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放大傳遞之合作式系統在服務品質限制下聯合前置

編碼器設計 

Joint Source/Relay Precoders Design with  

Quality-of-Service (QoS) Constraints in  

Amplify-and-Forward Cooperative Systems 

研究生：柯國仁                 指導教授：吳文榕 教授 

 

國立交通大學電信工程學系碩士班 

 

中文摘要 

在放大傳遞協定多輸入多輸出中繼傳輸系統中，傳統前置編碼器設計通常是在總功

率限制下討論如何去改善連線品質。在本論文中，我們從不同觀點來看此問題，我們考

慮在服務頻質限制下如何讓總傳輸功率最小。因多輸入多輸出中繼傳輸系統包含兩條路

徑（中繼路徑和直線路徑）和兩個前置編碼器（發送端前置編碼器和中繼端前置編碼

器），要直接導出此問題的最佳解有很大的困難。藉在目的端使用最小方均差接收器，

我們首先將此設計的問題轉化成有限制條件的最佳化問題。不過我們發現這最佳化問題

的成本函數是前置編碼器的非線性函數直接求取這問題的解仍然困難。我們因此提議一

新設計方法來解決這問題。主要想法是使用一最小均方差上限當做成本函數以及使用一

限制型的前置編碼器結構。在我們的方法下，這前置編碼器設計問題可以被轉變成一個

功率分配的問題，因而能顯著地簡化最佳解的推導。模擬解果顯示相較於傳統非合作式

多輸入多輸出傳輸系統我們所提出的方法可以大幅的減少傳輸功率。
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Abstract 

Conventional precoder designs for amplify-and-forward (AF) multiple-input 

multiple-output (MIMO) relay systems often consider how to improve the link quality under a 

total power constraint. In this thesis, we consider the design problem from a different 

perspective by minimizing the total transmission power under a quality of service (QoS) 

constraint. The problem is difficult since the MIMO relay system involves two links, the relay 

and direct links, and two precoders, the source and relay precoders. Using the minimum 

mean-square-error (MMSE) receiver at the destination, we first formulate the design problem 

as a constrained optimization problem. It is found, however, that the cost function is a highly 

nonlinear function of the precoders, and it is not feasible to solve the problem directly. We 

then propose a new design method to remedy the problem. The main idea is to replace the 

MSE with an upper bound, and apply a constrained structure for the precoders. Using our 

approach, the precoders design problems can be translated into a power allocation problem, 

significantly simplify the solution derivation. Simulations show that the proposed methods 

can dramatically reduce the required transmission power compared to the conventional 

non-cooperative MIMO systems.
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Chapter 1: Introduction 
Spatial diversity techniques can effectively mitigate the performance deterioration caused 

by channel fading, without imposing delays or bandwidth expansion. Spatial diversity can be 

obtained with multiple transmit/receive antennas. With signals transmitted/received from 

antennas separated far enough, parallel multiple channels are then generated. Multiple-input 

multiple-output (MIMO) systems, equipped multiple antennas both in the transmitter and 

receiver, can further introduce higher degree of freedom allowing the operation of spatial 

multiplexing to increase the data rate. Recently, user cooperation has been proposed as a mean 

for further performance enhancement [1]-[3]. With the aid of relay nodes, the system can build 

a MIMO system which can give higher resistance to fading and shadowing, lower outage 

probability, higher capacity, less power consumption, less interference power, and more 

flexible use of the link resource. Cooperative communication has been developed as the key 

technique for next wireless communication.  

In a general cooperative system, each node cannot transmit and receive signal 

simultaneously, i.e., it is operated in a half-duplex mode. Most systems use a two-phase 

transmission protocol. Consider a typical three-node system. In the first-phase, the source 

node broadcasts signal to the destination and the relay node. In the second phase, the relay is 

forwards processed signal to the destination. The destination then combines the signals 

received from both nodes to make an estimation of the transmitted data. There are two main 

cooperative protocols, amplify-and-forward (AF) and decode-and-forward (DF). In AF, the 

relay only amplifies and retransmits the received signal to the destination. In DF, the relay 

decodes the received signal, re-encode the detected data, and retransmit the re-encoded signal 

to the destination. If detection errors occur, DF will degrade the system performance. Also, AF 
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relays usually require a smaller processing delay and has a lower construction cost. Thus, 

there is also another type of the DF protocol. The relay node will first check if the inter-outage 

occurs. Outage indicates that the transmit data rate is higher than the source-to-relay channel 

capacity. Outage also means that the probability that the relay decodes the data correctly 

cannot be controlled. If the inter-outage occurs, the relay will not forward signal to destination. 

Other types of the protocol include compress-and-forward (CF) and decode-amplify-forward 

(DAF) are also discussed in the literature [22]-[23]. In CF, the relay compresses received 

signal and then forwards the compressed signal to the destination. In DAF, the relay decodes 

the received signal softly (instead of hard decisions), i.e., calculate log-likelihood ratios (LLRs) 

of information bits, and then amplifies (scales) and forwards the LLRs to the destination. 

In this thesis, we will focus on a three-node MIMO cooperative systems where the relay 

node employs the AF relaying protocol. The source, the relay and the destination all have 

multiple antennas. As mentioned, MIMO channels can provide a significant increase in 

capacity over single-input single-output (SISO) channels [4], [5]. With the MIMO structure at 

each node, the performance of a cooperative system can be further enhanced. This cooperative 

structure is referred to as the MIMO relay system. It is well know that precoding can 

effectively improve the performance of a MIMO system. This is also true for a MIMO relay 

system. In conventional precoding design, the objective is to maximize the communication 

quality subject to a transmitter power constraint. In this thesis, however, we will consider a 

different criterion. We will minimize the required transmission power under a quality of 

service (QoS) constraint. Since most commercial systems usually provide services with a 

minimum QoS constraint (e.g., bit error rate), this criterion will maximize the power 

efficiency of the whole system. Minimizing the transmission power under QoS constraints 

was considered for conventional MIMO systems [17]. However, it has not been considered for 
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MIMO relay systems yet. 

Based on the individual QoS constraint for each substream, we propose new precoding 

designs which minimize total transmit power. For single-input-single-output (SISO) systems, 

we use the maximum ratio combining (MRC) receiver while for MIMO systems, we use the 

linear minimum mean-squared-error (MMSE) receiver. Unlike conventional designs, we take 

both the source and the relay precoders into consideration simultaneously. Due to this joint 

design, the proposed method can effectively improve the performance of MIMO relay 

systems. 

The MIMO relay channel can be viewed as a special type of MIMO channel. As known, 

a MIMO channel can be decomposed into multiple parallel subchannels. In the thesis, we 

consider the scenario that the target signal-to-interference-plus-noise ratios (SINRs) for the 

subchannels are different. This scenario is good for the transmission of different types of data 

that requires different rates or different SINRs. We also assume that the source, the relay and 

the destination all have required channel state information (CSI). Using the minimum power 

criterion and the MSE constraints, we can then formulate a constrained optimization problem. 

It turns out that the problem is the cost function is a complicated function of precoder matrices. 

Also, the problem is non-convex and there are many parameters to be optimized (two 

precoding matrices). As a result, a direct solution for the problem is very difficult to obtain. 

We propose new design methods to solve the problem. The main idea is to replace the MSE 

with an upper bound and apply a constrained structure for the precoders. Using our approach, 

the closed-form solutions of optimum/suboptimum precoders can be obtained by the technique 

of primal decomposition [20].  

The thesis is organized as follows. In Chapter 2, we brief review the basic ideas of the 

convex optimization method, and the approach in [17]. In Chapter 3, we first consider a SISO 
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relay system, and derive the optimum power loading algorithm. In Chapter 4, we consider the 

MIMO relay systems and describe the proposed methods in details. In Chapter 5, we report 

some simulation results demonstrating the effectiveness of the proposed algorithms. Finally, 

we draw some conclusions and outline some possible future works in Chapter 6. 
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Chapter 2: Preliminary 
The method of convex optimization has been shown to be a useful tool in 

communications and signal processing. Many problems can either be cast as or be converted 

into convex optimization problems, which greatly facilitate their analytic and numerical 

solutions.  Convex optimization minimizes an objective function subject to convex 

constraints. One distinct advantage of the convex optimization problem is that a local 

optimum is also a global optimum. Since we use the technique throughout this thesis, we give 

a brief introduction in this chapter. 

2.1 Karush-Kuhn-Tucker Condition and Convex 

Optimization 

In order to recognize convex optimization problems in engineering applications, one 

must first be familiar with the basic concepts of convexity. In the following, we give an 

overview of convexity, the Lagrange method, and the Karush–Kuhn–Tucker optimality 

conditions. 

2.1.1 Convex Optimization  

(A) Convex sets: a set nS ∈ℜ  is said to be convex if for any two points x, y S∈ , the 

line segment joining x and y also lies in S. Mathematically, it is defined by the following 

property:  

( ) [ ], ,  and  0,11 S Sδ δδ+ ∈ ∈ ∈−x y x y .                 (2-1) 

In general, a convex set must be a solid body, containing no holes, and always curve outward. 

A simple example for 2S ∈ℜ  is given in Figure 2-1. 
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Figure 2-1: A simple example of convex set 

(B) Convex functions: a function ( ) nf x ∈ℜ → ℜ  is said to be convex if for any two 

points x and y S∈ ,  

( (1 ) ) ( ) (1 ) ( ), [0,1]f f fδ δ δ δ δ+ − ≤ + − ∀ ∈x y x y .              (2-2) 

Geometrically, this means that, when restricted over the line segment joining x and y, the 

linear function joining ( ), ( )fx x  and ( ), ( )fy y  always dominates the function f. A simple 

example for S ∈ℜ  is given in Figure 2-2. The most important property about convex 

functions is the fact that they are closed under summation, positive scaling, and point-wise 

maximum operations. That is if { } 1
k

i if
=

 are convex functions, then 
1

( )
k

i
i

f x
=
∑ , { } 1

k
i i

f
=

 and 

max ( )ii
f x  are also convex functions. 

