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Abatract

The research topics in this dissertation are divided into two parts; one is
microwave filter design, the other is Marchand Balun design. The first topic is to
utilize quarter-wave stepped impedance resonator to design high performance filter,
study how to quickly design cross-coupled filters, and develop novel coupling
schemes. In this dissertation, quarter-wave stepped impedance resonators are utilized
to realize quadruplet and canonical-form coupling schemes. The proposed filter is
easy to apply and control the source-load cross coupling. General speaking, most of
the filter designs are to use coupling coefficients and external quality factor to design
cross-coupled filters. Once the physical layout of the resonator is decided, the
extracted coupling coefficients can be only used at the center frequency. Furthermore,
if one coupling coefficient in the coupling matrix changes sign for shifting the

transmission zero from one side of the passband to the other, the physical layout must
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be reconfigured. The initial design of cross-coupled filters based on segmentation
method is not good enough, so tuning of filter performances must spend much time.
This dissertation presents new cross-coupled filters based on a conventional
parallel-coupled filter. The proposed filters have the advantages of the ability to locate
a transmission zero on the lower or upper stopband and a good initial design.
Additionally, the novel coupling schemes are presented to exhibit bisymmetric
coupling matrix. The novel coupling schemes provide the implementations of
symmetric layouts to realize asymmetric filter responses. Using the novel coupling
schemes implementation of generalized Chebyshev filters with transmission zeros
very close to the passband can be easily realized in planar technology.

The second topic is to describe the synthesis method of the networks which are
composed of the distributed transmission line circuits. The synthesis method is exact
at all frequencies. Richards variable, transmission line networks, Richards theorem,
kuroda identities and transmission line approximating functions are discussed in
detailed. In addition, high-order wideband Marchand baluns are presented in this
dissertation and the exact synthesis of the proposed Marchand baluns with Chebyshev
responses are introduced. The proposed high-order Marchand baluns are suitable to

design wideband responses.
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Chapter 1 Introduction
This dissertation includes two topics. The first topic is devoted to novel
microwave cross-coupled filter design. The second topic is to design new higher-order

Marchand balun based on exact synthesis technique.

1.1 Microwave Filters

Microwave filters are one of the important components in modern microwave
communication systems. The frequency of microwave ranges from 300 MHz to 300
GHz corresponding to wavelengths (in free space) from 1 m to Imm. The concept of
electromagnetic waves should be used to describe the features of microwave
components including microwave filters. Microwave filters are used to pass the
wanted signals at frequencies within the passband and suppress the unwanted signals
in the stopband. Filters for microwave .applications must meet ever tighter
specifications on electrical performances, and on size, weight, and reliability. The
demands are growing more stringent on losses, steepness of cutoff, bandwidth, and
linearity of phase shift (flat group delay). New features such as electronic tunability
are being sought. Integrations of microwave filters with couplers, amplifiers, and
frequency multipliers are becoming more important on system performance. To
handle the rapid advance of applications of the modern communication systems,
network analysis, accurate synthesis, design and diagnosis of filter networks have
become one of the key technologies to fulfill the new challenges of reliability,
insensitivity, low manufacturing cost, and minimum tuning effect on filter
performance [1]-[2]. The historical review describing the development of the
microwave filters is given in [3]-[5]. Different filter types and important references
are given. Recently, among various kinds of microwave filters, microwave

coupled-resonator filters are very popular. Generally, coupled-resonator filters with
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cross coupling between nonadjacent resonators can exhibit steeper transfer function or
flatter group delay, and they are called cross-coupled filters. The theory of
cross-coupled filters [6], [7] provides a systematic design procedure that allows a
filter with sharper selectivity and/or equalized group delay for various requirements in
microwave systems. Most important characteristics of cross-coupled filters can be
obtained by the corresponding coupling matrices.
1.1.1 Review of Coupled Resonator Filters and Cross-Coupled Filters

