular circuits in VCO design. LC tank voltage-controlled
oscillator has better phase noise, but tuning range is narrow. Ring

oscillator has wider tuning range, but phase noise is worse. We will
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introduce these two types as following section.

2.5.1.1 LC Tank Voltage-Controlled Oscillator
The concept of LC tank VCO is using negative resistance of active
circuit to cancel the resistance of LC tank as shown in Fig. 2.16. Fig. 2.17
shows series transfer to parallel. Fig. 2.18 shows its equivalent resonant

model. LC tank oscillator is called negative-Gm oscillator.

R1 R2

Active

Resonator J ..
Circuit

Fig. 2.16 Negative resistance’and L.C tank resistance.

Fig. 2.17 Series to parallel.

Fig. 2.18 Equivalent resonant model.

The negative resistance is produced from cross-coupled pair which

20



is positive feedback. In Fig. 2.19, we can calculate the impedance seen at

the drain of M1 and M2. The impedance is g :—% . Generally speaking,

m

the phase noise of PMOS-cross coupled pair is better than NMOS-cross

coupled pair.

Fig. 2.19 Input impedancerof NMOS cross-coupled pair.

Fig. 2.20 shows the ‘complementary cross-coupled pair. Compare
with NMOS-cross coupled pair-or PMOS-cross coupled pair in the same
power consumption, the gm of complementary cross-coupled pair is larger.
Larger gm means faster switching. The rise-time and fall-time of output

waveform are more symmetric and the phase noise is better.
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Fig. 2.20 Complementary cross-coupled pair.

2.5.1.2 Ring Oscillator
Fig. 2.21 shows the ring oscillator. It is cascade of N stages with an

odd number of inverters is placed in a feedback loop. The period of ring

oscillator is equal to 2NTd and the oscillation frequency is ¢ __1 .
2NT,

There are three advantages of the ring oscillator: high integrated with

PLL, smaller die size than LC-tank VCO, and full output voltage swing.

Fig. 2.21 Ring oscillator.

2.5.2 Performance Parameters
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2.5.2.1 Phase Noise

An ideal output spectrum of oscillator has only one impulse at the
fundamental frequency as shown in Fig. 2.22(a). In an actual oscillator,
the frequency spectrum consists of an impulse exhibits skirts around the
carrier frequency as show in Fig. 2.22(b). These skirts are called phase
noise due to the influence of several kinds of noises. The noise sources
such as shot noise, flicker noise and thermal noise. These noises are
caused by the resistors, capacitors, inductors, and transistors. Noise
injected into an oscillator by noise sources may influence the frequency
and the amplitude of the output signal. These phenomenon are called AM,

PM and FM noises.

Output Power

Ideal Oscillator A

A

We fo fo+Af

(a) (b)

Fig. 2.22 Output spectrum of ideal and actual oscillators.

Fig. 2.23 shows the Lesson’s phase noise model. We can express by

1 FKT o, | A, s
L(Aw)—lOlog[E p {l{zqm} H{I—F—Md } (2.12)
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This equation is from the curve fitting after measured results of

VCO. Therefore, Ao, 1s from measured results.

L(AW)
A

1/ £

1/ f? IOIOg{1 FKT}
2 P

S

AW, . w,/2Q

> log(Aw)

Fig. 2.23 Lesson’s phase noise model.

If the output waveform is odd-symmetry, It can suppress 1/f noise
effetely. This will lower aw . . Erom-equation (2.12), increase Q factor of

LC tank and output power can improve phase noise.

2.5.2.2 Frequency Tuning Range
Frequency variation is an important parameter when designing VCO.
Because a CMOS oscillator must be designed with a large tuning ranges
to overcome process variations. The simplest way to do so is with a
varator such as diode varator and MOS varator. The NMOS
cross-coupled pair VCO has higher tuning range than double
cross-coupled VCO topology for equal effective tank transconductance.

