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新穎交錯耦合濾波器之開發設計與寬頻高階馬迅平衡非平

衡轉換器合成設計 

 

研究生:呂哲慶                       指導教授:張志揚 

國立交通大學電信工程研究所 

 

摘要 

 

    本論文主要的研究方向分成兩大部分，分別為微波濾波器設計與馬迅平衡非

平衡轉換器設計。第一部分是研究運用四分之ㄧ波長步階阻抗共振腔設計高性能

濾波器、如何快速設計交錯耦合濾波器、以及發展新穎耦合濾波器。文中介紹使

用四分之ㄧ波長步階阻抗共振腔來實現具有源級與負載相耦合的四角互耦的濾

波器響應，可以任意控制第二對傳輸零點的位置。一般而言絕大部分的設計都是

使用耦合係數與外部品質因子來設計濾波器，一旦共振腔型式固定，所萃取的耦

合係數只能使用在當時濾波器的中心頻率與當時的實體佈局方式，而且一旦傳輸

零點位置改變，共振腔擺放的位置也要改變，重新建立耦合係數與外部品質因

子，而且其初始設計離最佳化的廣義柴比雪夫響應相差太多，必須調整濾波器的

次數太多，造成難以快速設計。本論文提出以傳統平行耦合線濾波器來達到具有

交錯耦合的功能，好處是能夠有最佳的初始設計以及優越的傳輸零點位置的擺

放。此外，文中也提出新穎耦合濾波器圖形，此濾波器提供了對稱型的實體佈局

實現非對稱的濾波器響應，也克服了傳輸零點非常靠近帶通頻率所造成在平面實

體佈局技術的困難度。 
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    論文的第二部份敘述使用傳輸線元件的分佈式電路所組成的網路的合成方

法。此合成方法可以預測所有頻率點響應，所使用到的理查變數(Richards 

variable)、傳輸線網路、理查理論(Richards theorem)、黑田恆等式以及傳輸線近

似合成函數都有討論。此外，文中也會提出高階寬頻馬迅平衡非平衡阻抗轉換器

的電路，以及如何準確合成具有柴比雪夫響應的馬迅平衡非平衡阻抗轉換器。此

種新提出的高階馬迅電路適合寬頻響應。 
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Abatract 

 

The research topics in this dissertation are divided into two parts; one is 

microwave filter design, the other is Marchand Balun design. The first topic is to 

utilize quarter-wave stepped impedance resonator to design high performance filter, 

study how to quickly design cross-coupled filters, and develop novel coupling 

schemes. In this dissertation, quarter-wave stepped impedance resonators are utilized 

to realize quadruplet and canonical-form coupling schemes. The proposed filter is 

easy to apply and control the source-load cross coupling. General speaking, most of 

the filter designs are to use coupling coefficients and external quality factor to design 

cross-coupled filters. Once the physical layout of the resonator is decided, the 

extracted coupling coefficients can be only used at the center frequency. Furthermore, 

if one coupling coefficient in the coupling matrix changes sign for shifting the 

transmission zero from one side of the passband to the other, the physical layout must 
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be reconfigured. The initial design of cross-coupled filters based on segmentation 

method is not good enough, so tuning of filter performances must spend much time. 

This dissertation presents new cross-coupled filters based on a conventional 

parallel-coupled filter. The proposed filters have the advantages of the ability to locate 

a transmission zero on the lower or upper stopband and a good initial design. 

Additionally, the novel coupling schemes are presented to exhibit bisymmetric 

coupling matrix. The novel coupling schemes provide the implementations of 

symmetric layouts to realize asymmetric filter responses. Using the novel coupling 

schemes implementation of generalized Chebyshev filters with transmission zeros 

very close to the passband can be easily realized in planar technology. 

The second topic is to describe the synthesis method of the networks which are 

composed of the distributed transmission line circuits. The synthesis method is exact 

at all frequencies. Richards variable, transmission line networks, Richards theorem, 

kuroda identities and transmission line approximating functions are discussed in 

detailed. In addition, high-order wideband Marchand baluns are presented in this 

dissertation and the exact synthesis of the proposed Marchand baluns with Chebyshev 

responses are introduced. The proposed high-order Marchand baluns are suitable to 

design wideband responses. 
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Chapter 1 Introduction 

This dissertation includes two topics. The first topic is devoted to novel 

microwave cross-coupled filter design. The second topic is to design new higher-order 

Marchand balun based on exact synthesis technique. 

 

1.1 Microwave Filters 

Microwave filters are one of the important components in modern microwave 

communication systems. The frequency of microwave ranges from 300 MHz to 300 

GHz corresponding to wavelengths (in free space) from 1 m to 1mm. The concept of 

electromagnetic waves should be used to describe the features of microwave 

components including microwave filters. Microwave filters are used to pass the 

wanted signals at frequencies within the passband and suppress the unwanted signals 

in the stopband. Filters for microwave applications must meet ever tighter 

specifications on electrical performances, and on size, weight, and reliability. The 

demands are growing more stringent on losses, steepness of cutoff, bandwidth, and 

linearity of phase shift (flat group delay). New features such as electronic tunability 

are being sought. Integrations of microwave filters with couplers, amplifiers, and 

frequency multipliers are becoming more important on system performance. To 

handle the rapid advance of applications of the modern communication systems, 

network analysis, accurate synthesis, design and diagnosis of filter networks have 

become one of the key technologies to fulfill the new challenges of reliability, 

insensitivity, low manufacturing cost, and minimum tuning effect on filter 

performance [1]-[2]. The historical review describing the development of the 

microwave filters is given in [3]-[5]. Different filter types and important references 

are given. Recently, among various kinds of microwave filters, microwave 

coupled-resonator filters are very popular. Generally, coupled-resonator filters with 
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cross coupling between nonadjacent resonators can exhibit steeper transfer function or 

flatter group delay, and they are called cross-coupled filters. The theory of 

cross-coupled filters [6], [7] provides a systematic design procedure that allows a 

filter with sharper selectivity and/or equalized group delay for various requirements in 

microwave systems. Most important characteristics of cross-coupled filters can be 

obtained by the corresponding coupling matrices.  

1.1.1 Review of Coupled Resonator Filters and Cross-Coupled Filters 

Initially, the research work on the design and synthesis of microwave filters can 

be traced back to the 1930’s [3]. At that time, network theory was probably the most 

advanced topic in engineering. The famous cascade synthesis theory as far back as 

1939 [8] was published by S. Darlington. In his work, modern filter designs such as 

filters with finite frequency transmission zeros are included. The theory of 

direct-coupled cavity filters based on low-pass lumped-element prototype was 

presented by Fano and Lawson [3]. The main problem of Fano and Lawson theory 

was the lack of specific formulas for the low-pass prototype. The paper proposed by 

Cohn in [9] gives a comprehensive theory and extends the range of applicability to 

much broader bandwidths, i.e., about 20 percent in terms of guide wavelength. Later, 

in the 1960’s, a remarkable improvement in the applicable bandwidth to beyond 20 

percent was made by Leo Young [10]. He succeeded in realizing the direct-coupled 

filters beyond 20 percent by using a distributed rather than a lumped-element 

prototype filter. In 1966, Levy [11] established a quite direct design in cavity filters 

and, thus enabling the desired parameters of the filter, i.e., number of cavities, ripple 

level, and band edges to be a simple formula which is used to derive the correct 

distributed prototype. 

The first description of cross-coupled filters may be appeared to be by J. R. 

Pierce in the late 40’s [12]. However, the developments of cross-coupled filters took 
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place after 1965 or so. The cross coupling between nonadjacent resonators are 

introduced to generate transmission zeros. The cross coupling are mainly generated by 

the multipath. Applying suitable multi-path effect can bring transmission zeros from 

infinite to finite frequencies in the transfer function. Thus, attenuation poles at finite 

frequencies, or group delay flattening, or even both simultaneously can be achieved 

by observing the phases of the signals between different paths. A lot of related 

research works on the filter with cross coupling have been reported [12]-[33]. 

Furthermore, filter synthesis utilizing optimization techniques [34], [35] are used to 

obtain the required filtering functions. 

Synthesis technique and implementation methods for the cross-coupled filters, 

which are shown in [12]-[35], have been developed for couples of decades. The most 

significant developments took place in the 1970’s in laboratories concerned with 

satellite communications, particularly at COMSAT by Atia and Williams [19]-[20], 

[23]. Their work on elliptic function and linear-phase waveguide filters using 

dual-mode cavities with cross coupling was particular significant. The dual-mode 

cavity filters introduced by Atia and Williams have resulted in the virtual 

standardization of these designs for satellite transponders. 

Recently, one of the most important progresses in generalized filter synthesis is 

done by Richard Cameron. Richard Cameron published two papers [36], [37] which 

focused on generalizing the synthesis technique for the cross-coupled resonator filter 

with the generalized Chebyshev filtering function. With his work, N prescribed 

finite-position transmission zeros in an Nth-degree network are described. The 

synthesis method includes multiple input/output couplings, i.e., couplings may be 

made directly from the source and/or to load to internal resonators. The synthesized 

N+2 fully canonical coupling matrix for transversal array can completely describe all 

the possible generalized Chebyshev responses. With a series of similarity 
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transformations, the fully canonical coupling matrix can be reconfigured into a 

wanted coupling topology which is more convenient for the realization. The basic 

theory will be shown in Chapter 2. 

Another attractive topic developed for several decades is the computer-aided 

diagnosis and tuning of cross-coupled filters. This is due to the continuous demand on 

reducing the manufacturing cost and development time for various filters with 

different specifications. It should be pointed out that filters with generalized 

Chebyshev responses are more difficult to fine tuned than that with Chebyshev or 

Butterworth responses. Thus, without a systematic adjustment method, it would spend 

much time on the tuning of filter performances, particularly for highly selective filters. 

Several research works focused on this problem [38]-[51]. The first effort for the 

adjustment and alignment of microwave filters can be traced back to Dishal [38] in 

the early 50’s when he utilized the filter return loss as the criterion for tuning. Atia 

and Williams [39] proposed a method for measurement of inter-resonator couplings 

based on measuring the phase responses of the reflection coefficient of a 

short-circuited network which consists of identical synchronously-tuned resonators. 

Thal [40] utilized the equivalent circuit in conjunction with phase measurement for 

filter diagnosis. In [41], a tuning method with short circuited networks for singly 

terminated filters is presented. In [42]-[44], different optimization strategies and 

schemes for parameter extraction are explored. Analytic methods in [45]-[47] are 

derived to extract the coupling matrix from the locations of system zeros and poles. In 

[48]-[50], the powerful Cauchy method is applied to get the rational polynomial 

approximation of reflection and transmission coefficients from the EM simulated 

results. In [51], eigenvalue approach is used to optimize the coupling matrix. The 

method in [52] utilized the Cauchy method in [48]-[50] to obtain the corresponding 

coupling matrix, and then optimize the rotation matrix to get the wanted coupling 
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topology. Besides, sensitivity of coupled resonator filters is analyzed in [53]. Thus, 

research concerning about cross-coupled filters have been studied for a long time, and 

up to present some researches are presenting. 

1.1.2 Motivation 

The requirements of highly selectivity, flat group delay, compact sizes, and wider 

rejection bandwidth are the significant studies of microwave filters. In addition, high 

reliability, low sensitivity, low manufacturing cost, and minimized fine-tuning steps 

on filter performance are also important.  

Filters exhibiting high selectivity, broader upper stopband, and compact sizes are 

popular topics. Many published papers have achieved the requirements. However, the 

design method to control the finite transmission zeros is complex or difficult in most 

of the published papers. Furthermore, the layouts are usually too complicated for the 

published filters. To overcome the difficulties, a filter utilizing a 4-order 

canonical-form coupling scheme with λ/4 stepped impedance resonators may be a 

good choice. 

In conventional cross-coupled filter designs, especially for microstrip filters, 

adjustment the distance and the orientation of each pair of neighboring resonators to 

get proper signs and magnitudes of the corresponding coupling coefficients is very 

tedious and time-consuming. The design curves of coupling coefficient and external Q 

for filters are generated from an electromagnetic (EM) field solver. Such filter designs 

can be found in Hong’s book [6]. When using this method as the initial dimensions of 

filters, filter designer has to spend much time to tune filter performances. To solve the 

drawbacks, new procedures to quick design of cross-coupled filters are demanded. 

Another interesting topic is coupling schemes. The traditional 3-order trisection 

filter has one transmission zero on upper or lower stopband and the 4-order 

quadruplet filter has a pair of transmission zeros on both stopband. The order of the 
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advanced trisection and quadruplet can be two and three, respectively. However, there 

are problems of conventional or advanced trisection and quadruplet. As the 

transmission zero is close to the passband, serious asynchronously-tuned resonators 

for trisection cause serious effect on filter passband responses. Besides, when finite 

transmission zeros are very close to the passband, both trisection and quadruplet 

filters suffer from unrealizable gaps to implement the strong cross couplings. Thus, 

the solution of the problems may require new coupling schemes which can achieve 

trisection and quadruplet responses with transmission zeros close to the passband. 

With the discussion described above, the first topic in this dissertation mainly 

focuses on different circuit design of filter with compact sizes, high selectivity and 

broad upper stopband, the development of new approach to cross-coupled filters, and 

novel coupling schemes with transmission zeros very close to passband. 

1.1.3 Literature Survey of Coupling Schemes and Realizations of Cross-Coupled 

Resonator Filters 

The existing well-known coupling schemes and the realizations of these coupling 

schemes are surveyed as follows. 

In the past, numbers of research works concentrate on the coupling topologies of 

canonical form, cascade trisection (CT), and cascade quadruplet (CQ) [6], [24], 

[54]-[61]. Recently, the progressive development is to include source and load to 

nonadjacent resonator cross coupling [7], [52], [63]-[67]. The implementations of the 

three different coupling schemes were presented in [68]-[85]. In [70], the 

cross-coupling concept was firstly applied to the microstrip filters. Because of the 

increasing power of computations of computers, Hong and Lancaster introduced the 

method that by using electromagnetic (EM) simulators to get the S-parameters of the 

desired structure the cross-coupled resonator filters realized in microstrip line can be 

designed [70]-[72]. The coplanar waveguide structure is also presented to design 
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cross-coupled filters [83], [84]. Furthermore, broadside coupled coplanar stripline 

bandpass filters are designed to have finite transmission zeros successfully [85]. All 

the papers in [68]-[85] can use this method to design canonical form, cascade 

trisection, and cascade quadruplet filters with finite transmission zeros. 

Recently, coupling schemes which exhibit so called zero-shifting properties were 

introduced and applied to waveguide resonator filters [66], [86], [87]. The main 

characteristic of the zero-shifting properties is the ability to shift a transmission zeros 

from one side of the passband to the other by adjusting the resonator frequencies of 

resonators instead of changing the sign of cross coupling. The doublet, extended 

doublet and box section with zero-shifting characteristic have been successfully 

implemented in microstrip form [88]-[90]. However, the coupling schemes are 

inherently sensitive due to the two main coupling paths. 

As described above, it is worth studying new cross-coupled schemes and filter 

structures to solve these disadvantages.  

1.1.4 Original Contribution of this Dissertation 

The main contributions to cross-coupled filters in the first topic of this 

dissertation are addressed in three aspects. 

First, a fourth-order canonical-form microstrip filter utilizing quarter-wave 

stepped-impedance resonators is presented. The requirements of compact sizes, sharp 

selectivity, and wide upper stopband for filters are achieved. The proposed circuit 

layout is easy to apply the source-load coupling and adjust the coupling strength. 

Second, filters based on a conventional parallel-coupled structure [91]-[94] 

which exhibit generalized Chebyshev responses are proposed. The cross-coupled 

mechanisms of the proposed filters are originally investigated and presented. The 

observations of the two-port admittance matrix in the network can obtain the relative 

insertion phase from source or load to each open end of resonators. Thus, the cross 
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coupling can be applied using a delay line with proper electrical length. Due to the use 

of a conventional parallel-coupled structure, good initial dimensions can be obtained 

by the analytic method. Using the proposed structure, the conventional 

time-consuming adjusting procedure to obtain initial physical dimensions of filters, 

which is described in [6], is no longer required. Two fourth-order mixed cascade 

quadruplet and trisection filters are implemented to show properties of insensitive 

layout, flexible responses, good performance, and quick design procedures. With this 

approach, designer can eliminate tedious segmentation method for the filter design. 

Finally, in this dissertation new coupling schemes where the corresponding 

coupling matrices show the bisymmetric property are proposed. Most of new coupling 

schemes have the properties of synchronous-tuned resonators, bisymmetric coupling 

matrices, and relatively weak cross-coupled strengths for finite transmission zeros 

very close to the passband. Filters with symmetrical layout are possible to implement 

the proposed bisymmetric coupling matrix that fine tuning of the filter would be much 

easier. Low-order planar filters with the proposed coupling schemes can achieve high 

selectivity. 

1.2 Balun 

In an unbalanced port, one of its two terminals is connected to the ground, an 

example being the output of a conventional signal generator. A balanced port, on the 

other hand, is one where both terminals are floating with respect to ground. Baluns are 

devices for interconnecting a balanced port to an unbalanced one. The ideal balun is a 

lossless, perfectly matched, two-port network whose properties are independent of 

frequency and power level, and may also provide impedance transformations as well. 

The ideal balun can be realized by the ideal transformer shown in Fig. 1.1, and 

deviations from the ideal depend solely on how closely one can realize the ideal 

transformer in practice. 
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Fig. 1.1. Realization of an ideal balun by an ideal transformer. 

 

1.2.1 Literature Survey 

Baluns (balanced-to-unbalanced) are important group of components which are 

used in circuits where a transition between unbalanced and balanced modes of 

excitation is required. The applications of baluns are frequently used in realizing 

balanced mixers, amplifiers, frequency multipliers, phase shifters, modulators, and 

dipole feeds, and numerous other applications. Over the past half-century, several 

different kinds of baluns [102]-[126] have been developed, and some research works 

on active baluns [127]-[129] are also attractive. In the course textbook [94], the 

contents of baluns and its applications may be good resources. 

Among the various kinds of baluns, Marchand balun [102] is relatively popular 

because of its excellent amplitude and phase balance. Marchand’s famous paper [102] 

was published in December 1944. Marchand described three types of balun of 

increasing complexity and performance, which are shown in Fig. 1.2. The most 

sophisticated of the three types of baluns is shown in Fig. 1.2(c). The direct inspection 

of third type of balun can obtain the equivalent circuit shown in Fig. 1.3. To analyze 

and synthesize this balun the electrical lengths of the open and short-circuit stubs as 

well as the lengths of transmission lines must be the same, in which case the lengths 

of transmission lines are referred to as Unit Elements (U.E.) in filter technology. The 

description of Unit Elements will be discussed in Chapter 2. 

In December 1957, Roberts [103] published a paper describing the coaxial balun 
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Fig. 1.2. Marchand balun. (a) Type 1. (b) Type 2. (c) Type 3. 

shown in Fig. 1.4. Interestingly, the equivalent circuit of this coaxial balun is exactly 

the same as Marchand’s but the author made no reference to Marchand in his paper. 

However, the Roberts balun is a little easier to construct than Marchand’s. 
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Fig. 1.3. Equivalent circuit of Marchand balun. 

 

Fig. 1.4. Roberts balun  (clipped from Fig. 3 in [103] ). 

 

Due to the equivalent circuit prototype shown in Fig. 1.3, the Marchand and 

Roberts balun are inherently band-pass networks. The simplest design techniques for 

these two baluns is to set Z1 and Z4 to the unbalanced and balanced port impedances, 

respectively, and then the characteristic impedances of the two stubs can be designed 

from standard lumped element filter theory [6], [26]. The electrical lengths of the 

stubs and transmission lines are 90o at the center frequency of the balun. The 

responses of the baluns can be maximally flat (Butterworth) or equiripple 

(Tchebyshev) which depend on the values of the characteristic impedances. 

In the 1980’s, two important papers proposed by Cloete [106], [107] showed 

graphs of the element values as a function of bandwidth and passband return loss of  
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Fig. 1.5. Broadside-coupled balun (clipped from Fig. 2 in [111] ). 

 

the Marchand balun. Cloete designed a fourth-order Marchand balun with 15dB return 

loss over a decade bandwidth. The only limitation to use the design chart is that the 

balanced and the unbalanced ports can not have the same port resistance, but a 2:1 

port resistance ratio. However, this is convenient if an anti-phase power divider is 

wanted instead of a balun since the 100 Ohms balanced load can be replaced by a 50 

Ohm load connected between each of the balanced port’s terminals and ground. 

There has been much interest in developing a planar structure of the Marchand or 

Roberts balun for use in monolithic and hybrid integrated circuits. One of the first 

papers to concern this issue is proposed by Pavio and Kikel [111]. The paper shows a 

whole view of the proposed structure, and this circuit is similar to Marchand balun. A 

broadside-coupled stripline structure is used to construct the balun, as shown in Fig. 