 

Figure 2-2: A simple example of convex function 

(C) Convex optimization problems: consider a generic optimization problem (in the 

minimization form) 

S 

x

y
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minimize   ( )
such that ( ) 0, 1,2,..., ,
               ( ) 0, 1, 2,..., ,

               .

i

j

f
h i m
g j k

S

≤ =

= =

∈

x
x
x

x

                    (2-3) 

where is f called the objective function (or cost function), { } 1
m

i ih
=

 and { } 1

k
j j

g
=

 are called the 

inequality and equality constraint functions, respectively, and S is called a constraint set. The 

optimization variable n∈ℜx  is said to be feasible if Sx ∈  and it satisfies all the inequality 

and equality constraints. A feasible solution 1x  is said to be globally optimal if 

1( ) ( )f fx x≤  for all feasible x. In contrast, a feasible vector 2x  is said to be locally optimal 

if there exists some 0ε >  such that 2( ) ( )f fx x≤  for all feasible x satisfying 2x x ε≤− . 

The optimization problem is said to be convex if 1) the functions { } 1
m

i ih
=

 are convex, 2) 

{ } 1

k
j j

g
=

 are affine functions (i.e., having the form of T b+a x  for some n∈ℜa  and 

b ∈ℜ  ), and 3) the set S is convex. 

2.1.2 Lagrange Duality and Karush-Kuhn-Tucker Condition  

Consider (2-3) (not necessarily convex) optimization problem, and let minf  denote the 

global minimum value of f(x). For the symmetry reason, we will call (2-3) the primal 

optimization problem, and call x the primal variable. Introducing the dual variables 

1, 2[ , , ]T m
mλ λ λ λ= ∈ℜ  and 1 2[ , , , ]T k

kv v vν = ∈ℜ , we can form the Lagrange function as 

1 1
( , , ) ( ) ( ) ( )

m k

i i j j
i j

L f h gx λ ν x x xλ ν
= =

= + +∑ ∑ .               (2-4) 

The so-called dual objective function ( , )d λ ν  associated with (2-3) is defined as 

( , ) : min ( , , )
S

d L
x

λ ν x λ ν
∈

= .                      (2-5) 

Consider the optimal optimization problem shown below:  

k

maximize  ( , )

subject to   , .

d

≥ ∈ℜ

λ ν

λ 0 ν
                      (2-6) 
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We will say ( , )λ ν  is dual feasible if λ 0≥  and the value of ( , )d λ ν  is finite. Since 0≥λ , 

0ih ≤ , 0jg = , ( , )d λ ν  is a minimum of the linear functions of any primal feasible vector x, 

and any dual feasible vector ( , )λ ν , the following relationship between the prime and dual 

cost functions holds: 

( ) ( , )f d≥x λ ν .                         (2-7) 

This is the well-known weak duality property [6]. In other words, the dual function value 

( , )d λ ν  always serves as a lower bound for the primal objective value ( )f x  for any dual 

feasible vector ( , )λ ν . Notice that x and ( , )λ ν  are chosen independent (so long as they are 

both feasible). Thus minf is larger than ( , )d λ ν  for all dual feasible vectors. The largest lower 

bound for minf  can be found by solving the dual optimization problem shown in (2-6). 

When the optimal problem is convex, standard convex optimization results guarantee that 

the primal problem and the dual problem have the same solution. Note that the lower bound is 

not always tight, and the difference is called the“duality gap”. From [7], we see that if an 

optimization problem of the form (2-3) satisfies the time-sharing property, it has zero duality 

gap, i.e. the primal problem and the dual problem have the same solution. The time-sharing 

property is defined as follow: let 1opx  and 2opx  be optimal solutions to the problem, then 

for any 0  1ε≤ ≤  there exists a vector z such that ( ) 0h ≤z  and ( )f ≤z  

1 2( ) (1 ) ( )opt optf fε ε+ −x x .  

Let us denote the maximum value of (2-7) by maxd . Then, we have min maxf d≥ . 

Interestingly, for most convex optimization problems (satisfying some mild constraint 

qualification conditions, such as the existence of a strict interior point), we actually 

have min maxf d= . This is called strong duality. 

In general, the dual function is difficult to compute. However, for some special classes of 
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convex optimization problems, we can derive their duals explicitly by the following 

conditions. For ease of exposition, let us assume S ∈ℜ . Then, a necessary condition for 2x  

to be a local optimal solution of (2-3) is that there exists some ( )* *λ , ν  such that  

2( ) 0,   i=1,2,...,mih ≤ ∀x ,                      (2-8) 

2( ) 0,  =1,2,...,kjg j= ∀x ,                      (2-9) 

0≥*λ ,                            (2-10) 

*
2( ) 0,  i=1,2,...,mi ihλ = ∀x ,                    (2-11) 

* *
2 2 2

1 1
( ) ( ) ( ) 0

m k

i i j j
i j

f h gλ ν
= =

∇ + ∇ + ∇ =∑ ∑x x x .              (2-12) 

Collectively, the conditions (2-8)–(2-12) are called the Karush–Kuhn–Tucker (KKT) 

condition for optimality. Notice that the first two conditions (2-8) and (2-9) represent primal 

feasibility of 2x , condition (2-10) represents dual feasibility, condition (2-11) signifies the 

complementary slackness for the primal and dual inequality constraint pairs: ( ) 0ih x ≤  and 

0 iλ ≤  , while the last condition (2-12) is equivalent to 2( , ) 0L * *
x x λ , ν∇ = . In general, the 

KKT condition is necessary but not sufficient for optimality. However, for convex 

optimization problems (and under mild constraint qualification conditions), the KKT 

condition is also sufficient. 

2.2 Existing method  
The work [17] discusses the precoder design in MIMO systems with a set of QoS 

constraints. With the aid of majorization theory, the original complicated nonconvex problem 

with matrix-valued variables was reformulated as a simple convex optimization problem with 

scalar variables. Then the problem is optimally solved with a multilevel water-filling 
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algorithm. We now describe the approach in the subsection. The block diagram of a MIMO 

system is shown below  

 

Figure 2-3: Block diagram of the MIMO system in [17] 

Considering the MIMO system with tn  transmitting and rn  receiving antenna, we can 

write the sampled baseband received signal as 

y = Hs + n,                            (2-13) 

where s 1tN ×∈  is the transmit signal vector, and y 1rN ×∈  is the received signal vector, 

H r tN N×∈  is the  channel matrix with the (i,j) element denoting the fading coefficient 

between the jth transmit and ith receive antennas, and n 1rN ×∈  is a zero-mean circularly 

symmetric complex Gaussian interference-plus-noise vector with a covariance matrix of nR , 

i.e. n∼CN (0, nR ). If the system is precoded with a linear precoding scheme, the transmitted 

vector can then be written as 

s=Bx,                            (2-14) 

where B tN L×∈  is the precoding matrix, and x 1L×∈  is the symbol vector to be transmitted. 

Assuming that [ ]H
LE Ixx = , we can have the average transmission power is 

{ }2 H
TP E tr= =⎡ ⎤⎣ ⎦ BBs .                    (2-15) 

If a linear receiver is used in the destination, the estimated symbol vector will 
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= Hx A y ,                            (2-16) 

where A rL N×∈ is a filtering matrix. Let the QoS constraints be defined in terms of MSE for 

each of the established links or bitstreams. We then have  

( )20 MSE = <1-i ii i
E x x ρ⎡ ⎤≤ ≤⎣ ⎦ ,                   (2-17) 

where MSEi denotes the MSE of ith bit stream and xi is the ith element of x. Define a MSE 

matrix as the covariance matrix of the error vector ( -x x ). Then 

( )( ) = - -
= ( - )( - ) +  .

H

H H H H
n

E ⎡ ⎤⎣ ⎦E x x x x
A HB I B H A I A R A

                (2-18) 

From the definition, we have [ ]MSE =i iiE . Since the MSEi  is a quadratic function of ia  

(the ith column of A), its minimum value can be found by setting the gradient of (2-18) to zero. 

The solution is referred to as the linear minimum MSE (LMMSE) filter or Wiener filter, i.e. 

( )-1
= +H H

nA HBHBB H R .                      (2-19) 

By using the matrix inversion lemma and (2-19), the concentrated MSE matrix can be 

obtained as 

( )
( )

-1

-1

= - +

= .+

H H H H
n

H
H

E I B H HBHBB H R

I B R B
                  (2-20) 

where -1= H
H nR H R H . Let i i+1ρ ρ≥ , the optimization problem can now be written as  

{ }
-1

min  

s.t.    1 .( + )

H

H
i,H ii

tr

i Lρ⎡ ⎤ ≤ ≤ ≤⎣ ⎦

B
BB

I B R B
                (2-21) 

From the majorization theory and the derivation in [17], (2-21) can be reformulated as 

the problem shown below. 
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0

{ } =1

0
=1 1

min  

1s.t.    ,1 ,
1+

1       ,
1+

       0,   1 ,

i

L

iz i

L L

i
i=k i=k+Li H,i

L L

i
i ii H,i

k

z

k L
z

L
z

z k L

ρ
λ

ρ
λ =

≤ ≤ ≤

≤ −

≥ ≤ ≤

∑

∑ ∑

∑ ∑

                 (2-22) 

where L is the number of established links, min( , ( ))HL L rank R=  is the number of effective 

channel eigenvalues used, 0L = L- L  is the number of links associated to zero eigenvalues, 

and the set { }, 1
L

H i i
λ

=
 contains L  largest eigenvalues of HR  in increasing order. And the 

optimal solution to (2-21) satisfies all QoS constraints with equality. Also, B is given by 

,1H,1 BB = U Q∑  where tN L
H,1

×∈U  has the eigenvectors of HR  corresponding to the 

largest L  eigenvalues in increasing order as its column vectors, 

{ }1 [0 diag( )] L L
B,iB, σ ×∑ = ∈  has zero elements except for the rightmost main diagonal, 

which are given by 2
B,i izσ = , and Q is a unitary matrix such that 

-1
,  1( + )H

iH ii
k LI B R B ρ⎡ ⎤ = ≤ ≤⎣ ⎦ . Equation (2-22) can be rewritten more compactly as 

{ } =1
min  

1s.t.    ,1 ,
1+

       0,   1 ,

i

L

iz i

L L

i
i=k i ki H,i

k

z

k L
z

z k L

ρ
λ =

≤ ≤ ≤

≥ ≤ ≤

∑

∑ ∑                 (2-23) 

where 

0 1

0
1

0

, for =1

        for 1<

L

k
ki

i

L i

L i L

ρ
ρ

ρ

+

=

⎧ ⎫
−⎪ ⎪= ⎨ ⎬

⎪ ⎪+ ≤⎩ ⎭

∑
. 