Initially, the research work on the design and synthesis of microwave filters can
be traced back to the 1930’s [3]. At that time, network theory was probably the most
advanced topic in engineering. The famous cascade synthesis theory as far back as
1939 [8] was published by S. Darlington. In his work, modern filter designs such as
filters with finite frequency transmission':zeros are included. The theory of
direct-coupled cavity filters based on low-pass lumped-element prototype was
presented by Fano and Lawson [3].. The main problem of Fano and Lawson theory
was the lack of specific formulas for the low-pass prototype. The paper proposed by
Cohn in [9] gives a comprehensive theory and extends the range of applicability to
much broader bandwidths, i.e., about 20 percent in terms of guide wavelength. Later,
in the 1960’s, a remarkable improvement in the applicable bandwidth to beyond 20
percent was made by Leo Young [10]. He succeeded in realizing the direct-coupled
filters beyond 20 percent by using a distributed rather than a lumped-element
prototype filter. In 1966, Levy [11] established a quite direct design in cavity filters
and, thus enabling the desired parameters of the filter, i.e., number of cavities, ripple
level, and band edges to be a simple formula which is used to derive the correct
distributed prototype.

The first description of cross-coupled filters may be appeared to be by J. R.

Pierce in the late 40°’s [12]. However, the developments of cross-coupled filters took
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place after 1965 or so. The cross coupling between nonadjacent resonators are
introduced to generate transmission zeros. The cross coupling are mainly generated by
the multipath. Applying suitable multi-path effect can bring transmission zeros from
infinite to finite frequencies in the transfer function. Thus, attenuation poles at finite
frequencies, or group delay flattening, or even both simultaneously can be achieved
by observing the phases of the signals between different paths. A lot of related
research works on the filter with cross coupling have been reported [12]-[33].
Furthermore, filter synthesis utilizing optimization techniques [34], [35] are used to
obtain the required filtering functions.

Synthesis technique and implementation methods for the cross-coupled filters,
which are shown in [12]-[35], have been developed for couples of decades. The most
significant developments took place in'the 1970’s in laboratories concerned with
satellite communications, particularly at COMSAT by Atia and Williams [19]-[20],
[23]. Their work on elliptic function and linear-phase waveguide filters using
dual-mode cavities with cross coupling was particular significant. The dual-mode
cavity filters introduced by Atia and Williams have resulted in the virtual
standardization of these designs for satellite transponders.

Recently, one of the most important progresses in generalized filter synthesis is
done by Richard Cameron. Richard Cameron published two papers [36], [37] which
focused on generalizing the synthesis technique for the cross-coupled resonator filter
with the generalized Chebyshev filtering function. With his work, N prescribed
finite-position transmission zeros in an Nth-degree network are described. The
synthesis method includes multiple input/output couplings, i.e., couplings may be
made directly from the source and/or to load to internal resonators. The synthesized
N+2 fully canonical coupling matrix for transversal array can completely describe all

the possible generalized Chebyshev responses. With a series of similarity
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transformations, the fully canonical coupling matrix can be reconfigured into a
wanted coupling topology which is more convenient for the realization. The basic
theory will be shown in Chapter 2.

Another attractive topic developed for several decades is the computer-aided
diagnosis and tuning of cross-coupled filters. This is due to the continuous demand on
reducing the manufacturing cost and development time for various filters with
different specifications. It should be pointed out that filters with generalized
Chebyshev responses are more difficult to fine tuned than that with Chebyshev or
Butterworth responses. Thus, without a systematic adjustment method, it would spend
much time on the tuning of filter performances, particularly for highly selective filters.
Several research works focused on this problem [38]-[51]. The first effort for the
adjustment and alignment of microwaye filtérs. can be traced back to Dishal [38] in
the early 50°s when he utilized the filter return loss as the criterion for tuning. Atia
and Williams [39] proposed a method for measurement of inter-resonator couplings
based on measuring the phase responses of the reflection coefficient of a
short-circuited network which consists of identical synchronously-tuned resonators.
Thal [40] utilized the equivalent circuit in conjunction with phase measurement for
filter diagnosis. In [41], a tuning method with short circuited networks for singly
terminated filters is presented. In [42]-[44], different optimization strategies and
schemes for parameter extraction are explored. Analytic methods in [45]-[47] are
derived to extract the coupling matrix from the locations of system zeros and poles. In
[48]-[50], the powerful Cauchy method is applied to get the rational polynomial
approximation of reflection and transmission coefficients from the EM simulated
results. In [51], eigenvalue approach is used to optimize the coupling matrix. The
method in [52] utilized the Cauchy method in [48]-[50] to obtain the corresponding

coupling matrix, and then optimize the rotation matrix to get the wanted coupling
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topology. Besides, sensitivity of coupled resonator filters is analyzed in [53]. Thus,
research concerning about cross-coupled filters have been studied for a long time, and
up to present some researches are presenting.