1.5. The upper dielectric is very thin compared with the lower one, and, thus, 

considering coupling between the upper conductor and the ground plane could be 

ignored. So, the structure in Fig. 1.5 could be viewed as simply two transmission lines 

with upper and middle conductor forming one transmission line, and with the middle 

and lower conductor forming the other one. However, this structure is inherently a  
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Fig. 1.6. A coupled-line Marchand balun. 

 

three-conductor coupled-line network, and detailed analysis of the structure must be 

taken into account. 

Fig. 1.6 shows the coupled-line form of the edged-coupled planar Marchand 

balun. Several research works [115], [119], [120], [122], [125], [126] have focused on 

this edged-coupled version of Marchand balun. Goldsmith et al. [115] published the 

first comprehensive analysis of Fig. 1.6. The key point of analyzing coupled-line 

Marchand balun is that the two coupled-line sections have the same coupling 

coefficient. This results in the largely simplified design equations, which can be found 

in [119]. The design parameters derived by Goldsmith have successfully being 

connected to the coupling coefficient and even- and odd-mode impedances of the two 

coupled-line sections, which can be easy transformed into the physical parameters by 

using ADS or AWR circuit simulators. However, to design a balun having a decade 

bandwidth is not an easy task based on this coupled-line form of Marchand balun. 

1.2.2 Objective and Contribution in the Second Topic of this Dissertation 

The objectives of this balun research are to develop higher-order Marchand-type 

balun and to realize it in planar structure. With the proposed 5-order Marchand balun, 

a very wide bandwidth (152%) can be achieved, and the novel realization of the balun 

is to utilize microstrip line, slot line, and coplanar stripline. The 5-order Marchand 

baluns are synthesized by use of the Richard’s transformation and, thus, it means that 

the responses of the synthesized Marchand balun are exactly predicted at all 
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frequencies. Two examples of the 5-order Marchand balun are presented to 

demonstrate the design procedures. In addition, a 6-order Marchand balun is 

presented to discuss. 

 

1.3 Organization of this Dissertation 

This dissertation is organized as follows. 

In Chapter 2, the first part is to introduce the basic theory of cross-coupled filters. 

The model of the cross-coupled filter in low-pass domain is given. The relation 

between a coupling matrix and S-parameter is derived from the model. Then, how to 

directly obtain the position of finite transmission zeros to a given coupling matrix is 

given. A conventional 3-order trisection is taken as an example. Some of interesting 

coupling schemes are arranged in a Table. A simple recursive formula to determine 

the generalized Chebyshev polynomials is given. Importantly, a general method for 

the synthesis of the coupling matrix in the transversal array is discussed. How to 

transform the coupling matrix from the transversal topology to the wanted coupling 

schemes by utilizing both eigenvalue approach and optimization is given. Lowpass 

prototype, generalized bandpass filters, impedance and admittance inverters, and the 

narrowband equivalence between coupled-line circuits and impedance and admittance 

inverters with transmission lines are introduced. Furthermore, coupled-resonator 

theory for extraction of external Q and coupling coefficients is given. To manipulate 

the spurious responses, the basic characteristics of stepped impedance resonators are 

discussed. How to obtain the relations between the coupling matrix and design 

parameters of coupled-resonator filters is presented. Those contents are useful in 

designing the cross-coupled filters which will be proposed in Chapter 3-5. 

The second part in Chapter 2 is to consider distributed transmission line elements. 

To exactly synthesize the distributed transmission line networks, the Richards variable 
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and Richard theorem should be concerned and will also be discussed. The basic four 

Kuroda identities are given. General low- and high-pass S-plane prototype circuits are 

presented, and its corresponding characteristic functions are given. In addition, a 

synthesizing procedure is briefly discussed. 

In chapter 3, two filters exhibiting quadruplet and canonical-form responses are 

designed. To extend the bandwidth of stopband, quarter-wave stepped impedance 

resonators are used. The use of the enhancing line of source-load coupling results in 

one additional pair of finite transmission zeros. 

Chapter 4 describes microstrip parallel-coupled filters with generalized 

Chebyshev responses. The mechanism for generating finite transmission zeros is 

presented. The design procedures are discussed in detail. Two mixed cascade 

quadruplet and trisection filters are realized to demonstrate the feasibility. 

Furthermore, sensitivity analysis and a design guide to show the closest transmission 

zeros corresponding to realizable physical dimmensions are discussed by taking 

examples.  

In chapter 5, new coupling schemes with the properties of bisymmetric coupling 

matrix, weak cross couplings, and synchronous-tuned or very tiny 

asynchronous-tuned resonators are presented. Bisymmetric coupling matrices imply 

symmetric layouts. The comparison between conventional and new proposed coupling 

schemes are discussed. The proposed bisymmetric coupling schemes can be used for 

the implementation of generalized Chebyshev filters with transmission zeros very 

close to the passband in planar technology.  

Chapter 6 presents new higher-order Marchand balun with ultra wideband 

performances. Two network transformations, one is the Kuroda identity and the other 

is the proposed circuit transformation, are utilized to derive the final S-plane 

prototype circuit of Marchand balun. The exact synthesis and realization of the 



 16

proposed Marchand balun are discussed in detail.  

In Chapter 7, conclusions and future works are given. 
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Chapter 2 Theory of Microwave Resonator Filters and Distributed 

Circuit Design 

 

2.1 Basic Theory Used in Cross-Coupled Filters 

In this section, the basic theory and design techniques for cross-coupled filters 

will be introduced. At first, the cross-coupled resonators network corresponding to the 

coupling matrix is analyzed in the normalized frequency domain. The relations 

between the normalized network parameters and S-parameters are derived. How to 

obtain the position of finite transmission zeros from coupling topologies is also given. 

In section 2.1.2, different types of impedance and admittance inverters are introduced, 

and the corresponding equivalent circuits are also presented. The frequently used 

coupled-line circuits and their equivalent circuits are provided. The segmentation 

method which is used to extract the external Q and the coupling coefficients is 

discussed in Section 2.1.3. Next, the characteristics of step impedance resonators will 

be reviewed. Finally, how to transform the synthesized coupling matrix to the design 

parameters of cross-coupled filters will be derived. 

2.1.1 Synthesis Theory of Advanced Coupling Matrix in the Normalized Domain 

The design of microwave filters normally starts from the synthesis of a low-pass 

prototype network which is shown in Fig. 2.1. Low-pass prototype networks are 

two-port network with an angular cutoff frequency of 1 rad/s and operating in a 1- Ω  

system. This type of lowpass filter can serve as a prototype for designing various 

practical filters with frequency and element transformations. The corresponding g 

values with different frequency responses, i.e. Butterwoth, Chebyshev, Elliptic 

function, and Gaussian responses, can be computed [6]. The alternative networks with 

impedance and admittance inverters as shown in Fig. 2.2 are also used. The networks 

in Fig. 2.2 can be represented by coupling matrices and are very useful for the design 
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Fig. 2.1. Lowpass filter prototypes with ladder networks. (a) Begin with a shunt 

capacitor. (b) Begin with a series inductor. 

Ω1 Ω1
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(b) 

Fig. 2.2.  Alternative lowpass prototype networks using inverter. (a) K-inverters. (b) 

J-inverters. 

 

of narrow band bandpass filter. So far, the cross coupling is not involved. 

A general cross-coupled filter prototype of degree n in the lowpass domain is 

shown in Fig. 2.3 (a) [7], [90]. It is shown that this prototype can be obtained by 
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(a) 

 

(b) 

Fig. 2.3. (a) Equivalent circuit of n-coupled resonators in low pass domain. (b) Its 

network representation. 

 

including all possible cross-coupling elements and frequency shifts of resonators. The 

prototype filter consists of frequency independent impedance inverters Ji,js, capacitors 

Cis and susptances Bis. The values of all the capacitor and the terminated admittance 

Y0 are set equal to one. The capacitors in the low-pass domain correspond to the 

resonators in the bandpass domain. Thus, the frequency invariant susptance Bis 

represent the frequency shift of resonators in the bandpass domain. The values of Bi 

are zero for the synchronous filters and nonzero for the asynchronous filters. Applying 

circuit analysis of Kirchhoff’s current law to this prototype and stating the algebraic 

sum of the currents leaving a node in a network is zero, with a driving with a driving 

or external current of Is, the node equations for the circuit of Fig. 2.3(a) are shown in 

(2.1),  
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where Ω  is the normalized frequency. The two-port S-parameters of a 

coupled-resonator filter can be derived by the corresponding two-port network as 

shown in Fig. 2.3(b). Comparing Fig. 2.3(a) and Fig 2.3(b), one can find that V1=V0, 

V2=Vn+1, and I1=Is-Y0V0. And 
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From (2.1), we can obtain 
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Substitute (2.4) into (2.2), one can obtain 

                        1
1,111 ][21 −+−= YS                      (2.6) 

Substitute (2.5) into (2.3), thus enable obtaining 

                           1
1,221 ][2 −

+= nYS                         (2.7) 

In the literatures, the matrix 
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 is called the normalized coupling matrix and denoted as matrix [M].  
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where Mij=Ji,j, Mii=Bi. The admittance matrix is related to the normalized coupling 

matrix, and can be expressed as 

( ) ][][][][][][][][ 0 AjGjMUjGMjIsY =−+Ω=++= ,  

where ][][][][ 0 GjMUA −+Ω= , )2()2(
0 ][ +×+∈ nnRU  is identical to the identity 

matrix, except for the element 0][][ 2,20110 == ++ nnUU , and )2()2(][ +×+∈ nnRG  is also a 

diagonal matrix, }1,0,,0,1{][ "diagG = . The equations (2.6) and (2.7) can be 

rewritten as  

                   1
1,111 ][21 −−−= AjS                  (2.8) 

                   [ ] 1
1),2(21 2 −

+−= nAjS                  (2.9) 

Similarly, one can derive  

                    1
2,222 ][21 −

++−−= nnAjS              (2.10) 

The equations (2.8), (2.9) and (2.10) directly related the normalized coupling matrix 

to the S-parameters. 

In the following, it will be shown that the position of finite transmission zeros 

can be predicted through transfer function. From the equations (2.8) and (2.9), one 
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can express S11 and S22 as rational functions, 
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Obviously, the finite transmission zeros are the roots of the equation  

                   0)( =ΩP                          (2.12) 

Solving the equation (2-12) can help to understand the dependence between the 

coupling coefficients and finite transmission zeros, thus enabling to get more insight 

to control the finite transmission zeros. An example to illustrate this procedure would 

be clear. Take a conventional 3-order trisection coupling scheme shown in Fig. 2.4 as 

an example.  

 

Fig. 2.4. The coupling route of the example filter 

 

The coupling matrix corresponds to the coupling topology of Fig. 2.4 is 

                 

1

1 11 12 13

12 22 23

13 23 33 3

3

0 0 0 0
0

0 0
0
0 0 0 0

S

S

L

L

M
M M M M

M M M M
M M M M

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                (2.13) 

By solving 0)( =ΩP , one can find the roots, and it can be expressed as 

                       12 23
22

13

Ω M MM
M

= − +                        (2-14) 

When 22 12 23 13( ) 0M M M M− + > , a transmission zero on upper stopband occurs.  
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3-order quadruplet 4-order quadruplet 4-order mixed cascade 
quadruplet and trisection

4-order canonical form Doublet Extended doublet

Box section Cul-de-sac
5-order cascade quadruplet

Coupling schemes

 

Table 2.1 Interesting well-known coupling topologies. 

 

While 22 12 23 13( ) 0M M M M− + < , a transmission zero on lower stopband is created. 

Several interesting well-known coupling schemes [6], [7], [66], [67] are shown in 

Table 2.1. 

From the discussion as described above, we know the cross-coupled filter 

exhibits finite transmission zeros (attenuation poles), which means the responses of 

cross-coupled filters may correspond to the generalized Chebyshev responses. In fact, 

how to generate the )(11 sS  and )(21 sS  corresponding to the generalized Chebyshev 

functions and find the corresponding coupling matrices are important and 
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well-established. Many synthesis methods for cross-coupled filters have been 

proposed in [20], [34]-[37]. In this dissertation, we adopted the simple recursion 

formula [34] proposed by Smain Amari to determine the low-pass prototype with 

generalized Chebyshev responses and focused on the transversal array method [37] 

proposed by Richard Cameron to obtain coupling matrices.  

The reflection and transfer polynomials of cross-coupled filters with generalized 

Chebyshev responses can be obtained by using the recursion formula as follows. The 

transfer function S21( 'ω ) is  

( ) ( )
2

21 2 2

1'
1 'N

S
F

ω
ε ω

=
+

          (2.15) 

where 'ω  is the frequency variable in a low-pass prototype, ε is a constant related to 

the inband return loss R which is 

       [ ] 2/110/ 110 −
−= Rε             (2.16) 

The characteristic filtering function FN( 'ω ) is 

( ) ( )1

1

' 1 '' cosh cosh   ,    
1 ' '

N
n

N n n
n n

F x x ω ωω
ω ω

−

=

−⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

∑       (2.17) 

where, 'n ns jω=  is the location of the nth transmission zero in the low-pass 

normalized domain, and |FN( 'ω =±1)|=1 for all value of N. The function FN( 'ω ) is a 

rational function, and it can be expressed as 

( )

1

( ') ( ')'
( ')'1

'

N N
N N

N

n n

P PF
D

ω ωω
ωω

ω=

= =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∏
            (2.18) 

To compute PN( 'ω ) a simple recursion relation is established between PN-1( 'ω ), 

PN( 'ω ) and PN+1( 'ω ). Using the identity cosh(α±β)= cosh(α)cosh(β) 

∓ sinh(α)sinh(β), we can write  

1 11
1

1

1

( ') cosh cosh ( ) cosh ( )
'1

'

N
N

n N
n

N
N

P x x
D

ω
ω

ω

− −+
+

=

+

⎛ ⎞
= +⎜ ⎟⎛ ⎞ ⎝ ⎠−⎜ ⎟

⎝ ⎠

∑  
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Similarly, 
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From equation (2.19) and (2.20), by using hyperbolic identities the recursion relation 

is obtained as the following equation. 
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             (2.21) 

where the polynomials P0( 'ω )=1, P1( 'ω )= 'ω -1/ 1'ω . Thus, the transfer and reflection 
polynomials for the generalized Chebyshev filtering function can be expressed in the 
form 

          ( )
2 2

2
21 2 2 2 2' N N

N N N

D DS
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= =
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ω =                (2.22) 

       ( ) ( )
2 2 2

2 2
11 21 2 2' 1 ' N N N

N N

E D FS S
E E

ω ω −
= − = = , or ( )11 ' N

N

FS
E

ω =         (2.23) 

The next step is to synthesize the coupling matrix. 

When concerning the canonical transversal topology, considering admittance 

function is advantageous to synthesize this transversal coupling scheme. The first step 

is to construct the two-port short-circuit admittance parameter matrix [YN] for the 

overall network. Fig. 2.5 shows a two-port network terminated in a 1 Ω resistance, 

and Fig. 2.6 is the canonical transversal topology. 

Following the analytical formula in [37], one can get the transversal matrix 

having the following form 
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Fig. 2.5. A two-port network. 

 
Fig. 2.6. Canonical transversal topology. 
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            (2.24) 

The corresponding coupling route of the transversal topology is shown in Fig. 2.6. 
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Detailed derivation procedures can be found in [37]. Here, we only summarized 

important equations and design parameters of the transversal topology. First, the 

admittance function [YN] can be synthesized from the transfer and reflection 

polynomials in (2.22) and (2.23). The numerator and denominator polynomials for the 

y21(s) and y22(s) elements of [YN] are built up directly from the transfer and reflection 

polynomials for S21(s) and S11(s). Then, the following equation for the admittance 

matrix [YN] for the overall network: 

[ ] ( ) ( )
( ) ( ) ( )

11 12 0 11 12

121 22 0 21 22

0 1
0

N
k k

N
k k kk

y s y s K r r
Y j

y s y s K r rs jλ=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

∑    (2.25) 

Here, the residues r21k and r22k may be found from partial fraction expansions of the 

denominator and numerator polynomials for y21(s) and y22(s), and the purely real 

eigenvalues λk of the network found by rooting the denominator polynomial common 

to both y21(s) and y22(s), which has purely imaginary roots = jλk. 

Second, another two-port admittance matrix [YN] is to cascade the elements in 

Fig. 2.6(c), thus gives an ABCD transfer matrix for the kth “low-pass resonator” as 

follows: 

               [ ]
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               (2.26) 

which can then be converted into the equivalent short-circuit y-parameter matrix 

              [ ] ( )
2

2

1 SK SK LK
k

k k SK LK LK

M M M
y

sC jB M M M
⎡ ⎤

= ⋅ ⎢ ⎥+ ⎣ ⎦
           (2.27) 

The admittance matrix [YN] for the parallel-connected transversal array is the sum of 

the y-parameter matrices for the N individual sections, plus the y-parameters matrix 

[ySL] for the direct source-load coupling inverter MSL 
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Comparison of (2.25) and (2.28) shows  

                      
( ) ( )

( ) ( )

21

2
22

k SK LK

k k k

k LK

k k k

r M M
s j sC jB

r M
s j sC jB

λ

λ

=
− +

=
− +

                 (2.29) 

Thus, by equating the real and imaginary parts in (2.29), important extracted circuit 

parameters are 
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The synthesis of the transversal topology is complete. 

Although the coupling matrix of the transversal topology is so far synthesized, 

the transformations of coupling matrices from the transversal topology to the wanted 

coupling schemes are necessary due to the easy realization of coupling schemes. Fig. 

2.7 shows a diagram describing what topologies is a 3-order transversal topology 

transformed into.  In [37], it is difficult to determine the rotation angles of the 

sequence of similar transformation. So, the eigenvalue approach [51] to optimizing 

the coupling matrix of the wanted couping scheme is adopted in this dissertation. It is 

very powerful for extracting the coupling matrix of filters with order under 14. A 

briefly review of this method is discussed as follows. 

The transversal coupling matrix (2.24) is denoted as 
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Fig. 2.7. A diagram shows that a 3-order transversal topology transforms into a 

wanted coupling topology. 

 

Let R  denote the product of elementary plane rotations involving orthogonal 

rotations among the planes 1 to N  

                   
1 0 0
0 0

0 0 1

T

T

R X
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

                           (2.32) 

where X  is an orthogonal matrix, and 0  represents the zero vector. Applying 

similarity transformations to the matrix 
t

M  one obtains desired coupling matrix M  

in the form 
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   (2.33) 

It is important to keep in mind that similarity transformations preserve eigenvalues, so 

the matrix M  preserves the eigenvalues of the matrix 
t

M . Let 1 2; ;P z zλ λ λ λ⎡ ⎤= ⎣ ⎦ , 

where P
iλ  are the eigenvalues of the transversal coupling matrix 

t
M  that is 

synthesized using the analytic method in [37], 1z
iλ  are the eigenvalues of upper 

principal submatrix obtained by deleting the last row and column of matrix 
t

M  and 

2z
iλ  are the eigenvalues of the lower principal submatrix obtained by deleting the 

first row and column of the matrix 
t

M . And let � � � �1 2
; ;

P z z
λ λ λ λ⎡ ⎤= ⎢ ⎥⎣ ⎦

 are the 

eigenvalues of the coupling matrix created in the course of optimization and its upper 

and lower principal submatrices, respectively. Then, a cost function may be 

formulated to be minimized: 

                        �( ) �( )T
C λ λ λ λ= − −                        (2.34) 

This is a least squares optimization problem. Several optimization methods such as 

Newton method, conjugate gradient method, etc. can minimize the cost function C 

through the gradient with respect to the coupling elements of M , and thus enable in 

�λ λ= . 

2.1.2 Useful Impedance and Admittance Inverters and Coupled-Line Circuits 

Before introducing impedance and admittance inverters, the prototype of 

generalized bandpass filters should be mentioned. To begin with, low-pass prototype 

in Fig. 2.2 is transformed in to bandpass filters by applying the low-pass to bandpass  
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(a) 

J01 J12 JN-1,NCP1 CP2 CPNLP1 LP2 LPN

0 0

 

(b) 

Fig. 2.8. Bandpass filters. (a) Use impedance inverters. (b) Use admittance inverters. 

 
(a) 

J01 J12 JN-1,N
0 0B1(w) B2(w) BN(w)

 

(b) 
Fig. 2.9. Generalized bandass filters. (a) K-inverters. (b) J-inverters. 

 

frequency transformation. Fig. 2.8(a) and (b) show the transformed bandpass filters 

corresponding to Fig. 2.2(a) and (b), respectively. 