When control voltage change, the bias voltage of transistor will also

change. S parameter and I, will change according to dc current
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variation. This will cause output frequency shift. This is called pushing
effect. To avoid pushing effect, we can use high quality resonator to
reduce the pushing effect. We can also using regulator to overcome
pushing effect such as band gap circuits.
Loading effect is another problem. When loading change, its
impedance is also change. This will cause output frequency shift. This is
called load pulling effect. To avoid this problem, we can use buffer

circuit to overcome load pulling effect.

2.5.3 Noise Model of VCO

Phase noise is the most important parameter in the VCO design.
There are two models: Leeson’s model ‘and Hajimiri model. Lesson has
developed a time invariant mmodel to-describe the noise of oscillators.
Hajimiri proposed a linear time varying phase noise model. The below

sections will introduce these two phase noise model.

2.5.3.1 Time Invariant Model

In this section, phase noise analysis is described by using time
invariant model. Time invariant means whenever noise sources injection,
the phase noise in VCO is the same. In other words, phase shift of VCO
caused by noise is the same in any time. Therefore, it’s no need to
consider when the noise is coming. Suppose oscillator is consists of
amplifier and resonator. The transfer function of a bandpass resonator is

written as

H(jo) = jo(1/RC)

" (1/LC) + jo(1/RC) - @’ (2.13)

The transfer function of a common bandpass is written as
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jo(o,/Q)

H(jo)= o 1 @, 1Q) - (2.14)
Compare equation (2.13) with (2.14). Thus,
w,=1/LC and Q=o,RC (2.15)

The frequency w=w,+A® which 1is near oscillator output

frequency. Ifo,0 Ao, we can use Taylor expansion for only first and

second terms. Hence

. 2
T (2.16)

The close-loop response of oscillator is expressed by

1 N_j(a)o/Q)

S0 =i~ o (2.17)
When input noise densityis Si(@) ; thé output noise density is
_ 2 19 2
S, (®) = §()|G(w)] = FkT(ZQAw) (2.18)

The above equation 18/ double sideband noise. The phase noise

faraway center frequency Aw can be expressed by

S

o -0 2T (28 (219)

where P, is the output power. From equation (2.19), increasing

power and higher Q factor can get better phase noise. Increasing power
means increasing the power of amplifier. This will decrease noise figure
(F) and improve phase noise.

From equation (2.19), we can briefly understand phase noise. But
the equation and actual measured result are different. The VCO spectrum

is shown as Fig. 2.23. The phase noise equation can be modified as
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L(Aw)-lOlog[zFPKT '{H(zggm) }[H%H (2.20)

The above equation is called Leeson’s model.

2.5.3.2 Time Variant Model

In this section, we use the Hajimiri model to explain the phase noise.
At first, we assume that an impulse current injects into a lossless LC tank
as illustrated in Fig. 2.24. If the impulse happens to coincide with a
voltage maximum as shown in top of Fig. 2.25. The amplitude increase
AV=AQ/C, but the timing of the zero crossings does not change. An
impulse injected at any other time displaces the zero crossings as shown
in bottom of Fig. 2.25. Henge, an impulsive input produces a step in
phase, so that integration is an'inherent ptoperty of the impulse to phase
transfer function. Because the phase-displacement depends on when the

impulse is applied, the system'is time-varying.

i((9)

o(t-1)
=46 L [

Fig. 2.24 Impulse current injects into LC tank.

0@

>t
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Fig. 2.25 Waveforms for impulse excitation.

Hajimiri proposed a linear time-varying phase noise model which is
different from the Lesson’s model. The impulse response can be written
as

fip(t, by =~ et <) 2.21)

max.

where Yux  is the maximumcharge displacement across the

capacitor and u(t) is the unit “step. The function Ir(x) is called the

impulse sensitivity function (ISF), and is a frequency and amplitude

independent function that is periodic in 27 . Once the ISF has been

determined, we may compute the excess phase through use of the

superposition integral. Hence

d(t) = j h,(t,0)i(r)dz :qL j [(@,7)i(r)dr (2.22)

max -—oo

This equation can be expanded as a Fourier series:

I'w,7) :C?O"'icn cos(Nw,7+6,) (2.23)
n=1

where the coefficients C, are real and 6, is the phase of nth
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harmonic of the ISF. We assume that noise components are uncorrelated,

so that their relative phase is irrelevant, we will still ignore ¢, . Equation

(2.23) can be rewritten as

t t

¢('[)=L %0 I i(T)dT-FiCn I i(7) cos(haw,7)dz (2.24)

q max 00 = —0

Equation (2.24) allows us to compute the excess phase caused by an
arbitrary noise current injected into the system, once the Fourier
coefficients of the ISF have been determined. Now we consider the
injection of a sinusoidal current whose frequency is near an integer

multiple m of the oscillation frequency, so that
i(t) =1,cos[(me, +Aw)t] (2.25)

Substituting (2.25) into (2.24) ‘where' Aol o, and n=m. We can

simplify Equation (2.24) as

L hgC, sin(Awt)

Frrie (2.26)

max

$(t)

Vou (1) = cos[ @yt +¢(1)] (2.27)

|
Substituting (2.19) into (2.20). Suppose 2 ”‘Czw <1, Therefore, the

max

sideband power relative to the carrier is given by

2
| C
Psgc (Aw) z1010g£4 = ij (228)

max

In general, a noise signal can be separated into two type noise source:

white noise and flicker noise. First, input an noise current only with the

il’]2 .
white noise and its noise power spectral density is ¢ . The total single

sideband phase noise spectral density in dB below the carrier per unit
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bandwidth is given by

In_z w
Ar 2
Cis(A®) ~10log| —"—=—
49, A0’ (2.29)

According to Parseval’s theorem. Thus,

s U iron de e ar?
mz=()cm =;J‘|F(X)| dx =2I"" (2.30)

Therefore we can use quantitative analysis to analyze the phase

noise sideband power due to the white noise source as following equation

i2
n 1—*2
L(Aw)=10lo Af—rms

~10log) o e e’ (2.31)

max

where G, =CVo, , Ve Vis the largest: amplitude of VCO, and

[N}

4KT

A~ R - Substituting these relations into (2.31). We have
. KT . (o, )
L(Aa))~1010g[ P r rms[QAw” (2.32)
If input noise of VCO is 1/f noise, the power spectral density is
written as
2 2 Oy
I nl/f :In A_a) (233)

where @, 1s the 1/f corner frequency of 1/f noise. This equation

represents the phase noise spectrum of an arbitrary oscillator in 1/f
region of the phase noise spectrum. Quantitative analysis for the
relationship between the device corner 1/f and the 1/f° corner of the

phase noise can be illustrated by following equation.
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L(Aw) =10log

in(m)

AF° Oy
802 Aw’ Aw

max

3

\\ White noise

Sd)((})) 1

Sv(m)

s

| 1
I I
®o 200 3o

Fig. 2.26 Conversion of noise to phase noise sidebands.

contributions from device noise of the integer multiples of wo and

31

(2.34)

Here we consider the case of a random noise current in(t) whose power
spectral density has both a flat region and a 1/f region as shown in Fig.
2.26. Noise components located near integer multiples of the oscillation
frequency are transformed to low frequency noise sidebands for So(w®)
and it’s become phase noise in the spectrum of Sv(w) as illustrated in Fig.

2.26. It can be seen that the total So(®) is given by the sum of phase noise

weighted by the coefficients cn. The theory predicts the existence of 1/f7,

1/f?, and flat regions for the phase noise spectrum. The low frequency



noise sources are weighted by the coefficient co and show a dependence
on the offset frequency. The white noise terms are weighted by other cn
coefficients and give rise to the 1/f* region of phase noise spectrum.
From Fig. 2.26, it is obviously that if the original noise current i(t)
contains 1/f" low frequency noise terms, they can appear in the phase

. +2 .
noise spectrum as 1/f" ~ regions.
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Chapter 3 The Design of LNA with Notch Filters for UWB

Wideband systems are quite sensitive to out-of-band blockers. In
particular, UWB systems require mitigation of the interference caused by
WiFi systems operating in the 2.5GHz and 5.2GHz bands because the
power of WiFi systems can exceed received UWB signal power a lot. As
such, filtering of the interferers is beneficial to relax the linearity
requirements of the downconversion mixer, and to avoid receiver gain

desensitization.