Using KKT optimality conditions, we can find the optimal solution to (2-23) by the multilevel 

water-filling solution as 

1/ 2 1/ 2 1( )ii i iz u λ λ− − += − ,                        (2-24) 
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where the multiple water-levels 
1/ 2
iu ’s are chosen to satisfy 

1  1
1+

L L

i
i=k i ki H,i

k L
z

ρ
λ =

≤ ≤ ≤∑ ∑ ,                     (2-25) 

=1 1

1  
1+

L L

i
i ii H,iz

ρ
λ =

=∑ ∑ ,                        (2-26) 

1 0( 0)k ku u u−≥ = ,                         (2-27) 

( )1
=1 1

1  =0
1+

L L

ik k
i ii H,i

u u z
ρ

λ−
=

⎛ ⎞
−⎜ ⎟− ⎜ ⎟

⎝ ⎠
∑ ∑ .                  (2-28) 

We now give a multilevel waterfilling algorithm that solves the convex optimization 

problem as follows. The inputs of the algorithm are the number of available positive 

eigenvalues L , the set of eigenvalues { }, 1
L

H i i
λ

=
, and the set of MSE constraints { } 1

L
i iρ

=
, 

while the outputs are a set of allocated powers { } 1
L

i iz
=

, and a set of waterlevels { }1/ 2
1

L

i iu =
.  

The main algorithm:  

0) Set 0 1k =  and L L= . 

1) Solve the QoS constrained problem in 0[ , ]k L  using the waterfilling algorithm shown 

below with the set of 0 1L k− +  eigenvalues { }
0

,
L

H i i k
λ

=
and the MSE constraint given 

by
0

L

i
i k

ρ ρ
=

= ∑ . 

2) If any intermediate constraint is not satisfied, ( ( ) 1
01+ , 

L L

i H,i i
i=k i k

z k k Lλ ρ−

=
≤ ≤ ≤∑ ∑ ), 

then set 0k  equal to the smallest index (whose constraint is not satisfied) and go to Step 

1. Otherwise, if 0 1k = , the algorithm stops, or if 0 1k > , set 0 1L k= − , 0 1k = , and go 

to Step 1. 

The inputs of the water-filling algorithm are the number of available positive eigenvalues L , 

the set of eigenvalues { }, 1
L

H i i
λ

=
, and the set of MSE constraints ρ , while the outputs are the 
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set of allocated powers { } 1
L

i iz
=

, and the set of waterlevels 
1/ 2

u . 

The watering-filling algorithm: 

0) Reorder the ,H iλ ’s in decreasing order, and set L L= . 

1) Set u = 1
Lλ−  (if 1L Lλ λ += , then set 1L L= − and go to Step 1). 

2) If ( )( )1/ 2 1/ 2

1
/

L

i
i

u L Lλ ρ−

=
≥ − −∑ , then set 1L L= − and go to Step 1. Otherwise obtain 

the definitive water-level 
1/ 2

u and allocated powers as ( )( )1/ 2 1/ 2

1
/

L

i
i

u L Lλ ρ−

=
= − −∑  

and 
1/ 2 1/ 2 1( )i i iz u λ λ− − += − .  

It is interesting to consider a suboptimum but very simple solution to the problem. We can 

impose a diagonality constraint in the MSE matrix. In other words, ( )-1
= + H

HE I B R B will 

have a diagonal structure. Imposing such a structure implies that the transmission is performed 

in a parallel fashion through the channel eigenmodes. The problem in (2-21) now becomes 

{ }
-1

min  

s.t.   , 1 ,( + )

          diagonal.

H

H
iH ii

H
H

tr

i Lρ⎡ ⎤ ≤ ≤ ≤⎣ ⎦

B BB

I B R B

B R B

                 (2-29) 

And the optimal solution is given by ,1H,1 BB = U ∑  where tn L
H,1U ×∈  have its column 

vectors as the eigenvectors of HR  corresponding to the largest L eigenvalues in increasing 

order, and ,1
L L

B
×∑ ∈   is a diagonal matrix with squared-diagonal elements given by 

1 1
, ( 1),i H i iz λ ρ− −= −   1 i L≤ ≤ .                      (2-30) 

The optimal solution under the diagonality constraint becomes the true optimum if and only if 

2 2
, , 1 1,H i i H i iλ ρ λ ρ+ +≥   1 i L≤ ≤ .                     (2-31) 

This implies the feasibility condition is ( )HL rank R≤ . 
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Chapter 3:  SISO Relay Systems 

In this chapter, we consider a power allocation problem in SISO relay systems. For 

simplicity, we assume that the system consists of 3 nodes: a designated source-destination 

node pair and one relay node. Each node is equipped with a single transmit/receive antenna. 

All nodes are operated in the half-duplex mode, so transmission occurs over two time slots via 

two hops. Among the various possible cooperation strategies, we adopt the simplest type (i.e. 

the AF method). In the first time slot, the source broadcast the signal to the relay and the 

destination. The relay node then receives and processes the signal, and retransmits the 

processed signal to the destination (in the second time slot). The destination finally combines 

the signals received from the source and the relay and makes a joint decision. Here, we 

assume perfect synchronization is attained at the destination node. Since only the source will 

transmit signal at the first time slot, and the relay will transmit signal at the second time slot 

(i.e. no concurrent transmission), there is no concern for inter-user synchronization, which 

makes the system simple and practical. Note that in the cooperation scheme, each of 

transmission time slots is divided into 2 non-overlapping slots, and therefore the transmission 

duration for each slot is half of that available for the direct transmission scheme. Consequently, 

if we want to maintain the same total power consumption, the energy available per bit for the 

cooperative scheme is half of that for the direct transmission scheme.  

3.1 Input-Output Relationship 

In the AF mode, the relay node simply amplifies the received signal and forwards it to 

the destination. To simplify the problem, we consider the flat and slowing fading channel, i.e. 

the channel coefficients for all the bits in a packet are the same. And we assume that the power 
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of the signal retransmitted at the relay node is scaled uniformly with respect to all the bits in a 

packet, such that the average transmission energy per signal in a packet is constant and 

satisfies the QoS constraint. Let sdh , srh  and rdh  denote the channel path gains between 

the source and the destination, the source and the relay, and the relay and the destination, 

respectively. In time slot 1, the signals received at the destination and the relay can be written 

[24] 

 ssd sd sdp h= +y x n ,                        (3-2) 

and 

 sr s sr srp h= +y x n ,                         (3-3) 

respectively, where x is the transmitted signal vector from the source node , sry  is the 

received signal vector at the relay nodes, sdy  is the received signal vector at the destination 

node, nsd  and nsr  are noise vectors. Each component of nsd  and nsr  has an independent 

complex Gaussian distribution and its variance equals 0N . As defined, sdh  and srh  

represent the effect of path loss and static fading on transmission channels. Note that the 

transmission unit considered here is the packet. For simplicity, we ignore the packet index in 

(3-2)-(3-3).  

In the second time slot, the relay amplifies the signal by a gain of 
2

0

r

s sr

p

p h N+
 and 

retransmits the amplified signal. The signal received at the destination can then be written as 

2
0

  

1
rd r rd sr rd

s sr

normalized power

p h
p h N

y y n= +
+

,                 (3-4) 

where rdy  is the received signal vector at the destination node, nrd  is a zero-mean 
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complex AWGN vector with a variance of 0N , and rdh  represents the path loss effect and 

static fading of the relay channel. Moreover, SDn , SRn  and rdn  are assumed to be 

independent and mutually uncorrelated with x, and sdh , srh  and rdh  are modeled as zero 

mean, mutually independent complex jointly Gaussian random variables with the same 

variance of 2σ . It is also assume that all the CSI is known at the destination. 

3.2 Problem Formulation and Solution  

At the destination, the received signals in the first and the second time slots are combined 

by the maximum ratio combiner (MRC). From [13], we know that to maximum the output 

SNR, the signal component with a higher SNR should be weighted heavier than that with a 

lower SNR. It turns out that the weight of a signal component is equal to its received SNR. 

Furthermore the SNR of the combiner output is the sum of the received SNRs. The output 

signal of the MRC can be written as 

1 2d sd rda a= +y y y .                         (3-5) 

From (3-2) and (3-4), we have the SNRs of the receiver signal in time slot one and two as  

2

1
0

s sdp h
SNR

N
=   and 

2 2

2 2 2
0 0

1 s r sr rd

s rsr rd

p p h h
SNR

N p p Nh h
=

+ +
.       (3-6) 

So, we can have the weights as 

*

1
0

s sdp h
a

N
=                             (3-7) 

and 



 18

 
( )

( )

* *
2

0

2 2

0 0 2
0

s r
sr rd

s sr

r rd

s sr

p p h h
p h N

a
p h

N N
p h N

+
=

+
+

.                     (3-8) 

In order to make the signal of the combiner output have a unit power, i.e. { }2 1E x = , we 

must normalize the signal of the combiner output. The gain for the normalization can be 

expressed as 

1 2 2
0

s r sr rd
s sd

s sr

p p h h
g a p h a

p h N
= +

+
.                   (3-9) 

And the SNR after the MRC can then be expressed as 

1 2 1
s r

s
s r

p p bcSNR SNR p a
p c p b

γ+ = = +
+ +

,                 (3-10) 

where  

2

0

sdh
a

N
= ,                           (3-11) 

 
2

0

rdh
b

N
= ,                           (3-12) 

and 

 
2

0

srh
c

N
= .                           (3-13) 

From [14], we know that the relationship between the bit-error-rate (BER), denoted as 

ebP , and SNR for the M-QAM can be approximated by an upper bound as 
1.5

11  
5

SNR
M

ebP e
−

−≈ . 

Here,   4M ≥  and 0  30 ( )SNR dB≤ ≤ . Thus, for a given ebP  we can then have the 

required SNR as 
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( )2 1log 1
1 3 5

s r
s

s r eb

p p bcp a M D
p c p b P

γ
⎛ ⎞⎟⎜ ⎟= + = −⎜ ⎟⎜ ⎟⎜+ + ⎝ ⎠

.            (3-14) 

Multiplying both sides of (3-14) by ( )1s rp c p b+ + , we have 

( ) ( )2

: : :

1 0s r r s rac p p ab a p bc cD p D p b
α β γ= = =

+ + + − − + = .           (3-15) 

Since (3-15) has a quadratic form, we can obtain the solution straightforwardly as 

2 4 0
2sp β β αγ
α

− + +
= > ,  for a given  pr.            (3-16) 

Note that α and γ are positive, and the solution in (3-16) is always positive, automatically 

satisfying the positive constraint of sp . Thus the optimization problem can thus be 

formulated as 

( )
2 4

min  
2

. .   0,   0,   ,

r s r r

s r eb

f p p p p

s t p p P

β β αγ
α

ρ

− + +
+ = +

> ≥ ≤

            (3-17) 

where ρ  is the BER constraint. 