Actually, for the purpose of general design including not only the lumped LC 

resonators but also the distributed circuit resonators, two important generalizations for 

bandpass filter design are shown in Fig. 2.9. Here, two quantities, called the reactance  

slope parameter and susceptance slope parameter, respectively, are introduced as 
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ω ω

ωω
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=                      (2.35) 
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                      ( )
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where ( )riX ω  is the reactance of i-th series resonator tank in Fig. 2.9(a) and 

( )riB ω  is the susceptance of i-th shunt resonator tank in Fig. 2.9(b). 

Therefore, design parameters of generalized bandpass filters in Fig. 2.9(a) and 

Fig. 2.9(b) are 

0 1 1 0
01 , 1 , 1

0 1 1 11 1

    ,      ,   i i N
i i N N

i i N Ni toN

Z FBWx x x Z FBWxK K FBW K
g g g g g g

+
+ +

+ += −

= = =   (2.37) 

0 1 1 0
01 , 1 , 1

0 1 1 11 1

    ,      ,   i i N
i i N N

i i N Ni toN

Y FBWb b b Y FBWbJ J FBW J
g g g g g g

+
+ +

+ += −

= = =    (2.38) 

where FBW is the fractional bandwidth, and 0 1 1, ......., Ng g g +  can be obtained in 

section 3.21~ section 3.24 of [6] for various filtering functions. 

In the following, several numerous equivalent circuits operating as inverters are 

introduced. All necessarily give an image phase of some odd multiple of ±90 degree, 

and some of inverters have good inverting properties over a much wider bandwidth. 

In addition, some of inverters have the property of the finite frequency pole-producing 

function. 

One of the simplest forms of inverters is a quarter-wavelength of transmission 

line. In this case, the quarter-wavelength transmission line corresponds to an inverter 

parameter of K = Z0 Ohms where Z0 is the characteristic impedance of the line. 

Similarly, the quarter-wavelength transmission line also serves as an admittance 

inverter, and the admittance inverter parameter is J = Y0 where Y0 is the characteristic 

admittance of the line. The inverter properties of the line are relatively narrow-band in 

nature. 

Other inverters exhibiting a wider bandwidth than that of the quarter-wavelength  
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(d) 
Fig. 2.10. Inverters. (a) Lumped-element K inverters. (b) Lumped- and 

distributed-elements K inverters. (b) Lumped-element J inverters. (b) Lumped- and 
distributed-elements J inverters. 

 

transmission line are shown in Fig. 2.10 [27]. For K-inverters, those shown in Fig. 

2.10(a) are particularly useful in circuits where the negative L or C can be absorbed  
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0 01/( )J C Lω ω= −
 

Fig. 2.11. Pole-producing admittance inverters [57]. 

 

into adjacent positive series element of the same type so as to give a resulting circuit 

having all positive elements. The inverters shown in Fig. 2.10(b) are particularly 

useful in circuits where the line of positive or negative electrical length ϕ  shown in 

the figures can be added to or subtracted from adjacent lines of the same impedance. 

Figs. 2.10(c) and (d) show four inverting circuits which are of special interest for use 

as J inverters. These J-inverter circuits are the dual of K-inverter circuits. The design 

parameters are provided as shown in the figure. 

Recently, a realization of the inverter shown in Fig. 2.11 which is to use a Pi of 

parallel LC sections is proposed by Levy [57]. This inverter introduces a pole at 

                           1/P LCω =                           (2.39) 

And the susceptance of the inverter is  

                      0 01/( )C L Jω ω− =                        (2.40) 

where 0ω  is the mid-band or synchronous frequency of the filter to be designed. The 

values of C and L are then obtained from (2.39) and (2.40). 

The equivalent circuits of coupled-line circuits in narrowband filter applications 

are also related to J-K inverters. The four coupled-line circuits [27], [92]-[94] 

parallel-coupled open-ended and short-ended circuits as well as antiparallel-coupled  
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Fig. 2.12. Parallel- and antiparallel-coupled line circuits and its equivalent circuits. 
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open-ended and short-ended circuits, which are used as basic building blocks in 

microwave filters are shown in Fig. 2.12. The electrical parameters of these circuits 

are expressed by even- and odd-mode impedance Zoe, Zoo, and electrical coupling 

angle θ. Design parameters of the four coupled-line circuits related to the 

corresponding equivalent circuits comprising an inverter and two transmission lines 

are provided in the figure. 

2.1.3 Segmentation Method for Coupled Resonator Filters 

For coupled resonator filters, segmentation method is frequently used to extract 

external Q and coupling coefficients, which means to compute input/output (I/O) 

coupling and coupling strengths between two resonators. In the segmentation method, 

the coupling strength between resonators is tested pair by pair to obtain the 

approximated coupling strength. The external coupling, the coupling between the 

first/last resonator to the source/load, is calculated by excluding other resonators. In 

fact, this method should be traced back to Dishal’s method [38] in 1951. Dishal 

presented a simple method of tuning up a multiple-resonant-circuit filter quickly and 

exactly. He described how to extract the external Q and the coupling between rth and 

(r+1)th adjacent resonators in a waveguide filter. A detail description of Dishal’s 

method to be used in microstrip resonator filters is presented by Hong and Lancaster 

[6]. In the following, four basic coupling structures, electric coupling, magnetic 

coupling, mixed coupling, external quality factor of singly loaded resonator, are 

reviewed. 

First, electric coupling is concerned. An equivalent lumped-element circuit 

shown in Fig. 2.13(a) may be employed to represent two asynchronous-tuned coupled 

resonators. The resonant frequencies of the two resonators are ( ) 1 2
01 1 1L Cω −= and 

( ) 1 2
02 2 2L Cω −= , respectively, and the two resonators are coupled to each other 



 37

      
                (a)                                 (b) 

 
(c) 

Fig. 2.13. (a) Electrical coupling. (b) Magnetic coupling. (c) Mixed couplingt. 

 

electrically through mutual capacitance mC . The resonant condition of the circuit of 

Fig. 2.13(a) is 

                      inL inRZ Z= −                            (2.41) 

where inRZ  and inLZ  are the input impedances when looking at the right and left of 

reference plane 'T T−  of Fig. 2.13(a). From (2.41), an eigenequation is 
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ω ω ω

+ + =
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             (2.42) 

After some manipulations, (2.42) can be solved as 
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ω
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−
              (2.43) 

The electric coupling coefficient is defined as 1 2/e mk C C C= , and then through 

some manipulations one can obtain the electric coupling coefficient  
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22 2 22 2

02 01 02 012 1
2 2 2 2

01 02 2 1 02 011 2

1
2

m
e

Ck
C C

ω ω ω ωω ω
ω ω ω ω ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ −−
= = ± + −⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠

        (2.44) 

in accordance with the ratio of the coupled electric energy to the average stored 

energy, where the positive sign should be chosen if a positive mutual capacitance is 

defined. 

Similarly, for the magnetic coupling circuit as shown in Fig. 2.13(b), the 

magnetic coupling coefficient is  

   
22 2 22 2

02 01 02 012 1
2 2 2 2

01 02 2 1 02 011 2

1
2

m
m

Lk
L L

ω ω ω ωω ω
ω ω ω ω ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ −−
= = ± + −⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠

        (2.45) 

,and for the mixed coupling circuit of Fig. 2.13(c), the mixed coupling coefficient xk  

is  

     
22 2 22 2

02 01 02 012 1
2 2 2 2

01 02 2 1 02 01

1
2x e mk k k ω ω ω ωω ω

ω ω ω ω ω ω
⎛ ⎞ ⎛ ⎞⎛ ⎞ −−

= − = ± + −⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠
           (2.46) 

The detailed derivation is described in [6]. 

The last one to be concerned is the external quality factor. Shown in Fig. 2.14 is 

an ideal, lossless LC tank connected to external loads. In this case, power dissipation 

occurs, and it affects the sharpness of resonant response, which depends upon the 

ratio of the amount energy stored in the capacitor of inductor to that dissipated in the 

external load or loads. In Fig. 2.14, the reflection coefficient S11 at the excitation port 

of resonator is  

                  11
in

in

G YS
G Y

−
=

+
                               (2.47) 

where Yin is the input admittance of the resonator  

             0
0

0

1
inY j C j C

j L
ωωω ω

ω ω ω
⎛ ⎞

= + = −⎜ ⎟
⎝ ⎠

                  (2.48) 

Note that 0 1 LCω =  is the resonant frequency of the resonator. Around resonant  
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iS G

I/O resonatorS11  
Fig. 2.14. Equivalent circuit of the I/O resonator with single loading. 

 

frequency 0ω ω ω= + Δ  and definition of the external quality factor 

0 01 ( )EQ C G LGω ω= = , one can derive  

                  
( )
( )

0
11

0

1 2 /
1 2 /

E

E

jQ
S

jQ
ω ω
ω ω

− Δ
=

+ Δ
                      (2.49) 

Because the resonator is assumed to be lossless, this leads to the unity of S11 around 

resonance. In (2.42), phase responses of S11 should be concerned. When 11 90oS∠ = − , 

implying quantity ( )02 /EQ ω ωΔ  must equal to 1, while 11 90oS∠ = , implying 

quantity ( )02 /EQ ω ωΔ  must equal to -1. Therefore, it results in ( )90 0 1EQ ω ω±Δ = . 

So, one may extract the corresponding external quality factor from a given loaded 

resonator through its phase response with respect to frequency 

                       0 0

90 90
E

fQ
f

ω
ω± ±

= =
Δ Δ

                     (2.50) 

It should be noted that the reference plane of S11 in the EM simulation may not 

exactly match that of equivalent circuit in Fig. 2.14, which leads to an extra phase 

shift such that the phase of the simulated S11 does not equal to zero at resonance. To 

solve this problem, the resonant frequency can firstly be determined from the peak of 

the group delay response. Then, find the frequencies at which the phase shifts 90o±  

with respect to the resonant frequency from the phase response. Finally, use (2.50) to 

compute external quality factor. 
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            (a)                                  (b) 

          

            (c)                                  (d) 
Fig. 2.15. Typical coupling structures of coupled resonators. (a) Electric coupling. (b) 

Magnetic coupling. (c) and (d) Mixed coupling. 

 

 

 

 

 

 

              (a)                                    (b) 
Fig. 2.16.  A diagram of simulated responses of (a) electric coupling and (b) 

magnetic coupling. 

 

Actually, the applications of the above-derived formulas for extracting coupling 

coefficients and external quality factors have been extensively used in microstrip 

cross-coupled filters [6], [70]-[73], [75], [80]-[81], [83]. For the purpose of 

demonstration, the open-loop resonators are taken as examples to the four basic 

coupling structures. Fig. 2.15 shows typical coupling structures of coupled resonators. 

Performing the EM simulations on the circuits shown in Fig. 15, one can observe 

simulated resonator’s frequency responses of the electric coupling and magnetic  
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            (a)                               (b) 
Fig. 2.17. Two typical feeding structures of coupled-resonator filters. (a) Tapped-line 

coupling. (b) Coupled-line coupling. 

 

 

 

 

 

 

Fig. 2.18. A diagram of simulated responses of the circuits in Fig. 2.17(b) 

 

coupling, which are shown in Fig. 2.16(a) and (b), respectively. The responses of the 

mixed coupling are either Fig. 2.16(a) or Fig. 2.16(b). Based on (2.44) ~ (2.46), one 

may extract coupling coefficients between two coupled resonators. 

Shown in Fig. 2.17 are two typical feeding structures for coupled-resonator 

filters. Performing the EM simulations on the circuits, the simulated responses are 

shown in Fig. 2.18. Based on (2.50), one may extract external quality factor Q. 

2.1.4 Stepped Impedance Resonators 

In this section, the characteristics and important design parameters of the stepped 

impedance resonators will be briefly reviewed. The stepped impedance resonator is a 

TEM or quasi-TEM mode resonator composed of more than two transmission lines 

with different characteristic impedance. In this dissertation, only the stepped impedan- 
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Z2
Z1

1θ2θZin  

Fig. 2.19.  Quarter-wavelength stepped impedance resonator type. 

 

ce resonator comprising two transmission lines with two different characteristic 

impedances is considered. Fig. 2.19 shows a quarter-wavelength stepped-impedance 

resonator. Based on the theory of transmission line, the input impedance Zin is  

                 1 1 2 2
2

2 1 1 2

tan tan
tan tanin

Z ZZ jZ
Z Z

θ θ
θ θ

+
=

−
                   (2.51) 

The parallel resonance occurs when 1 0in inY Z= = . Then, the resonant condition is 

                        1 2tan tanZR θ θ=                       (2.52) 

where 2 1ZR Z Z= . This resonant condition is useful in obtaining the fundamental 

and spurious resonances. The overall electrical length of the stepped impedance 

resonator in Fig. 2.19 is 

                      ( )1
1 2 1 1tan / tanTA ZRθ θ θ θ θ−= + = +             (2.53) 

A special condition is to assume 1
1 2 0 tan ZRθ θ θ −= = =  as the structure of 

stepped impedance resonator. Thus, when 1ZR < , TAθ  attains a minimum value of  

                          ( ) 1
min

2
tan

1
Z

TA
Z

R
R

θ −
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
                  (2.54) 

When 1ZR > , TAθ  attains a maximum value of 

                      ( ) 1
max

2
tan

1
Z

TA
Z

R
R

θ −
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
                  (2.55) 

With the knowledge of TAθ , the first spurious frequency fSA can be obtained as 
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                 01
1

tanSA
Z

f f
R

π
−

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                      (2.56) 

More detailed descriptions of the stepped impedance resonator can be found in [92]. 

2.1.5 Relations between the Coupling Matrix and Design Parameters of 

Coupled-Resonator Filters 

Consider the circuit of Fig. 2.9(b) in section 2.1.2. The generalized bandpass 

filter circuit using admittance inverters can be related to the corresponding coupling 

matrix.  

First, for experimental determination of couplings, the input/output external 

quality factors and coupling coefficients are defined as 

              1
, ,2 2

01 0 , 1 0

  ,   n
e in e out

n n

bbQ Q
J Y J Y+

= =                   (2.57) 

                      
( )

, 1
, 1 1 1

1

j j
j j j to n

j j

J
k

b b
+

+ = −
+

=                        (2.58) 

Where ib  is susceptance slope parameter which is defined as 

                  ( )

0

0

2
i

i

dB
b

d
ω ω

ωω
ω

=

=                           (2.59) 

It should be noted that obtaining the inverter parameters from coupling coefficients 

need to know the slope parameter of the resonators. The inverter parameter is more 

useful for filter design analysis because it contains more information than coupling 

coefficient.  

Then, consider the equivalent circuit of n-coupled resonators in low pass domain 

as shown in Fig. 2.3(a). Here, for simplicity, 2-order coupled resonators are taken as 

an example. Applying lowpass to bandpass transformation  

                 ( )0 0
1 f f f f

FBW
Ω = −                       (2.60) 

the bandpass filter circuit is shown in Fig. 2.20 with 
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1 2 0/L L L FBW ω= = =  

1 2
0

1C C C
FBW ω

= = =
∗

 

                          0
0

1L FBW
C

ω
ω

= =                       (2.61) 

The use of (2.59) can derive the slope parameter of the resonators as 

                       0
1

ib C
FBW

ω= =                       (2.62) 

Thus, the external quality factor of the first and last resonator is 

                , ,2 2
1 2

1 1   ,    e in e out
S L

Q Q
M FBW M FBW

= =
∗ ∗

            (2.63) 

Note that the admittance inverter J01 before impedance scaling is denoted as 1SM . 

Coupling coefficients can also be derived as 

               12
12 12 12

1 2

Jk J FBW M FBW
b b

= = ∗ = ∗             (2.64) 

The use of (2.57)~(2.59) and (2.63)~(2.64) can design a filter with knowledge of 

slope parameters which contain more information on filters. 

 

Fig. 2.20.  A 2-order cross-coupled bandpass filter circuit. 

 

 2.2 Distributed Circuits with Transmission Line Elements 

A common approach to the design of a practical distributed circuit is to explore 

some approximate equivalence between it and a lumped element and other distributed 

circuit. Actually, some of possible equivalences have already been discussed in 

connection with the design of low- and high-pass filters. In the following, how 
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distributed transmission line functions to be treated as lumped inductor and capacitor 

elements and unit element will be introduced. This also includes the famous Kuroda 

identities, Richards theorem, and the synthesis procedures of the distributed 

transmission line. 

2.2.1 Richards Variable and Transmission Line Networks 

Due to the use of distributed transmission line, transmission line equation should 

be concerned 

                    ( ) 0
0

0

tan
tan

L
in

L

Z jZZ Z
Z jZ

θθ
θ

+
=

+
                      (2.65) 

Here, the transmission line assumed to be lossless. In (2.65), it shows the input 

impedance of the transmission line with characteristic impedance Z0 and to be 

terminated with a load impedance ZL ..  

Based on (2.65), Richard proposed a frequency transformation that is  

                    
0

tan tan
2

S j j j πωθ
ω

⎛ ⎞
= Ω = = ⎜ ⎟

⎝ ⎠
                 (2.66) 

whereω  is the usual real radian frequency variable, 0ω is the radian frequency at 

which all line lengths are a quarter-wave long, Ω  is the distributed radian frequency 

variable, and S is called Richards variable. 

It is interesting to show the mapping of this frequency transformation (2.66). Fig. 

2.21 shows the relationship betweenω and Ω . The response of the distributed circuit 

repeats in frequency intervals of 02ω . This mapping is theoretically exact at all 

frequencies. 

By replacing the reactance elements, a lumped element LC network with a 

realizable impedance ( )Z s in the s plane, where s jω= , may be converted into one 

consisting of uniform sections with an impedance ( )Z S in the S plane, where  
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Fig. 2.21. Mapping between real frequency variableω and distributed frequency 

variable Ω . 

θ θ

0
1Z
C

=
0Z L=

 

Fig. 2.22. Element transformation corresponding to the Richards transformation 

 

( )0tan 2S j πω ω= . Fig. 2.22 depicts the equivalence between the lumped and 

distributed circuits in the s and S planes. The impedance of a lumped inductor L in the 

s plane is ( )Z s sL= , while considering a short-circuited line of characteristic 

impedance 0Z  the impedance of the short-circuited line is 

                    ( ) 0 0tanZ S jZ SZθ= =                      (2.67) 

which is derived by using (2.65). Thus, the S-plane inductor with inductance value 0Z  

is recognized as the input impedance of a short-circuited line of characteristic 

impedance 0Z  in the s plane. Similarly, for the S-plane capacitor with capacitance 

value 01 Z  is recognized as the input impedance of an open-circuited line of 

characteristic impedance 0Z  in the s plane. Thus, the impedance of the open-  
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θ
0Z

0Z
 

Fig. 2.23. Richards transmission applied to an interconnecting transmission line. 

 

circuited line is 

                       ( ) 0

tan
ZZ S

j θ
=                        (2.68) 

Another concerned network is an interconnecting transmission line in the s plane. 

The effect of the Richards transformation on the interconnecting transmission line is 

to turn it into a unit element (U.E.), which is shown in Fig. 2.23. The transformation 

can be further illustrated by considering the ABCD matrix of the interconnecting 

transmission line of the form 

               0

0

cos sin
sin cos

jZA B
jYC D

θ θ
θ θ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
                 (2.69) 

which transforms into a unit element in the S-plane with an ABCD matrix: 

                  0

2
0. .

11
11U E

Z SA B
Y SC D S

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

−⎣ ⎦ ⎣ ⎦
               (2.70) 

after dividing each matrix element by cosθ  and substituting S for tanj θ . Related 

discussions on a unit element will be introduced in the following subsections. 

2.2.2 Richards Theorem and Kuroda Identities 

In addition to the basic S-plane distributed inductors and capacitors defined by 

the Richards transformation, a unit element (U.E.) may also be defined. UEs are 

commensurate sections of transmission line which may be employed to separate 

circuit elements in the high-frequency circuits. The Richards theorem states a UE may 

always be extracted from a distributed S-plane reactance function and the remainder 
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0Z ( )1Z S

( )1Z S( )Z S
 

Fig. 2.24. A circuit used to illustrate the Richards theorem. 

 

function is guaranteed to be positive real and of one degree less than the original one. 

The characteristic impedance of this UE has the value of the one-port immittance with 

S replaced by unity. The Richards theorem permits a canonical realization of a 

reactance function as a cascade of UEs terminated in either an open circuit or a short 

circuit [130]. 

The observation of the matrix in (2.70) shows that the unit element must create a 

half-order transmission zero at 1S = ± . The unit element, therefore, does produce a 

transmission zero, but the zero occurs at 1S = ±  on the real axis of the S-plane. In 

other words, there is no transmission zero on the jΩ  axis of the S-plane. The 

following statement will give a clear description of Richards theorem (unit element).  