1.1.2 Motivation

The requirements of highly selectivity, flat group delay, compact sizes, and wider
rejection bandwidth are the significant studies of microwave filters. In addition, high
reliability, low sensitivity, low manufacturing cost, and minimized fine-tuning steps
on filter performance are also important.

Filters exhibiting high selectivity, broader upper stopband, and compact sizes are
popular topics. Many published papers have achieved the requirements. However, the
design method to control the finite transmission zeros is complex or difficult in most
of the published papers. Furthermore, the layouts are usually too complicated for the
published filters. To overcome: the difficulties, a filter utilizing a 4-order
canonical-form coupling scheme with A/4 stepped impedance resonators may be a
good choice.

In conventional cross-coupled filter designs, especially for microstrip filters,
adjustment the distance and the orientation of each pair of neighboring resonators to
get proper signs and magnitudes of the corresponding coupling coefficients is very
tedious and time-consuming. The design curves of coupling coefficient and external O
for filters are generated from an electromagnetic (EM) field solver. Such filter designs
can be found in Hong’s book [6]. When using this method as the initial dimensions of
filters, filter designer has to spend much time to tune filter performances. To solve the
drawbacks, new procedures to quick design of cross-coupled filters are demanded.

Another interesting topic is coupling schemes. The traditional 3-order trisection
filter has one transmission zero on upper or lower stopband and the 4-order

quadruplet filter has a pair of transmission zeros on both stopband. The order of the
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advanced trisection and quadruplet can be two and three, respectively. However, there
are problems of conventional or advanced trisection and quadruplet. As the
transmission zero is close to the passband, serious asynchronously-tuned resonators
for trisection cause serious effect on filter passband responses. Besides, when finite
transmission zeros are very close to the passband, both trisection and quadruplet
filters suffer from unrealizable gaps to implement the strong cross couplings. Thus,
the solution of the problems may require new coupling schemes which can achieve
trisection and quadruplet responses with transmission zeros close to the passband.

With the discussion described above, the first topic in this dissertation mainly
focuses on different circuit design of filter with compact sizes, high selectivity and
broad upper stopband, the development of new approach to cross-coupled filters, and
novel coupling schemes with transmission zeros very close to passband.

1.1.3 Literature Survey of Coupling Schemes and Realizations of Cross-Coupled
Resonator Filters

The existing well-known coupling schemes and the realizations of these coupling
schemes are surveyed as follows.

In the past, numbers of research works concentrate on the coupling topologies of
canonical form, cascade trisection (CT), and cascade quadruplet (CQ) [6], [24],
[54]-[61]. Recently, the progressive development is to include source and load to
nonadjacent resonator cross coupling [7], [52], [63]-[67]. The implementations of the
three different coupling schemes were presented in [68]-[85]. In [70], the
cross-coupling concept was firstly applied to the microstrip filters. Because of the
increasing power of computations of computers, Hong and Lancaster introduced the
method that by using electromagnetic (EM) simulators to get the S-parameters of the
desired structure the cross-coupled resonator filters realized in microstrip line can be

designed [70]-[72]. The coplanar waveguide structure is also presented to design
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cross-coupled filters [83], [84]. Furthermore, broadside coupled coplanar stripline
bandpass filters are designed to have finite transmission zeros successfully [85]. All
the papers in [68]-[85] can use this method to design canonical form, cascade
trisection, and cascade quadruplet filters with finite transmission zeros.

