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ABSTRACT

As the process technologies advancing to nanometer epochs, the lithography and
manufacture procedures turn out to be more difficult. Via defect is one major source of
yield loss during the physical design stage.|Thérefore, requiring a good control for via
failure to improve via yield and réeliability is one of the most important issues in design
for manufacturability (DFM).

Redundant via insertion is a verified efficient and widely recommended method to
enhance via yield and reliability. The purpose of this thesis is to develop an efficient
method to insert redundant vias in the post-routing stage. We transform the redundant
via insertion problem into a mixed bipartite-conflict (MBC) graph matching problem,
and present a novel heuristic minimum weighted matching algorithm (HMWM) to solve
it. The proposed method, besides inserting redundant vias for alive vias, also protects
the dead vias by applying wire pushing capability which shifts wires into the empty
space and adds redundant vias next to dead vias. Experimental results show that our

method obtains a high redundant via insertion rate and perform effectively.
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Chapter 1

Introduction

1.1 Introduction

As the VLSI technology scales into the deep sub-micron and nano-meter region, the number of

transistors and logic gates speedily increases in a chip. Nowadays, modern chips may have six
or more metal layers and over 4,000,000 vias [1]. The vias are used to connect wires on different

metal layers and play a very |mportant role i in the mtegrated circuit (IC) design. Fig. 1.1 shows

the vias with local and global mterconnects'

_I . = Global
3 Interconnect

Diffusion

Source: IBM

Fig. 1.1: Vias in chip

The via may be partially or completely failed [2] due to the random defects in a manufactur-
ing process, electro-migration and thermal stress. If a via is partially blocked, its substantially

increasing equivalent resistance and capacitance will degrade the circuit performance and cause



Fig. 1.2:,Singlevia failure [2]

the reliability issue of the circuit. On the other hand, the completely failed via will break the
net, cause the functional failuré of logic gatés and make the entire design fail. Fig. 1.2 shows the
single via failure. Yield will lose seriously of defects because of these via failures. Therefore,
a good control for via failure to improve the yield is one of the most important issues in design
for manufacturability (DFM). Inserting a redundant via adjacent to a single via without causing
any design rule violations is a valid and recommended method to improve the via yield and re-
liability [3, 4, 5, 6]. The redundant via can be viewed as a backup of the single via, and it makes
the via failure to be tolerated. After inserting a redundant via, the failure rate of double vias is
guite smaller than the single via’s. It has been indicated that a single via fails 10X-100X more
often than the double vias [7]. Many commercial EDA tools have already added the redundant
via insertion function to their physical design flow.

Generally, the redundant via insertion technique can be performed in different stages such
as the routing stage and the post-routing stage. To perform the redundant via insertion in the
routing stage, the double-via insertion rate can be improved compared with in the post-routing

stage. However, the inserted redundant vias might lead some non-routing nets to be unroutable



and degrade the routability, it also makes the routing to be more complicated. In contrast,
inserting redundant vias in the post-routing stage is easy to perform and several existing methods
have taken many effects such as the timing constraints, routable nets with the minimum die area
and the antenna rule into account in the routing stage. The tools EYE/PEYE [8] insert redundant
vias next to single vias in the post routing stage. Authors in [9], [10] and [11] also consider the
redundant via insertion in the post-routing stage. If we consider the redundant via insertion
in both the routing and the post-routing stages, it becomes a trade-off between routability and
redundant via insertion rate. Neverless, decreasing the number of critical and dead vias causes
some non-routing nets to make detours and generate more vias. Methods proposed in [12], [13]
and [14] consider redundant via insertion in both the routing and the post-routing stages.
Besides, wire spreading [8] is used to reduce the critical area between the interconnect for
increasing wire yield and reliability. Its basic idea is to spread wires into the empty space
for reducing the probability of a defect particle shorting two neighboring wires. The tools
EYE/PEYE [8] reduce the critical area.to.avoid:shorts between wires of the layout by using
wire spreading technique. This concept of‘wire spreading can be utilized to insert redundant

vias next to dead vias as proposed:in [15].

1.2 Our Contributions

In this work, we develop an efficient algorithm with wire pushing capability to insert redundant
vias for both alive and dead vias in the post-routing stage. Firstly, the mixed bipartite-conflict
(MBC) graph is defined by mixing the bipartite and conflict graphs, and a weight of each edge in
the MBC graph is suitably assigned. Then, the redundant via insertion problem is formulated as
a defined MBC graph matching problem. After that, an effective heuristic minimum weighted
matching (HMWM) algorithm is developed to find the matching of MBC graph. Finally, we
utilize the above procedure and the wire pushing technique to develop an efficient redundant via
insertion method for alive and dead vias. Experimental results show that the average insertion
rate of alive vias is 99.54% with a short run time, and the technique of wire pushing can achieve

54.41% insertion rate for the dead vias in average.



1.3 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the basic concept of re-
dundant via insertion. At the same time, we also review some related literatures. In chapter 3,
we first present the treatment of stack via and the concept of wire pushing capability and how
to utilize this technique for inserting the redundant via adjacent to the dead via ,then second
present the detail of our post-routing redundant via insertion method with wire pushing capabil-
ity (RVI/A-WP). Finally, the experimental results for the comparison of post-routing redundant

via insertion between our algorithm and TDVI [14] are presented in chapter 4. The experimen-
tal results of wire pushing capability are also shown in chapter 4. Finally, a brief conclusion is

given in chapter 5.



Chapter 2

Preliminaries and Literatures Overview

2.1 Basic Concept of Post-routing Redundant Via Insertion

In this chapter, the basic concepts of redundant via insertion is presented, and some previous

related researches are reviewed.

2.1.1 Post-routing Redundant Via Insertion

The redundant via and the post=routing redundant via insertion problem are defined as follows.

Redundant via: Redundant via is a backup of single via; the process of redundant via
insertion is to insert a redundant.via adjacent to'a single via as long as it does not cause any
design rule violation. The name of‘the single via and its adjacent redundant via is called double
via.

Post-routing redundant via insertion problem: Given a routed circuit design and tech-
nology design rules, the post-routing redundant via insertion problem is to insert an extra via
next to a single via without violating any design rule, and try to protect single vias as many as
possible. If inserting an extra via is not allowed, single via will keep unchanged. Post-routing

redundant via insertion process is equal to replacing single via with double via.