Fig. 2.24 shows the input impedance ( )Z S of a transmission line of 

characteristic impedance 0Z  terminated in an impedance ( )1Z S  is given from 

transmission line theory (see from (2.65)) by 

              ( ) ( )( ) ( )( )0 1 0 1 0Z S Z Z S SZ SZ S Z= + +             (2.71) 

After manipulation, (2.71) becomes 

                        ( ) ( )
( )

0
1 0

0

Z S SZ
Z S Z

Z SZ S
−

=
−

                    (2.72) 
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Again, the Richards theorem states that a unit element ( )1Z  may always be 

extracted from an impedance function and the remainder impedance ( )1Z S  is 

positive real and in the reactance function ( )1Z S  of one degree less than ( )Z S . Let 

1S = in (2.71) lead to ( ) 01Z Z= . Indeed, the characteristic impedance of the unit 

element shown in Fig. 2.24 is 0Z . 

Combining (2.72) and ( ) 01Z Z=  yields 

                  ( ) ( ) ( ) ( )
( ) ( )1

1
1

1
Z S SZ

Z S Z
Z SZ S

−
=

−
                 (2.73) 

From (2.73) it can be shown that a common factor ( )2 1S − can be cancelled in both 

numerator and denominator polynomials of ( )1Z S , and the reactance function 

( )1Z S  can then be obtained. At this time, the extraction of the unit element is 

complete. 

As shown in Fig. 2.25, there are four different Kuroda identities [131], which 

facilitate the movement of one of the four basic types of reactance branches through a 

single unit element. The first and second identities shown in Figs. 2.25(a) and (b) 

respectively are called the first type of Kuroda identities, while the third and fourth 

identities shown in Figs. 2.25(c) and (d) respectively are called the second type of 

Kuroda identities. The first identity provides equivalence between a shunt capacitor 

and a UE circuit to a UE and series inductor, and in the case of the second, a series 

inductor is transformed into a shunt capacitor on the opposite side of the UE. The 

third identity shows that a shunt inductor transforms into another shunt inductor and 

an ideal transformer with a turns ratio of 21: n , and in the case of the fourth, a series 

capacitor transforms into another series capacitor and an ideal transformer with a  
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Z1
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1
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(d) 

Fig. 2.25. The four Kuroda identities where 2
2 11n Z Z= + . 

 

turns ratio of 2 :1n . 

It should be emphasized here that the Kuroda identities apply specifically to 

S-plane networks. This means that in terms of the equivalent distributed s-plane 

elements, the lengths of the reactive stubs (equivalent to the S-plane inductors and 

capacitors) and the adjacent transmission lines (equivalent to the unit elements) must 

all be identical. 
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2.2.3 Transmission Line Approximating Functions and Synthesis Procedure 

In this dissertation, due to the concerned network as shown in Fig. 1.3, Marchand 

balun is inherently a band-pass network. Thus, filter theorem can be adopted to 

synthesize the Marchand balun. The key point is to determine the polynomial of 

reflection coefficient for a cascade of unit elements and prototype LC distributed 

elements. Table 2.2 provides each of the distributed L, C and U.E. and its 

corresponding ABCD matrices. For showing how to obtain the reflection coefficient, a 

prototype circuit shown in Fig. 2.26 is taken as an example. The first is to utilize the 

ABCD parameter in Table 2.2 and obtain the overall cascaded ABCD matrices 

     

( ) ( )
( ) ( )

01

2
01

03

2
03

11 0 1 0 1
11 1 1 1

11                               
11

all

A S B S Z S
C S D S Y SSC SL S

Z S
Y SS

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⋅⋅⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⋅⋅⋅ ⎢ ⎥

− ⎣ ⎦

      (2.74) 

Then, the reflection coefficient is given by the well-known formula 

             ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )11

A S B S C S D S
S S

A S B S C S D S
+ − −

=
+ + +

               (2.75) 

Actually, in [132]-[136] distributed transmission line elements have been studied 

and some approximating functions are obtained to be suitable to the corresponding 

circuit networks. For the concerned prototype circuits shown in Fig. 2.26, the 

generalized magnitude squared high- and low-pass transfer functions with Chebyshev 

responses are described and summarized by Horton and Wenzel [135]. The 

characteristic functions associated with the high- and low-pass prototype circuits are 

given by 

  

2
2 2

2

2 2

1 1
( )

1 1
C CC C

m n m n

S SS SK S T T U U
S SS S

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠− −⎝ ⎠ ⎝ ⎠⎣ ⎦
        (2.76) 
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C

C
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0 1
SC

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
0 1

SL⎡ ⎤
⎢ ⎥
⎣ ⎦

1 0
1 1

SL

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0
1SC

⎡ ⎤
⎢ ⎥
⎣ ⎦

0

2
0

11
11

Z S
Y SS

⎡ ⎤
⎢ ⎥

− ⎣ ⎦

 

Table 2.2. ABCD matrices for distributed LC ladder and a unit element. 

 

  
(a) 

 
(b) 

Fig. 2.26. (a) A possible high-pass prototype circuit. (b) A possible low-pass 
prototype circuit 



 53

and 
2

2 2
2

2 2

1 1
( )

1 1
C C

m n m n
C CC C

S S S SS SK S T T U U
S SS S S S

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
      (2.77) 

respectively, where ( )nT x and ( )nU x are the unnormalized Chebyshev polynomials 

of the first and second kind of order n: 

( ) ( )1cos cosnT x n x−=  

                        ( ) ( )1sin cosnU x n x−=                     (2.78) 

, C CS j= Ω , CΩ is the cutoff frequency which occurs at half power (-3dB), and m is 

the number of a mixed cascade ladder elements and n is the number of unit elements. 

Furthermore, it is recalled that the scattering parameters are related to the 

characteristic function 2( )K S and the ripple level ε  of the circuit by 

                     ( ) ( )
2

21 2 2

1
1

S S
K Sε

=
+

                 (2.79) 

                      ( ) ( )
( )

2 2
2

11 2 21

K S
S S

K S

ε

ε
=

+
                 (2.80) 

Then the appropriate poles and zeros of ( ) 2
11S S  must be assigned to ( )11S S and 

( )11S S− with the knowledge that 

                        ( ) ( ) ( )2
11 11 11S S S S S S= ∗ −                  (2.81) 

The next step is to derive the input impedance function ( )inZ S shown in Fig. 

2.26. The source resistance is assumed to be unity. The relationship between ( )11S S  

and ( )inZ S  is expressed as 

                         ( ) ( )
( )

11

11

1
1in

S S
Z S

S S
+

=
−

                  (2.82) 
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Finally, the circuit networks shown in Fig. 2.26 are synthesized using the method of 

standard element extraction which can be found in [135]-[137]. 
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Chapter 3 Quarter-Wave Stepped-Impedance Resonator Filters with 
Quadruplet and Canonical Form Responses 

 

In this chapter, compact microstrip quarter-wave stepped-impedance resonator 

(SIR) bandpass filters with quadruplet and canonical form responses are proposed. 

The proposed quadruplet filter can be designed to have a pair of transmission zeros to 

achieve sharp selectivity. In addition, by applying an extra source-load coupling, two 

additional transmission zeros on both side of passband are created to further enhance 

the selectivity. Because the quarter-wave SIRs are adopted, the circuit size of the 

filters can be largely reduced and the upper stopband can be extended. Two 

generalized Chebyshev filters corresponding to quadruplet and canonical form 

coupling schemes are fabricated. Simulated and measured results are matched very 

well.  

 

3.1 Introduction 

Compact and high-performance microstrip bandpass filters are important 

building blocks in wireless and mobile communications due to their small size, ease 

of fabrication and light weight. In many literatures, half-wave or quarter-wave 

resonators are utilized to design microstrip bandpass filters. The conventional 

parallel-coupled filters using half-wave resonators have a large circuit size, and they 

don’t exhibit generalized Chebyshev responses for high selectivity [69], [97]. The 

hairpin and quarter-wave resonators with cross couplings are proposed to solve the 

problems [72], [75]-[77]. However, these filters still suffer from spurious responses 

due to the distributed nature. The filters with half-wave resonators depict spurious 

responses at twice of the center frequency, and the filters with quarter-wavelength 

resonators have spurious responses at three times of the center frequency. 
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Recently, many efforts focus on the half-wave and the quarter-wave SIRs to 

design cross-coupled filters [78]-[80]. In [78], the fourth order filter utilizing both λ/2 

and λ/4 resonators shows a good rejection bandwidth and high selectivity. However, 

control of the physical parameters of the open stubs of the λ/2 SIR-like resonators 

(resonator 1 and 4) are not easy because they not only suppress the high-order 

resonances but also implement the external coupling to maintain the appropriate 

passband performance. In [79], although a good selectivity is obtained, both the 

coupling routes and the physical layout are too complicated so that the synthesis of 

the coupling matrix and final fine tuning of the physical layout are too time 

consuming. In [80], the λ/4 SIR filter shows good selectivity. However, to design the 

locations of the transmission zeros is very complicated and too much depends on 

experience. 

In this chapter, we propose two microstrip λ/4 SIR filters both with generalized 

Chebyshev responses. The proposed filters can overcome the above problems. Fig. 

3.1(a) and Fig. 3.1(b) show two fourth-order filters with cross coupling that one is 

without source-load coupling and the other is with source-load coupling. The filter in 

Fig. 3.1(a) has a pair of transmission zeros due to quadruplet coupling scheme 

whereas the filter in Fig. 3.1(b) has two pairs of transmission zeros due to canonical 

form coupling scheme. A coupling enhancement line between source and load in Fig. 

3.1(b) is used to control the source-load coupling strength. Thus, with the coupling 

enhancement line, two extra transmission zeros can be controlled easily with a little 

influence on passband performance. In addition, the λ/4 stepped impedance resonators 

are used to obtain compact size and to push the high order spurious frequencies to as 

high as possible. Therefore, the proposed filters are suitable for bandpass filters with 

small size, wide stopband and sharp selectivity in a modern communication system. 
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(a) 

 
(b) 

Fig. 3.1.  The circuit layouts of the proposed microstrip quarter-wave SIR filters. (a) 
The fourth-order quadruplet filter. (b) The fourth-order quadruplet filter with 
source-load coupling. 

 

3.2 Coupling Schemes and Stepped Impedance Resonators 

The circuit layout in Fig. 3.1(a) and Fig. 3.1(b) can be modeled as the quadruplet 

coupling scheme shown in Fig. 3.2(a) and the canonical coupling scheme depicted in 

Fig. 3.2(b) respectively. Here, the resonators are represented by dark dots, the source 

and load are empty dots, the solid lines between resonators indicate main coupling, 

and the broken lines indicate the cross coupling. As shown in Fig. 3.1(a) and Fig. 

3.1(b), the unwanted cross coupling exists and leads the coupling route to be 

complicated. Thus, to avoid the design complexity, we ignore the unwanted cross  
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             (a)                               (b) 

Fig. 3.2. Coupling schemes for the bandpass filters proposed in this chapter. (a) 
Quadruplet. (b) Canonical form. 

 

coupling in the coupling scheme when designing the filter. This would simplify the 

coupling matrix. 

When designing a cross-coupled filter with the corresponding coupling scheme 

shown in Fig. 3.2(a), the first step is to extract a coupling matrix which satisfies the 

specification. In our designed case, the quadruplet filter without source-load coupling 

is realized to have one pair of real frequency transmission zeros at normalized 

frequency Ω=±2 for selectivity. The center frequency, fractional bandwidth, and 

maximum in-band return loss of both filters are 2.45 GHz, 8%, and 20dB, respectively. 

By using the synthesis technique in [37], the coupling matrix is obtained as 

     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

0         1.0236        0             0               0               0      
1.0236        0         0.8706         0         0.1705          0      

0         0.8706        0          0.7673          0               0      
0             0        7673.0         0            8706.0          0      
0        .17050      0          8706.0          0            0236.1 

0             0            0             0            0236.1          0      

M          (3.1) 

The next step is to implement the coupling matrix in microstrip technology. For 

compact size and wide upper stopband, the λ/4 SIR is a good choice to realize the 

proposed filter. In the following, we would briefly illustrate basic properties of the 

SIR. 
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Fig. 3.3. The basic structure of the quarter-wave SIR. 

 

Fig. 3.3 is a basic structure of the quarter-wave stepped impedance resonator (λ/4 

SIR). This resonator comprises two transmission lines with different characteristic 

impedances. The transmission line of the high impedance Z1 and the electrical length 

θ1 is connected to ground through a via-hole. The transmission line of the low 

impedance Z2 and the electrical length θ2 is connected to the high impedance 

transmission line and the other end is open circuited. The input impedance of the λ/4 

SIR can be derived easily as follows [92] 

                
2112

2211
2 tantan

tantan
θθ
θθ

ZZ
ZZjZZin −

+
=                 (3.2) 

The parallel resonance occurs when Yin = 1/Zin = 0, then we can obtain a useful 

equation as follows 

                     21 tantan θθ=ZR                       (3.3) 

where RZ is the impedance ratio of the SIR given as 

                       
1

2

Z
ZRZ =                             (3.4) 

It can be seen from (3.3) and (3.4) that the important parameters of the resonance 

condition of SIR are θ1, θ2 and RZ. When θ1=θ2, the overall electrical length 

θTA(=θ1+θ2) of the resonator and the first spurious frequency fSA are obtained as 
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For designing the quadruplet filter proposed in this chapter, we would consider 

different coupling mechanisms. Figs. 3.4(a)-(c) show three types of coupled 

microstrip SIRs. The coupling between two resonators in Fig. 3.4(a) is electric 

coupling due to the stronger electric field around the coupling gap. The coupling in 

Fig. 3.4(b), on the other hand, is a magnetic coupling due to the inductance 

contributed by the via-hole. For the coupling of the structure in Fig. 3.4(c), both the 

electric and magnetic couplings occur at both the coupling sides, and it is a mixed 

coupling. 

 

      

                (a)                                  (b) 

      

Via Hole
S

         Via Hole

3
Via Hole

 

            (c)                                  (d) 

Fig. 3.4.  Basic coupling structures of the proposed filters. (a) The electric coupling. 
(b) The magnetic coupling. (c) The mixed coupling. (d) The coupled-line coupling for 
input/output coupling. 

 

Once the coupling matrix, the type of the resonators and the circuit layout of the 

filter are determined, we could follow the procedure defined in [6] to determine the 
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length of each λ/4 SIR and the spacing between two λ/4 SIRs so as to get the initial 

physical parameters. The length of the SIR might be adjusted until the resonance 

occurs at the center frequency. The spacing between two resonators in Figs. 3.4(a) and 

3.4(c) can be determined from the two resonant peaks in the transmission coefficients. 

In Fig. 3.4(b), the two λ/4 SIRs couple through the via hole inductance, and the 

coupling coefficient can also be obtained. The input and output coupling coefficients 

in Fig. 3.4(d) are determined by observing the phase of the reflection coefficient. It 

should be pointed out that in Fig. 3.1(a) two short transmission lines are used to 

enhance the coupling between source and resonator 1 and load and resonator 4, 

respectively. Therefore, we can roughly obtain each element of the coupling matrix 

shown in (3.1). 

3.3 Filter Design Examples and Results 

The proposed filters are built on a 20-mil-thick Rogers RO4003 substrate with εr 

= 3.38, tanδ = 0.0021. The commercial EM simulation software Sonnet 9.0 [100] is 

used to perform the actual computation as described above. The specifications of the 

filter in Fig. 3.1(a) are described in previous section. Here, the dimensions of the 

resonator 1 are the same as the resonator 4 and the resonator 2 are the same as the 

resonator 3. The values of Z1 and Z2 for resonator 1 and 4 are chosen as 121 and 41.78 

Ω, respectively. The values of Z1 and Z2 for resonator 2 and 3 are chosen as 121 and 

24.93 Ω, respectively. Thus, from (3.3)-(3.6), the values of RZ and θ1 for resonator 1 

are 0.206 and 24.41 degree, respectively, and the values of RZ and θ1 for resonator 2 

are 0.3453 and 30.44 degree, respectively. 

The initial dimensions are then fine tuned to achieve the original specifications. 

The dimensions (mm) of the filter shown in Fig. 3.1(a) are W1=0.15, W2=3.10, 

W3=1.52, L1=4.27, L2=4.82, L3=5.28, L4=5.87, S1=0.13, S2=0.38, S3=1.29, S4=0.15, 

L5=2.54, L6=10.82. The diameter of the via-hole is 0.81 mm. The second filter shown  
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(a) 

 

(b) 

Fig. 3.5. The constructed filters. (a) The quadruplet filter. (b) The quadruplet filter 
with source/load coupling. 

 

in Fig. 3.1(b) is a canonical form filter that two cross couplings one between resonator 

1 and 4 the other one between source and load are included. This would create two 

extra finite transmission zeros to improve selectivity. Fortunately, one can add the 

source-load coupling as a perturbation that other portion of the filter could keep 

unchanged. Therefore, all of the dimensions of the filter in Fig. 3.1(b) are the same as 

Fig. 3.1(a) except for the source-load coupling enhancement line. The dimensions 

(mm) of the second filter are W4=0.2, S5=0.25, L7=1.17, L8=0.61. Figs. 3.5(a) and 

3.5(b) show the pictures of the two constructed filters. 

Fig. 3.6(a) shows the measured in-band performance of the first constructed filter. 

Good agreement between the simulated and measured results is observed. The 

midband insertion loss is 2.7 dB and the return loss is greater than 14 dB. The 

simulated and measured wide-band performances of the filter from 1 GHz up to 14 
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(a) 

 

(b) 

Fig. 3.6. Measured and simulated performances of the quadruplet filter of Fig. 4.5(a). 
(a) In a narrow-band. (b) In a wide band. 

 

GHz are illustrated in Fig. 3.6(b). The measured transmission performance of the 

filter is with a rejection level better than 30 dB up to 12.5 GHz. 

The in-band performance of the second constructed filter is shown in Fig. 3.7(a). 

The measured positions of the two additional transmission zeros contributed by 

source-load coupling are just a little drift compared with the simulated results. The 

measured insertion loss is 2.75 dB and the return loss is greater than 17 dB. The 

measured upper stopband performance of the filter shown in Fig. 3.7(b) follows the 

simulation and achieves an attenuation level exceeding 27 dB up to 12.7 GHz. 
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(a) 

 

(b) 

Fig. 3.7. Measured and simulated performances of the quadruplet filter with 
source/load coupling in Fig. 3.5(b). (a) In a narrow-band. (b) In a wide band. 
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Chapter 4 Microstrip Parallel-Coupled Filters with Cascade 
Trisection and Quadruplet Responses 

 

Microstrip parallel-coupled filters with generalized Chebyshev responses are 

presented. The basic structure of the proposed filter is a conventional parallel-coupled 

filter which the physical dimensions can be easily obtained by the well-known 

analytical method. With the aid of the equivalent circuit corresponding to a 

conventional parallel-coupled filter, the relative insertion phase from source or load to 

each open-end of resonators can be easily obtained by observing the two-port 

admittance matrix. Applying the cross coupling from source or load to a proper 

nonadjacent resonator, a trisection or a quadruplet coupling scheme can be realized 

with prescribed transmission zeros. More importantly, the proposed trisection can be 

designed to have a transmission zero on the lower or upper stopband by just adjusting 

the length of the cross coupling strip. Using the proposed structure, the conventional 

time-consuming adjusting procedure to obtain initial physical dimensions of filters is 

no longer required. In this chapter, a fourth-order parallel-coupled filter is used as the 

basic structure to demonstrate various combinations of transmission zeros. Simulated 

and measured results are well matched.  

 

4.1 Introduction 

High performance microwave filters are essential circuits in many microwave 

systems where they serve to pass the wanted signals and suppress unwanted ones in 

frequency domain [26]. Cross-coupled filters are attractive since they exhibit highly 

selective responses which are required in modern communication system. Among 

these cross-coupled filters, the cascade trisections (CT) and cascade quadruplets (CQ) 

[6], [71], [73], [81], [82], [95] are two of the most commonly used coupling schemes. 
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Besides the cross-coupled coupling schemes, other coupling topologies such as 

doublet, extended doublet and box-section were also found interesting [66], [86] and 

have been successfully implemented in microstrip form [88], [89]. In brief, all of the 

mentioned filters are designed to have finite transmission zeros for better selectivity. 