3.1 Circuit Design of the UWB LNA with low power
3.1.1 Input-matching stage
In input stage, we first uselithe current-reused structure by
cascading PMOS and NMOS which is shown in Fig. 3.1 to achieve

the twice power gain without extra current consumption [15].

-

RF in RF out

41;_

Fig. 3.1 Schematic of the cascade structure

In order to achieve wideband performance of LNA, we add a
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shunt feedback resistance Ry in the input stage shown in Fig. 3.2(a).

Since, the S;; in Fig. 3.2(b) move to the center of smith chart.

yvith Rf
without

4 Mp Rf
" N \

freq (50.00MHz to 12.00GHz)

!
R
N

Fig. 3.2(a) Schematic with R¢ (b) S(1,1) with Ry and without Ry

For reaching input-matching further;.as shown in Fig. 3.3(a), the
inductance L is added to the source of input stage and the improvement
of Sy, is shown in Fig. 3.3(b). After-adding Ry and L, we can accomplish

the whole wideband input-matching network.

—_— wj\tl1 Ls
without
Ls

Rr
[REIn}— W [RE_out
freq (50.00MHz o 12.00GHz)

L

L

Ls
Mp
Mn
Ls
-—
-

Fig. 3.3(a) Schematic with L (b) S(1,1) with Ly and without Ly



3.1.2 Output-matching stage

4

al

LT L IJ % [
|
T T+

Fig. 3.4 Time-domain step current responses in (a) simple RC and (b)
shunt peaking inter-stage networks.
When the beginning of:the small signal current flowing out from
M, shown in Fig .3.4(a). It:will see the impedance of the load resistance
Ry and the parasitic capacitances of M; and M, and charge them.
Oblivious, we can reduce thé-current at the start flowing through the load
resistance by adding the series inductance Ly which is shown in Fig.
3.4(b) . Since, the current will charge the parasitic capacitance quickly to

shorten the rising time. As a result, the bandwidth can be extended

successfully [16].

R

] L;w = ITJ l

Fig. 3.5 Time-domain step current responses in HS peaking inter-stage
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networks.

Furthermore, when putting another inductor L between the two

parasitic capacitances shown in Fig. 3.5, the current at the start will only

charge the Cy so that the bandwidth will be extended more. The

schematic is shown in Fig. 3.6.

RE_IN

Vdd

A

RFB

amk
-

Vdd2

Vbias
Vbias ;

Vbuffer

RF_OUT

Fig. 3.6 the schematic of inpit-matching and output matching

3.1.3 Noise analysis

Because the noise from substrate of transistor always attributes the

noise figure of LNA, we add a large resistance R, between source and

body of each transistor to improve the noise figure which is shown in Fig.

3.7(a). We can find that it’s very useful for reducing the noise figure in

Fig. 3.7(b).
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(b) Improvement of the noise figure

It 1s also important to note that the feedback resistance Ry have

outstanding effect for the noise figure of the LNA. In Fig. 3.8, we can

find that the larger value of R, the lower noise figure and better power

gain can be reached. But it makes the S(1,1) worse at the same time

which is shown in Fig. 3.9. The trade.off between the noise figure and the

S(1,1) is the main consideration to determing the feedback resistance Rf..