2.1.2 On-track and Off-track Redundant Via

Basically, redundant via is divided into two main types: on-track and off-track redundant via.
On-track redundant via means that the second via is inserted onto the track of the original signal
net as shown in Fig. 2.1(a) . On the other hand, off-track redundant via means that the second

via is inserted with overhanging extra metal wire of the single via as shown in Fig. 2.1(b). On-



track redundant via is more critical than off-track redundant via since on-track redundant via

takes less routing resource and has better electrical properties.

=
B A,

N ' Single via [ Upper metal

N @ Redundant via [] Lower metal

Fig. 2.1: Redundant vias in different'directions. (a) On-track redundant via. (b) Off-track
redundant via.

2.1.3 The Categories of Single Via

According to the definition of [14], single via has three different categories according to the

number of its redundant via candidates in the post layout. A redundant via candidate is a
position where a redundant via can be inserted next to a single via without any design rule
violation. A single via s called dead via if it does not have any redundant via candidate, whereas
aviais called alive via if it has at least one redundant via candidate. Furthermore, an alive via is
also called critical via if it has only one redundant via candidate. Fig. 2.2 illustrates the different

via categories described above. After performing the redundant via insertion, if a redundant via
can be inserted next to the original single via, the single via is protected. Otherwise, it is dead.

How to effectively insert redundant vias for protecting critical and dead vias to get a higher



insertion rate is a practical issue of redundant via insertion in the post routing stage.

dead via

A4

s

alive vias \

e

A

critical via

N Singlevia [N Redundantvia candidate [] Uppermetal [ ] Lower metal

Fig. 2.2: The:different:categories of single via.

2.1.4 Stack Via

Chen et al. [14] reported a special via structure called stack via. It consists of at least two single

vias which stack vertically. Fig. 2.3 shows this special structure in the interconnect of the chip.

2.2 Previous Works Related to Redundant Via Insertion

The first work considering the redundant via insertion for the yield improvement in the detailed
maze routing stage was proposed by Xu et. al. [12]. They utilized a Lagrangian relaxation
approach to insert redundant vias; however, the computational complexity of their approach
is very high. Yao st. al. [13] minimized the number of via usage and considered redundant
vias planning in the routing stage to improve the yield, but some routed wire segments might
violate the antenna rules because of enabling some wire segments to be longer for reducing the

number of vias in the detailed routing stage. Thus, it might need extra vias to be added in the

7



Stack via
structure

circuit design to solve this antenna p[eblem qu tlar al. [11] presented a redundant via insertion

method based on a novel geotepoldb‘@T_plétfaFm The post-routing layout is extracted to a

geotopological layout, and then the |hsert|bh is performed one by one. This approach changes
the routing results to obtain a high insertion rate.

Lee et. al. [9, 10] formulated the redundant via insertion problem as a maximum indepen-
dent set (MIS) problem and considered redundant via insertion in the post-routing stage. Since
the MIS is a NP—complete problem, they proposed an efficient model and a heuristic algorithm
to solve it.

Recently, Chen et. al. [14] presented a novel full-chip gridless routing system considering
the via number minimization in the global routing stage and the redundant via planning in
the detailed routing stage. However, in order to decrease critical and dead vias, the count of
vias slightly increases. They proposed an algorithm called TDVI based on the bipartite graph
matching formulation to achieve a high redundant via insertion rate in the post-routing stage.
Moreover, stack via is treated as an unit via in the insertion process, this treatment causes the

quality of solution might be degraded. A simple example will be presented in subsection 3.1 to



explain this issue. Besides, as the number of routing layers for the layout is more than 3, their
two-stage double-via insertion (TDVI) algorithm partitions the original layout into several sub-
layouts which include three routing layers at most. After that, they first solve the lower critical
sub-layout by using the maximum bipartite matching. Hence, the insertion solution quality of
the TDVI algorithm is degraded due to this heuristic. They also formulated the redundant via
insertion problem as a minimum weighted bipartite matching problem and gave higher priority
to on-track redundant via candidates and stack via redundant via candidates for insertion. K.
McCullen [17] presented a dynamic method by applying wire spreading technique [8] that shifts
original wires to create space for inserting more redundant vias under the restricted topology
layout. Although the method can achieve a higher insertion rate, the authors restrict the problem

to a 1-D problem and the runtime efficiency is not very well.



Chapter 3

Post-routing Redundant Via Insertion with
Wire Pushing Capabillity

In this chapter, the treatment of stack via and the basic concept of wire pushing capability
are introduced first. Then, the post-routing redundant via insertion problem is formulated as a
graph matching problem which we call it tMBC graph matching problermAfter formulating

the problem, the details of the proposéd post-routing redundant via insertion method with wire

pushing capability (RVRA) are presented.

3.1 The Treatment of Stack Via

To solve the counterexample shown in[9] by‘the method TDVI presented in [13], authors in [14]
transformed the redundant via insertion problem to the maximum bipartite matching problem
with up to three routing layer, and treated a stack via as one unit via. However, we find that this
treatment will loss the quality of the final insertion solution. For example, Fig. 3.1(a) shows two
different nets with a single via{3) and a stack via which consists of two single vi&d (@and

V2), respectvely. Fig. 3.1(b) indicates all possible redundant via candidates of these single vias
(RB1andRR1 for V1, RL2 and RR2 for V2, andRL3 for V3). Assuming that the redundant

via candidate? R1 and RL3, RR2 and RL3 cannot exist simultaneously because their vertical
and horizontal conflict violate the design rule. BecauSeandV'2 are stacked, we need to
merge the same side feasible redundant via candidaitisand RR2 into one candidate as
shown in Fig. 3.1(c). Under this constraint, it makes some available redundant via candidates
missing such ag&tB1 and RL2. Fig. 3.1(d) shows the insertion solution after performing the

minimum weighted bipartite matching. This result is not the optimal one in this example, and

10



the optimal solution is shown in Fig. 3.1(e). In conclusion, to firstly protect stack via, single via
which neighbors stack via may not be protected when its redundant via candidate has conflict
with stack via’s redundant via candidate. Therefore, in our approach, each single via is treated
as an unit via and the insertion priority of their redundant via candidates are equitable if we do

not consider on-track preference.

