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摘      要 
 

隨著製程進入奈米時代，能有效的微影以及得到良好的製造程序變得愈

來愈困難。在積體電路實體層設計上導致良率下降的其中一個主要因素為貫穿

點(via)的損毀。因此，得到一個良好的控制基制去改善貫穿點的製造良率以

及可靠度，是可製造設計(DFM)的一個重要課題。 

插入多餘貫穿點是一個被證實有效並且被廣泛推薦來增加貫穿點良率

以及可靠度的方法。在這篇論文，我們發展一個在佈線後能高效能插入多餘貫

穿點的演算法來增加良率。我們把插入多餘貫穿點的問題轉換成混合二部碰撞

圖形的匹配問題，並提出一個新穎的啟發式最小加權匹配演算法去解決此問

題。此方法除了插入多餘貫穿點於存活貫穿點(Alive via)，還運用導線推擠的

概念去保護荒廢貫穿點(Dead via)，方法是把荒廢貫穿點鄰近的導線往空置的

空間移開使能在其旁加上多餘貫穿點。實際結果證明我們的方法可以獲得一個

高的多餘貫穿點插入率並能有效地執行。 
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ABSTRACT 
 

As the process technologies advancing to nanometer epochs, the lithography and 

manufacture procedures turn out to be more difficult. Via defect is one major source of 

yield loss during the physical design stage. Therefore, requiring a good control for via 

failure to improve via yield and reliability is one of the most important issues in design 

for manufacturability (DFM). 

Redundant via insertion is a verified efficient and widely recommended method to 

enhance via yield and reliability. The purpose of this thesis is to develop an efficient 

method to insert redundant vias in the post-routing stage. We transform the redundant 

via insertion problem into a mixed bipartite-conflict (MBC) graph matching problem, 

and present a novel heuristic minimum weighted matching algorithm (HMWM) to solve 

it. The proposed method, besides inserting redundant vias for alive vias, also protects 

the dead vias by applying wire pushing capability which shifts wires into the empty 

space and adds redundant vias next to dead vias. Experimental results show that our 

method obtains a high redundant via insertion rate and perform effectively. 
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Chapter 1

Introduction

1.1 Introduction

As the VLSI technology scales into the deep sub-micron and nano-meter region, the number of

transistors and logic gates speedily increases in a chip. Nowadays, modern chips may have six

or more metal layers and over 4,000,000 vias [1]. The vias are used to connect wires on different

metal layers and play a very important role in the integrated circuit (IC) design. Fig. 1.1 shows

the vias with local and global interconnects.

Global 
interconnectinterconnect

Diffusion
Via

Local 
interconnectinterconnect

Source: IBM

Fig. 1.1: Vias in chip

The via may be partially or completely failed [2] due to the random defects in a manufactur-

ing process, electro-migration and thermal stress. If a via is partially blocked, its substantially

increasing equivalent resistance and capacitance will degrade the circuit performance and cause
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Fig. 1.2: Single via failure [2]

the reliability issue of the circuit. On the other hand, the completely failed via will break the

net, cause the functional failure of logic gates and make the entire design fail. Fig. 1.2 shows the

single via failure. Yield will lose seriously of defects because of these via failures. Therefore,

a good control for via failure to improve the yield is one of the most important issues in design

for manufacturability (DFM). Inserting a redundant via adjacent to a single via without causing

any design rule violations is a valid and recommended method to improve the via yield and re-

liability [3, 4, 5, 6]. The redundant via can be viewed as a backup of the single via, and it makes

the via failure to be tolerated. After inserting a redundant via, the failure rate of double vias is

quite smaller than the single via’s. It has been indicated that a single via fails 10X-100X more

often than the double vias [7]. Many commercial EDA tools have already added the redundant

via insertion function to their physical design flow.

Generally, the redundant via insertion technique can be performed in different stages such

as the routing stage and the post-routing stage. To perform the redundant via insertion in the

routing stage, the double-via insertion rate can be improved compared with in the post-routing

stage. However, the inserted redundant vias might lead some non-routing nets to be unroutable

2



and degrade the routability, it also makes the routing to be more complicated. In contrast,

inserting redundant vias in the post-routing stage is easy to perform and several existing methods

have taken many effects such as the timing constraints, routable nets with the minimum die area

and the antenna rule into account in the routing stage. The tools EYE/PEYE [8] insert redundant

vias next to single vias in the post routing stage. Authors in [9], [10] and [11] also consider the

redundant via insertion in the post-routing stage. If we consider the redundant via insertion

in both the routing and the post-routing stages, it becomes a trade-off between routability and

redundant via insertion rate. Neverless, decreasing the number of critical and dead vias causes

some non-routing nets to make detours and generate more vias. Methods proposed in [12], [13]

and [14] consider redundant via insertion in both the routing and the post-routing stages.

Besides, wire spreading [8] is used to reduce the critical area between the interconnect for

increasing wire yield and reliability. Its basic idea is to spread wires into the empty space

for reducing the probability of a defect particle shorting two neighboring wires. The tools

EYE/PEYE [8] reduce the critical area to avoid shorts between wires of the layout by using

wire spreading technique. This concept of wire spreading can be utilized to insert redundant

vias next to dead vias as proposed in [15].

1.2 Our Contributions

In this work, we develop an efficient algorithm with wire pushing capability to insert redundant

vias for both alive and dead vias in the post-routing stage. Firstly, the mixed bipartite-conflict

(MBC) graph is defined by mixing the bipartite and conflict graphs, and a weight of each edge in

the MBC graph is suitably assigned. Then, the redundant via insertion problem is formulated as

a defined MBC graph matching problem. After that, an effective heuristic minimum weighted

matching (HMWM) algorithm is developed to find the matching of MBC graph. Finally, we

utilize the above procedure and the wire pushing technique to develop an efficient redundant via

insertion method for alive and dead vias. Experimental results show that the average insertion

rate of alive vias is 99.54% with a short run time, and the technique of wire pushing can achieve

54.41% insertion rate for the dead vias in average.
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1.3 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the basic concept of re-

dundant via insertion. At the same time, we also review some related literatures. In chapter 3,

we first present the treatment of stack via and the concept of wire pushing capability and how

to utilize this technique for inserting the redundant via adjacent to the dead via ,then second

present the detail of our post-routing redundant via insertion method with wire pushing capabil-

ity (RVI fA-WP). Finally, the experimental results for the comparison of post-routing redundant

via insertion between our algorithm and TDVI [14] are presented in chapter 4. The experimen-

tal results of wire pushing capability are also shown in chapter 4. Finally, a brief conclusion is

given in chapter 5.
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Chapter 2

Preliminaries and Literatures Overview

2.1 Basic Concept of Post-routing Redundant Via Insertion

In this chapter, the basic concepts of redundant via insertion is presented, and some previous

related researches are reviewed.