20 7 25
] j with R increasing
o 15 . . y 20-]
5 1 with R increasing. | = 7
> 4 ¢ Al
T | & 154
(O] /i < 4
L A\ o B
S 3 \\\ L{ | © ]
5— ~ | 10—
N~/ — :
] A ]
0 \ \ ] \ S \ \ \ \ T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
freq, GHz freq, GHz

Fig. 3.8(a)Noise figure with different Rf

dB(S(1,1))

with R increasing

8 10 1
freq, GHz

Fig. 3.9 S(1,1) with different Rf

2

37

(b)S(2,1) with different Rf



3.2 The Integration of LNA with Notch Filters

3.2.1 The design of notch filters with active inductors

Because WiFi system is a narrow band application, we can only use
narrow band filters to suppress WiFi signals to avoid effecting UWB
system.

In Fig.3.9, we can find that the Q factor of series resonant is
proportional to inductance value and has an inverse ratio with parasitic
resistance [17]. In general, the larger inductance value can increase Q
factor of series resonant. However, instead of improving Q factor, the
performance of filter becomes worse because of the increase of parasitic

resistance which is shown in Fig.3.10

I
: -
c b [

average energy stored o, ol
" energy loss per second Aw R

Fig.3.9 The analysis of the Q factor
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Term 1 L @] Term 2

Frequency (GHz)

Fig.3.10 The filtering ability with increase inductance value

In Fig.3.10, we can find the filtering ability is manly determined by

the Q factor so that we add the negative resistance =2 o eliminate the
Onm

positive resistance of the indactanceswhich 1s shown in Fig.3.11.

Because the negative resistance i may far bigger than positive

m

resistance, we use parallel stfucture shown'm Fig.3.11(c) to avoid the
system becoming unstable. The design of suppressing circuit is shown in

Fig.3.12.

o
— N \N—— {2 ®
é"‘w
o
e |
N
%’\IN

@ o ©

Fig.3.11 The design of negative resistance
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Fig.3.12 The design of suppressing circuit

Using negative resistance can improve the Q factor, but it need
more current consumption. To saye,chip area and power consumption, we
realize the inductance by active circuit'which is shown in Fig.3.13. It’s

consists of two transconductor amplifiers and a capacitor. We can use

Kirchhoff equation to derive equivalent inductance value described in

equation (1), (2) and (3). A genetal.active inductor is shown in Fig.3.14.

1
-1, =- Vo X— | i, 1
X GmZ(Gml XXSCJ ()
Ve, sC
TG =SL e, (2)
I Oy (CTRY c ) T R 3)
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Fig.3.13 The concept of active inductor
__Vdd G ~ gdsZ + gml ) C = Cgsl
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@ = M2 -
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| Imi Im2

|
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C G Yin
L
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Fig.3.14 The schematic of the active inductor
In Fig.3.15, we use resistance Ry to improve the Q factor by
reducing the loss of the inductor and increasing the inductance value.
Additionally, using a plus transistor M; to raise feedforward character can
make the Q factor better shown in Fig.16. The final improved schematic

is shown in Fig.17.
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Fig.3.15 Active inductor with additional Ry
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Fig.3.16 Using M3 to improve the Q factor
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Fig.3.17 The final improved active inductor
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The basic theory to suppress WiFi signal is use series LC tank
1

27LC

open circuit when the frequency is far away from

shorting only when the frequency is

It is nearly regarded as

1

27LC
this character to filter the frequencies of 2.5GHz and 5.2GHz in different

We can use

paths shown in Fig.3.18. We can find the simulation results by using ideal

inductances and capacitors in Fig.3.19.

=1
| Zin |, 1 | Zin | | - 2
V Ll i L1 %
5 v 212
W
| Zin |

Y Y

Fig.3.18 The basic concept of suppressing WiFi signals
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Fig.3.19 The concept diagram of suppressing circuit and simulation result
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3.2.2 The total design with small area and low power
When mixing the LNA and filters, the total noise figure would
become very high if the filters are added in front of the LNA. So we
finally determined adding the filters after the LNA which is shown in
Fig.3.20. In additional, we avoid using any passive inductances and only
using the feedback resistance Rgg to achieve input-matching to save chip

area. The core area of this design is only 0.0016mm”.