Single via
RB1 % % %

Stack via

\’/
/
Vi

\
V2!
RR2 RL3 RR2 RL3
(©
Metal 1
Metal 2
v > @ 5 -
Single via
(@) (e) @ Redundant

via candidate

Fig. 3.1: Redundant via insertion of stack via structure

3.2 Wire Pushing Capability

A conventional method cannot insert redundant via next to a dead via if there is not enough
empty space at the surroundings of it. In order to achieve a higher redundant via insertion rate,
the redundant via insertion with layout pushing capability was proposed in [15]. Its basic idea is

to push wire segments away the dead via without introducing any design rule and connectivity
violations to allocate enough space for inserting a redundant via adjacent to this dead via. This

Is a practical method to protect dead vias in the post-routing stage, and some commercial tools

11



Minim.:m: Space
(MSP)

Metal 1

[ ]

Metal 2

[ ]

Pushing Wire
Segment

Dead Via

Redundant Via
Candidate

() (b)

Fig. 3.2: An example of wire pushing capability.' (a) A portion of original routed circuit. (b)
Two redundant via candidates.after pushing wire'segments. Here, the wire shifted degree of the
top redundant via is 1, and the:wire shifted degree:of the bottom redundant via is 2.

are disposed to develop this techniqué forr improving the yield of dead vias. A simple example
is shown in Fig. 3.2 to illustrate it. Fig. 3.2(a) is a portion of original routed circuit, and two
illustrated redundant via candidates after pushing wire segments are shown in Fig. 3.2(b). The
problem formulation of wire pushing can be described as follows.

Basically, given a routed circuit and process design rules, we should determine how to push
wire segments around the dead vias to obtain enough space for inserting vias. After pushing the
wire segments, the modified layout must maintain circuit characteristics, and the chip area must
keep unchanged.

To find redundant via candidates for dead vias by utilizing the wire spreading capability, a
searching region is predefined for finding a redundant via candidate of the dead via. The use of
searching region is similar to the DRVroposed in [9]. The searching region is a bounding
rectangular box, and its size is according to the minimum space (MSP) and the maximum wire

shifted degree. Here, the MSP is the minimum space design rule of metal and via in the same

!DRW is a bounding rectangular box that is used to find redundant via candidates for alive vias.

12



layer, and the maximum wire shifted degree is the extended level of wires allowed to be pushed.
When the movement of wire segments in the searching region is legal, a redundant via candidate
of the dead via and the minimum shifted degree of its adjacent wires are obtained. Fig. 3.2(b)
illustrates the result of finding the redundant via candidates for a dead via in its searching
region with the maximum wire shifted degree being 3 for each metal layer. Two redundant via
candidates are presented in Fig. 3.2(b). One wire shifted degree is 1, and the other is 2.

The searching region is also utilized to find the conflicts— that is to say, the design rule is
violated if some redundant via candidates of dead via and the redundant via candidates of single
via exist simultaneously. Furthermore, single vias, pins and instance pins cannot exist on the
pushing wire segments of the searching region.

The experimental results presented in chapter 4 demonstrate that the wire spreading tech-
nigue can achieve average insertion rate to be 54.41% for the dead vias in the benchmark cir-
cuits, and the movement of pushing wires in the searching region is relatively small compared

with the original layout. Hence, the impact.of circuit timing is negligible.

3.3 MBC Graph Matching-Problem

In this section, the post-routing redundant via insertion problem is formulated as a graph match-
ing problem. Firstly, we give the definitions of several related graphs. Then, the graph matching

problem which we call it theMBC graph matching problehis defined.

Definition 1 (Via-candidate bipartite graph) A via-candidate bipartite grapltz, = (V U

R, E,) is an undirected bipartite graph whose vertices are composed of two independérit sets
andR. V' is the set of single vias in the circuit, and it is named to be a single vigsstthe set
whose vertices are the redundant via candidates of single vias, and itis called as a redundant via
candidate setF, is the edge set. For eache V andr € R, there exists an edgév, r) € E, if

r is aredundant via candidate of [ |

Definition 2 (Candidate relative graph) A candidate relative graptr. = (R, E.) is an undi-
rected conflict graph whose vertex set is the redundant via candidake §et eachr; € R and

r9 € R, there exists an edgéry, ;) € E. if the design rule will be violated for simultaneously

13



RR2

RL1 RR1

(a) (b)

@ Metai 1 (ff Metar2 P Metar3 @ singlevia () Redundant

via candidate

Fig. 3.3: Two feasible cases Withbut violating the design rule.

choosingr; andr,. Moreover, ifr; andrs originéte ffrom the same single via, there wouldn’t

exist an edge(ry, ) to connect'y andr,. . n

Remark of Definition 2The E, wouldn’t contain an edge(r;, r») to connect; andr if
they belong to the same net and wouldn't violate any design rule for simultaneously choosing
them. Two examples are shown in Fig. 3.3. BBAthl and RR2 in Fig. 3.3(a) can simultane-
ously exist, and botf® R1 and RR2 in Fig. 3.3(b) can simultaneously exist because they do not

violate any design rule.

Definition 3 (Mixed bipartite-conflict graph/MBC graph) A mixed bipartite-conflict graph
G = (VUR, E,UE,)isaunion ofG, = (VUR, E,) andG,. = (R, E.). Here, the vertex set of

GG is equal toV U R, and the edge set 6f is equal toE, U ... [ |

Fig. 3.4 gives an example to illustrate the above graphs. Fig. 3.4(a) shows a portion of
routed circuit which has three single vias and seven redundant via candidates, and it shows
the conflicts of their redundant via candidates. Fig. 3.4(b) illustrates the corresponding via-

candidate bipartite graph of this routed circuit. The edgefseis composed of all edges in

14



Fig. 3.4(b). Fig. 3.4(c) is the corresponding candidate relative graph of this routed circuit. The
edge seitr, consists of all edges in Fig. 3.4(c). Finally, Fig. 3.4(d) is the MBC graph of this
routed circuit by combining Fig. 3.4(b) and Fig. 3.4(c). The edgeset MBC graph shown

in Fig. 3.4(d) is the union o/, and E..