2.1.1 Post-routing Redundant Via Insertion

The redundant via and the post-routing redundant via insertion problem are defined as follows.

Redundant via: Redundant via is a backup of single via; the process of redundant via

insertion is to insert a redundant via adjacent to a single via as long as it does not cause any

design rule violation. The name of the single via and its adjacent redundant via is called double

via.

Post-routing redundant via insertion problem: Given a routed circuit design and tech-

nology design rules, the post-routing redundant via insertion problem is to insert an extra via

next to a single via without violating any design rule, and try to protect single vias as many as

possible. If inserting an extra via is not allowed, single via will keep unchanged. Post-routing

redundant via insertion process is equal to replacing single via with double via.

2.1.2 On-track and Off-track Redundant Via

Basically, redundant via is divided into two main types: on-track and off-track redundant via.

On-track redundant via means that the second via is inserted onto the track of the original signal

net as shown in Fig. 2.1(a) . On the other hand, off-track redundant via means that the second

via is inserted with overhanging extra metal wire of the single via as shown in Fig. 2.1(b). On-
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track redundant via is more critical than off-track redundant via since on-track redundant via

takes less routing resource and has better electrical properties.

(a)

(b)

Fig. 2.1: Redundant vias in different directions. (a) On-track redundant via. (b) Off-track
redundant via.

2.1.3 The Categories of Single Via

According to the definition of [14], single via has three different categories according to the

number of its redundant via candidates in the post layout. A redundant via candidate is a

position where a redundant via can be inserted next to a single via without any design rule

violation. A single via is called dead via if it does not have any redundant via candidate, whereas

a via is called alive via if it has at least one redundant via candidate. Furthermore, an alive via is

also called critical via if it has only one redundant via candidate. Fig. 2.2 illustrates the different

via categories described above. After performing the redundant via insertion, if a redundant via

can be inserted next to the original single via, the single via is protected. Otherwise, it is dead.

How to effectively insert redundant vias for protecting critical and dead vias to get a higher

6



insertion rate is a practical issue of redundant via insertion in the post routing stage.

Fig. 2.2: The different categories of single via.

2.1.4 Stack Via

Chen et al. [14] reported a special via structure called stack via. It consists of at least two single

vias which stack vertically. Fig. 2.3 shows this special structure in the interconnect of the chip.

2.2 Previous Works Related to Redundant Via Insertion

The first work considering the redundant via insertion for the yield improvement in the detailed

maze routing stage was proposed by Xu et. al. [12]. They utilized a Lagrangian relaxation

approach to insert redundant vias; however, the computational complexity of their approach

is very high. Yao st. al. [13] minimized the number of via usage and considered redundant

vias planning in the routing stage to improve the yield, but some routed wire segments might

violate the antenna rules because of enabling some wire segments to be longer for reducing the

number of vias in the detailed routing stage. Thus, it might need extra vias to be added in the

7



Stack via 
structure

Fig. 2.3: Stack via connections in 0.35-mm CMOS technology interconnect [16]

circuit design to solve this antenna problem. Luo et. al. [11] presented a redundant via insertion

method based on a novel geotopological platform. The post-routing layout is extracted to a

geotopological layout, and then the insertion is performed one by one. This approach changes

the routing results to obtain a high insertion rate.

Lee et. al. [9, 10] formulated the redundant via insertion problem as a maximum indepen-

dent set (MIS) problem and considered redundant via insertion in the post-routing stage. Since

the MIS is a NP–complete problem, they proposed an efficient model and a heuristic algorithm

to solve it.

Recently, Chen et. al. [14] presented a novel full-chip gridless routing system considering

the via number minimization in the global routing stage and the redundant via planning in

the detailed routing stage. However, in order to decrease critical and dead vias, the count of

vias slightly increases. They proposed an algorithm called TDVI based on the bipartite graph

matching formulation to achieve a high redundant via insertion rate in the post-routing stage.

Moreover, stack via is treated as an unit via in the insertion process, this treatment causes the

quality of solution might be degraded. A simple example will be presented in subsection 3.1 to

8



explain this issue. Besides, as the number of routing layers for the layout is more than 3, their

two-stage double-via insertion (TDVI) algorithm partitions the original layout into several sub-

layouts which include three routing layers at most. After that, they first solve the lower critical

sub-layout by using the maximum bipartite matching. Hence, the insertion solution quality of

the TDVI algorithm is degraded due to this heuristic. They also formulated the redundant via

insertion problem as a minimum weighted bipartite matching problem and gave higher priority

to on-track redundant via candidates and stack via redundant via candidates for insertion. K.

McCullen [17] presented a dynamic method by applying wire spreading technique [8] that shifts

original wires to create space for inserting more redundant vias under the restricted topology

layout. Although the method can achieve a higher insertion rate, the authors restrict the problem

to a 1-D problem and the runtime efficiency is not very well.
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Chapter 3

Post-routing Redundant Via Insertion with
Wire Pushing Capability

In this chapter, the treatment of stack via and the basic concept of wire pushing capability

are introduced first. Then, the post-routing redundant via insertion problem is formulated as a

graph matching problem which we call it theMBC graph matching problem. After formulating

the problem, the details of the proposed post-routing redundant via insertion method with wire

pushing capability (RVIfA) are presented.

3.1 The Treatment of Stack Via

To solve the counterexample shown in [9] by the method TDVI presented in [13], authors in [14]

transformed the redundant via insertion problem to the maximum bipartite matching problem

with up to three routing layer, and treated a stack via as one unit via. However, we find that this

treatment will loss the quality of the final insertion solution. For example, Fig. 3.1(a) shows two

different nets with a single via (V 3) and a stack via which consists of two single vias (V 1 and

V 2), respectvely. Fig. 3.1(b) indicates all possible redundant via candidates of these single vias

(RB1 andRR1 for V 1, RL2 andRR2 for V 2, andRL3 for V3). Assuming that the redundant

via candidatesRR1 andRL3, RR2 andRL3 cannot exist simultaneously because their vertical

and horizontal conflict violate the design rule. BecauseV 1 andV 2 are stacked, we need to

merge the same side feasible redundant via candidatesRR1 andRR2 into one candidate as

shown in Fig. 3.1(c). Under this constraint, it makes some available redundant via candidates

missing such asRB1 andRL2. Fig. 3.1(d) shows the insertion solution after performing the

minimum weighted bipartite matching. This result is not the optimal one in this example, and
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the optimal solution is shown in Fig. 3.1(e). In conclusion, to firstly protect stack via, single via

which neighbors stack via may not be protected when its redundant via candidate has conflict

with stack via’s redundant via candidate. Therefore, in our approach, each single via is treated

as an unit via and the insertion priority of their redundant via candidates are equitable if we do

not consider on-track preference.