We can see that taking the first and second derivative of (3-17), we have 

( )
( ) ( ) ( )

1
2 21 11 4 2 4

2 2
r

r

f p
ab bc ab bc bD

p
β αγ β α

α

−

∆

⎛ ⎞⎛ ⎞⎟⎜ ⎟∂ ⎜ ⎟⎟⎜ ⎜ ⎟⎟= + − + + + + +⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟∂ ⎜ ⎜ ⎟⎟⎟⎜ ⎝ ⎠⎝ ⎠
.      (3-18) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( )

3 12
22 2 22 2

2

1 1 22 2 22

1 1 14 2 4 4 2
2 4 2

1 4 4 2
2

r

r

f p
Db

p

Db

β αγ β β αγ
α

β αγ β αγ β
α

− −

−
−

⎛ ⎞∂ − ⎟⎜ ⎟⎜= + ∆+ + + ∆ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠

⎛ ⎞⎟⎜= + ∆ − + ∆+ ⎟⎜ ⎟⎝ ⎠

.    (3-19) 

From (3-18) and (3-19), we can see that the optimization problem is not necessarily a convex 

optimization problem. This implies that a global minimum may be not guaranteed to obtain. 
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Setting (3-18) to zero, we can have 

( ) ( ) ( )( )
1

2 22 4 2 .ab bc ab bc bDα β αγ β α
−

− + =− + + +             (3-20) 

Squaring and multiplying both sides of (3-20) by ( )2 4β αγ+ , and substituting α= ac , β= 

( )r rp ab p bc a cD+ + − , and γ= ( )1rD p b+  into the result, we can have  

2 2 2 2 2

2 2

4 ( ) ( ) 2( ) ( )

4 ( ) 0.
r rac ac ab bc ab bc p a b abc abcD bc D p a cD

ab c D a c cD

⎡ ⎤− − + + + + − + +⎣ ⎦
− + + =

 (3-21) 

As we can see, the left hand side of (3-21) is a quadratic function, and we can rewrite (3-21) 

as 

2 0r rep fp g+ + = ,                        (3-22) 

where 

2 2=4 ( )( )e ab c ac ab bc a c− − + ,                     (3-23) 

2 2=8 ( )( )f ac ac ab bc a b abc abcD bc D− − + + − ,              (3-24) 

2 2 2=4 ( )( ) 4 ( )g ac ac ab bc a cD ab c D a c cD− − + − + + .           (3-25) 

Thus, using (3-22), we can obtain a solution for rp  straightforwardly. Since the signal power 

is a positive real number and the solution can be obtained at the point where it’s first 

derivative equal to zero or a boundary point. When 2 4 0f eg− < , a solution with real value 

cannot be obtained. This indicates that the first derivative will not be equal to zero at the 

allowable range of pr. In other words, the optimal solution is observed at a boundary point. 

When 2 4 0f eg− ≥ , we can obtain two solutions with real values. Since pr is positive, it is 

simple to obtain the solution by selecting the positive one with a smaller first derivative value. 

If none of the solutions is positive, the optimal solution must be located at a boundary point. 

Substituting the solution of pr. into (3-16), we can obtain the solution of ps. 
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Chapter 4: MIMO Relay Systems 
   In this Chapter, we will consider the precoders design problem in MIMO relay 

systems. In this scenario, each node is equipped with multiple antennas such that the whole 

system can be formulated as a MIMO system. It is well known that precoders can greatly 

enhance the performance of a MIMO system. This is also true for the MIMO relay system. 

Since the source and the relay both have multiple antennas, we have two precoders to work 

with. We will use the MSE as the QoS constraint, and propose a new method to derive the 

optimum precoders.  

4.1 Input-Output Relationship of MIMO Relay Systems 

 

 

 

 

 

 

 

 

 

Figure 4-1: Description of an AF MIMO cooperative uplink transmission scheme. 

 

Let tN , rN , and dN  denote the number of antennas at the source node, the relay node, 

and the destination node, respectively. Assume that the number of bit streams transmitted N is 

less than or equal to ( )min , ,t r dN N N  such that sufficient degrees of freedom is guaranteed 
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in our design. Let all channels be flat-fading, and we can write the system model as: 

==

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

11

2 2

::

dd sd
d s

d rd r r drd r sr

wH

ny H
y F sy H F n nH F H

,.                  (4-1) 

where ×∈ 1Ns  is the transmitted signal vector, tN N
s

×∈F is the precoding matrix at the 

source node, r rN N
r

×∈F is the precoding matrix at the relay node, 2 1dN
d

×∈y  is the 

received signal vector at the destination node, 1dN
di

×∈y  is the received signal vector in 

the ith time slot, 1rN
r

×∈n , 1
1

dN
dn ×∈ , and 1

2
dN

dn ×∈  denote the zero-mean complex 

AWGN vectors received at the relay, at the destination corresponding to the first time-slot, and 

the destination corresponding to the second time-slot. r tN N
sr

×∈H , d rN N
rd

×∈H , and  

d tN N
sd

×∈H  denote the channel matrices between the source and the relay, the relay and 

the destination, and the source and the destination. The elements of sdH , srH  and rdH  

are modeled as zero mean, mutually independent complex Gaussian random variables with the 

same variance. Also, H denotes the combined channel matrix, and w the combined noise 

vector at destination. Since the noise received at the relay is amplified by the 

relay-to-destination link, this is different from the precoding design in conventional MIMO 

systems. Note that the precoder design problem is a joint transceiver problem, that is, a 

different receiver will yield different precoders. 

4.2  Problem Formulation and Solutions 

Here, we propose to use the linear MMSE receiver at the destination. Let G be the 

filtering matrix at the receiver. The MSE for the estimation of s (the transmitted signal vector), 

denoted as J, is given by 

2
dJ E Gy s⎡ ⎤= −⎣ ⎦ .                        (4-2) 
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Define a MSE matrix as ( )( )H
d dE ⎡ ⎤= − −⎣ ⎦E Gy s Gy s . Then, we have { }J tr= E , where 

( )( )

( )( )
( )

1

1 1

1

1

( )

( ) ( )

( )

H
d d

H H H H H H H
s s s s s s s w

H H H H H H
s s s s s w s s s w

H H H H H H H
s s s w s s s s s s s s w s s

H H H H
s s s s s s w s s

H H
s s

E

−

− −

−

−

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= − − +

= − + + ×

− + + − +

≥ − +

= +

E Gy s Gy s

GHF R F H G GHF R R F H G GR G

G R F H HF R F H R HF R F H R

G HF R F H R HF R R R F H HF R F H R HF R

R R F H HF R F H R HF R

R F H( ) 11 .w s
−−R HF

  (4-3) 

Here in the last equality we use the matrix inverse lemma from [16], i.e.,  

( ) ( )
1 1− −-1 -1 -1 -1 -1A - A B DA B + C DA = A + BCD .              (4-4) 

It is well known that the optimal receive filter, known as the Wiener filter, is 

 ( ) 1H H H H
opt s s s s s w

−
= +G R F H HF R F H R ,                (4-5) 

where [ ]H
w E=R ww  is the covariance matrix of the combined noise vector w, and s =R  

[ ]HE ss  is the covariance matrix of the signal vector. So we can have the minimum 

mean-square-error (MMSE), denoted as minJ , as  

{ }1 1 1( )H H
min s s w sJ tr − − −= +R F H R HF .                  (4-6) 

Invoking assumptions made previously, we have 
,1

2
,1 ,1d d

H
n n Nd dE σ⎡ ⎤= =⎢ ⎥⎣ ⎦R In n , and 

,2dn =R  

2
,2 ,2 d

H
n Nd dE σ⎡ ⎤ =⎢ ⎥⎣ ⎦ In n , 2

r r
H

n n Nr rE σ⎡ ⎤= =⎣ ⎦R In n , where 2
nσ  is the noise variance of each 

vector component. Then we have 

2

2 2

0

0
d

d

n N
w H H

n N n rd r r rd

I
R

I H F F H

σ

σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

.                (4-7) 
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As assumed, each element of the signal vector is identical independent distributed (i.i.d.), and 

the covariance matrix of the signal vector can be expressed as [ ] 2 ,H
s s NE σ= =R Iss where 

2
sσ  denoted the transmitted symbol power. And the MMSE can be further written as 

12 2 2 1

:= :=

( ) .d

s r

min

H H H H H H H H
s N n s sd sd s n s sr r rd N rd r r rd rd r sr s

J

tr
E E

I F H H F F H F H I H F F H H F H Fσ σ σ
−− − − −⎧ ⎫⎛ ⎞⎪ ⎪+ + += ⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭

 

(4-8) 

As we can see from the equation, the MMSE is a function of precoder matrices. We note 

here that rE  and sE  account for the MSE components due to the relay and the direct 

communication links. Let us define the power consumption at the relay and the source 

respectively as 

( ){ ( ) }
( ){ }2 2 ,

r

H H
r r sr s r sr s r r

H H H
r s sr s s sr n N r

P tr E

tr

F H F s n H F s n F

F H F F H I Fσ σ

⎤⎡= + + ⎥⎣ ⎦

= +
 

and 

( ) ( )2H H H
s s s s s sP tr E trF ss F F Fσ⎡ ⎤= =⎢ ⎥⎣ ⎦ , 

in which  we assume that the symbol and noise are uncorrelated, i.e. H H
r rE E 0sn n s⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . 