One difference between the MBC graph and the bipartite graph in [14] is that the vertex
set of MBC graph is constructed by all single vias and their redundant via candidates in all
layers. The graph can represent the conflicts of redundant via candidates methodically and
perform the matching effectively. Moreover, the bipartite graph formulated in [14] merges the
redundant via candidate vertices if they are in conflict, treats each stack via as a unit, and the
single vias which form a stack structure can only have redundant vias inserted on the same
side simultaneously [18]. On the contrary, in the MBC graph, an edge is added to connect two
redundant via candidate vertices if there is a conflict between them, and each single via is treated
as a unit no matter it is stacked or not. For. example, Fig. 3.5(a) consists two different nets with a
single via {/ 3) and a stack via which consists.of two single vigd @ndV2). Fig. 3.5(b) shows
the feasible redundant via candidates of these three single vias, where a vertical conflict exists
betweenRR1 and RL3, and a horizontal conflict exists betweg#®2 and RL3. The RR1 and
RR2 do not exist conflict because they belong to the same net and from different metal layers.
Fig. 3.5(c) shows the feasible redundant via candidates of bipartite graph formulation in [14],
whereRR1 and RL2 are merged to one candidate becalideand V2 are stacked. Note that
some available redundant via candidates are missed suBiBasnd RL2. Fig. 3.5(e) gives
the bipartie graph of Fig. 3.5(c), where vertBR1 and vertexk R2 are merged into one vertex
RR12, and vertices? R12 and R L3 are also merged into a vertékbecause they are in conflict.

Fig. 3.5(d) gives the MBC graph of Fig. 3.5(b). Instead of merging the conflict verii¢els
andRL3, and RR2 and RL3, we add an edge betweét?l and RL3, and an edge between
RR2 andRL3.

The post-routing redundant via insertion problem can be reformulated as a mixed bipartite-
conflict graph matching problem which is described below.

Mixed bipartite-conflict (MBC) graph matching problem: Given a MBC graplG = (V U
R, E, U E,), the problem is to find a matching of the given MBC graph. Herd/ is a set of

15



Single Via

Redundant Via
Candidate

EEOCGE
CEEOOGE
=

:

Single Redundant Via Redundant Via Single Redundant Via
Via Set Candidate Set Candidate Set Via Set Candidate Set
(b) © (d)

Fig. 3.4: An example of mixed bipartite-conflict graph. (a) A portion of routed circuit. (b) The
via-candidate bipartite graph. (c) The candidate relative graph. (d) The mixed bipartite-conflict
graph.
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Fig. 3.5: lllustration of the difference between the mixed bipartite-conflict graph and the bipar-
tite graph -

pairwise non-adjacent edges, and the endpoints of each edge consist ofloraéthe other

in R. Furthermore, for two arbitrary endpoints € R andr, € R, itis not allowed to exist an

edge between them fij.. [ |

3.4 Redundant Via Insertion Method with Wire Pushing Ca-
pability (RVI /A-WP)

The executing flow of the proposed RXHWP method is summarized in Fig. 3.6. Although
simultaneously dealing with alive vias and dead vias can achieve a better insertion rate to all
single vias, the RVA-WP method inserts the redundant vias of alive vias firstly and then insert
the redundant vias of dead vias for not altering the original routed design too much. Given a
cell library with the design rules (such as Library Exchange Format file—LEF) and a post routed
circuit design (such as Design Exchange Format file—DEF), firstly, a MBC graph is built for

those alive vias, and the edge weight assignment procedure is performed for this MBC graph.
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Then, according to the weights of edges, we utilize a developed heuristic minimum weight
matching (HMWM) algorithm to solve the MBC graph matching problem, insert redundant
vias adjacent to alive vias and update the resources of the original layout design. After the
insertion for alive vias, dead vias can be protected as well by using the wire pushing capability.
Similarly, a weighted MBC graph can be built for dead vias, and our HMWM algorithm can
also be employed for this graph. After executing the HMWM algorithm, the inserted solution

of dead vias can be obtained, the resources are update and the metal wire segments are shifted.
Lastly, we output a modified layout design. In the following, we detail the proposed’ (RVI

A-WP) method.

Cell Library (LEF) Circuit Benchmark (DEF)

Redundant Via Insertion for Alive Vias
RVVA Procedure
1. MBC graph construction for the alive vias.
2. Edge weight assignment for the MBC graph of alive vias.
3. HMWM algorithm for finding the matching of MBC graph.

g

Dead Via Protection by using Wire Pushing Capability
WP Procedure
1. MBC graph construction for the dead vias.
2. Edge Weight Assignment for the MBC graph of dead vias.
3. HMWM algorithm for finding the matching of MBC graph.

X

The modified layout with inserted redundant vias

Fig. 3.6: The flowchart of the proposed R WP method.

3.4.1 Redundant Via Insertion for Alive Vias (RVI/A)

In this subsection, we present the procedure of redundant via insertion for alive vias in our
proposed RVIA-WP method. In the following, we name it “RVA procedure”.
MBC Graph Construction
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We refer to the similar concept of graph construction algorithm (GCA) proposed in [9] to
construct the corresponding MBC graphy = (V U R, E, U E,) for alive vias of the given
routed circuit; it utilizes the box DVE and DRW defined in [9] to find redundant via candidates
of single vias, and the conflicts between the redundant via candidates of different single vias.
The MBC graph can be obtained by modifying the conflict graph proposed in [9]. Our proposed
MBC graph can be obtained by adding the single via vertices and constructing an edge which
connects single via vertex and each of its candidate vertices to the conflict graph, and removing
all the edges of candidates which belong to the same single via in the conflict graph.

Edge Weight Assignment for the MBC Graph

After constructing a MBC graptiy, = (V U R, E, U E.) for alive vias, a value of weight
w(e) for each edge(v,r) € E,, wheree € E,, v € V, andr € R, is assigned according to the
properties of the alive via vertexand its redundant via candidate veriexThe edge weight

w(e) is given as
w(e) =as X FN. £ BAXx CD. 494 x CT. +04 x AD.C., (3.2)

Here, a4, B4, 74 ando, are user-specified constants and the value@f) is according to

several keys which are defined as fellows.

e Feasible numberH. N.): As defined in [9], it is the number of the feasible redundant via

candidate vertices of the alive via vertex

e Conflict degree.D.): It is equal to the number of conflicts between redundant via can-
didate vertex and other redundant via candidate vertices of different single vias causing
design rule violation, i.e., the number of connected edges of the redundant via candidate

vertexr in E,. .

e Candidate type((.7T.): The on-track redundant via is more critical than the off-track
redundant via due to the better electrical properties of the on-track redundant via. Thus,
we prefer to insert the on-track redundant via. The valué€'df. is equal to 1 if the
redundant via candidate vertexs off-track; otherwise, it is O for the on-track redundant

via candidate vertex.
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Pushing Wire
Segment

Single Via

Redundant Via
Candidate

(a) (b)

Fig. 3.7: lllustion of the confllct betweerr] two redundant via candidates for the alive and dead
vias. . =Lt

¢ Alive-dead conflict degreeﬁ(D C )'—It-ls-deflned as the number of the conflicts between
redundant via candidate verte)and the redundant via candidate vertices of dead vias
by pushing wire segments. Fig. 3.7 illustrates this definition. The example shown in
Fig. 3.7(a) has a dead via (DV2) and an alive via (V1), and each has a redundant via
candidate. In Fig. 3.7(b), the white metals are pushing wire segment, and the red circle

indicates a conflict between the pushing wire segment and the redundant via candidate of

the alive via.