Single via
Stack via

V1

V2 V3

RB1
RR1 RR1

V2 V3
RL2

RR2 RL3 RR2 RL3
(a) (b) (c)

Metal 1

Metal 2

(d) (e)

Metal 2

Redundant 
via candidate

Single via

Metal 3

Fig. 3.1: Redundant via insertion of stack via structure

3.2 Wire Pushing Capability

A conventional method cannot insert redundant via next to a dead via if there is not enough

empty space at the surroundings of it. In order to achieve a higher redundant via insertion rate,

the redundant via insertion with layout pushing capability was proposed in [15]. Its basic idea is

to push wire segments away the dead via without introducing any design rule and connectivity

violations to allocate enough space for inserting a redundant via adjacent to this dead via. This

is a practical method to protect dead vias in the post-routing stage, and some commercial tools
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Fig. 3.2: An example of wire pushing capability. (a) A portion of original routed circuit. (b)
Two redundant via candidates after pushing wire segments. Here, the wire shifted degree of the
top redundant via is 1, and the wire shifted degree of the bottom redundant via is 2.

are disposed to develop this technique for improving the yield of dead vias. A simple example

is shown in Fig. 3.2 to illustrate it. Fig. 3.2(a) is a portion of original routed circuit, and two

illustrated redundant via candidates after pushing wire segments are shown in Fig. 3.2(b). The

problem formulation of wire pushing can be described as follows.

Basically, given a routed circuit and process design rules, we should determine how to push

wire segments around the dead vias to obtain enough space for inserting vias. After pushing the

wire segments, the modified layout must maintain circuit characteristics, and the chip area must

keep unchanged.

To find redundant via candidates for dead vias by utilizing the wire spreading capability, a

searching region is predefined for finding a redundant via candidate of the dead via. The use of

searching region is similar to the DRW1 proposed in [9]. The searching region is a bounding

rectangular box, and its size is according to the minimum space (MSP) and the maximum wire

shifted degree. Here, the MSP is the minimum space design rule of metal and via in the same

1DRW is a bounding rectangular box that is used to find redundant via candidates for alive vias.

12



layer, and the maximum wire shifted degree is the extended level of wires allowed to be pushed.

When the movement of wire segments in the searching region is legal, a redundant via candidate

of the dead via and the minimum shifted degree of its adjacent wires are obtained. Fig. 3.2(b)

illustrates the result of finding the redundant via candidates for a dead via in its searching

region with the maximum wire shifted degree being 3 for each metal layer. Two redundant via

candidates are presented in Fig. 3.2(b). One wire shifted degree is 1, and the other is 2.

The searching region is also utilized to find the conflicts– that is to say, the design rule is

violated if some redundant via candidates of dead via and the redundant via candidates of single

via exist simultaneously. Furthermore, single vias, pins and instance pins cannot exist on the

pushing wire segments of the searching region.

The experimental results presented in chapter 4 demonstrate that the wire spreading tech-

nique can achieve average insertion rate to be 54.41% for the dead vias in the benchmark cir-

cuits, and the movement of pushing wires in the searching region is relatively small compared

with the original layout. Hence, the impact of circuit timing is negligible.

3.3 MBC Graph Matching Problem

In this section, the post-routing redundant via insertion problem is formulated as a graph match-

ing problem. Firstly, we give the definitions of several related graphs. Then, the graph matching

problem which we call it the “MBC graph matching problem” is defined.

Definition 1 (Via-candidate bipartite graph) A via-candidate bipartite graphGv = (V ∪

R,Ev) is an undirected bipartite graph whose vertices are composed of two independent setsV

andR. V is the set of single vias in the circuit, and it is named to be a single via set.R is the set

whose vertices are the redundant via candidates of single vias, and it is called as a redundant via

candidate set.Ev is the edge set. For eachv ∈ V andr ∈ R, there exists an edgee(v, r) ∈ Ev if

r is a redundant via candidate ofv. �

Definition 2 (Candidate relative graph) A candidate relative graphGc = (R,Ec) is an undi-

rected conflict graph whose vertex set is the redundant via candidate setR. For eachr1 ∈ R and

r2 ∈ R, there exists an edgee(r1, r2) ∈ Ec if the design rule will be violated for simultaneously
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Fig. 3.3: Two feasible cases without violating the design rule.

choosingr1 andr2. Moreover, ifr1 andr2 originate from the same single via, there wouldn’t

exist an edgee(r1, r2) to connectr1 andr2. �

Remark of Definition 2: TheEc wouldn’t contain an edgee(r1, r2) to connectr1 andr2 if

they belong to the same net and wouldn’t violate any design rule for simultaneously choosing

them. Two examples are shown in Fig. 3.3. BothRL1 andRR2 in Fig. 3.3(a) can simultane-

ously exist, and bothRR1 andRR2 in Fig. 3.3(b) can simultaneously exist because they do not

violate any design rule.

Definition 3 (Mixed bipartite-conflict graph/MBC graph) A mixed bipartite-conflict graph

G = (V ∪R,Ev∪Ec) is a union ofGv = (V ∪R,Ev) andGc = (R,Ec). Here, the vertex set of

G is equal toV ∪R, and the edge set ofG is equal toEv∪Ec. �

Fig. 3.4 gives an example to illustrate the above graphs. Fig. 3.4(a) shows a portion of

routed circuit which has three single vias and seven redundant via candidates, and it shows

the conflicts of their redundant via candidates. Fig. 3.4(b) illustrates the corresponding via-

candidate bipartite graph of this routed circuit. The edge setEv is composed of all edges in
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Fig. 3.4(b). Fig. 3.4(c) is the corresponding candidate relative graph of this routed circuit. The

edge setEc consists of all edges in Fig. 3.4(c). Finally, Fig. 3.4(d) is the MBC graph of this

routed circuit by combining Fig. 3.4(b) and Fig. 3.4(c). The edge setE of MBC graph shown

in Fig. 3.4(d) is the union ofEv andEc.