Now, the design problem can be formulated as follows： 

( ) ( ) ( )

( )

2 2 2

,
: :

11 1
( , )

min  

. .    ,

s r

s r

H H H H H
s s s n r r s r sr s s sr r

P P

H H
s s w s ii i

tr tr tr

s t

σ σ σ

ρ

= =

−− −

+ +

+ ≤

F F
F F F F F H F F H F

R F H R HF

,         (4-9) 

where iρ  is the QoS constraint, i.e. the MMSE constraint, for the ith bit stream. The problem 

in (4-9) indicates that the precoders must satisfy the QoS constraint, and at the same time 
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minimize the total transmitted power. From (4-8), we can see that the MSE matrix contains 

three matrix, i.e. 2
s Nσ − I , sE  and rE .The first term can be ignored since it is a function of 

the signal power only. The second term indicates the contribution from the direct link and is a 

function of sF , while the third term indicates the contribution from the relay link and is a 

function of sF  and rF . If only the relay link is considered, the problem reduces to a two-hop 

relay system and the MSE becomes 

12 2 1

:

( )
d

r

H H H H H H
s N n s sr r rd N rd r r rd rd r sr sJ tr

E

I F H F H I H F F H H F H Fσ σ
−− − −

=

⎧ ⎫⎛ ⎞⎪ ⎪+ += ⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

.  (4-10) 

From [17], we know that there exists a one-to-one mapping function between the SINR 

(signal to interference-plus-noise ratio) and the MSE : 

         1MSE
1 SINRi

i
=

+
.                         (4-11) 

Under the Gaussian assumption, the symbol error probability can be analytically expressed as 

a function of the SINR [18] 

( SINR )eP Qα β= ,                    (4-12) 

where α and β  are constants that depend on the signal constellation, and 
2 / 2( ) (1/ 2 ) xQ x e dλπ λ∞ −= ∫ . The BER, defined as ebP , can be approximately obtained from 

the symbol error probability (assuming that a Gray encoding is used to map the bits into the 

constellation points) as  

e
eb

PP
k

≈ ,                            (4-13) 

where 2logk M=  is the number of bits per symbol, and M is the constellation size. This is to 

say that if the QoS constraints are given in terms of MSE, they can also be equivalently 
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expressed in terms of BER. As we can see, the MSE matrix involves a series of 

multiplications and inversions, and the MSE in (4-10) is a complicated function of sF  and 

rF . As a result, a direct solution is very difficult to obtain. In the following, we will show how 

to solve the joint precoder design problem, effectively. We propose a method to simplify the 

constraint function J such that E can be expressed as a simple function of unknown 

parameters. The main idea is to use a constrained precoder structure, derive a MMSE upper 

bound having a simple expression, and conduct minimization with this upper bound. This 

method is proposed in [19] to design precoders in MIMO relay systems. The original problem 

is to minimize the MSE under a total power constraint. Here, we extend its use to minimize 

the total transmission power under the constraint of a MSE.  

If the MSE matrix E can be diagonal, the trace operation and the MSE of each link (i.e. 

the diagonal element of E) become easy to conduct, and the whole problem can be greatly 

simplified, i.e. the matrix operations involved in the cost function can be reduced to scalar 

operations. To achieve this objective we first consider singular-value-decomposition (SVD) 

for the channel matrices in all links. By SVD, we have H
sd sd sd sd=H U Σ V , H

sr sr sr sr=H U Σ V , 

and H
rd rd rd rd=H U Σ V , where d dN N

sdU ×∈ , r rN N
srU ×∈ , and d dN N

rdU ×∈  are the left 

singular matrices of sdH , srH , and rdH , respectively. t tN NH
sdV ×∈ , t tN NH

srV ×∈ , and 

r rN NH
rdV ×∈  are the right singular matrices of sdH , srH , and rdH ,, respectively. 

d tN N
sd

×∈Σ , r tN N
sr

×∈Σ ,  and d rN N
rd

×∈Σ  are the diagonal singular value matrices 

of sdH , srH , and rdH , respectively. Then, the MSE matrix in (4-8) can be re-written as 

follows： 
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( )

2 2 2

:

1

:

s

d

r

H H H H H H H H H
s N n s sd sd sd sd s n s sr sr sr r rd rd rd

H H H H H H
N rd rd rd r r rd rd rd rd rd rd r sr sr sr s

E

E

I F V Σ Σ V F F V Σ U F V Σ UE

I U Σ V F F V Σ U U Σ V F U Σ V F

σ σ σ− − −

=

−

=

⎛ ⎛
⎜ ⎜+ + ×=

⎜⎜ ⎝⎝

⎞⎞
⎟⎟+ × ⎟

⎟
⎠⎠

-1

.⎟
⎟

   (4-14) 

Since Es only depends on Fs while Er depends on Fs and Fr, simultaneous diagonalization of 

Es and Er appears difficult. So, we choose to diagonalize Er first. Let the precoders have a 

constrained structure shown below 

tN N
s sr s

×= ∈F V Σ  ,                       (4-15) 

and  

r rN NH
r rd r sr

×= ∈F V Σ U ,                      (4-16) 

where tN N
s

×∈Σ  and r rN N
r

×∈Σ  are the diagonal matrix to be determined. Using the 

structures, the precoders can be regarded as a special case of shaping matrices with the 

incorporation of Vsr and Vrd. Then the MSE becomes  

{ }

( ) 12 2 2

1

2

:

d
H H H H H

s N n s sr r rd rd r rd N rd r sr s

Diag

H H H
s n sd sd s

J tr

tr σ σ

σ

−− −

∈

−

−

=

=

⎧⎛⎪⎪⎜⎪⎜⎪⎜= + +⎨⎜⎪⎜⎜⎪⎜⎝⎪⎪⎩
⎫⎪⎞ ⎪⎟ ⎪⎟+ ⎟ ⎬⎟ ⎪⎟ ⎪⎠ ⎪⎭C

E

I Σ Σ Σ Σ Σ Σ Σ I Σ Σ Σ Σ

Σ V Σ Σ VΣ

   (4-17) 

where 

t tN NH
sd srV V V ×= ∈ .                        (4-18)  

It is noteworthy that 2 H H
n sd sdσ−=C V Σ Σ V  is not a diagonal matrix. Next, we will try to 

transform the non-diagonal structure into a diagonal structure such that the original 
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optimization problem can become a scalar optimization problem. If we let  

( )2 2 2
d

H H H H H
s N n s sr r rd N rd r rd rd r sr sσ σ− −= + +A I Σ Σ Σ Σ I Σ Σ Σ Σ Σ Σ Σ ,       (4-19) 

and 

2 H
n sd sdσ −=C VΣ Σ V .                        (4-20) 

Then the MSE for the ith link is 

( ) ( )
2 11

1 1 1 1 1 1 1
( . )( , ) : : :: ( , )

( )
H

H H H H
s s s s s si ii i

i i

− − − − − − −

= = ==

⎛ ⎞
⎜ ⎟⎛ ⎞ = − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

X D DD

A +Σ CΣ A A Σ C Σ A Σ Σ A , (4-21) 

where A and H
sΣ  are diagonal matrices, so do 1D , 2D . 

Since X is not diagonal, E cannot be completely diagonalized. In the following, we will 

derive a MSE upper bound (4-27) such that using this bound as the constraint will lead to a 

scalar optimization problem. Let 2( ) H= + =Z X D UΣU  is a Hermitian matrix where U is a 

unitary matrix and  

1/ 2 1/ 2 1/ 2 1/ 2H H H= = =Z UΣU UΣ U UΣ U Z Z ,             (4-22) 

and 

1 1 1/ 2 1/ 2 1/ 2 1/ 2H H H− − − − − −= = =Z UΣ U UΣ U UΣ U Z Z .          (4-23) 

Using Cauchy Schwarz inequality, we have 

2 2 21/ 2 1/ 2 1/ 2 1/ 2
2 2 2

1 H H
i i i i

− −= ≤e Z Z e e Z Z e ,               (4-24) 

and  

21/ 2
( , )2

( )H
i i i i ie Z e Ze Z= = , 

21/ 2 1 1
( , )2

( )H H
i i i i i

− − −= =Z e e Z e Z ,         (4-25) 
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where ei is the ith unit standard vector. We then have ( ) 11
( , )( , ) i ii i

−− ≥ ZZ . So, we have the 

following inequality  

( )

( )
( )

2 11

2 11

1 1 1 1 1

( , )

2 1
1 2 ( , )

2
1

2 ( , )

2
1

2 ( , )

1 1 1 1 1

:

( )

( , ) ( )

( , )
( )

( , )
( )

= ( )

H

H

H H H
s s s s

i i

i i

i i

i i

H H H
s s s s

diag

i i

i i

i i
diag

diag

X D DD

D DD X

A Σ C Σ A Σ Σ A

D X D

D
X D

D
X D

A Σ C Σ A Σ Σ A

− − − − −

−

− − − − −

=

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎝ ⎠

= +

≥
+

=
+

⎛ ⎞
⎜ ⎟

+⎜ ⎟
⎜
⎝ ⎠( , )i i

⎟

              (4-26) 

As a result, the QoS constraint for the ith link has an upper bound as: 

( ) ( )
( , )

1 1 1 1 1 1
( , ) ( , )

2 2 2 2 2
, , , , ,2 2

2 2 1
, , ( , )

( ( ) )

1

1

i i

H H H
s s s si i i i

s i r i sr i rd i s i
s n

r i rd i i i

diag

σ σ σ σ σ
σ σ

σ σ

− − − − − −

− −
−

≤ − +

=

+ +
+

E

A A Σ C Σ A Σ Σ A

C

       (4-27) 

where 2 H H H
n sr sd sd sd sd srσ −=C V V Σ Σ V V . ,sd iσ , ,sr iσ  and ,rd iσ  are the ith singular values of the 

channel matrices sdH , srH , and rdH , respectively. ,s iσ  and ,r iσ  are the precoder 

coefficients, i.e. the diagonal elements of tN N
s

×∈Σ  and r rN N
r

×∈Σ . Note that the 

equality holds when 
t

H
sd sr NV V V I= = . 

With the method shown above, we can then transfer the precoders design problem into a 

power allocation problem. Let 2
, ,s i s ip σ , then ,s ip  can be seen as the power allocated for 

the ith transmitted bit stream at the source. Let 2
, ,r i r ip σ , then ,r ip  can be seen as the 

power allocated factor for the ith transmitted bit stream at the relay. Now, the optimization 
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problem becomes as 

, ,

2 2 2 2
, , , ,, 1 1

12 2 2
, , , , ,2 2

2 1
, , ( , )

, ,

min ( )

. .     ,
1

           0,  0,  1, , ,

s i r i

L L

s s i r i n s s i sr ip p i i

s i r i sr i rd i s i
s n i

r i rd i i i

s i r i

p p p

p p
s t

p

p p i L

C

σ σ σ σ

σ σ σ
σ σ ρ

σ

= =
−

− −
−

+ +

⎛ ⎞
+ + ≤⎜ ⎟⎜ ⎟+⎝ ⎠

≥ ≥ =

∑ ∑

          (4-28) 

where 2 H H H
n sr sd sd sd sd srσ −=C V V Σ Σ V V . Since we use an upper bound instead of the MSE itself, 

the solution in (4-28) is suboptimal.  