To make a trade-off between the redundant via insertion rate and the on-track redundant via
insertion rate, the order of importance is the feasible number,the candidate type, the conflict
degree and the alive-dead conflict degree; hence wedave v, > 4 > 04. According to
the edge weight assignment, we give the higher priority to an edge which has a smaller feasible
number of its corresponding alive via vertex, and a smaller conflict degree, a smaller alive-dead
conflict degree and the on-track structure of its corresponding redundant via candidate vertex.

The intention of usingd.D.C. is to retain empty space for pushing wire segments to insert the
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HMWM(G = (VUR, E, UE,))
Sort the edges of the edge g&tin the non-decreasing order weight
by constructing the binary search tree— BST.
while existing edges i/, can be added to the matchifg
Pick ane(v,r) € E,, wherev € V andr € R, which has the
smallest weight in the binary search tree—BST.
Add e(v,r) to M,
Do Update(v, r), G),
return matchingM

Updateé(v, ), G)
1. Update the vertex séf U R and edge sek, U E. of G:

a) Delete all adjacent vertices oexceptv and their connected
edges, and the candidate vertices @xcept- and their
connected edges.

b) Delete the edge(v, r) and vertices andr.

2. Update the edge weights 6f.

Re-calculate the value of conflict degree and the feasible number of

each edge(vy,r1) € E, withv; € V andr; € R. Here,

at least one of the redundant via candidate vertices of deleted,

or r, connects to deleted redundant via candidate vertices.

3. Update the binary search tree-BST.

Fig. 3.8::Algorithm of HMWM.

redundant via adjacent to the dead via.

HMWM Algorithm for the MBC Graph

The HMWM algorithm is a heuristic method for solving the MBC graph matching problem.
After constructing the MBC graptyy, = (V U R, E, U E,) of alive vias, where each edge
e € B, has a specific weight, the R¥ procedure performs the HMWM algorithm to solve the
weighted MBC graph for obtaining the matchifg, then it inserts a redundant via next to each
matched alive via. The HMWM algorithm firstly sorts the edges which are in the edde, set
according to their weights in the non-decreasing order by using the binary search tree (BST),
then it adds an edge having the smallest weight to the matcWiing the number of the edges
with the smallest weight is more than one, it randomly select one and add/t tAfter one
edge has been added, the MBC graph is modified immediately by deleting all adjacent vertices
of the matched redundant via candidate vertex and its connected edges. The candidates of the

matched single via vertex and its connected edges are also removed. Then, the conflict degree
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and the feasible number of each relative ed@g,r;) € E, are re-calculated. Here, is a

single via vertex, and at least one of its candidate vertices is deletgdconnects to deleted
redundant via candidate vertices. In addition, the binary search tree is also updated. The above
process is terminated until no edge can be addéd tand the matching of the weighted MBC
graph is obtained. The computational procedure is shown in Fig. 3.8.

Procedure Summarization of Redundant Via Insertion for Alive Vias

Given a routed circuit, the steps of RiIprocedure are summarized as follows.

Step 1: Check the surrounding environment to find redundant via candidate vertices and con-

flicts for all single via vertices, and add dead via vertices to the dead via set (DVSET).

Step 2: Check the surrounding environment to find redundant via candidate vertices and con-

flicts for all dead via vertices and determine how many wire segments need to be pushed.

Step 3: Construct a MBC grapti, = (V. U.R, E, U E.) for all alive vias, and assign a weight

to each edge € F, according to those keys.mentioned in section 3.4.1.

Step 4: Perform HMWM algorithm to find the matching of this weighted MBC graph. Then,

unmatched via vertices become dead via vertices and are added to the dead via set (DVSET).

Step 5: Modify the layout resources which'include redundant vias and extra metal wires. The
redundant via candidate vertices of dead vias which are conflicted with the redundant via

vertices of matched alive via vertices are removed.

An Example of the RVI/A Procedure

Fig. 3.9 gives an example to illustrate the RVprocedure. Fig. 3.9(a) presents a routed cir-
cuit with its redundant via candidates and potential pushing wire segmént$’2 andV'3 are
alive vias and their redundant via candidates{@é 1, RT'1, RR1}, {RL2, RT2, RB2, RR2}
and{ RL3}, respectively.V'4 is a dead via and has a redundant via candiddBe by using
wire pushing capability. Note that the candidat84 of dead vial’4 and the candidat&7'2 of
alive viaV'2 cannot both exist in the design because they cause a conflict happened and violate
the design rule.

In Step3, we construct a MBC graghy = (V U R, E, U E,) for alive vias in Fig. 3.9(a)

and assign a weight to each edge as shown in Fig. 3.9(b). ddeee 3, 54 = 1, v4 = 2 and
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o4 = 0.1. We give an example to explain the edge weight assignment. Fore€tdgeRL3),
vertexV'3 has an off-track redundant via candidate ve&x3. RL3 conflicts with RB2 and

RR1 but it does not have any conflict with redundant via candidates of dead vias. Thus the
weight ofe isw(e) = 3 x1+1x2+4+2x1+0.1x0 = 7. The process of heuris-

tic minimum weight matching (HMWM) in Step4 is shown in Fig. 3.9(b) to Fig. 3.9(e). In

Fig. 3.9(b), the edge(V'3, RL3) which has the smallest weight 7 is first extracted to the
matching, then we delete the adjacent vertigB#21, RB2} of RL3 and their connected edges
{e(V1,RR1),e(RR1, RB2),e(RR1, RL3),e(V2, RB2),e(RB2, RL3)}. After the deletion,

the weights of the edge&e(V'1, RL1),e(V1,RT1),e(V2,RL2),e(V2, RT2),e(V2, RR2)}

need to be updated. The process is continuously executed to extract edges of the weighted
MBC graph in the non-decreasing order weight, until no edge can be added. After match one
edge, we need to delete the relative vertices and their connected edges, and update the weight
of the relative edges. Fig. 3.9(e) shows the matcRifigl, RL1), (V2, RR2),(V3, RL3)} of

the given routed circuit. After Step 5, the modified layout is shown in Fig. 3.9(f).