One difference between the MBC graph and the bipartite graph in [14] is that the vertex

set of MBC graph is constructed by all single vias and their redundant via candidates in all

layers. The graph can represent the conflicts of redundant via candidates methodically and

perform the matching effectively. Moreover, the bipartite graph formulated in [14] merges the

redundant via candidate vertices if they are in conflict, treats each stack via as a unit, and the

single vias which form a stack structure can only have redundant vias inserted on the same

side simultaneously [18]. On the contrary, in the MBC graph, an edge is added to connect two

redundant via candidate vertices if there is a conflict between them, and each single via is treated

as a unit no matter it is stacked or not. For example, Fig. 3.5(a) consists two different nets with a

single via (V 3) and a stack via which consists of two single vias (V 1 andV 2). Fig. 3.5(b) shows

the feasible redundant via candidates of these three single vias, where a vertical conflict exists

betweenRR1 andRL3, and a horizontal conflict exists betweenRR2 andRL3. TheRR1 and

RR2 do not exist conflict because they belong to the same net and from different metal layers.

Fig. 3.5(c) shows the feasible redundant via candidates of bipartite graph formulation in [14],

whereRR1 andRL2 are merged to one candidate becauseV 1 andV 2 are stacked. Note that

some available redundant via candidates are missed such asRB1 andRL2. Fig. 3.5(e) gives

the bipartie graph of Fig. 3.5(c), where vertexRR1 and vertexRR2 are merged into one vertex

RR12, and verticesRR12 andRL3 are also merged into a vertexR because they are in conflict.

Fig. 3.5(d) gives the MBC graph of Fig. 3.5(b). Instead of merging the conflict verticesRR1

andRL3, andRR2 andRL3, we add an edge betweenRR1 andRL3, and an edge between

RR2 andRL3.

The post-routing redundant via insertion problem can be reformulated as a mixed bipartite-

conflict graph matching problem which is described below.

Mixed bipartite-conflict (MBC) graph matching problem: Given a MBC graphG = (V ∪

R,Ev ∪ Ec), the problem is to find a matchingM of the given MBC graph. Here,M is a set of
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Fig. 3.4: An example of mixed bipartite-conflict graph. (a) A portion of routed circuit. (b) The
via-candidate bipartite graph. (c) The candidate relative graph. (d) The mixed bipartite-conflict
graph.
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Fig. 3.5: Illustration of the difference between the mixed bipartite-conflict graph and the bipar-
tite graph

pairwise non-adjacent edges, and the endpoints of each edge consist of one inV and the other

in R. Furthermore, for two arbitrary endpointsr1 ∈ R andr2 ∈ R, it is not allowed to exist an

edge between them inEc. �

3.4 Redundant Via Insertion Method with Wire Pushing Ca-
pability (RVI fA-WP)

The executing flow of the proposed RVIfA-WP method is summarized in Fig. 3.6. Although

simultaneously dealing with alive vias and dead vias can achieve a better insertion rate to all

single vias, the RVIfA-WP method inserts the redundant vias of alive vias firstly and then insert

the redundant vias of dead vias for not altering the original routed design too much. Given a

cell library with the design rules (such as Library Exchange Format file–LEF) and a post routed

circuit design (such as Design Exchange Format file–DEF), firstly, a MBC graph is built for

those alive vias, and the edge weight assignment procedure is performed for this MBC graph.
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Then, according to the weights of edges, we utilize a developed heuristic minimum weight

matching (HMWM) algorithm to solve the MBC graph matching problem, insert redundant

vias adjacent to alive vias and update the resources of the original layout design. After the

insertion for alive vias, dead vias can be protected as well by using the wire pushing capability.

Similarly, a weighted MBC graph can be built for dead vias, and our HMWM algorithm can

also be employed for this graph. After executing the HMWM algorithm, the inserted solution

of dead vias can be obtained, the resources are update and the metal wire segments are shifted.

Lastly, we output a modified layout design. In the following, we detail the proposed (RVIf

A-WP) method.

1. MBC graph construction for the alive vias.
2. Edge weight assignment for the MBC graph of alive vias.
3. HMWM algorithm for finding the matching of MBC graph.

1. MBC graph construction for the dead vias.
2. Edge Weight Assignment for the MBC graph of dead vias.
3. HMWM algorithm for finding the matching of MBC graph.

Redundant Via Insertion for Alive Vias
RVIfA Procedure

Circuit Benchmark (DEF)Cell Library (LEF)

The modified layout with inserted redundant vias

Dead Via Protection by using Wire Pushing Capability 
WP Procedure

Fig. 3.6: The flowchart of the proposed RVIfA-WP method.

3.4.1 Redundant Via Insertion for Alive Vias (RVIfA)

In this subsection, we present the procedure of redundant via insertion for alive vias in our

proposed RVIfA-WP method. In the following, we name it “RVIfA procedure”.

MBC Graph Construction
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We refer to the similar concept of graph construction algorithm (GCA) proposed in [9] to

construct the corresponding MBC graphGA = (V ∪ R,Ev ∪ Ec) for alive vias of the given

routed circuit; it utilizes the box DVE and DRW defined in [9] to find redundant via candidates

of single vias, and the conflicts between the redundant via candidates of different single vias.

The MBC graph can be obtained by modifying the conflict graph proposed in [9]. Our proposed

MBC graph can be obtained by adding the single via vertices and constructing an edge which

connects single via vertex and each of its candidate vertices to the conflict graph, and removing

all the edges of candidates which belong to the same single via in the conflict graph.

Edge Weight Assignment for the MBC Graph

After constructing a MBC graphGA = (V ∪ R,Ev ∪ Ec) for alive vias, a value of weight

w(e) for each edgee(v, r) ∈ Ev, wheree ∈ Ev, v ∈ V , andr ∈ R, is assigned according to the

properties of the alive via vertexv and its redundant via candidate vertexr. The edge weight

w(e) is given as

w(e) = αA × F.N. + βA × C.D. + γA × C.T. + σA × A.D.C., (3.1)

Here,αA, βA, γA andσA are user-specified constants and the value ofw(e) is according to

several keys which are defined as follows.

• Feasible number (F.N.): As defined in [9], it is the number of the feasible redundant via

candidate vertices of the alive via vertexv.

• Conflict degree (C.D.): It is equal to the number of conflicts between redundant via can-

didate vertexr and other redundant via candidate vertices of different single vias causing

design rule violation, i.e., the number of connected edges of the redundant via candidate

vertexr in Ec .

• Candidate type (C.T.): The on-track redundant via is more critical than the off-track

redundant via due to the better electrical properties of the on-track redundant via. Thus,

we prefer to insert the on-track redundant via. The value ofC.T. is equal to 1 if the

redundant via candidate vertexr is off-track; otherwise, it is 0 for the on-track redundant

via candidate vertex.
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Fig. 3.7: Illustion of the conflict between two redundant via candidates for the alive and dead
vias.