4.2.1 Special Case I: Source Precoding  

In this scenario, we assume that the relay power has been properly allocated, and use 

,r iP  to represent the power allocated for the ith component. We then solve the optimum 

power allocation at the source. Now, (4-28) can be simplified as 

,

,

2 2 2
, , , ,

1 1
1

2 2
, , ,2 2

, 2 1
, , ( , )

: ( )

,

min (1 )

1. .   ,
1

         0,     .

s i

i r i

L L

s s i r i sr i n r ip i i

r i sr i rd i
s s i n i

r i rd i i i

P

s i

p P P

P
s t p

P

p i

C
α

σ σ σ

σ σ
σ σ ρ

σ

= =
−

− −
−

=

+ +

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟+ + ≤⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎜ ⎟
⎜ ⎟
⎝ ⎠

≥ ∀

∑ ∑

            (4-29) 

To find the optimum value, we use the Lagrange multiplier method. The Lagrange function 

with respect to the (4-29) can be expressed as: 

( )

2 2 2
, , , ,

1 1

12
, , , ,

1 1

(1 )

      ( ) .

L L

s s i r i sr i n r i
i i
L L

i s s i i r i i s i s i
i i

L p P P

p P p

σ σ σ

λ σ α ρ µ

= =

−−

= =

= + +

⎛ ⎞+ + − −⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
            (4-30) 

And the associated KKT conditions can be described with the following equations: 
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( ) 22 2 2
, , , , , ,

,
0 (1 ) ( ) ( )s r i sr i i i r i s s i i r i s i

s i

L P P p P
p

σ σ λ α σ α µ
−−∂

= ⇒ + = + +
∂

,          (4-31) 

( ) 12
, ,( ) 0i s s i i r i ip Pλ σ α ρ

−−⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

,                   (4-32) 

, , 0s i s ipµ = ,                            (4-33) 

, 0s iµ ≥ ,                             (4-34) 

0iλ ≥ ,                             (4-35) 

, 0s ip ≥ .                            (4-36) 

Since , 0s ip ≥ , from (4-33) we have 

, 0s iµ = .                            (4-37) 

Substituting (4-37) into (4-31), we have 

( )22 2 2
, , , ,

,

(1 ) ( )
0

( )
s r i sr i s s i i r i

i
i r i

P p P

P

σ σ σ α
λ

α

−+ +
= > .              (4-38) 

Using (4-32), we have the following solution as 

( ) 12
, ,( ) 0s s i i r i ip Pσ α ρ

−− + − = . 

Then we have 

1 2

,
,( )

i s
s i

i r i
p

P
ρ σ
α

− −−
=                           (4-39) 

Finally, from (4-36) we have 

1 2

,
,( )

i s
s i

i r i
p

P
ρ σ
α

+− −⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
.                        (4-40) 
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Because ,s ip  is always larger than zero and ,( )i r iPα  is positive, 1
iρ −  must be large than 

2
sσ − . It means that MSE constraint iρ  must be smaller than the transmitted symbol power 

2
sσ .  

4.2.2 Special Case II: Relay Precoding  

In this scenario, we assume that the source power is properly allocated, and use ,s iP  to 

represent the power allocated for the ith component. We then solve the optimum power 

allocation at the relay. In this case, (4-28) can be simplified as 

,

2 2 2 2
, , , ,

1 1
12 2

, , ,2 2
, 2 1 1

, , ( , )

,

min ( )

. .  ,

      0,      ,

r i

L L

r i n s s i sr i s s ip i i

sr i rd i s i
s s i n i

rd i r i i i

r i

p P P

P
s t P

p

p i

σ σ σ σ

σ σ
σ σ ρ

σ

= =

−

− −
− −

+ +

⎛ ⎞
+ + ≤⎜ ⎟⎜ ⎟+⎝ ⎠

≥ ∀

∑ ∑

C
           (4-41) 

where 2 H H H
n sr sd sd sd sd srσ −=C V V Σ Σ V V .Similar to the previous case, we use the Lagrange 

multiplier method. The Lagrange function with respect to the (4-41) is:  

2 2 2 2
, , , ,

1 1

12 2
, , ,2 2

, , ,2 1 1
1 1, , ( , )

( )

     .

L L

r i n s s i sr i s s i
i i

L L
sr i rd i s i

i s s i n i r i r i
i ird i r i i i

L p P P

P
P p

p

σ σ σ σ

σ σ
λ σ σ ρ µ

σ

= =

−

− −
− −

= =

= + +

⎛ ⎞⎛ ⎞⎜ ⎟+ + + − −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑C

  (4-42) 

 The KKT conditions can be described with the following equations: 

,
0

r i

L
P
∂

=
∂

, 

then we have 

( )

2 2 2 2
, , , ,2 2 2

, , , 2

,2 2 1 2 2 2
, , , , ,1

( , )

( ) n s i sr i rd i r i
r i n s s i sr i i

s i
s rd i r i s i n sr i rd i

i i

P p
P

P
p P

σ σ σ
µ σ σ σ λ

σ σ σ σ σ

− −

− − −
−

= + −
⎛ ⎞⎛ ⎞
⎜ ⎟+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠C

, 

                                                                   (4-43) 
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12 2
, , , ,2 2
2 1 1

, , ( , )
0s i sr i rd i s i

i s n i
rd i r i i i

P P
p

σ σ
λ σ σ ρ

σ

−

− −
− −

⎛ ⎞⎛ ⎞⎜ ⎟+ + − =⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
C

,         (4-44) 

, , 0r i r ipµ = ,                          (4-45) 

, 0r iµ ≥ ,                            (4-46) 

0iλ ≥ ,                             (4-47) 

, 0r ip ≥ .                            (4-48) 

Since , 0r ip ≥ , from (4-45) we have  

, 0r iµ = .                              (4-49) 

Substituting (4-49) into (4-43) leads to  

( )
2

,2 2 2 2 2 2 2 1 2 2 2
, , , , , , , ,1

( , )
2 2

, , ,

( )

0

s i
r i n n s s i sr i s rd i r i s i n sr i rd i

i i
i

s i sr i rd i

P
p P p P

P

σ σ σ σ σ σ σ σ σ

λ
σ σ

− − −
−

⎛ ⎞⎛ ⎞
⎜ ⎟+ + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ = >

C
, 

(4-50) 

Using (4-44), we have the solution as 

( )

1
2 2

, , 2
, ,11 2 1

, ( , )

1n s i sr i
r i rd i

i s s i i i

P
p

P

σ σ
σ

ρ σ

−
−

−− − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

C
,            (4-51) 

From (4-48), we finally have 

( )
( )

11 2 1
, ( , )

, 12 2 2 1 1 2
, , , ( , ) ,

i s s i i i
r i

n s i sr i s s i i i i rd i

P
p

P P

ρ σ

σ σ σ ρ σ

+
−− − −

−− − − −

⎡ ⎤
− −⎢ ⎥

= ⎢ ⎥
⎛ ⎞⎢ ⎥+ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

C

C
.          (4-52) 

As that in the previous case, we know 1
iρ −  must be large than 2

sσ − . Here, ( ) 11
, ( , )s i i iP

−−C  
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means the MSE changed by the direct link (the channel from source to destination). So if we 

want that ,r ip  is large than zero, 1
iρ −  must be larger than ( ) 12 1

, ( , )s s i i iPσ
−− −+ C . It means the 

MSE constraint cannot be satisfied by the direct link. And, 1
iρ −  must be smaller than 

( ) 12 2 2 1
, , , ( , )n s i sr i s s i i iP Pσ σ σ

−− − −+ + C  , it means the MSE constraint can be satisfied by the direct 

link and the channel from source to relay and then to destination. 

The channel effect is obvious. So we draw the following conclusions from (4-40) and 

(4-52). When ,sd iσ  is large, 1
( , )i i

−C  will be small and ( ) 11
( , )i iC

−−  will be large. So from (4-29) 

we see when ,sd iσ , ,sr iσ  and ,rd iσ  are large, then ,( )i r iPα  will be large. On the contrary, 

,s ip  will be small from (4-40), and ,r ip  will be small from (4-52). 

4.2.3 General Case: Joint Source/relay Precoding  

Now we solve the general power allocation problem using the results obtained in Section 

4.2.1 and 4.2.2. Firstly, we can observe that (4-28) is not a convex optimization. As a result, 

the optimal value is difficult to derive even if the problem is formulated as a scalar-valued 

problem. However, by using the primal decomposition method [20], we can reformulate the 

original problem to obtain two convex problems - the master and the sub-problem 

optimization problems. Using this approach, the closed-form solutions can be easily obtained 

by means of KKT conditions. We give the detailed derivation in the following section.  

First, we assume that ,r ip ’s are known as a priori and then substitute the optimal 

solution for ,s ip  found in Section 4.2.1 into (4-28). Then the original problem in (4-28) 

becomes the function of ,r ip . We can then find the optimal solution using the Lagrange 

multiplier method. For a given ,r ip , the optimal solution for ,s ip  can be derived as  

1 2

,
,( )

i s
s i

i r i
p

P
ρ σ
α

+− −⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                        (4-40) 
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where  

2 2
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, 2 1
, , ( , )
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.               (4-53) 

Substituting (4-53) into (4-32), we obtain 
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(4-54) 

Note that if , 0s ip = , the condition ( ) 12
s iσ ρ

−− ≤  cannot be satisfied. Thus, the Lagrange 

function with respect to the (4-54) is: 
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.          (4-55) 

 

 The KKT conditions can be described by the following equations: 
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, , 0r i r ipµ = ,                           (4-57) 
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, 0r iµ ≥ ,                             (4-58) 

0iλ ≥ ,                              (4-59) 

, 0r ip ≥ ,                             (4-60) 

If , 0r ip > , from (4-57), , 0r iµ = . Then, 
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        (4-61) 

Dividing both sides of (4-61) by ( )2 1 2
,1s i sr iσ ρ σ− − , and letting 2 2 2

, , ,n sr i rd iα σ σ σ−=  

( )2 1 1 ,s iβ σ ρ −= −  ( )2 1
, , ,rd i r ipγ σ −= +  and ( ) 11

( , )i iCδ
−−= , we have 
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    (4-62) 

Substituting ( )2 1
, ,rd i r ipγ σ −= +  and multiplying both sides of (4-62) by 2

iρ  leads to 
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     (4-63) 

From the solution ( )2 / 24 ii i i i ab b a c− + −  we know that if ,r ip  is larger than zero, 

2 4i i ib a c−  must be positive and larger than 2
ib . Since ia  and ib are larger than zero but ic  
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may not, 2 4i i ib a c−  is not guaranteed to be larger than 2
ib . The conditions, ic > 0, indicate 

that the channel quality of the direct link is better than that of the relay link. In this case, we 

can only use the direct link to satisfy the MSE constraint. So we can use ic  as a flag to 

decide if we want to use the relay or not. Thus, if ic  > 0, the system will be degenerated to a 

noncooperative system and 

, 0r ip = ,                           (4-64) 

If c < 0, we can find ,r ip  by 

2

,
4

2r i
b b acp
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− + −

= ,                        (4-65) 

where 
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The source power ,s ip  can be found by 
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As that in Special Case I, the MSE constraint iρ  must be small than the transmitted symbol 

power 2
sσ . 