Vdd

Vbias

RE_IN

RFB RE_OUT

© Wl lif’ _

I
11
vdd ) T vdd
I
1 1
«I Rf " «I Rf "
M2 M2
| . | .
| |

Fig.3.20 The total schematic of LNA and notch filters

3.3 Simulation and Measured Results
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3.3.1 Simulation and Measured Results of LNA
Fig.3.21 shows the magnitude of S;; and S,;. Fig.3.22 shows the
magnitude of P1dB. The characteristic of the proposed LNA was verified
from Fig.3.21 and Fig.3.22. Fig.3.23 shows the noise figure of the design.

Table 3.1 summarizes the performance of measured results.

B S11measurement
® S21 measurement
S11 simulation
S21 simulation

S-parameter (dB)

T T T T T T T T T T T
2 4 g 8 10 12

Frequency

Fig.3.21 The magnitude of S;; and S,
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Fig. 3.23 The Noise Figure
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Table 3.1 Measurement results of LNA

specification This work
Technology 0.18-um CMOS
Frequency(GHz) 3.1-10.6
Input return loss S;;(dB) <-6.4
Supply voltage(V) 1.4
Power gain(dB) 9.5-14.5
Reverse isolation S;,(dB) <-40
NFmin(dB) 2.6
Bandwidth(GHz) 1.6-10
P1dB@7GHz -14
Paiss(MW) *6.8
Chip Area 0:66mm?

*exclude buffer

3.3.2 Simulation and Measured Results of LNA with notch filters
Fig.3.24 shows the magnitude of S;; and S,;. Fig.3.25 shows the

noise figure of the design. The characteristic of the proposed LNA with

notch filters was verified from Fig.3.24 and Fig.3.25. Table 3.2

summarizes the performance of simulation and measured results.
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Fig.3.24 The magnitude of S;; and S,; for LNA with notch filters
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Fig. 3.25 The Noise Figure of LNA with notch filters
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Table 3.2 Comparison of LNA

specification This work
Technology 0.18-um CMOS
Frequency(GHz) 3-5
Input return loss S;;(dB) <-7.5
Supply voltage(V) 1.8
Power gain(dB) 10.1-13.9
Notch performance 19dB/
@2.5GHz ~ 5.2GHz 38dB
Reverse isolation S;,(dB) <-40
NFmin(dB) 2
Bandwidth(GHz) 3-5
P1dB -14.2
Paiss(MW) 10.3
Chip Coré Area 0.0016mm?

3.4 Comparison and Summary
The comparison of the proposed low noise amplifier and LNA
with notch filters against recently reported on LNA are shown in

Table 3.3 and Table 3.4.
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Table 3.3 Simulation and measurement results of LNA with filters

specification Thiswork | 2007[18] |2007[19] | 2007[20]
EL MWCL | EuMA
Technology 0.18-um 0.18-um | 0.18-um | 0.18-um
CMOS CMOS CMOS | CMOS
Frequency(GHz) 3.1-10.6 3.1-10.6 | 3.1-10.6 | 3.1-10.6
S11(dB) <-5.4 <-9.7 <-8 <-10
Supply voltage(V) 1.4 1.9 1.8 1.4
Power gain(dB) 9.5-14.5 11~11.8 13.5~16 | 10.5~12.5
Reverse isolation <-40 <-40 <-40 --
S12(dB)
NFmin(dB) 2.6 4.12 3.1 4.45
Bandwidth(GHz) 1.6410 1.3-12.1 | 3.4-114 2-9
P1ldB@7GHz -14 -7.86 -- --
Pgiss(MW) *6.8 22.7 11.9 28
Chip Area 0.66mm* **0.447 mm? 1.2mm?’ | 0.63mm?