• Alive-dead conflict degree (A.D.C.): It is defined as the number of the conflicts between

redundant via candidate vertexr and the redundant via candidate vertices of dead vias

by pushing wire segments. Fig. 3.7 illustrates this definition. The example shown in

Fig. 3.7(a) has a dead via (DV2) and an alive via (V1), and each has a redundant via

candidate. In Fig. 3.7(b), the white metals are pushing wire segment, and the red circle

indicates a conflict between the pushing wire segment and the redundant via candidate of

the alive via.

To make a trade-off between the redundant via insertion rate and the on-track redundant via

insertion rate, the order of importance is the feasible number,the candidate type, the conflict

degree and the alive-dead conflict degree; hence we haveαA ≥ γA ≥ βA ≥ σA. According to

the edge weight assignment, we give the higher priority to an edge which has a smaller feasible

number of its corresponding alive via vertex, and a smaller conflict degree, a smaller alive-dead

conflict degree and the on-track structure of its corresponding redundant via candidate vertex.

The intention of usingA.D.C. is to retain empty space for pushing wire segments to insert the
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HMWM(G = (V ∪R,Ev ∪ Ec))
Sort the edges of the edge setEv in the non-decreasing order weight
by constructing the binary search tree– BST.

while existing edges inEv can be added to the matchingM
Pick ane(v, r) ∈ Ev, wherev ∈ V andr ∈ R, which has the
smallest weight in the binary search tree–BST.

Add e(v, r) to M ,
Do Update(e(v, r), G),

return matchingM

Update(e(v, r), G)
1. Update the vertex setV ∪R and edge setEv ∪ Ec of G:

a) Delete all adjacent vertices ofr exceptv and their connected
edges, and the candidate vertices ofv exceptr and their
connected edges.

b) Delete the edgee(v, r) and verticesv andr.
2. Update the edge weights ofG:

Re-calculate the value of conflict degree and the feasible number of
each edgee(v1, r1) ∈ Ev with v1 ∈ V andr1 ∈ R. Here,
at least one of the redundant via candidate vertices ofv1 is deleted,
or r1 connects to deleted redundant via candidate vertices.

3. Update the binary search tree–BST.

Fig. 3.8: Algorithm of HMWM.

redundant via adjacent to the dead via.

HMWM Algorithm for the MBC Graph

The HMWM algorithm is a heuristic method for solving the MBC graph matching problem.

After constructing the MBC graphGA = (V ∪ R,Ev ∪ Ec) of alive vias, where each edge

e ∈ Ev has a specific weight, the RVIfA procedure performs the HMWM algorithm to solve the

weighted MBC graph for obtaining the matchingM , then it inserts a redundant via next to each

matched alive via. The HMWM algorithm firstly sorts the edges which are in the edge setEv

according to their weights in the non-decreasing order by using the binary search tree (BST),

then it adds an edge having the smallest weight to the matchingM . If the number of the edges

with the smallest weight is more than one, it randomly select one and add it toM . After one

edge has been added, the MBC graph is modified immediately by deleting all adjacent vertices

of the matched redundant via candidate vertex and its connected edges. The candidates of the

matched single via vertex and its connected edges are also removed. Then, the conflict degree
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and the feasible number of each relative edgee(v1, r1) ∈ Ev are re-calculated. Here,v1 is a

single via vertex, and at least one of its candidate vertices is deleted orr1 connects to deleted

redundant via candidate vertices. In addition, the binary search tree is also updated. The above

process is terminated until no edge can be added toM , and the matching of the weighted MBC

graph is obtained. The computational procedure is shown in Fig. 3.8.

Procedure Summarization of Redundant Via Insertion for Alive Vias

Given a routed circuit, the steps of RVIfA procedure are summarized as follows.

Step 1: Check the surrounding environment to find redundant via candidate vertices and con-

flicts for all single via vertices, and add dead via vertices to the dead via set (DVSET).

Step 2: Check the surrounding environment to find redundant via candidate vertices and con-

flicts for all dead via vertices and determine how many wire segments need to be pushed.

Step 3: Construct a MBC graphGA = (V ∪R,Ev ∪Ec) for all alive vias, and assign a weight

to each edgee ∈ Ev according to those keys mentioned in section 3.4.1.

Step 4: Perform HMWM algorithm to find the matching of this weighted MBC graph. Then,

unmatched via vertices become dead via vertices and are added to the dead via set (DVSET).

Step 5: Modify the layout resources which include redundant vias and extra metal wires. The

redundant via candidate vertices of dead vias which are conflicted with the redundant via

vertices of matched alive via vertices are removed.

An Example of the RVIfA Procedure

Fig. 3.9 gives an example to illustrate the RVIfA procedure. Fig. 3.9(a) presents a routed cir-

cuit with its redundant via candidates and potential pushing wire segments.V 1, V 2 andV 3 are

alive vias and their redundant via candidates are{RL1, RT1, RR1}, {RL2, RT2, RB2, RR2}

and{RL3}, respectively.V 4 is a dead via and has a redundant via candidateRB4 by using

wire pushing capability. Note that the candidateRB4 of dead viaV 4 and the candidateRT2 of

alive viaV 2 cannot both exist in the design because they cause a conflict happened and violate

the design rule.

In Step3, we construct a MBC graphGA = (V ∪ R,Ev ∪ Ec) for alive vias in Fig. 3.9(a)

and assign a weight to each edge as shown in Fig. 3.9(b). HereαA = 3, βA = 1, γA = 2 and
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σA = 0.1. We give an example to explain the edge weight assignment. For edgee(V 3, RL3),

vertexV 3 has an off-track redundant via candidate vertexRL3. RL3 conflicts withRB2 and

RR1 but it does not have any conflict with redundant via candidates of dead vias. Thus the

weight of e is w(e) = 3 × 1 + 1 × 2 + 2 × 1 + 0.1 × 0 = 7. The process of heuris-

tic minimum weight matching (HMWM) in Step4 is shown in Fig. 3.9(b) to Fig. 3.9(e). In

Fig. 3.9(b), the edgee(V 3, RL3) which has the smallest weight 7 is first extracted to the

matching, then we delete the adjacent vertices{RR1, RB2} of RL3 and their connected edges

{e(V 1, RR1), e(RR1, RB2), e(RR1, RL3), e(V 2, RB2), e(RB2, RL3)}. After the deletion,

the weights of the edges{e(V 1, RL1), e(V 1, RT1), e(V 2, RL2), e(V 2, RT2), e(V 2, RR2)}

need to be updated. The process is continuously executed to extract edges of the weighted

MBC graph in the non-decreasing order weight, until no edge can be added. After match one

edge, we need to delete the relative vertices and their connected edges, and update the weight

of the relative edges. Fig. 3.9(e) shows the matching{(V 1, RL1), (V 2, RR2), (V 3, RL3)} of

the given routed circuit. After Step 5, the modified layout is shown in Fig. 3.9(f).