3.4.2 Dead Via Protection by using Wire-Pushing Capability (WP)

After redundant vias have been‘inserted for alive vias, redundant vias are inserted next to dead
vias by using the wire pushing capability to further enhance the yield of vias. In the following,
this procedure which we name it “WP procedure” is detailed.

MBC Graph Construction

In the DVSET, there are two types of dead vias. One is the original dead vias of the routed
circuit, and the other is the new dead vias which are those unmatched alive vias in the RVI
A procedure. For the DVSET, we construct a MBC graph = (V U R, E, U E,) for dead
vias as the construction of the MBC gragh = (V U R, E, U E.,) for alive vias of the routed
circuit. We utilize the searching region (see 3.2) as the DRW defined in [9] to find redundant
via candidates and conflicts of candidates for dead vias.

Edge Weight Assignment for the MBC Graph

After constructing a MBC graptvp, = (V U R, E, U E,) for dead vias, a weight(e) for

each edge(v,r) € E,, wherev € V andr € R, is assigned according to the properties of
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Fig. 3.9: An example for illustrating the R¥A procedure.




dead via vertex and its redundant via candidate veriexThe edge weight(e) is given as
w(e) =ap x D.EEN.+ 8p x D.C.D.+~vyp x PW.N.+op x C.T., (3.2)

whereap, Bp, 7p andop are user-specified constants, and the value (ef) is according to

several keys defined as follows.

e Dead-Feasible numbeD(F.N.): Itis the number of the feasible redundant via candidate

vertices of dead via vertexby using wire pushing capability.

e Dead-Conflict degreel{.C.D.): The dead-conflict degree of redundant via candidate
vertexr of dead via vertex is equal to the number of conflicts betweeand the other
redundant via candidate vertices of dead vias by pushing wire segments. An example
is shown in Fig. 3.10. There is an intersection between two pushing wire segments of

different dead via’s candidatdD R1, DL2}.

e Pushing wire number{.IW.4V.); Itisthenumber of pushing wire segments for allocating
enough space to insert =For example, the”./WV.N. of DR1 is two and theP.W.N.s
of DL2 and DR2 are one as showninmFig: 3.10. We intends to select a redundant via

candidate vertex whose . V.iis:smaller since the movement of wires is less.

e Candidate type((.T.): Itis equal to 1 if the redundant via candidate ventex off-track,

otherwise it is O for on-track redundant via candidate vertex

The order of importance is the dead-feasible number, the dead-conflict degree, the pushing
wire number and the candidate type; hence we hgaye> (G, > vp > op in the edge as-
sigment. According to the edge weight assignment, we also give a higher priority to an edge
having a smaller dead-feasible number of its corresponding dead via vertex, and a smaller dead-
conflict degree, a smaller pushing wire number and the on-track structure of its corresponding
redundant via candidate vertex.

HMWM Algorithm for the MBC Graph

After constructing the MBC grapip, = (V U R, E, U E.) and assigning a suitable weight

of each edge € Ey, we also apply HMWM algorithm to find the matching of this weighted
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Fig. 3.10: lllusion ofaconlrptbetween two pushing wire segments

MBC graph. The detailed prod_eéé in;I?IMWM_:a;Igo@'thm tosalvg = (VUR, E, UE,) is the

same as presented in 3.4.1.

Procedure Summarization of Dead'-\/'ra' ﬁ?o"teéﬁon by using Wire Pushing Capability

Given a routed circuit, the detailed steps of WP procedure for solving MBC d@raph (V' U

R, E, U E,) of dead vias are shown as follows.

Step 1: Check the surrounding environment to find redundant via candidate vertices and con-

flicts for new dead via vertices and determine how many wire segments need to be pushed.

Step 2: Construct a MBC graplyp, = (V U R, E, U E,.) for all dead vias, and assign a weight

to each edge € £, according to those keys mentioned in section 3.4.2.
Step 3: Perform HMWM algorithm to find the matching of this weighted MBC graph.

Step 4: Shift the pushing wire segments and modify the layout resources including the redun-

dant vias and extra metal wires.

An Example of the WP Procedure

26



Fig. 3.11 gives an example to illustrate the WP procedure. Fig. 3.11(a) is a a portion of
routed circuit. In Fig. 3.11(b)DV'1, DV2 are dead vias with their redundant via candidates
{DT1,DB1}, {DT2, DB2} by using wire pushing capability, and there is a conflict between
two pushing wire segments d?B1 and DT2. In Step2, we construct a MBC gragh, =
(VUR, E,U E.) for dead vias and assign a weight to each eddg,irs shown in Fig. 3.11(c).
Hereap = 3, fp = 1,7p = 1 andop = 0.1. We also give an example to explain the edge
weight assignment. For edg€DV'2, DT2), the vertex DV2 has an off-track redundant via
candidate vertexD72, the pushing wire segments éf7'2 and DB1 are in conflict, and the
number of pushing wire segments B2 is one. Thus the weight efis w(e) =3 x 2+ 1 x
141x1+4+0.1x1=28.1. The process of HMWM algorithm in Step 3 is shown in Fig. 3.11(c)
to Fig. 3.11(e). In Fig. 3.11(c), both edgedD V2, DB2) and(DV'1, DT1) have the smallest
weight 7. We randomly select an edge whiche{®V2, DB2) and add it to the matching.
After that, we delete the redundant via candidate vef#dg® of matched vertexDV2 and its
connected edges DV'2, DT2) ande(D Bl,DZ?2),’and updates the weights efDV'1, DT1)
ande(DV'1, DB1). Finally, thecmatchin§g(DV1, DT1), (DV2, DB2)} is obtained as shown
in Fig. 3.11(e). After Step 4, the madified layout is'shown in Fig. 3.11(f).

3.4.3 Runtime Complexity Analysis‘of HMWM Algorithm

Given a weighted MBC graptiy, = (V U R, E, U E,.) constructed from a practical routed
circuit for alive vias, firstly, the HMWM algorithm presented in Fig. 3.8 sorts the edgé&’ set
in O(|E,|log |E,|) time.

The HMWM algorithm takes constant time to pick an edge from the sorted edgé aed
add this picked edge to the matching set for each iteration.