Recently, coupling schemes which exhibit so called zero-shifting properties were
introduced and applied to waveguide resonator filters [66], [86], [87]. The main
characteristic of the zero-shifting properties is the ability to shift a transmission zeros
from one side of the passband to the other by adjusting the resonator frequencies of
resonators instead of changing the sign of cross coupling. The doublet, extended
doublet and box section with zero-shifting characteristic have been successfully
implemented in microstrip form [88]-[90]. However, the coupling schemes are
inherently sensitive due to the two main coupling paths.

As described above, it is worth studying new cross-coupled schemes and filter
structures to solve these disadvantages.

1.1.4 Original Contribution of this Dissertation

The main contributions to cross-coupled filters in the first topic of this
dissertation are addressed in three aspects.

First, a fourth-order canonical-form microstrip filter utilizing quarter-wave
stepped-impedance resonators is presented. The requirements of compact sizes, sharp
selectivity, and wide upper stopband for filters are achieved. The proposed circuit
layout is easy to apply the source-load coupling and adjust the coupling strength.

Second, filters based on a conventional parallel-coupled structure [91]-[94]
which exhibit generalized Chebyshev responses are proposed. The cross-coupled
mechanisms of the proposed filters are originally investigated and presented. The
observations of the two-port admittance matrix in the network can obtain the relative

insertion phase from source or load to each open end of resonators. Thus, the cross
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coupling can be applied using a delay line with proper electrical length. Due to the use
of a conventional parallel-coupled structure, good initial dimensions can be obtained
by the analytic method. Using the proposed structure, the conventional
time-consuming adjusting procedure to obtain initial physical dimensions of filters,
which is described in [6], is no longer required. Two fourth-order mixed cascade
quadruplet and trisection filters are implemented to show properties of insensitive
layout, flexible responses, good performance, and quick design procedures. With this
approach, designer can eliminate tedious segmentation method for the filter design.

Finally, in this dissertation new coupling schemes where the corresponding
coupling matrices show the bisymmetric property are proposed. Most of new coupling
schemes have the properties of synchronous-tuned resonators, bisymmetric coupling
matrices, and relatively weak cross-coupled strengths for finite transmission zeros
very close to the passband. Filters:with symmetrical layout are possible to implement
the proposed bisymmetric coupling matrix that fine tuning of the filter would be much
easier. Low-order planar filters with the proposed coupling schemes can achieve high
selectivity.

1.2 Balun

In an unbalanced port, one of its two terminals is connected to the ground, an
example being the output of a conventional signal generator. A balanced port, on the
other hand, is one where both terminals are floating with respect to ground. Baluns are
devices for interconnecting a balanced port to an unbalanced one. The ideal balun is a
lossless, perfectly matched, two-port network whose properties are independent of
frequency and power level, and may also provide impedance transformations as well.
The ideal balun can be realized by the ideal transformer shown in Fig. 1.1, and
deviations from the ideal depend solely on how closely one can realize the ideal

transformer in practice.



Unbalanced Balanced
port port

Fig. 1.1. Realization of an ideal balun by an ideal transformer.

1.2.1 Literature Survey

Baluns (balanced-to-unbalanced) are important group of components which are
used in circuits where a transition between unbalanced and balanced modes of
excitation is required. The applications of baluns are frequently used in realizing
balanced mixers, amplifiers, frequency multipliers, phase shifters, modulators, and
dipole feeds, and numerous other applications. Over the past half-century, several
different kinds of baluns [102]-[126] have been developed, and some research works
on active baluns [127]-[129] are -also attractive. In the course textbook [94], the
contents of baluns and its applications may be good resources.

Among the various kinds of baluns, Marchand balun [102] is relatively popular
because of its excellent amplitude and phase balance. Marchand’s famous paper [102]
was published in December 1944. Marchand described three types of balun of
increasing complexity and performance, which are shown in Fig. 1.2. The most
sophisticated of the three types of baluns is shown in Fig. 1.2(c). The direct inspection
of third type of balun can obtain the equivalent circuit shown in Fig. 1.3. To analyze
and synthesize this balun the electrical lengths of the open and short-circuit stubs as
well as the lengths of transmission lines must be the same, in which case the lengths
of transmission lines are referred to as Unit Elements (U.E.) in filter technology. The
description of Unit Elements will be discussed in Chapter 2.