3.4.2 Dead Via Protection by using Wire Pushing Capability (WP)

After redundant vias have been inserted for alive vias, redundant vias are inserted next to dead

vias by using the wire pushing capability to further enhance the yield of vias. In the following,

this procedure which we name it “WP procedure” is detailed.

MBC Graph Construction

In the DVSET, there are two types of dead vias. One is the original dead vias of the routed

circuit, and the other is the new dead vias which are those unmatched alive vias in the RVIf

A procedure. For the DVSET, we construct a MBC graphGD = (V ∪ R,Ev ∪ Ec) for dead

vias as the construction of the MBC graphGA = (V ∪ R,Ev ∪ Ec) for alive vias of the routed

circuit. We utilize the searching region (see 3.2) as the DRW defined in [9] to find redundant

via candidates and conflicts of candidates for dead vias.

Edge Weight Assignment for the MBC Graph

After constructing a MBC graphGD = (V ∪ R,Ev ∪ Ec) for dead vias, a weightw(e) for

each edgee(v, r) ∈ Ev, wherev ∈ V andr ∈ R, is assigned according to the properties of
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Fig. 3.9: An example for illustrating the RVIfA procedure.
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dead via vertexv and its redundant via candidate vertexr. The edge weightw(e) is given as

w(e) = αD ×D.F.N. + βD ×D.C.D. + γD × P.W.N. + σD × C.T., (3.2)

whereαD, βD, γD andσD are user-specified constants, and the value ofw(e) is according to

several keys defined as follows.

• Dead-Feasible number (D.F.N.): It is the number of the feasible redundant via candidate

vertices of dead via vertexv by using wire pushing capability.

• Dead-Conflict degree (D.C.D.): The dead-conflict degree of redundant via candidate

vertexr of dead via vertexv is equal to the number of conflicts betweenr and the other

redundant via candidate vertices of dead vias by pushing wire segments. An example

is shown in Fig. 3.10. There is an intersection between two pushing wire segments of

different dead via’s candidates{DR1, DL2}.

• Pushing wire number (P.W.N.): It is the number of pushing wire segments for allocating

enough space to insertr. For example, theP.W.N. of DR1 is two and theP.W.N.s

of DL2 andDR2 are one as shown in Fig. 3.10. We intends to select a redundant via

candidate vertex whoseP.W.N. is smaller since the movement of wires is less.

• Candidate type (C.T.): It is equal to 1 if the redundant via candidate vertexr is off-track,

otherwise it is 0 for on-track redundant via candidate vertexr.

The order of importance is the dead-feasible number, the dead-conflict degree, the pushing

wire number and the candidate type; hence we haveαD ≥ βD ≥ γD ≥ σD in the edge as-

sigment. According to the edge weight assignment, we also give a higher priority to an edge

having a smaller dead-feasible number of its corresponding dead via vertex, and a smaller dead-

conflict degree, a smaller pushing wire number and the on-track structure of its corresponding

redundant via candidate vertex.

HMWM Algorithm for the MBC Graph

After constructing the MBC graphGD = (V ∪R,Ev ∪Ec) and assigning a suitable weight

of each edgee ∈ EV , we also apply HMWM algorithm to find the matching of this weighted
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Fig. 3.10: Illusion of a conflict between two pushing wire segments

MBC graph. The detailed process of HMWM algorithm to solveGD = (V ∪R, Ev ∪Ec) is the

same as presented in 3.4.1.

Procedure Summarization of Dead Via Protection by using Wire Pushing Capability

Given a routed circuit, the detailed steps of WP procedure for solving MBC graphGD = (V ∪

R,Ev ∪ Ec) of dead vias are shown as follows.

Step 1: Check the surrounding environment to find redundant via candidate vertices and con-

flicts for new dead via vertices and determine how many wire segments need to be pushed.

Step 2: Construct a MBC graphGD = (V ∪R, Ev ∪Ec) for all dead vias, and assign a weight

to each edgee ∈ Ev according to those keys mentioned in section 3.4.2.

Step 3: Perform HMWM algorithm to find the matching of this weighted MBC graph.

Step 4: Shift the pushing wire segments and modify the layout resources including the redun-

dant vias and extra metal wires.

An Example of the WP Procedure
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Fig. 3.11 gives an example to illustrate the WP procedure. Fig. 3.11(a) is a a portion of

routed circuit. In Fig. 3.11(b),DV 1, DV 2 are dead vias with their redundant via candidates

{DT1, DB1}, {DT2, DB2} by using wire pushing capability, and there is a conflict between

two pushing wire segments ofDB1 andDT2. In Step2, we construct a MBC graphGD =

(V ∪R,Ev ∪Ec) for dead vias and assign a weight to each edge inEv is shown in Fig. 3.11(c).

HereαD = 3, βD = 1, γD = 1 andσD = 0.1. We also give an example to explain the edge

weight assignment. For edgee(DV 2, DT2), the vertex DV2 has an off-track redundant via

candidate vertexDT2, the pushing wire segments ofDT2 andDB1 are in conflict, and the

number of pushing wire segments ofDT2 is one. Thus the weight ofe is w(e) = 3× 2 + 1×

1 + 1× 1 + 0.1× 1 = 8.1. The process of HMWM algorithm in Step 3 is shown in Fig. 3.11(c)

to Fig. 3.11(e). In Fig. 3.11(c), both edgese(DV 2, DB2) and(DV 1, DT1) have the smallest

weight 7. We randomly select an edge which ise(DV 2, DB2) and add it to the matching.

After that, we delete the redundant via candidate vertexDT2 of matched vertexDV 2 and its

connected edgese(DV 2, DT2) ande(DB1, DT2), and updates the weights ofe(DV 1, DT1)

ande(DV 1, DB1). Finally, the matching{(DV 1, DT1), (DV 2, DB2)} is obtained as shown

in Fig. 3.11(e). After Step 4, the modified layout is shown in Fig. 3.11(f).

3.4.3 Runtime Complexity Analysis of HMWM Algorithm

Given a weighted MBC graphGA = (V ∪ R,Ev ∪ Ec) constructed from a practical routed

circuit for alive vias, firstly, the HMWM algorithm presented in Fig. 3.8 sorts the edge setEv

in O(|Ev| log |Ev|) time.