Since the number of conflicts for each redundant via candidate in a practical layout geometry
can be bounded by a fixed number the number of conflicts for each redundant via candidate
vertex in R is also bounded by;. The feasible number (F.N.) of each alive via vertex is
bounded by 4. Therefore, the number of vertices need to be deleted is bounded hySince
the number of edges induced by each redundant via candidate vertex is bouriged bythe
number of edges which need to be deleted is boundééby4)(k; +1). Because each deletion

takes constant time, the deletion step can be performéd/) time for each iteration.
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Fig. 3.11: An example for illustrating the WP procedure.
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Similarly, the number of edges which need to be updated can be analyzed to be bounded by
a constank? + 5k;, and each takes constant time. After updating their values, each one takes
O(log|E,|) time to update the binary tree—BST. Hence, the runtime complexity of the updating
procedure i€ (k% log | E,|) time for each iteration.

From the avove description, the runtime complexity of each matching iteratidfkibg | E,|).
Here,k = k3.

Because the number of matching iterations is boundedbly the complexity of the while
loop shown in Fig. 3.8 i®)(k|E,|log |E,|). Finally, we conclude that the executing time of
HMWM algorithm for solving a weighted MBC graph is (| E,| log | E,|) time.

According to [21, 22], the maximum bipartite matching can solve a bipartite graph in
O(\/[V U R]|E,|) time, and the minimum weighted bipartite matching can solve a weighted
bipartite graph irO(|V U R|*log |V U R| + |V U R||E,|) time. Obviously, the HMWM algo-

rithm is faster than both them.

3.4.4 Speed Up

As the experiments shown in {18, 19];-all of.the corresponding conflict graphs of the circuits
they used are sparse. Thus, they compute the connected components of a conflict graph to
accelerate for solving their problem. From the citcuits used in our experiments, the correspond-
ing MBC graphs are also sparse in general case. Therefore, we can also group the connected
components of MBC grapty = (V U R, E, U E.) into many subgraphs by using depth first
search algorithm [23], and perform the HMWM algorithm for each subgraph. Note that the
each subgraph is also MBC graph. This method can accelerate our approach without losing any
insertion rate, and this accelerated method can also be utilized in maximum bipartite matching

algorithm.
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Chapter 4

Experimental Results

The RVFA-WP method has been implemented in C++ programming language on a dual core
2.13-GHz PC machine with 4-GB memory. Firstly, the RVprocedure of RVIA-WP method

is compared with the TDVI algorithm [14] for the post-layout redundant via insertion problem

of alive vias. The proposed HMWM algorithm was employed to solve the MBC graph, and
TDVI was utilized to solve the bipartite, graph. The benchmarks were generated by the authors
of [14]. “Mccl” and “Mcc2” contain 4 metaldayers and other benchmarks contain only three
metal layers. The connected components.of the corresponding graphs were computed, and the
corresponding graphs were divided:into-many subgraphs to accelerate the matching procedures
for both HMWM and TDVI algorithms. We chose, = 3, 4 = 1, y4 = 2 andoy = 0.1

for the HMWM algorithm to achieve a better trade-off between the redundant via insertion rate
and the on-track via insertion rate. The LEDA package [22] was used in TDVI for solving the
maximum bipartite matching and minimum weighted bipartite matching problems.

The results of RVA procedure and TDVI algorithm are shown in Table 4.1. In the table,
TDVI has two modes, the insertion rate mode and the on-tract/stack redundant via enhancement
mode. A stack via and its redundant via are counted as two single vias and two redundant vias
in the result of TDVI, respectively. The “#Single Via” is the total single vias of the given
layout, “#Alive Via” is the number of alive vias, “#Ins. RVia” is the number of redundant vias
after performing the insertion method, “Ins. Rate” and “On-T. Rate” are the redundant via
insertion rate and on-track redundant via insertion rate, respectively, “Time of HMWM” reports
the runtime of HMWM algorithm, and “Time” reports the runtime of TDVI.

From Table 4.1, it can be observed that our approach can obtain average Xr2dne
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speed up over the TDVI algorithm and achieve an average insertion rate at 99.54%. Both the
insertion rate and the on-track insertion rate are higher than thedytrithm for each bench-

mark circuit. Moreover, the RVA procedure can achieve a more better insertion rate and a more
better on-track insertion rate in the circuits with more than three metal layers, such as “Mccl”
and “Mcc2”. It is because that TDVI needs to partition the given layout into sub-layouts and
solves them in these cases. This heuristic process might degrade the quality of insertion solu-
tion. However, the proposed R¥ procedure simultaneously considers all single vias in all
layers of the circuit in the matching process. Beside, It should be mentioned that we can assign
other values tav,4, 54, andy, according to the significance of insertion rate and on-track rate.
Therefore, the insertion solution can get a higher insertion rate with little loss of on-track rate
or opposite result.

After executing the RVA procedure for alive vias on each benchmark, the WP procedure
can be performed to protect dead vias, and the result is presented in Table 4.2. The maximum
wire shifted degree for the searching region.was.set to be 3 for each metal layer, and we chose
ap =3, 0p =1,7p = 1 andop =0.1 in the:eHMWM algorithm for solving the MBC graph
of dead vias. The “#Dead Via"and ‘#Extra Dead Via” are the number of original dead vias and
the number of extra dead vias generated after executing th@Rwbcedure, respectively. The
“#All Dead Via” is the number of all dead vias and is equal to the sum of #Dead Via and #Extra
Dead Via. The “#Alive Dead Via” is the number of dead vias that can be potentially protected
by utilizing the wire pushing capability, “#Prot. Dead Via” gives the number of protected dead
vias after pushing wire segments, “Prot. Rate” is the rate of protected dead vias, “PWLen.
Percent.” represents the ratio of the total length of pushing wire segments to the total length of
nets, and “Time” reports the runtime of WP procedure.