As discussed above our purpose is to satisfy the QoS with a minimum transmission 

power. In our processing, we try to make the precoding matrices at the source node and the 

relay node diagonal, and this makes the solution suboptimal. Because the optimal precoder 

matrix structure may not be diagonal, we are inquisitive about the question when the 

constraint precoder structure becomes optimal. To answer this question and simplify the 

derivation, we first assume that Nt ≤ Nr , Nt ≤ Nd , Nd≤ Nr and ignore the transmission in the 

source-destination link, this make we don’t need to consider upper bound problem. Then the 

system model of (4-1) can be rewritten as  

: :
d rd r sr s rd r r d

H w

y H F H F s H F n n
= =

= + + ,                      (4-71) 

where H= rd r srH F H  and w= rd r r d+H F n n . With the similar approach in Section 4.2, we can 

obtain the optimal receive filter as 

1( )H H H H
opt s s s s s wG R F H HF R F H R −= + ,               (4-72) 

and the corresponding MMSE as 

{ }1 1 1( )H H
min s s w sJ tr − − −= +R F H R HF ,                 (4-73) 

where [ ] 2H
s s NE σ= =R Iss , 2 2

d d r
H H

w n N n rd r r rdσ σ= +R I H F F H , 
dnσ and

rnσ are noise 

variances of the channels srH  and rdH , respectively. Express the transmission power as 

P = { } { } { }2 2 2
r

H H H HH
s n ss s r sr s s sr rr rtr tr trσ σ σ+ +F F F H F F H FF F        (4-74) 

and the channel SVDs as  
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and  
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where srΣ  and rdΣ  are diagonal matrices. If we have the precoder in the source node as  

tN N
s sr sF V Σ ×= ∈ ,                         (4-77) 

where tN N
s

×∈Σ  is a diagonal matrix. Then the MMSE and the transmission power can be 

rewritten as  
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and 

{ } { } { }2 2 2( )
r

H H H H HH
r s n ss s r sr sr s s sr sr rr rP tr tr trσ σ σ= + +∑ ∑ ∑ ∑ ∑ ∑F F U U FF F .    (4-79) 

Consider a general form of rF as 

    ( ) 11 12

21 22

r r

H
r r sr N N

r rd Hrd
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F V V Σ Σ U

.            (4-80) 

Through some tedious derivations, it is easy to show that if we let 
21r =Σ 0  and 

22r =Σ 0  

there will be no impact on ( )min rJ F  (while helping save power consumption).  Setting 

12
0r =Σ  leads to the reduction of both ( )min rJ F  and ( )rP F . Thus, we can let the precoder 

be  

11
H

r rd r sr=F V Σ U .                          (4-81) 
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The remaining work is to investigate the structure of 
11rΣ . Substituting (4-82) into (4-79) and 

(4-80), we can obtain 

({ (

( ) ) }
11 11

11 11

2 24

1
2 2
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and 
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r rr s s s rd rd n N s sr s s srtr tr Iσ σ σ− −= ∑ ∑ + ∑ ∑ + ∑ ∑ ∑ ∑P F Σ Σ .   (4-83) 

In (4-83), we have used matrix inverse lemma in (4-5) and let 11 11r rd r=Σ Σ Σ . Consider the 

eigenvalue decomposition (ED) of  

( )11 11
2 2
r t

HH H H
r rn N s sr s s sr d d dIσ σ= + ∑ ∑ ∑ ∑ = ∑D Σ Σ U U ,         (4-84) 

where the diagonal element { ,d iσ } of d∑  are arranged in the descending order. Note that the 

last ( dN - tN ) diagonal elements of d∑  are nulls since rank(D) = tN ( ≤ dN ). Pre-multiplying 

11rΣ by H
dU  leads to a new precoder '

rF  with the same MSE, i.e. ( )min rJ F = '( )min rJ F , and a 

lower power consumption, i.e. 
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Here we use the fact that for any two N N×  positive semi-definite matrices A and B whose 

eigenvalue ( )iλ A  and ( )iλ B  are arranging in the descending order, then [21] 

{ } 1
1

( ) ( )
N

i N i
i

tr AB λ λ − +
=

≥ ∑ A B .                    (4-86) 

Without loss of generality, we can further assume that 
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( )11
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⎝ ⎠
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where d∑  denotes the t tN N×  top-left sub-matrix of d∑ , and T is a t tN N×  unitary 

matrix. Note that for certain d∑ , varying T impacts the MSE ( )min rJ F  but not power 

consumption ( )rP F . This leads to  

4 2 2
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J N
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∑
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Here, we use the property in [21] again, i.e.,  
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( ) ( )
N

i i
i

tr λ λ
=

≤ ∑ A BAB .                    (4-89) 

Here, the lower bound is attained while T=
tNI . Thus, for any given d∑ , ( )min rJ F  and 

( )rP F  are always minimized with 
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If let 1R H R HH
H w

−= , then the ,H iλ ’s of RH  for our problem is  

2 2 2
, , ,
2 2
, , 1

r i sr i rd i

r i rd i

σ σ σ

σ σ +
,               (4-91) 

where , ,sr iσ  ,rd iσ , and ,r iσ  are the ith diagonal elements of ,srΣ  ,rdΣ  and rΣ . From [17] 

we known that the suboptimal solution obtained under the diagonal constraint of the MSE 

matrix is the optimum if and only if 

2 2
, , 1 1,  1H i i H i i i Lλ ρ λ ρ+ +≥ ≤ ≤ ,                    (4-92) 

where the iρ ’s are arranged in the decreasing order, and the ,H iλ ’s are the largest 
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eigenvalues of HR  in the increasing order. Substituting (4-92) into (4-93), we have  

2 2 2 2 2 2 2 2
, , 1 , 1 , , 1 , , 1

2 2 2 2 2 2 2 2
, 1 1 , , , , 1 , , 1
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+
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If 2 2 2 2
, , , 1 , 1r i rd i r i rd iσ σ σ σ+ +≥ , then 
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, 1 , 1 , , 1 , , 1 , 1 , 1
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+ + + + + +

+ +

+
≥

+
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So, if  

2 2 2 2
, , , 1 , 1r i rd i r i rd iσ σ σ σ+ +≥                        (4-95) 

and  

1

2 2 2 2 2 2 2 2
, , , , 1 , 1 1 , 1

i i

sr i rd i i r i sr i rd i i r i

λ λ

σ σ ρ σ σ σ ρ σ

+

+ + + +≥                (4-96) 

the suboptimal solution obtained under the diagonal constraint becomes the true optimum. 
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Chapter 5: Simulations 
In this chapter, we report simulation results to evaluate the performance of the power 

allocation methods we have proposed. Specifically, we consider following scenarios: (1) SISO 

relay system (2) MIMO relay system: (a) special case I, (b) special case II, and (c) general 

case. 

5.1 SISO Systems  

We evaluate the performance of SISO relay system. In the system, the precoding problem 

is degenerated to a power-allocation problem. The system we consider is a typical three-node 

system (the source, the relay, and the destination), all channels are assumed to experience 

Rayleigh fading and has a same SNR which is 10 dB. Here, dB is defined as 1010log (.) . The 

QoS is measured with the average BER. Here, we let the required BER be 310− , and use 

50,000 symbols for each set of simulation. Figure 5-1 shows the simulated results for systems 

with the proposed power allocation (PA) and equal-power PA. In the equal-power PA scheme, 

the transmit power at the source node is equal to that at the relay node. To have a fair 

comparison, in each run of the simulation we first calculate the total power required for the 

proposed PA scheme and then use that for the equal-power PA scheme. Note that the 

horizontal axis in Figure 5-1 indicates the bit number mapped to a QAM symbol, and the 

vertical axis the BER. Since we use an upper bound to approximate the true BER, the BER 

yielded by the proposed algorithm will be always less than the desired BER. From the figure, 

we observe that our algorithm significantly better than the equal-power PA scheme. And the 

performance gap becomes larger when the QAM size is larger. 
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Figure 5-1: Performance comparison for equal-power and proposed PA schemes in SISO relay 

systems (BER constrain = 310− ). 

5.2 MIMO Relay Systems  

5.2.1 Special case I: Source precoding  

In this subsection, we evaluate the performance of the proposed MIMO precoded relay 

system under the scenario that only the source precoder is considered. Each node is assumed 

to have four antennas. The SNRs for three channels in the system are set to be equal (SNR=10 

dB), and the power used in the relay be 6.0206 dB. Also, the power is uniformly distributed in 

the diagonal matrix of rΣ . QoS here is measured with the MSE and its value is set as 110− . 

Figure 5-2 shows the MSE comparison of a conventional MIMO (non-cooperative) and the 

proposed MIMO precoded relay systems. For the conventional MIMO system, we can adjust 
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the transmission power such that it can precisely satisfy the QoS constraint. However, for the 

proposed system, an upper bound is used in our derivation and the resultant MSE will be 

always less than the designated MSE. This is similar to that in the SISO system and Figure 5-2 

clearly verifies the result. Figure 5-4 gives the averaged power used for both systems under 

various MSEs (ranging from 110−  to 310− ). As we can see, the required transmission power 

of the proposed scheme is significantly smaller than the conventional MIMO system. For the 

simulation setting considered here, a 7dB reduction can be obtained. Also, the reduction is 

almost independent of the required MSE. 
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Figure 5-2: MSE comparison for conventional MIMO and proposed MIMO relay systems 

(MSE constrain = 110− ). 