*exclude buffer

**exclude test pad

50




Table 3.4 Comparison of LNA with filters

specification This work | 2007[21] | 2007[22] | 2007[23]
ISSCC RFIC EL
Technology 0.18-um 0.13-um | 0.18-um | 0.18-um
CMOS CMOS | CMOS | CMOS
Frequency(GHz) 3-5 3-5 3-10 3-10
Input return loss <-7.5 <-10 <-10 <-10
S11(dB)

Supply voltage(V) 1.8 1.5 1.8 1.8
Power gain(dB) 10.1-13.9 <194 <215 <20.3
Notch performance 19dB 6dB -- 12.8dB
@2.5GHz ~ 5.2GHz 38dB 44dB <10dB 19.6dB

Reverse isolation <-40 -- -- --
S12(dB)
NFmin(dB) 2 35 3.5 4
Bandwidth(GHz) 3-5 3-5 3-10 2.9-12.3
P1dB -14.2 -9.4 -- --
Paiss(MW) 10.3 315 21.8 24
Chip Core Area |*0.0016mm?| 1.6mm* | 1.2mm? | 1.43mm?

*core area
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Chapter 4  The Integration of Mixer and VCO with Balun
The demand for high speed wireless systems is driven by the
growing popularity of consumer products. Low-voltage, low-power, and
highly integrated circuits are always the trends for IC design, especially
crucial in mobile wireless communication systems due to the limitation of
battery capacity. The contents of this chapter below will introduce the
integration of mixer, VCO, and Balun using 0.18 um CMOS process in
detail and discuss the principles and aonsiderations of each section.
4.1 Circuit Design of the Mixer and VCO with Balun
4.1.1 Analysis of the mixer with current-bleeding method
In general, an active mixer has three stages that involve
transconductance stage, switch stage and‘load stage which is shown in
Fig.4.1. We know that increasing the bias current of the transconductance
stage makes higher gain and bettet-linearity possible. However, a larger
switching current causes voltage headroom issue and larger noise.
Therefore, the current bleeding technique is implemented by using two
PMOSFETs to reduce the bias current of the switch stage which is shown
in Fig.4.1.
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Fig. 4.1 Gilbert-type mixer with cutrent bleeding circuits
From (1), if the bias cutrent-of switch stage is decreased, the
output flicker-noise current generated by the direct mechanism can be
minimized. Fig.4.1 shows a double-balanced Gilbert-type mixer with
current bleeding circuits. The mixer comprises a transconductance stage,

switch stage, load stage and pMOS current bleeding circuit.

(41 xVn)
o,n(dir) - (S XT) (1)

4.1.2 The replacement of current source with VCO
Although the current bleeding technique can minimize the
output flicker-noise current and maintain the transconductance gain at the

same time, the bleeding current is used up without other profits. The core
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idea of this design is to make the bleeding current for VCO use. In other
words, we will replace current bleeding circuits with VCO to make
current reused which is shown in Fig.4.2. In additional, we change the RF

port and LO port for optimal design.

+ Ewi

=
®

Fig. 4.2 Replace current bleeding circuits with VCO
4.1.3 The addition of the balun

Most balun structures utilize either distributed or lumped elements.
Distributed baluns are composed of sections of A/2 transmission line or
A/4 coupled line. Theses structure occupy large size especially in the
integrated circuit implementation. As lumped element balun is formed
with low pass filter, 90° ahead, and high pass filter, 90° behind, it always
exhibit poor balun balance across frequency [24].

Recently, balun structures consisted of both distributed and lumped
elements have been proposed [25]. The balun as shown in Fig. 4.3 has

been investigated in [26]. By adding two capacitors C2 and C3, the
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coupled lines length can been reduced and two poles induce because of
the coupled resonators. C1 is the input matching. Fig. 4.4 shows the
S-parameter. The phase difference is as shown in Fig. 4.5. Fig. 4.6 shows

the die size of proposed balun is about 0.26*0.26mm?.