Table 4.2 shows that the dead vias can be effectively protected by using the wire pushing
capability. The average rate of protected dead vias can be up to 54.41% with the maximum
and average percentages of pushing wire length being only 0.49% and 0.26%, respectively, it

shows that the total length of pushing wire segments is trifling for the total length of nets in the

In Table 4.1, it can also be found that the insertion rate of TDVI with insertion rate mode is slightly smaller
than the insertion rate of TDVI with on-track/stack redundant via enhancement mode. It is because that the single
via and stack via have the same priority in its insertion rate mode, hence, the single via might be matched first
when they are in conflict.
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circuit. Fig. 4.1 is a portion of wire pushing result of circuit S38584 after performing dead via
protection by using wire pushing capability. Fig. 4.1(a) shows a portion of original routing of
circuit S38584 and Fig. 4.1(b) shows the portion of wire pushing result of this circuit, we can
see that there is two dead vias protected by using pushing wire capability. Fig. 4.2, Fig. 4.3 and
Fig. 4.4 show the distributions of dead vias and the distributions of dead vias after wire pushing
of circuit Struct, Mcc2 and S38584, respective. We enlarge the dead vias in these Figures to
clearly observe the dead via distributions of the circuits , and we can see that the numbers of
the dead vias has been decreased. Thus, the dead vias can be effectively protected by using
wire pushing capability in the benchmarks we used. Fig. 4.5, Fig. 4.6 and Fig. 4.7 show the
original routing results and the distributions of pushing wire segments of circuit Struct, Mcc2
and S38584, respective, we can see that the total length of all pushing wire segments of the

circuits is quite short.
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Benchmark RVI/A Procedure (Ours) TDVI [14] with TDVI [14] with on-track/
insertion rate mode stack redundant via enhancement mol
Circuit #Single | #Alive #Ins. Ins. On-T. Time of #Ins. Ins. On-T. Time #Ins. Ins. On-T. Time
Name Via Via RVia Rate Rate HMWM RVia Rate Rate RVia Rate Rate

(%) (%) (sec) (%) (%) (sec) (%) (%) (sec)
Mccl 5788 5265 5216 99.07 | 70.90 0.031 5140 | 97.63 | 44.53 | 0.297 5142 | 97.66 | 69.84 | 0.281
Mcc2 33153 29351 29163 99.36 | 73.23 0.109 28757 | 97.98 | 4543 | 1.547 28766 | 98.01 | 72.70 1.301
Struct 7248 7195 7194 99.99 82.71 0.031 7175 99.72 34.06 0.375 7175 99.72 79.36 0.344
Primaryl 5347 5252 5252 | 100.00 | 81.23 0.016 5241 | 99.79 | 39.69 | 0.281 5241 | 99.79 | 79.83 0.265
Primary2 22365 21790 21783 99.97 | 81.89 0.094 21730 | 99.72 | 4231 | 1.125 21730 | 99.72 | 80.91 1.031
S5378 6784 6341 6305 99.43 76.69 0.016 6227 98.20 47.13 0.312 6228 98.22 76.72 0.281
59234 5350 5076 5036 99.21 80.78 0.016 4987 98.25 50.85 0.281 4988 98.27 80.61 0.250
S13207 13767 13072 12995 99.41 | 80.78 0.047 12885 | 98.57 | 50.39 | 0.656 12886 | 98.58 | 80.72 0.578
S15850 16633 15677 15595 99.48 | 79.44 0.047 15445 | 99.52 | 49.83 | 0.750 15447 | 98.53 | 79.26 0.672
S38417 40655 38577 38394 99.53 81.14 0.156 38126 98.83 50.39 1.844 38135 98.85 80.89 1.657
S38584 54483 | 51276 50994 99.45 | 79.65 0.235 50435 | 98.36 | 50.55 | 2.453 50446 | 98.38 | 79.62 2.219
Comparison 1 99.54 | 78.95 1 0.9915 | 98.69 | 45.92 | 12.43 0.9916 | 98.70 | 78.22 11.24

Table 4.1: Comparison for the proposed RVprocedure with TDVI [14].

Benchmark RVI/A-WP Method
RVI/A Procedure WP Procedure after RVA Procedure

Circuit #Single | #Alive #Dead #Ins. #Ins. #Extra #All #Alive #Prot. Prot. PWLen. Time

Name Via Via Via RVia Rate Dead Via Dead Via | Dead Via | Dead Via Rate Percent.
(%) (%) (%) (sec)
Mccl 5788 5265 523 5216 99.07 49 572 463 370 64.69 0.18 0.28
Mcc2 33153 | 29351 3802 29163 99.36 188 3990 3268 2703 | 67.74 0.11 8.45
Struct 7248 7195 53 7194 99.99 1 54 47 42 | 77.78 0.02 0.08
Primary1 5347 5252 95 5252 | 100.00 0 95 84 69 | 72.63 0.03 0.05
Primary2 22365 21790 575 21783 99.97 7 582 504 384 65.98 0.05 0.39
S5378 6784 6341 443 6305 99.43 36 479 272 174 | 36.33 0.45 0.33
S9234 5350 5076 274 5036 99.21 40 314 220 137 | 43.63 0.49 0.30
S13207 13767 13072 695 12995 99.41 7 772 512 334 43.26 0.37 1.84
S15850 16633 | 15677 956 15595 99.48 82 1038 680 455 | 43.83 0.40 2.28
S38417 40655 | 38577 2078 38394 99.53 183 2261 1514 939 | 41.53 0.37 | 13.22
S38584 54483 | 51276 3207 50994 99.45 282 3489 2278 1434 | 41.10 0.42 | 29.31
Average - - - - 99.54 - - - - 54.41 0.26 -

Table 4.2: Experimental results of the proposed RWVP method.
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Fig. 4.1: (a) A portion of original routing of circuit S38584 (b) A portion of wire pushing result
of circuit S38584
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Fig. 4.2: (a) The distribution of dead vias of circuit Struct. (b) The distribution of dead vias
after wire pushing of circuit Struct.
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Fig. 4.3: (a) The distribution of dead vias of circuit Mcc2. (b) The distribution of dead vias
after wire pushing of circuit Mcc2.
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Fig. 4.4: (a) The distribution of dead vias of circuit S38584. (b) The distribution of dead vias

after wire pushing of circuit S38584.
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Fig. 4.5: (a) The original routing result of circuit Struct. (b) The distribution of pushing wire
segments of circuit Struct.
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Fig. 4.6: (a) The original routing result of circuit Mcc2. (b) The distribution of pushing wire
segments of circuit Mcc2.
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Fig. 4.7: (a) The original routing result of circuit S38584. (b) The distribution of pushing wire
segments of circuit S38584.
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Chapter 5

Conclusion

In this thesis, the redundant via insertion problem is formulated as a developed MBC graph
matching problem, and a heuristic minimum weighted matching (HMWM) algorithm is pro-
posed to solve this matching problem. Then, we utilized the HMWM algorithm and the wire
pushing technique to develop an efficient redundant via insertion method for alive and dead vias.
The experimental results have shown,that our proposed methods can obtain a high redundant

via insertion rate for alive vias and protect.dead vias efficiently.
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