In December 1957, Roberts [103] published a paper describing the coaxial balun

9
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Fig. 1.2. Marchand balun. (a) Type 1. (b) Type 2. (c) Type 3.
shown in Fig. 1.4. Interestingly, the equivalent circuit of this coaxial balun is exactly
the same as Marchand’s but the author made no reference to Marchand in his paper.

However, the Roberts balun is a little easier to construct than Marchand’s.
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Fig. 1.3. Equivalent circuit of Marchand balun.
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Fig. 1.4. Roberts balun “(clipped from Fig. 3 in [103]).

Due to the equivalent circuit prototype shown in Fig. 1.3, the Marchand and
Roberts balun are inherently band-pass networks. The simplest design techniques for
these two baluns is to set Z; and Z, to the unbalanced and balanced port impedances,
respectively, and then the characteristic impedances of the two stubs can be designed
from standard lumped element filter theory [6], [26]. The electrical lengths of the
stubs and transmission lines are 90° at the center frequency of the balun. The
responses of the baluns can be maximally flat (Butterworth) or equiripple
(Tchebyshev) which depend on the values of the characteristic impedances.

In the 1980’s, two important papers proposed by Cloete [106], [107] showed

graphs of the element values as a function of bandwidth and passband return loss of
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Fig. 1.5. Broadside-coupled balun (clipped from Fig. 2 in [111]).

the Marchand balun. Cloete designed a fourth-order Marchand balun with 15dB return
loss over a decade bandwidth. The only limitation to use the design chart is that the
balanced and the unbalanced ports can not have the same port resistance, but a 2:1
port resistance ratio. However, this 1s convenient if an anti-phase power divider is
wanted instead of a balun since the” 100 Ohms balanced load can be replaced by a 50
Ohm load connected between each of the balanced port’s terminals and ground.

There has been much interest in developing a planar structure of the Marchand or
Roberts balun for use in monolithic and hybrid integrated circuits. One of the first
papers to concern this issue is proposed by Pavio and Kikel [111]. The paper shows a
whole view of the proposed structure, and this circuit is similar to Marchand balun. A
broadside-coupled stripline structure is used to construct the balun, as shown in Fig.
1.5. The upper dielectric is very thin compared with the lower one, and, thus,
considering coupling between the upper conductor and the ground plane could be
ignored. So, the structure in Fig. 1.5 could be viewed as simply two transmission lines
with upper and middle conductor forming one transmission line, and with the middle

and lower conductor forming the other one. However, this structure is inherently a
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Fig. 1.6. A coupled-line Marchand balun.

three-conductor coupled-line network, and detailed analysis of the structure must be
taken into account.

Fig. 1.6 shows the coupled-line form of the edged-coupled planar Marchand
balun. Several research works [115], [119], [120], [122], [125], [126] have focused on
this edged-coupled version of Marchand balun. Goldsmith et al. [115] published the
first comprehensive analysis of Fig. 1.6. The key point of analyzing coupled-line
Marchand balun is that the two coupled-line sections have the same coupling
coefficient. This results in the largely simplified design equations, which can be found
in [119]. The design parameters ‘derived by  Goldsmith have successfully being
connected to the coupling coefficient and even- and odd-mode impedances of the two
coupled-line sections, which can be easy transformed into the physical parameters by
using ADS or AWR circuit simulators. However, to design a balun having a decade
bandwidth is not an easy task based on this coupled-line form of Marchand balun.

1.2.2 Objective and Contribution in the Second Topic of this Dissertation

The objectives of this balun research are to develop higher-order Marchand-type
balun and to realize it in planar structure. With the proposed 5-order Marchand balun,
a very wide bandwidth (152%) can be achieved, and the novel realization of the balun
is to utilize microstrip line, slot line, and coplanar stripline. The 5-order Marchand
baluns are synthesized by use of the Richard’s transformation and, thus, it means that

the responses of the synthesized Marchand balun are exactly predicted at all
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frequencies. Two examples of the 5-order Marchand balun are presented to
demonstrate the design procedures. In addition, a 6-order Marchand balun is

presented to discuss.

1.3 Organization of this Dissertation

This dissertation is organized as follows.