C2
I
N

lpored] ci
H %: >< -

- —

Fig. 4.3 The schematic of the proposed balun
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Fig. 4.4 The simulation s-parameters of proposed balun
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Fig. 4.5 The simulation phase difference of proposed balun
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Fig. 4.6 The layout of proposed balun

4.1.4 Total design circuit
Finally, the integration of mixer, VCO, and balun is achieved
for optimal current-reused. As shown in Fig. 4.7, we can see the whole

proposed design circuit.
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Fig. 4.7 Final proposed schematic of the integration
4.2 Simulation Results
Fig. 4.8 shows the magnitude of S11 and S21. Fig. 4.9 shows the
tuning range and phase noise of VCO . The conversion gain and P1dB of
the proposed design in 5.2GHz and 5.8GHz are presented from Fig. 4.10
and Fig. 4.11. Table 4.1 summarizes the performance of simulation

results.
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Fig. 4.9 Tuning range and phase noise of VCO
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Fig. 4.10 conversion gain and P1dB in 5.2GHz
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Conversion gain of 5.8GHz is 14.6dB
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(b) conversion gain in 5.8GHz

Fig. 4.11conversion gain and P1dB in 5.8GHz
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Table 4.1 Simulation results of mixer and VCO

Performance of mixer and VCO with balun

P1dB

5.2 GHz 5.8 GHz
VDD 1.4V
Power consumption 6.12 mW
Input return loss 12 dB 16 dB
Output return loss 12 dB 12 dB
Conversion Gain 156d|!3 .' : 16.6 dB
fﬂlzq';? : -16 dB

Phase noise

-105 dBG/AMHZ |

-105 dBc/1MHz

LO power

LO to RF

-8 dBm

<-30 dB

-6 dBm

<-30 dB
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4.3 Comparison and Summary
The comparison of the proposed design that contains mixer and VCO

with balun against recently reported is shown in Table 4.2.

Table 4.2 Comparison of Mixer and VCO

specification This work | 2005[27] | 2006[28] | 2006[29]
ISCAS MTT EuMA
Technology 0.18-um 0.18-um | 0.18-um | 0.18-um
CMOS CMOS | CMOS CMOS
Frequency(GHz) 52/58GHz | 5GHz | 4.2GHz 1.7
S11(dB) <-12 <-10 <-10 <-31
Supply voltage(V) 1.4 2 1 --
conversion gain(dB) 15.6/16.6 6 10.9 8.9
@5:2/5.8GHz
Phase noise(dBc/MHz) -105 -110 -107.1 -133
Bandwidth(GHz) 5+6 5 4.2 1.7
Pdiss(mW) 6.12 9 3.14 -
Chip Area 1.15mm? -- 0.96mm?| 2.76mm?
Need extra VCO No No No No
Need extra balun No Yes Yes Yes
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Chapter 5  Conclusion

In this thesis, we present low noise amplifier with notch filters and
the integration that consists of mixer and VCO with balun. These
proposed circuits are fabricated using a standard TSMC 0.18um CMOS
process.

In chapter 3, a low noise amplifier with notch filters for UWB
application is presented. First, a low noise amplifier which is added bulk
resistance with low power for 3~10GHz is presented. The measurement
result of LNA shows the power gain is more than 9.5dB in 3~10GHz,
return loss is under -5.4dB, minimum noise figure is 2.6dB, and power
consumption exclude buffer is:6.8 mW. Second, the LNA which is added
notch filters realized by active inducters for. 3~5GHz is presented. The
core area of this design is*only. 0.0016imm? The measurement result of
LNA with notch filter shows the power ‘gain is 8~12dB, return loss is
under -7.5dB. The suppressed performance of notch filters in 2.5GHz and
5.2 GHz are 19dB and 38dB. The power consumption is 10.3 mW. The
simulation results of minimum noise figure and P1dB are 2dB and
-14.2dB.

In chapter 4, the integration of mixer, VCO, and balun which is
achieved for optimal current-reused is presented. The bandwidth is
5~6GHz for WiMAX which concludes. The chip area is Immx1.5mm.
The simulation results in 5.2GHz and 5.8GHz show the mixer conversion
gain are 15.6dB and 16.6dB, return loss is under -12dB, P1dB are -17dB
and -16dB. The phase noise of VCO in 5.2GHz and 5.8GHz are -105

dBc/MHz. The total power consumption is 6.12mW.
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