To design a cross-coupled filter such as the filters in [6], [71], [73], [81], [95], 

the following procedures are usually taken. The first step is to synthesize a coupling 

matrix corresponding to a desired response. Secondly, decide the suitable physical 

layout of the resonator. Thirdly, adjust distance and orientation of two neighboring 

resonators two by two to get proper signs and magnitudes of the corresponding 

coupling coefficients. In this step, the Dishal’s method [38] is usually used. A detailed 

description of Dishal’s method is given in [6]. Finally, fine tune the whole circuit. The 

third and final steps are the most tedious and time-consuming steps because, in the 

third step, they need to generate design curves of coupling and external Q from an EM 

field solver and, in the final step, one resonator may have many neighbors that when 

adjusts the distance and orientation against one neighbor the coupling strength with 

other neighbors may change. Therefore, the iterative adjusting procedure might 

require. Another drawback to design the conventional cross-coupled filter is that if 

one coupling coefficient in the coupling matrix changes sign, the physical layout must 

be reconfigured. For example, in the case of cascade trisection filters of [73], 

completely different orientations of the resonators must be adopted for a trisection 

having a lower stopband transmission zero and a trisection having an upper stopband 

transmission zero because there is one coupling coefficient changed sign. This means 

that the time-consuming adjusting step described above must be done separately in 

two cases. 

Another interesting cross-coupled filter based on a parallel-coupled filter 

structure was proposed by Hong and Lancaster [96]. In [96], an extra microstrip line 
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couples the nonadjacent resonators (resonator 1 and 4 in the paper) to produce 

transmission zeros. By adjusting the length of this extra coupling microstrip line and 

gaps of the coupling sections, the locations of the transmission zeros can be 

manipulated. This kind of filter has the benefit of simple layout, manageable 

transmission zeros, and much less time for adjusting layout than conventional 

cross-coupled filters. However, it has some problems. The extra coupling microstrip 

line has its own resonant frequencies. If the electrical length of this extra coupling 

microstrip line is not integer multiples of 180o, spurious responses appear at these 

resonant frequencies on lower or upper stopband. The spurious resonance can 

seriously degrade the stopband performance of the filter. The situation becomes more 

severe as the extra coupling line becomes longer. If the electrical length of this extra 

coupling microstrip line is integer multiples of 180o, it becomes an extra resonant 

node in the coupling route. This extra resonant node causes the coupling diagram 

more complex when synthesizing a proper coupling matrix corresponding to a desired 

response. One way to solve this problem is to use source or load to nonadjacent 

resonators cross couplings [82]. Unlike [96], the extra coupling line in [82] is directly 

connected to source or load so that no self-resonance of this extra coupling line will 

occur. The filter in [82] can largely simplify the design procedures of a CT filter due 

to its conventional microstrip parallel-coupled filter structure. The CT filter in [82] 

introduces cross couplings of MS,2 and ML,n-1 to generate two trisections that two 

independently controllable transmission zeros on upper stopband are produced. 

However, the realizable response of the filter in [82] is limited to be the CT filter with 

two upper stopband transmission zeros. 

In spite of the cross-coupled schemes, the coupling schemes such as doublet, 

extended doublet and box-section are introduced [66], [86]. The main characteristic of 

these coupling schemes is the ability to shift a transmission zero from one side of 
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passband to the other by just adjusting the resonant frequencies of resonators in the 

box portion of the coupling scheme, and this is so-called zero shifting characteristic. 

Recently, a fourth-order box-section filter proposed by Amari et al. [88] and filters 

with box-like coupling schemes proposed by Liao et al. [89] have been successfully 

implemented using microstrip lines. The drawback of the former is that it needs to use 

the Dishal’s method as described above. The latter used an E-shaped two-mode 

resonator, namely even- and odd-mode, to support corresponding coupling schemes 

such as doublet, extended doublet, and box-section. Unfortunately, when designing 

such a two-mode filter, the physical dimensions of the resonators are very sensitive 

especially the dimensions of the two-mode resonator. While tuning the filter, carefully 

adjusting physical parameters of the two-mode resonator is required because some 

dimensions of the two-mode resonator influence not only the position of the 

transmission zero but also the in-band return loss. It means that designer should spend 

much time to tune.  

In this chapter, we propose new cross-coupled filters based on a conventional 

parallel-coupled filter, and all of the shortcomings described above can be solved. 

Basically, this newly proposed filter structure takes the advantages of the Hong’s filter 

[96] and Liao’s filter [82]. Fig. 4.1(a) shows the schematic layout of the proposed 

filter with a fourth order filter as an example where the crossing coupling between 

source or load and nonadjacent resonators are presented by dotted lines. Its equivalent 

coupling diagram is shown in Fig. 4.1(b). The filter has the advantage of using the 

simple synthesis procedure presented in [97] to serve as the initial design. In Figs. 

4.1(a) and (b), although the figures show multiple cross coupling routes from source 

to nonadjacent resonators, only one of them is chosen in the design procedures. 

Similar situation occurs in the load end. Then, by observing the relative phase shifts 

of main and cross-coupled paths between source or load and one of the nodes of the  
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(a) 

 

(b) 

Fig. 4.1.  The cross-coupled parallel coupled filter. (a) The schematic layout. (b) 
Coupling and routing scheme corresponding to (a). 

 

interested resonator, filters with generalized Chebyshev responses can be 

implemented. Applying suitable cross coupling paths and phases, the proposed filter 

could be CT, CQ, or combination of quadruplet and trisection. It is important to note 

that in the trisection configuration the transmission zero can be located on either 

lower or upper stopband by just applying the suitable cross coupling in Fig. 4.1(a). 

Therefore, the design procedures of the proposed filter are easy without using of the 

Dishal’s method or the method presented in [6]. Besides, it is more flexible to locate 

the transmission zeros. 

 

4.2 Phase Relationships and Generation of Finite Transmission Zeros 

The purpose in this section is to explore the relative phase shifts of the main 
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coupling path from source or load to resonators and to apply suitable phase shifts of 

the cross coupling paths to generate finite frequency transmission zeros on either 

upper stopband, or lower stopband, or both of the stopbands. Let us take a fourth 

order filter as an example. 

 

Fig. 4.2.  The equivalent lumped-element circuit of a fourth-order parallel coupled 

filter. 

 

In the beginning, the initial design of the proposed filters is based on the 

conventional parallel-coupled filter presented by Cohn [97]. Fig. 4.2 shows the 

lumped-element equivalent circuit of a fourth-order parallel-coupled filter shown in 

Fig. 4.1(a). Cross couplings are not introduced at this moment. Here, it should be 

pointed out that the lumped-element equivalent circuit should include the 

phase-reversing transformer in every resonator. Although the phase-reversing 

transformer is often omitted in a conventional parallel-coupled filter due to no effect 

on the magnitude of filter response, it is, however, very important in the proposed 

cross-coupled filters. Let us now check phase relationships from source or load to 

resonators. In order to observe the relative phase conveniently, we sequentially  

number  the  corresponding nodes of Figs. 4.1(a) and 4.2 as A-J from source to load. 

Therefore, the relative phases in the lumped-element circuit model of Fig. 4.2 can be 

determined, and all of the insertion phases between node A and nodes B-J in Fig. 

4.1(a) are obtained easily. Consider each box in Fig. 4.2 which represents an ideal 

admittance inverter having constant image admittance and constant phase shift of －

90o for all frequencies. Let nodes A and B to be the input and output ports of the 

admittance inverter JAB. The matrix element YBA of the two-port admittance matrix can 
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then be determined. Thus, the phase of YBA is －90o over both the frequency ranges f 

＜ f0   and f ＞ f0 where f0 is the center frequency of the filter. Also, the phase shift 

of the phase-reversing transformer is －180o for all frequencies. Consequently, the 

phase of YCA is －270o over both the frequency ranges f ＜ f0 and f ＞ f0. Next, 

consider YDA that the shunt inductor/capacitor pair as shown in Fig. 4.2 is a resonator. 

The phase shift of a resonator at off-resonance frequencies is dependent on whether 

the frequency is above or below resonance. As f ＜ f0 the admittance of the resonator 

is inductive and the phase shift should be －90o. Similarly, as f ＞ f0, the admittance 

of the resonator is capacitive and the phase shift should be ＋90o. As a result, the 

phase shift of YDA is －90o when f ＜ f0 (－90o－90o－180o－90o ＝－450o ＝－

90o) and ＋90o when f ＞ f0   (－90o＋90o －180o－90o ＝ －270o ＝＋90o). 

Following similar analyzing procedures described above, one can observe every 

relative phase shift between node A and nodes B-J. The phase relationships from 

source or load to resonators can be easily observed by using any commercial circuit 

simulator. Table 4.1 summarizes the phase relationships between node A and nodes 

B-J as f ＜  f0 and f ＞  f0. The method is applicable to any order of a 

parallel-coupled filter. As a result, the relative phase shifts between node A and nodes 

B-J in Fig. 4.1(a) are identical to those of the lumped-element filter in Fig. 4.2 

Next, the cross coupling paths will be studied. When a cross coupling path is 

applied to node A and another node in the nonadjacent resonator and its phase delay is 

180o out of phase with the main path, a transmission zero appears. 

The trisection coupling scheme in this filter can be formed by adding a cross 

coupling path from source to the second resonator. The two ends of the second 

resonator corresponds to node D and node E. Assume the cross coupling path is 

applied from source to node D. Because the phase of the main coupling path YDA is 

＋90o as f ＞ f0, the phase of the cross coupling path from source to node D should 
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be －90o as f ＞ f0 in order to have a upper stopband transmission zero. On the other 

hand, if the cross coupling path is applied between source and node E, the filter can 

also have a upper stopband transmission zero when the phase of cross coupling path 

YEA is ＋90o as f ＞ f0 due to －90o of phase in the main path YEA as f ＞ f0. In 

contrast to a upper stopband transmission zero as discussed above, a lower stopband 

transmission zero could also be possible by applying－90o phase shifts of the cross 

coupling path YEA as f ＜ f0 where it is 180o out of phase with that of the main path 

YEA. In spite of the source, the load can also be cross-coupled to the third resonator in 

Fig. 4.1(a) to form another trisection. 

Another popular coupling scheme is so called quadruplet where two transmission 

zeros, one on upper stopband and the other on lower stopband, are generated by 

applying just one cross coupling path. The quadruplet cross coupling could be from 

source to the third resonator or from load to the second resonator. Utilizing similar 

phase analysis method as trisection, the phase relationship of the quadruplet coupling 

scheme can be easily obtained. Let us use the cross coupling path from source to node 

G as an example. The phase shift of the main path YGA is ＋90o as f ＜ f0 and f ＞ f0. 

As mentioned above, as long as the phase shift of the cross coupling path YGA is －

90o, two transmission zeros on both lower and upper stopband should appear. 

Similarly, the quadruplet cross coupling path could also be formed from source to 

node F.  

Table 4.1 summarizes the phase relationships that may help a designer to judge 

the relative phase of the main coupling from source or load to each node and to apply 

proper phase of  the cross coupling to create desired transmission zeros. After the 

positions of the transmission zeros being qualitatively determined, the proper strength 

of the cross coupling should be quantitatively determined for a desired specification. 

Full discussion will be presented in section 4.3. 
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4.3 Cross-Coupling Schemes 

Two coupling schemes, namely the CT and the mixed cascade quadruplet and 

trisection [65], are possible for our fourth-order examples. Fig. 4.3(a) and Fig. 4.4(a) 

show the CT and the mixed cascade quadruplet and trisection coupling schemes 

respectively.  Although the CT and the mixed cascade quadruplet and trisection 

 

 The main 

coupling path 

The cross coupling path Response Delay line 

electrical 

length 

Frequency 

response 

predicted 

 f<f0 f>f0 f<f0 f>f0    
YBA (YIJ) -90 -90 Not applicable Not applicable    
YCA (YHJ) +90 +90 Not applicable Not applicable    
YDA (YGJ) -90 +90 -90 -90 Trisection with a TZ 

on upper stopband 

0o or 

360o  
YDA (YGJ) -90 +90 +90 +90 Trisection with a TZ 

on lower stopband 

180o 

 
YEA (YFJ) +90 -90 -90 -90 Trisection with a TZ 

on lower stopband 

0o or 

360o  
YEA (YFJ) +90 -90 +90 +90 Trisection with a TZ 

on upper stopband 

180o 

 
YFA (YEJ) -90 -90 +90 +90 Quadruplet 180o 

 
YGA (YDJ) +90 +90 -90 -90 Quadruplet 360o 

 
YHA (YCJ) -90 +90   *   
YIA (YBJ) +90 -90   *   
YJA (YAJ) -90 -90   *   

* : it is a cross coupling not belongs to trisection or quadruplet and beyond the scope of this research.
 
Table 4.1. The relative phase shifts of the main coupling path, the proper phases of 
the cross coupling paths to generate transmission zeros, corresponding responses, 
and delay line electrical length. 
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(a) 

 

 

 

 

 

(b) 
Fig. 4.3.  The cascaded trisection filter. (a) The coupling scheme. (b) The 
corresponding equivalent lumped-element circuit of a fourth-order parallel coupled 
filter with cross couplings. Either the inverter JAD or JAE corresponds to MS2 and 
either the inverter JJF or JJG corresponds to M3L. 

 

 

 

 

(a) 

 

 

 

 

 

(b) 
Fig. 4.4.  The mixed cascaded quadruplet and trisection filter. (a) The coupling 
scheme. (b) The corresponding equivalent lumped-element circuit of a fourth-order 
parallel coupled filter with cross coupling. Either the inverter JAF or JAG corresponds 
to MS3 and either the inverter JJF or JJG corresponds to M3L. 
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coupling schemes have already proposed in literatures, the microstrip implementation 

using parallel-coupled structure is first proposed in this research. Here, the resonators 

are represented by dark dots, the source and load are empty dots, the solid lines 

between resonators indicate the main coupling, and the broken lines indicate the cross 

coupling. 

The lumped-element equivalent circuit of the fourth-order parallel-coupled filter 

with CT cross coupling scheme is shown in Fig. 4.3(b). Either the inverter JAE or 

inverter JAD in Fig. 4.3(b) corresponds to the cross coupling MS2 in Fig. 4.3(a), and 

similar situation applies to the inverter JJF and the inverter JJG. Choosing either JAE or 

JAD in the source end and either JJF or JJG in the load end, different signs of MS2 and 

M3L can be implemented. Thus, two trisections are formed and each trisection can 

create a transmission zero on either lower or upper stopband. To demonstrate the 

mentioned properties, three CT filters are discussed as examples. 

The first CT filter is with the following parameters. Its low-pass prototype is 

with two transmission zeros at Ω＝3 and Ω＝－2, and a maximum in-band return loss 

of 20dB. The coupling matrix corresponding to Fig. 4.3(a) is shown in (4.1) where the 

synthesizing techniques in [37] are used. 
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0         0.9763   0.3197         0               0               0      
0.9763  5601.0  0.7990         0               0               0      
0.3197    0.7990   0.1845     0.7285          0               0      

0             0        7285.0   3186.0     6581.0    4910.0
0             0            0          6581.0      7905.0      9024.0 
0             0            0        4910.0     9024.0          0      

M           (4.1) 

In the coupling matrix, MS2＝－0.4910 and M3L＝0.3197 are in different sign 

because one transmission zero on upperstopband is due to M3L and the other 

transmission zero on lower stropband is due to MS2. Because a capacitive coupling 

provides -90o of phase shift for f ＜ f0 and f ＞ f0, from Table 4.1, an upper stopband 

transmission zero would be created if a capacitive cross coupling is applied between 
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nodes J and G. Therefore, JJG could be chosen capacitive to realize M3L. Similarly, if a 

capacitive cross coupling existed between nodes A and E, there would be a finite 

transmission zero on the lower stopband. Thus, one may choose JAE with capacitive 

cross coupling to implement MS2. Due to the physical distance of node A to node E, a 

delay line is introduced to implement cross coupling between nodes A and E. Thanks 

to this delay line, more flexible design can be achieved. When capacitive coupling in 

cooperation with a delay line of electrical length 360o, the overall relative phase shift 

of the cross coupling is still －90o (－360o－90o＝－90o) for f ＜ f0 and f ＞ f0. 

And in Table 4.1, relative phase shift of the main coupling path from node A to E is 

90o on f ＜ f0. Consequently, a finite transmission zero on the lower stopband is 

generated. 

The second CT filter is with two transmission zeros at Ω＝3 and Ω＝2 in the 

lowpass domain, and with similar in band return loss of 20dB. The synthesized 

coupling matrix is depicted in (4.2). 

     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

0          0.9891    0.3179         0               0              0     
0.9891   4744.0   0.8118         0               0              0     
0.3179     0.8118    0.3471     0.7357          0              0     

0              0         7357.0     4288.0      6714.0     4889.0
0              0             0          6714.0    7411.0    9167.0
0              0             0          4889.0      9167.0         0     

M          (4.2) 

Note that the sign of MS2 changes from negative to positive. Therefore, one may 

choose JAD as a capacitive cross coupling to achieve MS2＝0.4889 and keep JJG 

unchanged. 

The third CT filter has similar passband return loss but with two lowpass domain 

transmission zeros at Ω＝－3 and Ω＝－2. From the reversal property of the coupling 

matrix the absolute values of the matrix elements should equal to those of (4.2) and 

M11, M22, M33, M44, MS2, M2S, M3L, and ML3 should change sign [98]. The coupling 

matrix is shown in (4.3). 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
−−

−

=

0         0.9891   0.3179         0             0               0      
0.9891    4744.0     0.8118          0             0               0      
0.3179   0.8118   0.3471     0.7357        0               0      

0              0         7357.0    4288.0   6714.0    4889.0
0              0             0           6714.0    7411.0      9167.0 
0              0             0         4889.0   9167.0          0      

M          (4.3) 

Thus, we may choose JAE with capacitive cross coupling to achieve MS2＝－

0.4889 and choose JJF with capacitive cross coupling to achieve M3L＝－0.3179. 

Again, due to physical distances of node A to node E and node J to node F, two 

capacitive cross coupling in cooperation with two delay lines of electrical length 360o 

implement the desired JAE and JJF. The lowpass domain responses of the three CT 

filters are shown in Fig. 4.5. 

 

Fig. 4.5.  The low-pass responses of the three CT filters with all in-band return 
loss 20dB. Case 1, normalized transmission zeros at Ω＝3 and Ω＝－2. Case 2, 

normalized transmission zeros at Ω＝3 and Ω＝2. Case 3, normalized transmission 
zeros at Ω＝－3 and Ω＝－2. 

 

Fig. 4.4(a) shows the coupling scheme of the fourth order mixed cascade 

quadruplet and trisection filter. This topology is particularly interesting because the 

quadruplet part can produce a pair of transmission zeros on both sides of the stopband, 

and the trisection part could generate another transmission zero on whatever location 

we want. Fig. 4.4(b) is the lumped-element equivalent circuit of a fourth-order 
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parallel-coupled filter with the mixed cascade quadruplet and trisection cross coupling 

where the nodes A-J in Fig. 4.4(b) correspond to the similar nodes in Fig. 4.1(a). 

Again, either the inverter JAF or JAG in Fig. 4.4(b) can implement the cross coupling 

MS3 in Fig. 4.4(a), and either the inverter JJF or JJG in Fig. 4.4(b) can realize the cross 

coupling M3L in Fig. 4.4(a). Let us consider the quadruplet portion of the mixed 

cascade quadruplet and trisection filter first. Suppose that a capacitive coupling gap is 

applied at node F. From Table 4.1, a delay line with electrical length of 180o should be 

involved between source and capacitive coupling gap (node F) to create proper phases 

of the cross coupling (－180o－90o＝－270o＝＋90o for f ＜ f0 and f ＞ f0) so that a 

pair of transmission zeros could create on both sides of the stopband. Oppositely, if 

the capacitive gap is applied at node G to realize the cross coupling, the inserted delay 

line between node A and G should be 360o. Considering the layout, a capacitive gap 

applied to the node F is preferable. The trisection portion of the mixed cascade 

quadruplet and trisection filter is similar to that of CT filter we discussed earlier. If a 

finite transmission zero on the upper stopband is wanted, one may choose the 

capacitive inverter JJG in Fig. 4.4(b) to implement the cross coupling M3L in Fig. 

4.4(a). Contrarily, if a finite transmission zero on the lower stopband is wanted, the 

cross coupling M3L in Fig. 4.4(a) could be realized by the capacitive inverter JJF in Fig. 

4.4(b). To reach nodes J-F a delay line with an electrical length of 360o should be 

involved. 

The delay line and the coupling gap form an overall phase shift of －90o (－

360o－90o＝－90o for f ＜ f0 and f ＞ f0). In brief, a mixed cascade quadruplet and 

trisection filter can have not only a pair of transmission zeros on both sides of the 

stopband but also another transmission zero on either upper or lower stopband. 
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4.4 Filter Design Examples 

Since a mixed cascade quadruplet and trisection filter contains two types of cross 

couplings and is more general than a CT filter, two fourth-order parallel-coupled 

filters with the mixed cascade quadruplet and trisection cross coupling are chosen as 

examples in this section to demonstrate the feasibility of the proposed structures. A 

0.508-mm-thick Rogers RO4003 substrate with a dielectric constant of 3.58 and loss 

tangent of 0.0021 is used to implement these mixed cascade quadruplet and trisection 

filters. 