In Chapter 2, the first part is to introduce the basic theory of cross-coupled filters.
The model of the cross-coupled filter in low-pass domain is given. The relation
between a coupling matrix and S-parameter is derived from the model. Then, how to
directly obtain the position of finite transmission zeros to a given coupling matrix is
given. A conventional 3-order trisection is taken as an example. Some of interesting
coupling schemes are arranged in a Table. A:simple recursive formula to determine
the generalized Chebyshev polynomials is given. Importantly, a general method for
the synthesis of the coupling matrix in the transversal array is discussed. How to
transform the coupling matrix from the transversal topology to the wanted coupling
schemes by utilizing both eigenvalue approach and optimization is given. Lowpass
prototype, generalized bandpass filters, impedance and admittance inverters, and the
narrowband equivalence between coupled-line circuits and impedance and admittance
inverters with transmission lines are introduced. Furthermore, coupled-resonator
theory for extraction of external Q and coupling coefficients is given. To manipulate
the spurious responses, the basic characteristics of stepped impedance resonators are
discussed. How to obtain the relations between the coupling matrix and design
parameters of coupled-resonator filters is presented. Those contents are useful in
designing the cross-coupled filters which will be proposed in Chapter 3-5.

The second part in Chapter 2 is to consider distributed transmission line elements.

To exactly synthesize the distributed transmission line networks, the Richards variable
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and Richard theorem should be concerned and will also be discussed. The basic four
Kuroda identities are given. General low- and high-pass S-plane prototype circuits are
presented, and its corresponding characteristic functions are given. In addition, a
synthesizing procedure is briefly discussed.

In chapter 3, two filters exhibiting quadruplet and canonical-form responses are
designed. To extend the bandwidth of stopband, quarter-wave stepped impedance
resonators are used. The use of the enhancing line of source-load coupling results in
one additional pair of finite transmission zeros.

Chapter 4 describes microstrip parallel-coupled filters with generalized
Chebyshev responses. The mechanism for generating finite transmission zeros is
presented. The design procedures are discussed in detail. Two mixed cascade
quadruplet and trisection filters are ' realized to demonstrate the feasibility.
Furthermore, sensitivity analysis and a design guide to show the closest transmission
zeros corresponding to realizable: physical dimmensions are discussed by taking
examples.

In chapter 5, new coupling schemes with the properties of bisymmetric coupling
matrix, weak cross couplings, and synchronous-tuned or very tiny
asynchronous-tuned resonators are presented. Bisymmetric coupling matrices imply
symmetric layouts. The comparison between conventional and new proposed coupling
schemes are discussed. The proposed bisymmetric coupling schemes can be used for
the implementation of generalized Chebyshev filters with transmission zeros very
close to the passband in planar technology.

Chapter 6 presents new higher-order Marchand balun with ultra wideband
performances. Two network transformations, one is the Kuroda identity and the other
is the proposed circuit transformation, are utilized to derive the final S-plane

prototype circuit of Marchand balun. The exact synthesis and realization of the
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proposed Marchand balun are discussed in detail.

In Chapter 7, conclusions and future works are given.
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Chapter 2 Theory of Microwave Resonator Filters and Distributed

Circuit Design

2.1 Basic Theory Used in Cross-Coupled Filters

In this section, the basic theory and design techniques for cross-coupled filters
will be introduced. At first, the cross-coupled resonators network corresponding to the
coupling matrix is analyzed in the normalized frequency domain. The relations
between the normalized network parameters and S-parameters are derived. How to
obtain the position of finite transmission zeros from coupling topologies is also given.
In section 2.1.2, different types of impedance and admittance inverters are introduced,
and the corresponding equivalent circuits are also presented. The frequently used
coupled-line circuits and their equivalent circuits are provided. The segmentation
method which is used to extract the external (@ and the coupling coefficients is
discussed in Section 2.1.3. Next, the characteristics of step impedance resonators will
be reviewed. Finally, how to transform the synthesized coupling matrix to the design
parameters of cross-coupled filters will be derived.
2.1.1 Synthesis Theory of Advanced Coupling Matrix in the Normalized Domain