The HMWM algorithm takes constant time to pick an edge from the sorted edge setEv and

add this picked edge to the matching set for each iteration.

Since the number of conflicts for each redundant via candidate in a practical layout geometry

can be bounded by a fixed numberk1, the number of conflicts for each redundant via candidate

vertex in R is also bounded byk1. The feasible number (F.N.) of each alive via vertex is

bounded by 4. Therefore, the number of vertices need to be deleted is bounded byk1 +4. Since

the number of edges induced by each redundant via candidate vertex is bounded byk1 + 1, the

number of edges which need to be deleted is bounded by(k1+4)(k1+1). Because each deletion

takes constant time, the deletion step can be performed inO(k2
1) time for each iteration.
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Fig. 3.11: An example for illustrating the WP procedure.
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Similarly, the number of edges which need to be updated can be analyzed to be bounded by

a constantk2
1 + 5k1, and each takes constant time. After updating their values, each one takes

O(log |Ev|) time to update the binary tree–BST. Hence, the runtime complexity of the updating

procedure isO(k2
1 log |Ev|) time for each iteration.

From the avove description, the runtime complexity of each matching iteration isO(k log |Ev|).

Here,k = k2
1.

Because the number of matching iterations is bounded by|Ev|, the complexity of the while

loop shown in Fig. 3.8 isO(k|Ev| log |Ev|). Finally, we conclude that the executing time of

HMWM algorithm for solving a weighted MBC graph is inO(|Ev| log |Ev|) time.

According to [21, 22], the maximum bipartite matching can solve a bipartite graph in

O(
√
|V ∪R||Ev|) time, and the minimum weighted bipartite matching can solve a weighted

bipartite graph inO(|V ∪ R|2 log |V ∪ R| + |V ∪ R||Ev|) time. Obviously, the HMWM algo-

rithm is faster than both them.

3.4.4 Speed Up

As the experiments shown in [18, 19], all of the corresponding conflict graphs of the circuits

they used are sparse. Thus, they compute the connected components of a conflict graph to

accelerate for solving their problem. From the citcuits used in our experiments, the correspond-

ing MBC graphs are also sparse in general case. Therefore, we can also group the connected

components of MBC graphG = (V ∪ R, Ev ∪ Ec) into many subgraphs by using depth first

search algorithm [23], and perform the HMWM algorithm for each subgraph. Note that the

each subgraph is also MBC graph. This method can accelerate our approach without losing any

insertion rate, and this accelerated method can also be utilized in maximum bipartite matching

algorithm.
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Chapter 4

Experimental Results

The RVIfA-WP method has been implemented in C++ programming language on a dual core

2.13-GHz PC machine with 4-GB memory. Firstly, the RVIfA procedure of RVIfA-WP method

is compared with the TDVI algorithm [14] for the post-layout redundant via insertion problem

of alive vias. The proposed HMWM algorithm was employed to solve the MBC graph, and

TDVI was utilized to solve the bipartite graph. The benchmarks were generated by the authors

of [14]. “Mcc1” and “Mcc2” contain 4 metal layers and other benchmarks contain only three

metal layers. The connected components of the corresponding graphs were computed, and the

corresponding graphs were divided into many subgraphs to accelerate the matching procedures

for both HMWM and TDVI algorithms. We choseαA = 3, βA = 1, γA = 2 andσA = 0.1

for the HMWM algorithm to achieve a better trade-off between the redundant via insertion rate

and the on-track via insertion rate. The LEDA package [22] was used in TDVI for solving the

maximum bipartite matching and minimum weighted bipartite matching problems.

The results of RVIfA procedure and TDVI algorithm are shown in Table 4.1. In the table,

TDVI has two modes, the insertion rate mode and the on-tract/stack redundant via enhancement

mode. A stack via and its redundant via are counted as two single vias and two redundant vias

in the result of TDVI, respectively. The “#Single Via” is the total single vias of the given

layout, “#Alive Via” is the number of alive vias, “#Ins. RVia” is the number of redundant vias

after performing the insertion method, “Ins. Rate” and “On-T. Rate” are the redundant via

insertion rate and on-track redundant via insertion rate, respectively, “Time of HMWM” reports

the runtime of HMWM algorithm, and “Time” reports the runtime of TDVI.

From Table 4.1, it can be observed that our approach can obtain average 11.24× runtime
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speed up over the TDVI algorithm and achieve an average insertion rate at 99.54%. Both the

insertion rate and the on-track insertion rate are higher than the TDVI1 algorithm for each bench-

mark circuit. Moreover, the RVIfA procedure can achieve a more better insertion rate and a more

better on-track insertion rate in the circuits with more than three metal layers, such as “Mcc1”

and “Mcc2”. It is because that TDVI needs to partition the given layout into sub-layouts and

solves them in these cases. This heuristic process might degrade the quality of insertion solu-

tion. However, the proposed RVIfA procedure simultaneously considers all single vias in all

layers of the circuit in the matching process. Beside, It should be mentioned that we can assign

other values toαA, βA, andγA according to the significance of insertion rate and on-track rate.

Therefore, the insertion solution can get a higher insertion rate with little loss of on-track rate

or opposite result.

After executing the RVIfA procedure for alive vias on each benchmark, the WP procedure

can be performed to protect dead vias, and the result is presented in Table 4.2. The maximum

wire shifted degree for the searching region was set to be 3 for each metal layer, and we chose

αD = 3 , βD = 1, γD = 1 andσD = 0.1 in the HMWM algorithm for solving the MBC graph

of dead vias. The “#Dead Via” and “#Extra Dead Via” are the number of original dead vias and

the number of extra dead vias generated after executing the RVIfA procedure, respectively. The

“#All Dead Via” is the number of all dead vias and is equal to the sum of #Dead Via and #Extra

Dead Via. The “#Alive Dead Via” is the number of dead vias that can be potentially protected

by utilizing the wire pushing capability, “#Prot. Dead Via” gives the number of protected dead

vias after pushing wire segments, “Prot. Rate” is the rate of protected dead vias, “PWLen.

Percent.” represents the ratio of the total length of pushing wire segments to the total length of

nets, and “Time” reports the runtime of WP procedure.