The first mixed cascade quadruplet and trisection filter is designed to have a pair 

of real frequency transmission zeros at normalized frequencies of Ω＝±2, a real 

frequency transmission zero at a normalized frequency of Ω＝4 in the lowpass 

domain, and a passband return loss of 20dB. Fig. 4.4(a) shows the coupling scheme of 

the mixed cascade quadruplet and trisection filter. Equation (4.4) is the synthesized 

coupling matrix. 

          

⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

0          1.0010     0.2136         0             0               0       
1.0010   3487.0    0.8409         0             0               0       
0.2136     0.8409     0.1788     0.5879        0          1998.0

0              0          5879.0     0317.0    0020.1          0       
0              0             0           0020.1     0111.0      0039.1  
0              0        1998.0        0         0039.1          0       

M           (4.4) 

Then, the filter is transformed from the lowpass domain to the bandpass domain 

with the center frequency of f0=2.4 GHz and the fractional bandwidth of 7%. The 

response after transformation is depicted in Fig. 4.6(a). 

The design procedures are described briefly in the following. 

First, calculate the initial design by applying Cohn’s analytical synthesis method 

[99] to realize the in-line part of the coupling matrix. For our fourth-order filter, the 

in-line part coupling elements are MS1, M12, M23, M34 and M4L. That is to get the 

J-inverter values from these coupling elements, and using Cohn’s formula to get the 
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(a) 

 

(b) 

Fig. 4.6.  The ideal responses of the two CQT filters. (a) The bandpass response 
corresponding to (4.4) with a typical Chebyshev response as a reference. (b) The 
bandpass response corresponding to (4.5). 

 

even- and odd-mode impedances of each parallel-coupled section corresponding to 

the J-inverter values. Note that no cross couplings are introduced at this moment so 

that the electrical length of each parallel-coupled section is 90o. After this, the layout 

can be modified according to [69] that each resonator’s vertical position can be 

vertically flipped to make cross couplings easy to apply. In this example, the source 

feeding line and the first resonator is vertically flipped so as the load feeding line and 

the last resonator such that the nodes to implement the cross coupling of MS3 and M3L 

can be accessed. The parallel-coupled filter portion in Fig. 4.7(a) depicts the 

modification of the layout. 
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(a) 

 

(b) 

Fig. 4.7.  The circuit layouts of the proposed filters. (a) The first designed mixed 
cascaded quadruplet and trisection filter. The length and line width of 
coupling/shielding line are 4.318 mm and 0.177 mm, respectively. (b) The second 
designed mixed cascaded quadruplet and trisection filter. 

 

 

Second, if nodes A and F are chosen to implement the cross coupling of MS3＝－

0.1998, a delay line with an electrical length of 180o in cooperation with a capacitive 

coupling should be used. The reason to use the 180o delay line is described in the 

previous section. The initial length of the capacitive coupling gap is obtained by the 

circuit simulator such as Agilent’s Advanced Design System (ADS) [99]. For 

simplifying the layout, the width of the delay line is fixed to be 0.254 mm and the 

coupling gap between the delay line and the resonator 3 is also fixed to be 0.254 mm. 

Now, the resonator 3 is coupled to the source through the delay line. The electrical 
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length of the delay line is adjusted to be 180o at the center frequency. The coupling 

length can be easily adjusted by using the three-coupled-line model in ADS where the 

line widths and gap widths keep unchanged. Because tuning of the coupling length in 

the circuit simulator can be almost real time. The initial coupling length can be fast 

obtained as 3.937 mm. Therefore, the physical layout of the quadruplet portion of the 

first mixed cascade quadruplet and trisection filter is obtained. 

Finally, the trisection portion of this mixed cascade quadruplet and trisection 

filter is the same as that of CT filter described in [82] where an upper stopband 

transmission zero can be easily obtained. As the similar method proposed in [82], a 

coupling/shielding line is adopted here at the node J of the output feed line. This 

would be the simplest way to implement M3L where a transmission zero at a 

normalized frequency of Ω＝4 could be created. Finally, fine tuning might be 

required using EM simulator. After fine tuning of the whole circuit with the 

commercial EM simulator Sonnet [100], all physical dimensions of the filter are 

obtained. The circuit layout and the detailed dimensions are shown in Fig. 4.7(a) and 

in Table 4.2, respectively, and the photo of the filter is depicted in Fig. 4.8(a). 

The second mixed cascade quadruplet and trisection filter is designed to have a 

pair of real frequency transmission zeros at normalized frequencies of Ω＝±2, a real 

frequency transmission zero at a normalized frequency of Ω＝－5 in the lowpass 

domain, and a passband return loss of 20dB. The synthesized coupling matrix is 

shown in (4.5). 

   

       0          1.0041           0         0.1986        0             0
  1.0041     0.0090     1.0019          0              0             0
       0          1.0019     0.0250   0.5871       

M

−
−

−
=

    0              0
0.1986          0            0.5871    0.1435    0.8579   0.1700

       0              0                0          0.8579       0.2785     1.0094
       0              0          

− − −

      0         0.1700    1.0094         0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎣ ⎦

        (4.5) 
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(a) 

 
(b) 

Fig. 4.8.  The layouts of the implemented filters. (a) The first designed filter. (b) The 
second designed filter. 

 

Similarly, the lowpass prototype is transformed into bandpass domain with the 

center frequency of f0=2.4 GHz and the fractional bandwidth of 7%. The transformed 

bandpass response is depicted in Fig. 4.6(b). The initial dimensions of the 

parallel-coupled portion of the filter are calculated by the analytical method as 

described in the first filter. Again, let us look at the quadruplet portion of the filter first. 

This time, the nodes A and G in Fig. 4.4(b) are chosen to implement the cross 

coupling between source and resonator 3. From (4.5), the synthesized cross coupling 

value should be MS3＝－0.1986. Therefore, a delay line with an electrical length of 

360o in cooperation with a capacitive coupling would be appropriate to implement the 

MS3. Again, the width of the delay line is fixed to be 0.254 mm and the coupling gap 

is also fixed to be 0.254 mm. Then, the initial coupling length of 3.937 mm is 

obtained by the circuit simulator. Finally, let us look at the trisection portion of the 

filter. Now, the nodes J and F are chosen to implement the cross coupling between  
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resonator 3 and load. A delay line with an electrical length of 360o in cooperation with 

a capacitive cross coupling could realize the cross coupling with the correct phase and 

amplitude. The strip width of the delay line is still fixed to be 0.254 mm. Different 

from the former, the capacitive coupling gap is now fixed to be 0.762 mm in this case. 

Similarly, the initial coupling length of 1.143 mm is obtained by the circuit simulator. 

Same as the first filter, the initial physical dimensions of the second filter can be 

obtained from ADS, and then, the EM simulation to fine tune the physical dimensions 

 

The dimensions of the first designed mixed cascaded quadruplet and 

trisection filter corresponding to layout in Fig. 7(a) (in mm) 

L1 L2 L3 L4 L5 L6 L7 

18.999 19.181 17.779 17.830 19.253 17.729 19.253 

L8 L9 S1 S2 S3 S4 S5 

19.075 17.729 0.177 0.508 0.965 0.558 0.177 

W1 W2 W3 W4 W5 G1 G2 

0.660 1.143 1.092 1.193 0.254 0.254 0.254 

G3 G4 T1 T2 T3 T4  

0.203 0.203 9.652 18.288 5.181 3.810  

The dimensions of the second designed mixed cascaded quadruplet 

and trisection filter corresponding to layout in Fig. 7(b) (in mm) 

L1 L2 L3 L4 L5 L6 L7 

19.100 19.253 19.805 17.754 18.872 18.669 17.754 

L8 S1 S2 S3 S4 W1 W2 

19.050 0.177 0.508 0.939 0.558 0.736 1.270 

W3 W4 W5 W6 G1 G2 G3 

1.143 1.320 0.711 0.254 0.203 0.076 0.254 

T1 T2 T3 T4 T5 T6 T7 

3.733 60.960 2.794 6.045 5.588 3.810 3.632 

T8 T9 T10 T11 T12   

52.628 2.794 16.281 3.276 1.143   

 
Table 4.2. The physical dimensions of the two 
proposed filters.
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might be required. After fine tuning with the commercial EM simulator Sonnet, the 

circuit layout and the detailed dimensions are shown in Fig. 4.7(b) and in Table 4.2, 

respectively. The circuit photo is shown in Fig. 4.8(b). 

 

4.5 Results and Discussion 

Shown in Fig. 4.9(a) are the measured and simulated performances   of   the   

first   mixed   cascade   quadruplet   and trisection filter. The measured center 

frequency, fractional bandwidth, and in-band insertion loss are 2.4GHz, 7%, and 

1.8dB respectively which are in good agreement with the simulated results. The two 

transmission zeros contributed by the quadruplet part are at 2.23 GHz and 2.585 GHz, 

and also agree well with the simulation. The third transmission zero is at 2.82 GHz, 

and the little deviation might come from the much weaker and more sensitive 

coupling between the coupling/shielding line and resonator 3 than that of the 

quadruplet portion. 

Fig. 4.9(b) shows the measured performance of the second mixed cascade 

quadruplet and trisection filter. Again, the measured center frequency, fractional 

bandwidth, in-band insertion loss, and two transmission zeros contributed by the 

quadruplet part of the filter are also in good agreement with the simulated results. The 

third transmission zero, similarly, shows a little frequency drift to lower frequency 

compared with the simulation. 

The sensitivity analysis of the proposed filters to manufacturing tolerances can be 

performed in two conditions. One is over etching 0.0508 mm (2 mil), the other is 

under etching 0.0508 mm (2 mil). Take the first mixed cascade quadruplet and 

trisection filter as an example and simulate it in two conditions using EM simulator 

Sonnet. The simulated responses are shown in Fig. 4.10. It is found that the proposed 

cross-coupled filters are not very sensitive to the manufacturing tolerances. 
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(a) 

 

(b) 

Fig. 4.9. The measured and simulated performances of the two implemented filters. (a) 
The first designed filter. (b) The second designed filter. 
 

 
Fig. 4.10. The sensitivity analysis of the first mixed cascade quadruplet and trisection 
filter for under etching of 0.0508 mm (2mil) and over etching of 0.0508 mm 
respectively. 
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Another concern is that as the finite transmission zeros get closer to the passband, 

the values of the cross coupling should be higher and some dimensions of the circuit 

layouts must change. On the other hand, for a highly asymmetrical response with the 

transmission zeros very close to the pass-band, the lengths of the resonators should be 

modified because the trisection portion of the filter becomes highly asynchronously 

tuned. How close the transmission zeros to the passband can be before the layout 

becomes impractical for fabrication or the design becomes very difficult to get 

estimate. 

The situation can be summarized in two cases. The first case is the pair of 

quadruplet transmission zeros very close to the passband, and the second case is the 

trisection transmission zero very close to the passband. Let us take the first mixed 

cascade quadruplet and trisection filter in Fig. 4.7(a) as an example to study these two 

cases. 

In the first case, as the pair of quadruplet transmission zeros move from Ω＝±2 

to Ω＝±1.4 in the lowpass domain, the corresponding coupling matrix M is obtained 

as 
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⎡
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=

0          0.9940     0.2054         0             0               0       
0.9940   3212.0    0.8488         0             0               0       
0.2054     0.8488     0.1746     0.3780        0          4935.0

0              0          3780.0     0306.0    0967.1          0       
0              0             0          0967.1    0108.0    8849.0  
0              0        4935.0        0         8849.0          0       

M            (4.6) 

Then, following the design procedures described above, the EM simulated 

response and the detailed dimensions are shown in Fig. 4.11 and Table 4.3, 

respectively. It is found that the coupled section length T4 of the delay line is 

increased from 3.81 mm to 8.382 mm to achieve the proper value of MS2. Also, it is 

reasonable that some dimensions such as S1, S3 and G2 in Fig. 4.7(a) are changed 

corresponding to the variation of matrix elements. It can be observed in Table 4.3 that  
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Fig. 4.11. The simulated performances of the first mixed cascaded quadruplet and 
trisection filter with finite transmission zeros at Ω=±1.4 , 4. 

 

the layout dimensions are still good for printed circuit board process. It seems that the 

cross coupling strength could be implemented much stronger. However, it must be 

noted that increasing the value of T4 causes much higher unwanted coupling of MS2. It 

may cause the transmission zeros to drift slightly. The drift of transmission zeros 

becomes worse as the cross coupling becomes stronger. 

In the second case, as the trisection transmission zero moves from Ω = 4 to Ω = 

1.5  and  the pair of quadruplet transmission zeros move from Ω = ±2 to Ω = ±3 in 

the lowpass domain, the coupling matrix is obtained as 

      

       0          1.0214         0       0.0955        0              0
  1.0214      0.0453     0.9545          0             0              0
       0          0.9545    0.1102     0.6936        

M

−

=
  0              0

0.0955          0         0.6936     0.4277     0.4560     0.6541
       0               0             0        0.4560    0.9655   0.7903
       0               0             0    

−
−

     0.2054     0.7903           0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

         (4.7) 

As can be seen in the equation (4.7) that the highest absolute value of the 

diagonal elements is M44=-0.9655. The high value of M44 means that the length of 

resonator 4 should be largely modified. If the length of coupled-line section changes 

too much, the main coupling strength may change such that the dimensions need to be 

adjusted. Also, for the highly asymmetric trisection transmission zero closer to the  
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passband, the width and length of the coupling/shielding line become narrower and 

longer, respectively. And the gap between the coupling/shielding line and the third 

resonator shown in Fig. 4.7(a) becomes too narrow to be realized. In this case the 

iteration process should be adopted. Nevertheless, this process can be done in the 

circuit simulator ADS so that it is not very time-consuming to get the initial layout. 

Then, in this condition of the highly asymmetric response, the EM simulation to fine 

tune the physical dimensions must be required. After fine tuning with the commercial  

 

The filter with finite transmission zeros at Ω=±1.4 , 4. The length and line  

width of the coupling/shielding line are 4.318 mm and 0.177 mm, 

respectively 

L1 L2 L3 L4 L5 L6 L7 

18.923 19.227 17.907 17.78 19.431 17.627 19.177 

L8 L9 S1 S2 S3 S4 S5 

19.075 17.627 0.228 0.482 1.194 0.584 0.203 

W1 W2 W3 W4 W5 G1 G2 

0.660 1.066 1.092 1.193 0.254 0.330 0.178 

G3 G4 T1 T2 T3 T4  

0.305 0.229 7.493 18.262 3.987 8.382  

The filter with finite transmission zeros at Ω=+1.5, ±3. The length and line 

width of the coupling/shielding line are 9.144 mm and 0.127 mm, 

respectively. 

L1 L2 L3 L4 L5 L6 L7 

18.186 18.135 19.304 19.304 17.830 19.075 18.110 

L8 L9 S1 S2 S3 S4 S5 

18.542 18.618 0.152 0.584 0.711 1.066 0.228 

W1 W2 W3 W4 W5 G1 G2 

0.711 1.168 1.194 0.889 0.254 0.330 0.508 

G3 G4 T1 T2 T3 T4  

0.355 0.127 9.906 19.685 6.527 3.81  

Table 4.3. The dimensions of the first designed mixed 
cascaded quadruplet and trisection filter with finite 
transmission zeros closer to the passband. 
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Fig. 4.12. The simulated performances of the first mixed cascaded quadruplet and 
trisection filter with finite transmission zeros at Ω=+1.5 , ±3 

 

EM simulator Sonnet, the EM simulated response and the detailed dimensions are 

shown in Fig. 4.12 and in Table 4.3, respectively. It is found that the length and width 

of the coupling/shielding line are 9.144 mm and 0.127 mm, respectively. The gap G4 

is 0.127 mm. The manufacturing process can still support the narrow width and small 

gap. 
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Chapter 5 Bisymmetric Coupling Schemes for Implementation of 

Low-Order Generalized Chebyshev Planar Filters with Transmission 

Zeros Very Close to the Passband 

This chapter proposes some new coupling schemes where the corresponding 

coupling matrices show the bisymmetric property. The proposed bisymmetric 

coupling schemes are suitable for low-order high selectivity planar filters. Using the 

bisymmetric coupling schemes, the strength of cross coupling can be much weaker 

than the conventional trisection or quadruplet filters with the same transmission zero 

positions. The source and load to nonadjacent resonators cross couplings are applied 

to implement the proposed bisymmetric coupling schemes. Most of the proposed 

coupling schemes have the properties of synchronous-tuned resonators, bisymmetric 

coupling matrices, and relatively weak cross-coupled strengths for finite transmission 

zeros close to the passband. The bisymmetric coupling matrix implies a symmetrical 

layout that fine tuning of the filter would be much easier. All of the proposed coupling 

schemes are compared with the conventional coupling schemes through the coupling 

matrices when synthesizing generalized Chebyshev filtering functions. Each proposed 

coupling scheme is realized by a microstrip parallel-coupled filter structure with cross 

couplings from source and load to nonadjacent resonators. Measured and simulated 

responses are presented.  

 

5.1 Introduction 

Filters are important components of microwave communication system. Among 

various filtering functions, the generalized Chebyshev filters are attractive because 

they offer excellent frequency responses with sharp cutoff skirts and low passband 

insertion loss. The sharp skirt is due to the presence of transmission zeros brought 

from infinite to finite frequencies. The transmission zeros at precise frequencies in a 
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microwave filter reject the specific unwanted signals. In the literatures, especially for 

cross-coupled filters, the cascade trisection (CT) and cascade quadruplet (CQ) are two 

of the most commonly used coupling schemes. They have been found many 

applications in many years [6], [7], [52], [61]. More progressively, source and load to 

nonadjacent resonator cross couplings [66], [67] can also achieve high selectivity 

responses such as trisection and quadruplet with low-order resonators but less 

passband loss. Other coupling scheme such as the doublet has the zero-shifting 

property that shifts a transmission zero from one side of passband to the other by just 

adjusting the resonant frequencies of two resonators [66], [89]. Among these coupling 

schemes, some of them are asynchronous-tuned, e.g. trisection, and doublet. In some 

particular situations, strong asynchronous-tuned resonators may cause problems 

during fine tuning of the filter especially for the planar filters. 

For instance, the two-pole trisection coupling scheme in Fig. 5.1(a) [66] has the 

asynchronous-tuned resonators and the corresponding coupling matrix is not 

bisymmetric. As a result, when the transmission zero gets closer to the passband, the 

cross coupling MS2 may become too large to realize and the alignment of the resonant 

frequency could be a tough task. Another example as shown in Fig. 5.1(b) that the 

conventional third-order CT has two controllable transmission zeros. In this case, the 

corresponding coupling matrix is not bisymmetric no matter the response is 

symmetric or not. Again, when a finite transmission zero is very close to the band 

edge, the value of the cross coupling would be too large to implement and the 

resonators are highly asynchronous-tuned. In some cases, although the resonator is 

synchronous-tuned, the cross coupling may be too large to implement as the 

transmission zero gets close to the passband. For example, Fig. 5.1(c) depicts a 

third-order quadruplet [67], although the coupling scheme is synchronous-tuned, the 

coupling matrix would not be bisymmetric and the cross coupling MS3 would be large 
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as two transmission zeros are very close to the passband. It can be summarized that to 

implement a planar filter with transmission zeros very close to the passband usually 

encounters several difficulties. First, the layout is asymmetric unless the coupling 

matrix is bisymmetric. Second, the coupling strength might be too large to implement. 

Finally, for coupling schemes including a trisection, the alignment of 

asynchronous-tuned resonators might be a difficult task. 

Parallel-coupled line filters as shown in [101] were proposed to achieve 

generalized Chebyshev responses. Due to the conventional parallel-coupled structure 

a good initial design can be obtained with the well-known analytical design method. 

The cross coupling of the filter from source or load to nonadjacent resonators can be 

easily introduced by adding delay lines with proper electrical lengths. Using this filter 

structure, however, to realize the conventional cascade quadruplets and cascade 

trisections with transmission zeros very close to the filter passband also encounters 

the problems of unrealizable cross coupling in planar form, highly asynchronously 

tuned resonators for a trisection and an asymmetric layout due to a symmetric 

coupling matrix. 

Therefore, the objective of this chapter is to propose new coupling schemes as 

shown in Fig. 5.1(d)-(h) to solve or alleviate the problems described above. The 

proposed coupling schemes are suitable for implementations of low-order planar 

generalized Chebyshev filters with transmission zeros very close to the passband. The 

coupling scheme in Fig. 5.1(d) has two overlapped trisections that two trisections are 

with the identical coupling coefficients. The filter response of Fig. 5.1(d) is similar to 

that of single trisection when realizing a generalized Chebyshev response [35], [37]. It 

should be emphasized that the cross couplings, MS2 and M1L, of two overlapped 

trisections in Fig. 5.1(d) share the energy of the cross coupling MS2 in Fig. 5.1(a). 