 46

2 2.5 3 3.5 4 4.5 5 5.5 6
10

-4

10-3

10
-2

10-1

10
0

Rate (bits/sym)

B
E

R

 

 
Proposed MIMO relay
MIMO

 
Figure 5-3: BER comparison for conventional MIMO and proposed MIMO relay systems 

(MSE constrain = 110− ). 
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Figure 5-4: Power-consumption comparison for conventional MIMO and proposed MIMO 

relay systems 
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5.2.2 Special case II: Relay precoding  

In this subsection, we evaluate the performance of the proposed MIMO precoded relay 

system under the scenario that only the relay precoder is considered. Each node is assumed to 

have four antennas. The SNR of the source-to-destination channel is set 5 dB lower than other 

two channels (10 dB), and the power in the source is set as 20 dB. Also, the power is 

uniformly distributed in the diagonal matrix of sΣ . Similar to the previous case, the QoS here 

is measured with the MSE and its value is set as 110− . Figure 5-5 shows the MSE comparison 

of the conventional MIMO and the proposed MIMO precoded relay systems. As we can see, 

the MSE of the proposed system is less than the designated MSE. This behavior is also similar 

to previous cases except that the gap seems larger. Figure 5-7 gives the averaged power used 

for both systems under various MSEs (ranging from 110−  to 310− ). As we can see, the 

required transmission power of the proposed scheme is still significantly smaller than the 

conventional MIMO system. For the simulation setting considered here, a 5dB reduction can 

be obtained. 
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Figure 5-5: MSE comparison for conventional MIMO and proposed MIMO relay systems 

( MSE constrain = 110−  ) 
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Figure 5-6: BER comparison for conventional MIMO and proposed MIMO relay systems 

( MSE constrain = 110−  ) 



 49

-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10
15

20

25

30

35

40

45

MSE (dB)

To
ta

l p
ow

er
 (d

B
)

 

 
Proposed MIMO relay
MIMO

  
Figure 5-7: Power-consumption comparison for conventional MIMO and proposed MIMO 

relay systems 

5.2.3 General case: Joint source/relay precoding  

We now evaluate the performance of the proposed precoded MIMO relay system under 

the general scenario that both the source and relay precoders are considered. As previously, 

each node is assume to have four antennas. Here, the SNR of the source-to-destination 

channel is set to be lower than the other two channels by 5 dB. We still use the MSE as the 

measure of QoS, and let the target MSE be 110− . Figure 5-6 shows the MSE comparison of 

the conventional MIMO system, the proposed MIMO precoded system without the direct link, 

and the proposed MIMO precoded relay systems. The MSE of the proposed system with direct 

link is less than the designated MSE, however, its gap is smaller than the previous case. Figure 

5-7 gives the averaged power used for both systems under various MSEs (ranging from 110−  

to 310− ). As we can see, the required transmission power of the proposed scheme (with the 

direct link) is dramatically smaller than the conventional MIMO system. For the simulation 
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setting considered here, a 7 dB reduction can be obtained for the proposed system without the 

direct link, and a 14 dB reduction can be obtained for the proposed system with the direct link.  
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Figure 5-8: MSE comparison for conventional MIMO and proposed MIMO relay systems 

( MSE constrain = 110−  ) 
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Figure 5-9: BER comparison for conventional MIMO and proposed MIMO relay systems 

( MSE constrain = 110−  ) 
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Figure 5-10: MSE comparison for conventional MIMO, the proposed MIMO relay without 

direct link, and the proposed MIMO systems. 
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From Figure 5-10, we see that even without the direct link, the proposed system requires 

less power than the conventional non-cooperative MIMO system. This is due to the precoders 

used in the source and the relay. The proposed scheme jointly designs the precoders such that 

the required transmission power can be minimized. 
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Figure 5-11: Power distribution of total power in the proposed MIMO relay system. 

Figure 5.11 gives the total power distribution in the proposed system. It is observable that 

the distribution exhibits an impulse-like characteristic. When the required power is larger than 

the maximum allowable power, we say that the system is in outage. In other words, the 

required QoS cannot be met in the case.  
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Figure 5-12: Outage probability of conventional MIMO and the proposed MIMO relay 

systems. 

Figure 5.12 presents the outage probability for a power constraint of 40 dB. From the 

figure, we see that the outage probability of the proposed precoded system is much smaller 

than the conventional MIMO system. Also, the slope of the outage curve for the proposed 

system is larger than that for the MIMO system. This indicates that the proposed system has a 

larger diversity gain.  
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Chapter 6: Conclusions 
In this thesis, we consider the joint source/relay precoder design in MIMO AF relay 

system. We assume that full channel-sate-information is available at the source, the relay, and 

the destination, and propose a method to minimize the total transmission power under a QoS 

constraint. The QoS we considered is the average MSE of the MMSE receiver. Since the cost 

function of the minimization problem is difficult to solve, we then propose to use an upper 

bound of the MSE matrix as an alternative constraint function. Using a specially designed 

precoder structure, we are able to convert the problem into a scalar-valued optimization 

problem. However, the optimal solution is still difficult to derive. We then use the primal 

decomposition method to translate the problem into two standard convex optimization 

problems. Resorting to the KKT conditions, we finally solve the optimum precoders for the 

MIMO relay system. Simulations show that the proposed precoded MIMO system consumes 

much less power than the conventional non-cooperative MIMO systems. For the simulation 

setting we used, the reduced power can be as large as 14 dB. In this thesis, we only consider 

the linear receiver, i.e, the MMSE receiver. As well known, nonlinear receivers, such as the 

QR successive interference cancellation (QR-SIC) receivers and the maximum-likelihood 

receiver, can have much better performance than linear receivers. The joint precoders design 

problem in the systems can serve as the topics for further research.  



 55

References 
[1] N. Lanenan, “Cooperative Diversity in Wireless Networks: Algorithms and 

Architectures,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, 
MA, Aug. 2002.  

[2] A. Sendonaris, E. Erkip and B. Aazhang, “User cooperation diversity part I: system 
description,” IEEE Trans. on Commun., pp. 1927-1938, Nov 2003. 

[3] A. Sendonaris, E. Erkip and B. Aazhang, “User cooperation diversity part II: 
implementation aspects and performance analysis,” IEEE Trans .on Commun., pp. 
1939-1948, Nov 2003. 

[4] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., 
vol. 10, no. 6, pp. 585–595, Nov.–Dec. 1999. 

[5] G. Foschini and M. Gans, “On limits of wireless communications in a fading 
environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, pp. 
311–335, 1998. 

[6] E. K. P. Chong, S. H. Zak, “An Introduction to Optimization second Edition,” pp. 
323-328, 2001.  

[7] W. Yu, R. Lui and R. Cendrillon, ”Dual optimization methods for multiuser orthogonal 
frequency division multiplex systems,” IEEE Communications Society, vol. 1, pp. 225- 
229, Dec. 2004. 

[8] M. Yu and J. (Tiffany) Li, ”Is amplify-and-forward practically better than 
decode-and-forward or vice versa?,” IEEE International Conference on Acoustics, 
Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05., vol. 3, pp. 365-368, 
March 2005. 

[9] Z. Q. Luo and W. Yu, ”An Introduction to convex optimization for communications and 
signal processing,” IEEE Trans. Selected Areas in Communications, vol. 24, no. 8, Aug. 
2006. 

[10] C. C. Chai and Y. C. Liang, ”Joint MIMO beamforming and power adaptation at base 
station and broadcasting relay transmitters with Quality-of-Service (QoS) constraints,” 
IEEE Vehicular Technology Conference, 2008. VTC Spring 2008., May 2008. 

[11] Y. Jiang, J. Li, and W. W. Hager, ”Transceiver design using generalized triangular 
decomposition for MIMO communications with QoS constraints,” IEEE Transaction on 
Signal Processing , vol. 53, no. 11, pp. 4283-4294, Nov. 2004. 

[12] Y. Jiang, J. Li, and W. W. Hager, ”Joint transceiver design using geometric mean 
decomposition,” IEEE Transaction on Signal Processing, vol. 53, no. 10, pp. 3791-3803, 
Oct. 2005. 

[13] A. Goldsmith, Wireless Communications, pp214-216, 2005. 
[14] F. F. Digham and M. S. Alouini, “Adaptive hybrid M-FSK M-QAM modulation,” IEEE 



 56

Communication, Computers and Signal Processing, vol.2, pp. 964- 967, Aug. 2003. 
[15] M. Joham, W. Utschick,, and J. A. Nossek, ”Linear transmit processing in MIMO 

communications systems,” IEEE Transaction on Signal Processing, vol. 53, no. 8, Aug. 
2005. 

[16] G. H. Golub and C. F. V. Loan, Matrix computation, third edition, Johns Hopkins. 
[17] D. P. Palomar, M. A. Lagunas, and J. M. Cioffi, ”Optimum linear joint transmit-receive 

processing for MIMO Channels with QoS Constraints,” IEEE Transaction on Signal 
Processing, vol. 52, no. 5, May 2004. 

[18] J. G. Proakis, Digital Communications, 3rd ed, McGraw-Hill, 1995.  
[19] F. S. Tseng, W. R. Wu, and J. Y. Wu, “Joint source/relay precoder design in 

amplify-and-forward relay systems using an MMSE criterion,” accepted in WCNC 2009. 
[20] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K. Cambridge Univ. 

Press, 2004. 
[21] X. J. Tang and Y. B. Hua, “Optimal design of non-regenerative MIMO wireless relays,” 

IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1398–1407, Apr. 2007. 
[22] T. M. Cover and A. A. El Gamal, “Capacity theorems for the relay channel,” IEEE Trans. 

Inf. Theory, vol. IT-25, pp. 572-584, Sept. 1979. 
[23] X. Bao and J. Li, “Decode-amplify-forward (DAF): A new class of forwarding strategy in 

wireless relay channel,” in Proc. IEEE Workshop on Signal Processing Advances in 
Wireless Commun. (SPAWC), June, 2005. 

[24] S. H. Wu, Cooperative Communication Lecture Note of NCTU course, unit3, pp13-15. 