Table 4.2 shows that the dead vias can be effectively protected by using the wire pushing

capability. The average rate of protected dead vias can be up to 54.41% with the maximum

and average percentages of pushing wire length being only 0.49% and 0.26%, respectively, it

shows that the total length of pushing wire segments is trifling for the total length of nets in the

1In Table 4.1, it can also be found that the insertion rate of TDVI with insertion rate mode is slightly smaller
than the insertion rate of TDVI with on-track/stack redundant via enhancement mode. It is because that the single
via and stack via have the same priority in its insertion rate mode, hence, the single via might be matched first
when they are in conflict.
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circuit. Fig. 4.1 is a portion of wire pushing result of circuit S38584 after performing dead via

protection by using wire pushing capability. Fig. 4.1(a) shows a portion of original routing of

circuit S38584 and Fig. 4.1(b) shows the portion of wire pushing result of this circuit, we can

see that there is two dead vias protected by using pushing wire capability. Fig. 4.2, Fig. 4.3 and

Fig. 4.4 show the distributions of dead vias and the distributions of dead vias after wire pushing

of circuit Struct, Mcc2 and S38584, respective. We enlarge the dead vias in these Figures to

clearly observe the dead via distributions of the circuits , and we can see that the numbers of

the dead vias has been decreased. Thus, the dead vias can be effectively protected by using

wire pushing capability in the benchmarks we used. Fig. 4.5, Fig. 4.6 and Fig. 4.7 show the

original routing results and the distributions of pushing wire segments of circuit Struct, Mcc2

and S38584, respective, we can see that the total length of all pushing wire segments of the

circuits is quite short.
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Benchmark RVIfA Procedure (Ours) TDVI [14] with TDVI [14] with on-track/
insertion rate mode stack redundant via enhancement mode

Circuit #Single #Alive #Ins. Ins. On-T. Time of #Ins. Ins. On-T. Time #Ins. Ins. On-T. Time
Name Via Via RVia Rate Rate HMWM RVia Rate Rate RVia Rate Rate

(%) (%) (sec) (%) (%) (sec) (%) (%) (sec)
Mcc1 5788 5265 5216 99.07 70.90 0.031 5140 97.63 44.53 0.297 5142 97.66 69.84 0.281
Mcc2 33153 29351 29163 99.36 73.23 0.109 28757 97.98 45.43 1.547 28766 98.01 72.70 1.391
Struct 7248 7195 7194 99.99 82.71 0.031 7175 99.72 34.06 0.375 7175 99.72 79.36 0.344

Primary1 5347 5252 5252 100.00 81.23 0.016 5241 99.79 39.69 0.281 5241 99.79 79.83 0.265
Primary2 22365 21790 21783 99.97 81.89 0.094 21730 99.72 42.31 1.125 21730 99.72 80.91 1.031

S5378 6784 6341 6305 99.43 76.69 0.016 6227 98.20 47.13 0.312 6228 98.22 76.72 0.281
S9234 5350 5076 5036 99.21 80.78 0.016 4987 98.25 50.85 0.281 4988 98.27 80.61 0.250

S13207 13767 13072 12995 99.41 80.78 0.047 12885 98.57 50.39 0.656 12886 98.58 80.72 0.578
S15850 16633 15677 15595 99.48 79.44 0.047 15445 99.52 49.83 0.750 15447 98.53 79.26 0.672
S38417 40655 38577 38394 99.53 81.14 0.156 38126 98.83 50.39 1.844 38135 98.85 80.89 1.657
S38584 54483 51276 50994 99.45 79.65 0.235 50435 98.36 50.55 2.453 50446 98.38 79.62 2.219

Comparison 1 99.54 78.95 1 0.9915 98.69 45.92 12.43 0.9916 98.70 78.22 11.24

Table 4.1: Comparison for the proposed RVIfA procedure with TDVI [14].

Benchmark RVIfA-WP Method
RVIfA Procedure WP Procedure after RVIfA Procedure

Circuit #Single #Alive #Dead #Ins. #Ins. #Extra #All #Alive #Prot. Prot. PWLen. Time
Name Via Via Via RVia Rate Dead Via Dead Via Dead Via Dead Via Rate Percent.

(%) (%) (%) (sec)
Mcc1 5788 5265 523 5216 99.07 49 572 463 370 64.69 0.18 0.28
Mcc2 33153 29351 3802 29163 99.36 188 3990 3268 2703 67.74 0.11 8.45
Struct 7248 7195 53 7194 99.99 1 54 47 42 77.78 0.02 0.08

Primary1 5347 5252 95 5252 100.00 0 95 84 69 72.63 0.03 0.05
Primary2 22365 21790 575 21783 99.97 7 582 504 384 65.98 0.05 0.39

S5378 6784 6341 443 6305 99.43 36 479 272 174 36.33 0.45 0.33
S9234 5350 5076 274 5036 99.21 40 314 220 137 43.63 0.49 0.30

S13207 13767 13072 695 12995 99.41 77 772 512 334 43.26 0.37 1.84
S15850 16633 15677 956 15595 99.48 82 1038 680 455 43.83 0.40 2.28
S38417 40655 38577 2078 38394 99.53 183 2261 1514 939 41.53 0.37 13.22
S38584 54483 51276 3207 50994 99.45 282 3489 2278 1434 41.10 0.42 29.31
Average - - - - 99.54 - - - - 54.41 0.26 -

Table 4.2: Experimental results of the proposed RVIfA-WP method.
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Redundant Via

Dead Via

Single Via

Instance pinMetal 3

Metal 2
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Redundant Via

Pushing wire 
segments

Fig. 4.1: (a) A portion of original routing of circuit S38584 (b) A portion of wire pushing result
of circuit S38584
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Fig. 4.2: (a) The distribution of dead vias of circuit Struct. (b) The distribution of dead vias
after wire pushing of circuit Struct.
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Fig. 4.3: (a) The distribution of dead vias of circuit Mcc2. (b) The distribution of dead vias
after wire pushing of circuit Mcc2.

36



Fig. 4.4: (a) The distribution of dead vias of circuit S38584. (b) The distribution of dead vias
after wire pushing of circuit S38584.
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Fig. 4.5: (a) The original routing result of circuit Struct. (b) The distribution of pushing wire
segments of circuit Struct.
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Fig. 4.6: (a) The original routing result of circuit Mcc2. (b) The distribution of pushing wire
segments of circuit Mcc2.
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Fig. 4.7: (a) The original routing result of circuit S38584. (b) The distribution of pushing wire
segments of circuit S38584.
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Chapter 5

Conclusion

In this thesis, the redundant via insertion problem is formulated as a developed MBC graph

matching problem, and a heuristic minimum weighted matching (HMWM) algorithm is pro-

posed to solve this matching problem. Then, we utilized the HMWM algorithm and the wire

pushing technique to develop an efficient redundant via insertion method for alive and dead vias.

The experimental results have shown that our proposed methods can obtain a high redundant

via insertion rate for alive vias and protect dead vias efficiently.
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