Similar overlapping configurations apply to Figs. 5.1(e) and (f) that two identical  
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Fig. 5.1. Cross coupling schemes generating transmission zeros at precise frequencies. 
Conventional coupling schemes: (a) two-pole trisection. (b) three-pole cascade 
trisections (CQ). (c) three-pole quadruplet. Proposed coupling schemes: (d) two-pole 
interactive cross-coupling trisection scheme. (e) three-pole interactive cross-coupling 
quadruplet scheme. (f) four-pole interactive cross-coupling quadruplet scheme. (g) 
modified four-pole canonical form scheme with two pairs of transmission zeros. (h) 
modified three-pole cascade trisections (CT) scheme. 



 95

quadruplets in each figure are overlapped. Again, the generalized Chebyshev 

responses of Figs. 5.1(e) and (f) can be synthesized the same as single quadruplet. The 

coupling scheme in Fig. 5.1(g) is modified from Fig. 5.1(f) that an extra cross 

coupling from source to load is introduced. One additional pair of transmission zeros 

can be created by the source to load cross coupling. Consequently, two pairs of 

transmission zeros can be implemented with a fourth-order filter for maximum 

selectivity. Another proposed coupling scheme is shown in Fig. 5.1(h) that two 

identical overlapped trisections are applied to source and load to resonators 1 and 3 

respectively and another trisection is implemented between resonators 1, 2, and 3. The 

generalized Chebyshev response of Fig. 5.1(h) is identical to that of two cascaded 

trisections in Fig. 5.1(b) that two transmission zeros can be located at any positions on 

the stopband. It will be shown that the proposed coupling schemes can facilitate the 

realizations of high performance filters. 

  

5.2 The New Modified Coupling Schemes 

In the following, all the coupling matrices are discussed corresponding to the 

generalized Chebyshev responses [35], [37]. 

 

A. Review of conventional coupling schemes 

Figs. 5.1(a) and (c) show two coupling schemes, one is a two-pole trisection and 

the other is a three-pole quadruplet. Consider Fig. 5.1(a) first. By introducing the 

cross coupling MS2 a finite transmission zero occurs. The corresponding coupling 

matrix M of the trisection in Fig. 5.1(a) can be written as 
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where MS1≠M2L, M11≠M22. The coupling matrix of the trisection is asynchronously 

tuned and symmetric. Although the matrix is symmetric, the physical structure of the 

filter is asymmetric. Another concerned coupling diagram is quadruplet shown in Fig. 

5.1(c). The cross coupling MS3 generates two finite transmission zeros on both 

stopband. The corresponding coupling matrix M is 
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where MS1≠M3L, M12≠M23. The coupling matrix is synchronously tuned and 

symmetric. Again, the physical layout is asymmetric. 

A conventional three-pole CT is shown in Fig. 5.1(b). Two trisections can 

generate two transmission zeros due to the two corresponding cross couplings, MS2 

and M2L, respectively. The general form of the coupling matrix can be expressed as 
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It can be observed from (3) that M11≠M22≠M33, MS1≠M3L, M12≠M23, MS2≠M2L. This 

means that the filter should be asynchronously tuned and should have an asymmetric 

layout. 

In the following, the modified cross coupling schemes are proposed. They have a 

similar concept that is to guide a cross coupling path into two interacting cross 

coupling paths. Therefore, some interesting properties occur and may be useful for 

designing planar filters. 
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B. The proposed coupling schemes 

The proposed coupling schemes are shown in Fig. 5.1(d)-(h) and will be 

discussed as follows. 

As can be seen in the two-order trisection in Fig. 5.1(d), we introduce another 

identical cross coupling path M1L to share energy of cross coupling MS2. The coupling 

scheme becomes two identical overlapped trisections. Thus, the corresponding 

coupling matrix is synchronous tuned and bisymmetric as shown in (5.4). 
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In (5.4), the matrix is bisymmetric because MS1＝M2L, MS2＝M1L, M11＝M22. The 

relationships between a coupling matrix and the responses of S11(Ω) and S21(Ω) are 

shown as follows. 

                           [ ]11
1

11 21 −+= AjS                        (5.5) 

                           [ ] 1,2
1

21 2 +
−−= NAjS                       (5.6) 

Here, [ ] [ ] [ ]RjMUA −+Ω= 0 and the low-pass normalized domain to bandpass 

real frequency transformation is ( )( )ffffff 000 −Δ=Ω , [ ]0U is similar to the 

(N+2)×(N+2) identity matrix, except that [ ] [ ] 02,20110 == ++ NNUU , [ ]M is the 

(N+2)×(N+2) coupling matrix, f0 is the center frequency of the filter and Δf is its 

bandwidth, and [ ]R is a (N+2)×(N+2) matrix whose only nonzero entries are 

R11=RN+2,N+2=1. Also, the transfer polynomial for the generalized Chebyshev filtering 

function can be expressed as 

                      ( ) ( )
( )Ω
Ω

=Ω
E
PS21                           (5.7) 

Thus, one can obtain the position of finite transmission zero by solving the 

equation P(Ω)=0 using (5.6). 
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Applying P(Ω)=0 to the coupling matrix (5.4) of the proposed two-order 

trisection filter, an explicit expression between the coupling elements and the 

transmission zero Ω is obtained as 
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Based on (8), the following properties can be summarized. 

1) 21
2

2
2
1 2 SSSS MMMM >+ , and in most cases |M12| > M11. 

2) If MS1 > 0, MS2 > 0 and M12 > 0, Ω would be greater than zero. Thus, the finite 

transmission zero would be on the upper stopband. 

3) If MS1 > 0, MS2 < 0 and M12 > 0, Ω would be smaller than zero. Thus, the finite 

transmission zero would be on the lower stopband. 

Another coupling scheme in Fig. 5.1(e) is a third-order quadruplet filter. Similar 

to the proposed trisection filter, we introduce another cross coupling path M1L to share 

energy of cross coupling MS3. The coupling scheme becomes two identical overlapped 

quadruplets. Thus, the corresponding matrix M shown in (5.9) becomes a bisymmetric 

matrix. 
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In (5.9), MS1＝M3L, M12＝M23, and MS3＝M1L. From (5.9), the position of 

transmission zero Ω in the low-pass domain should satisfy (5.10). 
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From (5.10), two possible conditions are described as following. 

1) If MS1MS3 > 0, it would result in Ω2 < 0. Thus, two imaginary frequency zeros can 
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be designed to have group-delay-flattening response. 

2) If MS1MS3 < 0, it would result in Ω2 > 0. Thus, it can be designed to generate a pair 

of attenuation poles. 

Similarly, the coupling scheme in Fig. 5.1(f) also comprises two identical 

overlapped quadruplets, and the corresponding coupling matrix is bisymmetric and 

synchronously tuned. In addition, extra cross coupling from source to load can be 

applied as shown in Fig. 5.1(g) to generate two additional transmission zeros. 

Finally, consider another modified third-order coupling diagram shown in Fig. 

5.1(h). It also has a bisymmetric but asynchronously tuned coupling matrix as shown 

in (5.11) 
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In the following section, we will take filter examples with defined specifications. 

 

5.3 The Synthesized Coupling Matrices and the Parallel-Coupled Line Section 

To compare the properties of the proposed coupling schemes with the 

conventional coupling schemes, all generalized Chebyshev filters described in this 

Section are normalized with the passband return loss of 20dB. 

 

A. The element values of the synthesized coupling matrices 

The first example corresponds to Figs. 5.1(a) and (d) where two-pole trisection 

filters with an upper stopband transmission zero at Ω=3 are designed. Applying the 

synthesis technique in [37], [52], the coupling matrix (5.12) corresponds to Fig. 5.1(a) 

and the coupling matrix (5.13) corresponds to Fig. 5.1(d) are obtained. 
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From (5.12), large values of M11=-0.8998 and M22=0.7283 cause the length of the 

resonators to be largely adjusted that the main coupling would be affected accordingly. 

Moreover, the large value of MS2=0.6717 implies a strong cross coupling from source 

to resonator 2. 

In contrast, the newly proposed coupling matrix shown in (5.13) is 

synchronously tuned and has very small value of M11=-0.0858 that the resonator 

length only needs a tiny adjustment. Furthermore, the value of cross coupling 

MS2=0.3493 reduces to about half of the conventional one. Also, one can quickly tune 

a filter based on (5.4) due to its bisymmetric property. 

Changing the position of the transmission zero from Ω=3 to Ω=-5 and applying 

the synthesis technique in [37], [52] the coupling matrices corresponding to Fig. 5.1(a) 

and Fig. 5.1(d) can be obtained as shown in (5.14) and (5.15), respectively. 
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The second example corresponds to Figs. 5.1(b) and (f) that both filters are 

designed with two transmission zeros at Ω=1.6, and -2. The synthesized coupling 

matrices corresponding to Fig. 5.1(b) and Fig. 5.1(h) are shown in (5.16) and (5.17), 

respectively. 
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For the conventional CT filter in (5.16), the asynchronous tuning of the resonator 

length would be as high as -1.0914 and 0.9886 which correspond to 2.66% length 

decrease and 2.5% length increase of original length change respectively when 

fractional bandwidth of the filter is 5%. This would certainly causes the difficulties 

during fine tuning of the filter. Moreover, the strong cross coupling MS2=0.7555 

which is even stronger than the main coupling MS1=0.7516. Again, implementation of 

such a strong cross coupling would be a problem. 

The proposed filter in (5.17) has much smaller length adjustment of M22=-0.2281 

and M11=M33=0.0725 which correspond to 0.56% length decrease and 0.18% length 

increase of original length change respectively when fractional bandwidth of the filter 

is 5%. According to our experience, this will not be hard to fine tune. Furthermore, 

the cross couplings of M13=0.2289 and MS3=M1L=-0.2264 are less than one third of the 

cross couplings in the conventional CT filter in (5.16). 

The third example corresponds to Figs. 5.1(c) and (e) that both filters are 
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designed with two finite transmission zeros at Ω=±1.6. The synthesized coupling 

matrices corresponding to Fig. 5.1(c) and Fig. 5.1(e) are shown in (5.18) and (5.19), 

respectively. 
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Due to very close transmission zeros of Ω=±1.6, the cross coupling MS3=-0.5697 

in (5.18) is very strong. Moreover, the layout of the filter must be asymmetric. 

However, in (5.19), the coupling matrix is bisymmetric, and the cross couplings 

M1L=MS3=-0.2963 are only about half of the conventional quadruplet filter in (5.18). 

Again, the bisymmetric coupling matrix in (5.19) implies a symmetrical layout that 

fine tuning of the filter would be much easier. 

Two overlapped quadruplet structure in Fig. 5.1(e) can be extended to the 

fourth-order filter as shown in Fig. 5.1(f). In this case, the transmission zeros can be 

even more close to the passband. For example, the coupling matrix of transmission 

zeros at Ω=±1.3 is obtained as (5.20). 
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Again, the coupling matrix implies a symmetric layout and moderate cross 

couplings of M2L=MS3=-0.2986. 

The coupling scheme in Fig. 5.1(f) can be further extended by applying the cross 

coupling from source to load (MSL) as shown in Fig. 5.1(g). The coupling scheme in 

Fig. 5.1(g) has two additional transmission zeros on both side of passband. For 

instance, the coupling matrix of the filter with two pairs of transmission zeros located 

at Ω=±1.3, ±3 are obtained as (5.21). 
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Because of the synthesized coupling matrices corresponding to the definite 

specifications, the properties of the three conventional coupling schemes and the 

proposed coupling schemes described above can be summarized as follows. For the 

trisection filters in Figs. 5.1(a) and (b), if the transmission zeros are very close to 

passband, the filters will be highly asynchronously tuned, and the cross couplings will 

be very large. The circumstances can be observed in (5.12) and (5.16). Thus, it results 

in manufacturing problems of planar forms such as microstrip. The planar filters of 

these kinds have two difficulties. First, the implementation of strong cross couplings 

always causes serious unwanted cross couplings and distorts the filter response. 

Second, the alignment of resonant frequencies of the seriously asynchronously tuned 

resonators always affects the desired coupling strength. For the filter in Fig. 5.1(c), 

although the quadruplet filter is synchronously tuned, the first difficulty still exists. It 

can be inspected in (5.18). The problems can be solved by the proposed modified 
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cross coupling schemes. By observing the coupling matrices in (5.13), (5.17) and 

(5.19), the proposed coupling schemes can implement filters with transmission zeros 

much closer to the passband than conventional CT and CQ filters. It should be noted 

that the coupling matrix in (5.17) corresponding to the coupling scheme in Fig. 5.1(h) 

has much smaller values of the cross couplings and much less asynchronous tuning 

frequencies than that of Fig. 5.1(b). In addition, the coupling matrices show the 

bisymmetric property. Bisymmetric matrices can have symmetric physical layouts. 

The symmetric layouts make the fine tuning of the filters much easier than the filters 

with asymmetric layouts because the number of tuning variables is halved in the 

symmetric case. 

 

            

     (a)                                    (b) 

Fig. 5.2.  (a) Parallel-coupled line section and (b) its equivalent circuit using a 
J-inverter. 

 

B. The Parallel-Coupled Line Realizations 

All of the proposed coupling schemes have the property that they all have the 

cross couplings between source and load and nonadjacent resonators. Therefore, the 

proposed coupling schemes are extremely suitable for parallel-coupled filter 

realizations [69], [93], [97], [101]. Fig. 5.2(a) shows the parallel-coupled line section 

and its equivalent circuit is illustrated in Fig. 5.2(b). Each coupled-line section has an 

electrical length of 90o at the frequencies according to the values of diagonal elements 

in the coupling matrix. Thus, the values of the admittance inverters corresponding to 

the main coupling element values of the coupling matrix can be obtained from (5.22). 
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After calculating each J-inverter, the even- and odd-mode characteristic 

impedances of each coupled-line section can be approximately obtained from (23). 
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After achieving the core portion of the parallel-coupled filter, the cross couplings 

are then applied following the procedures described in [101]. 

 

 

5.4 Design Examples and Experiment Results 

Several examples in this section will be implemented using microstrip line. The 

Rogers RO4003 substrate with a dielectric constant of 3.58 and thickness of 20 mils is 

chosen for implementations of the filters. 

 

A. The trisection filters corresponding to Figs. 5.1(d) and (h) 

The first two examples are two-order modified trisection filters and their 

coupling scheme is shown in Fig. 5.1(d). The transmission zero is located at Ω=3 for 

one filter and Ω=-5 for the other. The corresponding coupling matrices are shown in 

(5.13) and (5.15) respectively. The transformed matrices responses with a center 

frequency of 2.45 GHz and fractional bandwidth of 3% are shown in Fig. 5.3. From 

(5.22) and (5.23) the electrical parameters of the main coupling path can be obtained 

as Zoe1 = Zoe3 = 66.78 Ω, Zoo1 = Zoo3 = 40.25 Ω, Zoe2 = 53.89 Ω, and Zoo2 = 46.63 Ω  
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Fig. 5.3.  Ideal performances calculated from the synthesized coupling matrices in 

(5.13) solid line, and (5.15) dotted line. 
 

 

(a) 

 
(b) 

 

(c) 
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(d) 

Fig. 5.4  The layouts and the simulated and measured performances of the filters in 
Fig. 5.1(d). (a) Layout for the design with a transmission zero at Ω=3 (unit: mils). (b) 
Layout for the design with a transmission zero at Ω=-5 (unit: mils). (c) Simulated and 
measured results corresponding to Fig. 5.4(a). (d) Simulated and measured results 
corresponding to Fig. 5.4(b). 

 

 

 

 

corresponding to (13), and Zoe1 = Zoe3 = 66.81 Ω, Zoo1 = Zoo3 = 40.25 Ω, Zoe2 = 54.10 Ω, 

and Zoo2 = 46.48 Ω corresponding to (5.15). The electrical lengths of the coupled-line 

sections are all 90o at 2.45 GHz. Due to the very small frequency shifts caused by M11 

and M22, there is almost no need to modify the length of the resonator. Then, follow 

[103] to add cross coupling paths. Figs. 5.4(a) and (b) show the physical dimensions 

of the filters. In Fig. 5.4(b), the electrical length of two identical delay lines is 360o at 

center frequency for realizing the cross couplings MS2 and M1L. The full EM simulated 

results of the filter structures were performed to take all the EM effects into 

consideration by using a commercial electromagnetic simulator Sonnet [100]. The 

EM simulated and measured results of the two filters are shown in Fig. 5.4(c) and Fig. 

5.4(d). In Fig. 5.4(d), there is an additional transmission zero at about 2.1 GHz due to  
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(a) 

 

(b) 

 

(c) 

Fig. 5.5. The proposed three-order CT filter. (a) Ideal real frequency responses. (b) 
Layout (unit: mils). (c) Simulated and measured results. 

 

the unwanted cross coupling MSL. For the CT filter corresponding to Fig. 5.1(h), the 

calculated ideal bandpass responses with Ω=1.6 and -2, center frequency of 2.4 GHz, 

and fractional bandwidth of 5% are shown in Fig. 5.5(a). Then, taking the similar 

procedures as described above, and performing a full EM simulation to fine tune the 



 109

responses, the final layout is obtained as shown in Fig. 5.5(b). It should be 

emphasized that the J-inverter equivalent in Fig. 5.2(b) is only valid at center 

frequency. The more the asynchronous tuning is, the more discrepancy of the 

equivalent circuit will be. Here, the equivalent circuit model is still valid because the 

asynchronous tuning is small. The electrical length of the two identical delay lines is 

360o at the center frequency. Fig. 5.5(c) depicts the EM simulated and measured 

results. In Fig. 5.5(c), there are two additional transmission zeros at about 2.02 GHz 

and 2.98 GHz due to the unwanted cross coupling MSL. 

 

B. The quadruplet filters corresponding to Figs. 5.1(e) and (f) and the modified 
canonical-form filter corresponding to Fig. 5.1(g) 

For the quadruplet filter in Fig. 5.1(e), the ideal bandpass responses calculated 

from (5.19) with transmission zeros at Ω=±1.6, center frequency of 2.4 GHz, and 

fractional bandwidth of 5% are depicted in Fig. 5.6(a). The ideal bandpass responses 

excluding all cross coupling elements in (5.19) are also shown in Fig. 5.6(a). It can be 

obviously seen that adding the cross couplings in the proposed coupling scheme 

influence the in-band responses very little even for transmission zeros very close to 

the passband. Figs. 5.6(b) and 5.6(c) show the physical dimensions and the simulated 

and measured performances. In order to reveal the merit of the proposed filter, a 

quadruplet filter with coupling scheme in Fig. 5.1(c) with the same specification is 

designed, and its synthesized coupling matrix is in (5.18). The detail dimensions to 

achieve the specification are shown in Fig. 5.6(d). As can be seen in the layout that 

the gap used to realize the cross coupling MS3 in Fig. 5.1(c) is only 1 mil (0.025mm) 

which is far beyond the limit of standard printed circuit board process. 

Similarly, the same concept of the filter in Fig. 5.1(e) can also be applied to the 

fourth-order quadruplet filter in Fig. 5.1(f). Again, two finite transmission zeros at  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig. 5.6.  The proposed third-order quadruplet filter. (a) Two ideal frequency 
responses: one is to consider the matrix in (5.19) solid line and the other is to exclude 
all the cross-coupling elements in (5.19) dotted line. (b) Layout (unit: mils). (c) 
Simulated and measured performances. (d) Layout for realizing the coupling scheme 
in Fig. 5.1(c). 

 

Ω=±1.3 are very close to the passband. The synthesized coupling matrix is shown in 

(5.20). The bandpass filter is designed with a center frequency of 2.4 GHz and 

fractional bandwidth of 7%. The ideal responses, physical dimensions, and the 

simulated and measured results are shown in Fig. 5.7. 

 

 

(a) 

 

(b) 
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(c) 

Fig. 5.7.  The modified fourth-order quadruplet filter. (a) Ideal responses. (b) Layout 
(unit: mils). (c) Simulated and measured performances. 

 

By introducing the source-load cross coupling as shown in Fig. 5.1(g), the 

canonical form response with two additional transmission zeros than the quadruplet 

on both sides of passband are created. In this example, two additional transmission 

zeros at Ω=±3 are chosen. The synthesized coupling matrix is shown in (5.21). The 

observation between the coupling matrices in (5.20) and (5.21) shows that it is no 

need to modify the main structure. The physical layout is shown in Fig. 5.7(b) that 

only modification is to add two extra delay lines to realize the coupling MSL. The ideal 

responses, physical dimensions, and the simulated and measured results are shown in 

Fig. 5.8. Due to the physical layout of the filter, a bond wire is needed to realize MSL. 

 
(a) 
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(b) 

Fig. 5.8.  The modified fourth-order quadruplet filter with source-load cross coupling. 
(a) Layout (unit: mils). (b) Simulated and measured performances. 
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Chapter 6 Exact Synthesis of New High-Order Wideband Marchand 

Balun 

New high-order Marchand baluns with ultra wideband performances are 

proposed in this chapter. The Marchand baluns are synthesized based on an S-plane 

highpass prototype using the Richards’ transformation. The responses of the 

synthesized high-order Marchand baluns are exactly predicted at all real frequencies. 

The electrical lengths of all the transmission line elements are a quarter-wavelength 

long at the center frequency. Two fifth-order Marchand baluns with synthesized 

reflection coefficients -20.53dB and -21.71dB which correspond to 131% and 152% 

bandwidth respectively are directly realized using the combinations of microstrip line, 

slotline and coplanar stripline sections. Simulated and measure results are showed. In 

addition, the sixth-order prototype of Marchand balun is presented to discuss. 

6.1 Introduction 

Baluns [119] are widely used in many radio frequency and microwave 

communication systems. The main function of baluns is to transform an unbalanced 

transmission signal to a balanced transmission signal, and vice versa. Thus, baluns 

can be used in antennas excitation or balanced circuit topologies such as balanced 

mixers, push-pull amplifiers, and phase shifters. There are many types of baluns as 

proposed in [111], [112], [123], [124]. Among the various kinds of balun, Marchand 

balun [102], [106], [107], [115], [120] is extremely popular because of its 

comparative good wideband amplitude and phase balance than that of the others. 

Several methods of fabrication have been proposed to realize Marchand balun [102], 

[106], [107], [115], [120], [121], [122], [125], [126], [141], [142]. 

In designing coupled-line Marchand balun, various analysis methods were 

presented. In [122], [141], using relationships of the power wave in a balun to derive 

the scattering parameters can analyze a symmetrical Marchand balun, but it is exact 
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only at the center frequency. In [125], inclusion of the parameter of the electrical 

length of the transmission line can predict broadband performances, but the approach 

lacks generality. Furthermore, to achieve wider bandwidth multi-conductor coupled 

lines to realize tight couplings were presented. Another method is the even- and 

odd-mode analysis method. However, it is limited to the case of a symmetrical 

coupled-line Marchand balun with maximum flat responses. Actually, exact synthesis 

of conventional Marchand baluns has been presented in [102], [106], [107], [115]. A 

Chebyshev response can be synthesized using the synthesis method. In focusing on 

planar coupled-line technology to realize Marchand baluns, useful design values of 

even- and odd-mode parameters in each coupled line are available in [115]. 

Nevertheless, when bandwidth of a balun is a major consideration, one should 

concern the limited range of practical even- and odd-mode impedance values of 

coupled lines. 

The purpose of this chapter is to propose new higher-order wideband Marchand 

baluns. Emphasis is placed on new Marchand baluns with higher order more than a 

conventional fourth-order Marchand balun and realizable ultra-wideband baluns in 

planar technology. In synthesizing Marchand balun, exact synthesis of filters with 

circuit analysis to then obtain prescribed characteristic functions [134], [135] can be 

used to extract element values of Marchand balun. Thus, the design of the proposed 

baluns is based on S-plane high-pass prototype using Richards’ transformation S = 

jtan(π/2(f/f0), where f0 is the center frequency of the passband, and f and S are the real 

frequency domain and Richards’ frequency domain variables, respectively. By 

applying proper circuit transformations, the original distributed circuit of the proposed 

Marchand balun as shown in Fig. 6.1 can be converted into a fifth-order S-plane 

high-pass prototype balun. With the aid of synthesis method, all elements of the 

synthesized prototype can be obtained. Thus, the design parameters of the original  
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Fig. 6.1.  The distributed circuit of the proposed fifth-order Marchand balun. 

 

circuit in Fig. 6.1 can be controlled. Direct realization of the proposed original balun 

circuit with very wideband responses is presented in planar form. In addition, a 

six-order Marchand balun is presented to discuss. 

6.2 Derivation of a Fifth-Order Marchand Balun 

The proposed distributed circuit of Marchand balun shown in Fig. 6.1 is 

composed of one open-ended stub, two short-ended stubs, one uniform transmission 

line connected to input port (unbalanced port), one uniform transmission line 

connected to two short-ended stubs, and two identical uniform transmission lines 

individually connected to two output ports (balanced ports) with impedance values 

corresponding to ZC, ZL1 and ZL2, Z1, Z2, Z3, respectively. The electrical lengths of all 

the stubs and uniform transmission lines are 90o at center frequency. Due to 

differential outputs, the two output ports can be combined into one port. Thus, the 

two-port distributed circuit can be simplified that is shown in Fig. 6.2(a). Its 

equivalent S-plane high-pass prototype is shown in Fig. 6.2(b). S is the Richards  
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Fig. 6.2.  The proposed fifth-order Marchand balun. (a) The two-port distributed 
circuit simplified in Fig. 6.1. (b) Its S-plane high-pass circuit. 

 

variable defined as 

                  
0

tan tan
2

fS j j j
f

πθ
⎛ ⎞

= Ω = = ⎜ ⎟
⎝ ⎠

                      (6.1) 

where f0 is the center frequency of the passband, and f and S are the real frequency 

domain and Richards’ frequency domain variables, respectively. The open-ended and 

short-ended stubs in the f-plane become a capacitor and inductors, respectively, in the 

S-plane. The interconnecting uniform transmission lines in the f-plane are turned into  
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Table 6.1 The relationships between distributed circuits in the f-plane and high-pass 
circuits in the S-plane, and the corresponding ABCD parameters. 

 

the unit elements (UE) in the S-plane though the effect of the Richards transformation. 

The description of the parameters of the three important components in high-pass 

prototype is shown in Table 6.1. 

To derive a final fifth-order Marchand balun, circuit transformations will be used. 

Firstly, the circuit transformation to be used is the Kuroda’s identity as shown in Fig. 

6.3(a) [131]. The Kuroda transformation is now applied to the shunt inductor L1 in Fig. 

6.2(b), thus changing the position of the shunt inductor from one side of the unit 

element Z2 to another side. The transformed circuit is shown in Fig. 6.3(b) with the 

following transformation equation. 

                          2 2

1

1 Zn
L

= +                               (6.2) 
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(a) 

 
(b) 

Fig. 6.3.  The first transformation. (a)The kuroda identity transformation from [131]. 
(b) After kuroda identity transformation in Fig. 6.2(b). 

 

Secondly, observation of the two shunt inductors connected by the 1 : n2 transformer 

shown in Fig. 6.3(b) shows that one redundant shunt inductor exists. Hence, to 

combine the redundant element, a new circuit transformation should be derived. 

Consider the new circuit transformation in Fig. 6.4(a). The ABCD-parameters of the 

left circuit in Fig. 6.4(a) are 
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2 2
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               (6.3) 

And the ABCD-parameters of the right circuit in Fig. 6.4(a) are 
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              (6.4) 
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(a) 

 
(b) 

Fig. 6.4.  The second transformation. (a) New exact circuit transformation. (b) Apply 
exact circuit transformation in Fig. 6.4(a) to Fig. 6.3(b). 

 
Fig. 6.5.  The final fifth-order S-plane high-pass prototype of Marchand balun. 

 

Assume that (6.3) equal to (6.4), the transformed parameters can be obtained as 

follows. 

                    

' 2
2 4

1
3 4

UE
UE

LL
n

ZZ
n

=

=
                             (6.5) 

Thirdly, by applying the new derived circuit transformation the further transformed 

circuit can be obtained, which is shown in Fig. 6.4(b). Finally, the two shunt inductors 

can be combined, and the 1:n2 transformer can be absorbed into the load termination. 

Consequently, the final fifth-order Marchand balun prototype is shown in Fig. 6.5 

with the following relations: 
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' 2
2 2

ZZ
n

=                            (6.6) 

' 1 2
2 2

1 2( )
L LL

n L n L
=

+
                      (6.7) 

' 3
3 4

2ZZ
n

=                           (6.8) 

'
4

2RR
n

=                            (6.9) 

The design parameters in (6.2) and (6.6)-(6.9) complete the transformation of the 

balun prototype of Fig. 6.2(b) into that of Fig. 6.5. 

 

6.3 Synthesis and Design of Two Balun Examples 

A. Synthesis Procedures 

Before designing the proposed balun, two important points should be addressed 

in the following. The first point is to determine a characteristic transfer function of the 

fifth-order Marchand balun. The second point is to apply exact synthesis to the 

proposed balun such that the wideband responses can be predicted.  

By observing the prototype circuit in Fig. 6.5, the suitable characteristic function 

exhibiting the Chebyshev responses, which is comprehensively discussed in [135], is 

given by: 

      

2
2 2

2 2

2 2

1 1
( )

1 1
C CC C

m n m n

S SS SK S T T U U
S SS S

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠− −⎝ ⎠ ⎝ ⎠⎣ ⎦

        (6.10) 

where ( )0tan 2C CS j f fπ= , fC is the filter cutoff frequency that is used to determine 

the bandwidth of the balun, ε specifies equal-ripple value, and Tm(x) and Um(x) are the 

unnormalized Chebyshev polynomials of the first and second kinds of degree m, 

respectively. In (10), the subscript m and n denote the number of high-pass ladder 

elements (series capacitors and shunt inductors) and unit elements, respectively. 

Given ( ) 2
K S , the square of the magnitude of the input reflection coefficient is 
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obtained using 

                 ( )
( )

( )

2
2

11 2
1

K S
S S

K S
=

+
                        (6.11) 

Then, ( )11S S  can be found with the knowledge that 

                    ( ) ( ) ( )2
11 11 11S S S S S S= −                       (6.12) 

The relationship between input impedance ( )inZ S  and ( )11S S  with a normalized 

source resistance of 1-Ω is 

                     ( ) ( )
( )

11
in

11

1
1

S S
Z S

S S
+

=
−

                         (6.13) 

The circuit prototype to be synthesized is shown in Fig. 6.5. The first element 

type to be extracted is the unit element. By applying Richards’ theorem a unit element 

can be obtained using 

                       ( )UE, in, 1i iZ Z=                            (6.14) 

where UE,iZ  denotes the impedance value of ith unit elements and ( )in, 1iZ is the input 

impedance looking from ith unit elements. 

The input impedance of the remaining network after removal of the unit element is 

                  ( ) ( ) ( ) ( )
( ) ( )

in, in'
in, in,

in in,

1
1

1
i

i i
i

SZ Z S
Z S Z

SZ S Z
−

=
−

              (6.15) 

where the common (S2-1) factor can be cancelled. 

The second and third element types to be extracted are the series capacitor and 

shunt inductor. The method that is used to synthesize lumped element ladder networks 

can be applied to this balun prototype and obtain the element values of the series 

capacitor and shunt inductor. 
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B. Two Example Designs 

The two examples of fifth-order equal ripple wideband Marchand baluns 

corresponding to the S-plane high-pass prototype as shown in Fig. 6.5 are considered 

in this chapter. 

The first designed balun is with a center frequency f0 of 2 GHz, a normalized 

cutoff frequency of SC=j0.6 corresponding to bandwidth of 131%, and ripple level 

ε=0.0945 corresponding to a return loss of 20.53 dB. By using (6.10), the 

characteristic polynomial 2( )K S  can be constructed as 

     
8 6 4 2

2
10 8 6 4

0.1965 0.9304 1.4332 0.7855 0.1400( )
3 3

S S S SK S
S S S S

+ + + +
=

− + − +
        (6.16) 

Then, the square of the magnitude of the input reflection coefficient is established by 

(6.11), and with the knowledge of (6.12) it can lead to 

 

      
4 2

11 5 4 3 2

0.4433 1.0496 0.3743( )
3.7102 5.2847 3.8768 1.4545 0.3741

S SS S
S S S S S

+ +
=

+ + + + +
     (6.17) 

 

Use of (6.13) can obtain the polynomial of the input impedance as 

 

     
5 4 3 2

in 5 4 3 2

4.1535 5.2847 4.9264 1.4545 0.7484( )
3.2669 5.2847 2.8272 1.4545

S S S S SZ S
S S S S S

+ + + + +
=

+ + + +
     (6.18) 

 

The following step is to synthesize the element values in Fig. 6.5. To extract a unit 

element and obtain the input impedance of the remaining network, (6.14) and (6.15) 

are used. And the standard synthesis procedure of lumped element ladder networks is 

to extract a series capacitor and a shunt inductor. Thus, the circuit parameters of the 

first designed balun in a normalized source resistance of 1-Ω are: 
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                          (6.19) 

And then substituting (6.19) into (6.2) and (6.6)-(6.9) and de-normalizing to 50-Ω 

system give the design parameters of Fig. 6.1 as follows. 
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                          (6.20) 

The second designed balun is with a center frequency f0 of 2 GHz, a normalized 

cutoff frequency of SC=j0.4 corresponding to bandwidth of 152%, and ripple level 

ε=0.08243 corresponding to a return loss of 21.71 dB. Similarly, follow the 

synthesized procedures as described in the first designed balun. The polynomial of the 

input impedance ( )inZ S , the circuit parameters corresponding to Fig. 6.5 in a 

normalized source resistance of 1-Ω, and the design parameters of Fig. 6.1 in 50-Ω 

system are shown in (6.21)-(6.23), respectively. 

  
5 4 3 2

in 5 4 3 2

3.7080 4.1420 2.7908 0.5574 0.1700( )
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                          (6.23) 

The ideal responses of the two designed balun corresponding to the circuit of Fig. 

6.5 are shown in Fig. 6.6. 

 
Fig. 6.6.  The ideal responses of the first and second designed baluns with bandwidth 

of 131% and 152%, respectively. 
 

6.4 Physical Implementation and Experimental Results 

The implementations of the two designed wideband baluns in Section 6.3.B are 

constructed using hybrid microstrip line, slotline and coplanar stripline structures. A 

0.635-mm-thick RT/Duroid 6010 substrate with a dielectric constant of 10.2 and a 

loss tangent of 0.0023 is used to implement these wideband balun circuits. The 

distributed circuits to be directly realized are the circuit shown in Fig. 6.1. Here, the 

two short-ended stubs ZL1 and ZL2, the uniform transmission line Z2, the open-ended 

stub ZC, and other uniform transmission lines Z1 and Z3 are implemented by coplanar 

striplines, a slotline, and microstrip lines, respectively [138]-[140]. All the stubs and 

uniform transmission lines are with electrical lengths of 90o at center frequency of 

f0=2 GHz. 
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Fig. 6.7.  Physical layout of the first designed fifth-order balun with SC=j0.6 (unit: 
mm). 

The first designed wideband balun with design parameters of (6.20) is 

implemented and its detailed physical dimensions are shown in Fig. 6.7. The design 

was accomplished with a commercial EM simulator Ansoft’s High Frequency 

Structure Simulator (HFSS). Fine tuning in HFSS was performed to take all the EM 

effects into consideration. Fig. 6.8(a) shows the magnitudes of the ideal synthesized, 

simulated and measured performances. The measured return losses are better than 10 

dB from 0.7 to 3.5 GHz. The measured amplitude balance and phase difference are 

shown in Fig. 6.8(b). The amplitude balance is within 1±  dB from 0.72 to 3.62 GHz 

and the phase difference is within 180 10o o±  from 0.7 to 3.53 GHz. 

 
(a) 
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(b) 

Fig. 6.8.  Measured and simulated performances of the first designed fifth-order 

balun. (a) 11S , 21S and 31S . (b) Amplitude balance and phase difference. 

 
Fig. 6.9.  Physical layout of the second designed fifth-order balun with SC=j0.4 (unit: 
mm). 

A second implementation is the second designed wideband balun with design 

parameters of (6.23). It should be pointed out that the impedance value of ZL2 is 

higher than 1000 Ω, thus leading to the removal of the ZL2 section. The physical balun 

layout with detailed dimensions is shown in Fig. 6.9. The magnitudes of the ideal 

synthesized, simulated and measured performances are shown in Fig. 6.10(a). The 

measured return losses are better than 10 dB from 0.52 to 3.68 GHz. Fig. 6.10(b) 
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shows the measured amplitude balance and phase difference. The amplitude balance 

is within 1±  dB from 0.46 to 3.75 GHz and the phase difference is within 

180 10o o±  from 0.46 to 3.62 GHz. 

 

 
(a) 

 
(b) 

Fig. 6.10. Measured and simulated performances of the second designed fifth-order 

balun. (a) 11S , 21S and 31S . (b) Amplitude balance and phase difference. 
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Fig. 6.11.  The sixth-order S-plane high-pass prototype of Marchand balun. 

 

6.5 A Sixth-Order S-plane Prototype Balun 

An effective way to increase the order of Marchand balun is to add nonredundant 

unit elements. Fig. 6.11 shows the S-plane prototype circuit of a sixth-order Marchand 

balun. The best description of its rationality of the circuit is to present a synthesis 

example. Here, define a ripple level ε=0.1807 corresponding to a return loss of 14.9 

dB and a normalized cutoff frequency of SC=j0.3 corresponding to bandwidth of 

162.88%. Following the procedures in (6.10)-(6.13), the polynomial of the input 

impedance can be obtained as 
6 5 4 3 2

in 6 5 4 3 2

1.1779 4.2950 9.2555 6.3402 4.0811 0.6273 0.2090( )
0.8221 4.2950 5.9081 6.3402 1.8829 0.6273

S S S S S SZ S
S S S S S S

+ + + + + +
=

+ + + + +
 

(6.24) 
which is then synthesized using standard element extraction. The circuit parameters 
with a little optimization in a normalized source resistance of 1-Ω are 
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Therefore, upon the values of the circuit parameters, such a sixth-order prototype 
circuit of Marchand balun is suited for designs of very wideband baluns. 
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Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

This dissertation is devoted to the design of parallel-coupled filters with cross 

coupling, stepped impedance resonator filters with sharper selectivity and wide 

stopband rejection, development of new cross coupling schemes, and novel wideband 

Marchand balun. 

A review of related filter synthesis methods, impedance and admittance inverters, 

coupled-line circuits, stepped impedance resonators, segmentation method using 

coupled-resonators theory, and distributed transmission line theory including Richards 

theory and element extraction are given in Chapter 2. 

In chapter 3, the proposed cross-coupled filters are simple and easy to design. 

The cross-coupled filters have the advantages of small circuit size, high selectivity 

and wide rejection bandwidth. The circuit layout is easy to apply the source-load 

coupling and adjust the coupling strength. 

The parallel-coupled filters with generalized Chebyshev responses are introduced 

in Chapter 4. The proposed filters can be quickly designed due to the well-known 

analytical design method based on a conventional parallel-coupled structure. The 

arbitrarily located transmission zeros have been fully discussed by observing the 

relative phase shifts of the lumped-element equivalent circuit of the parallel-coupled 

filter. With this approach, it is easy to design the parallel-coupled filter with a CT, a 

CQ, or a mixed cascaded quadruplet and trisection response. This newly proposed 

filter structure has shown properties of insensitive layout, flexible responses, good 

performance, and quick design procedures. 

The success in the development of novel coupling schemes which are all with the 

properties of bisymmetric coupling matrix, weak cross couplings, and 

synchronous-tuned or very tiny asynchronous-tuned resonators has been demonstrated 
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in chapter 5. Due to the bisymmetric coupling matrices, the physical layouts of the 

filters to be realized may be symmetric. The proposed bisymmetric coupling schemes 

are suitable for designing microwave filters with transmission zeros very close to the 

passband. 

In chapter 6, higher-order Marchand baluns have been proposed. The initial 

distributed circuit of fifth-order Marchand balun to be directly realized can be 

transformed into the final prototype circuit via a series of circuit transformations. Two 

examples of fifth-order Marchand baluns with ideal bandwidth of 131% and 152% are 

synthesized and implemented. In addition, the sixth-order Marchand balun has been 

introduced and discussed. 

 

7.2 Future Work 

    The higher-order Marchand baluns have been synthesized based on S-plane 

high-pass prototype. The design of high-pass prototype is that the electrical length of 

all the transmission line sections is 90o at the center frequency of fo. To reduce the 

circuit size, an S-plane bandpass prototype of Marchand balun may be proposed so 

that the electrical length of each transmission line section is less than 90o at the center 

frequency of fo. A description of the synthesis technique based on S-plane bandpass 

prototype is given in [143]. With the synthesis technique, higher-order Marchand 

baluns with compact sizes and wideband performances will be studied in the future. 
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