The design of microwave filters normally starts from the synthesis of a low-pass
prototype network which is shown in Fig. 2.1. Low-pass prototype networks are
two-port network with an angular cutoff frequency of 1 rad/s and operating in a 1-Q
system. This type of lowpass filter can serve as a prototype for designing various
practical filters with frequency and element transformations. The corresponding g
values with different frequency responses, i.e. Butterwoth, Chebyshev, Elliptic
function, and Gaussian responses, can be computed [6]. The alternative networks with
impedance and admittance inverters as shown in Fig. 2.2 are also used. The networks

in Fig. 2.2 can be represented by coupling matrices and are very useful for the design
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Fig. 2.2. Alternative lowpass prototype networks using inverter. (a) K-inverters. (b)

J-inverters.

of narrow band bandpass filter. So far, the cross coupling is not involved.
A general cross-coupled filter prototype of degree n in the lowpass domain is

shown in Fig. 2.3 (a) [7], [90]. It is shown that this prototype can be obtained by
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Fig. 2.3. (a) Equivalent circuit of n-coupled resonators in low pass domain. (b) Its

network representation.

including all possible cross-coupling elements and frequency shifts of resonators. The
prototype filter consists of frequency independent impedance inverters J;js, capacitors
Cis and susptances B;s. The values of all the capacitor and the terminated admittance
Yy are set equal to one. The capacitors in the low-pass domain correspond to the
resonators in the bandpass domain. Thus, the frequency invariant susptance Bis
represent the frequency shift of resonators in the bandpass domain. The values of B;
are zero for the synchronous filters and nonzero for the asynchronous filters. Applying
circuit analysis of Kirchhoff’s current law to this prototype and stating the algebraic
sum of the currents leaving a node in a network is zero, with a driving with a driving

or external current of I, the node equations for the circuit of Fig. 2.3(a) are shown in

2.1,
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(2.1)

is the normalized frequency. The two-port S-parameters of a

coupled-resonator filter can be derived by the corresponding two-port network as

shown in Fig. 2.3(b). Comparing Fig. 2.3(a) and Fig 2.3(b), one can find that V=V,

Vo=V,+1, and I;=I;-YoVy. And

a, :]_Sa b] = 2VO .t
2
a, =0, b, =V,
Thus,
Sy = ﬁ iShy
al a,=0
2V
S21 :b_2 = 1n+1
al a,=0 K
From (2.1), we can obtain
v, 1l
0|y
I [ ]1,1
v,

Substitute (2.4) into (2.2), one can obtain
S, =-1+ 2[Y]1‘j

Substitute (2.5) into (2.3), thus enable obtaining
S, =2[Y],!

n+2,1

In the literatures, the matrix

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)
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J0,1 B1 J1,2 o Jl,n+l
Jo,z J1 2 ' '

: : B, J,.a

_JO,n+1 Jl,n+1 Jn,n+1 0 i

is called the normalized coupling matrix and denoted as matrix [M].

0 Mg Mg, e Mg

Mg M, M, M,
M]=|M;, M,

S M, M,

Mg M, nlL 0

where M;=Ji;, M;=B;. The admittance matrix is related to the normalized coupling
matrix, and can be expressed as
[Y]=s[1]+ jIM]+[G]=5(Q[U], +[M]-j [G] )= jlA],

where [A]=Q[U], +[M]-j[G]5 [U,le R ™ s identical to the identity

matrix, except for the element [U,];;=[U,] =0, and [G]e R jsalso a

n+2,n+2
diagonal matrix, [G]=diag{l,0,---,0,1} . The equations (2.6) and (2.7) can be

rewritten as

Sh =—1—2j[A]1_’1 (2.8)

Sy =-2 j[A](_nl-%—Z),l (2.9)
Similarly, one can derive

Sy =-1-2 j[A];izmz (2.10)

The equations (2.8), (2.9) and (2.10) directly related the normalized coupling matrix
to the S-parameters.
In the following, it will be shown that the position of finite transmission zeros

can be predicted through transfer function. From the equations (2.8) and (2.9), one
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can express S1; and Sy, as rational functions,

F(Q

Sn(@)=1E2 (2.10)
E(Q)
P(Q

S (@) =2 @.11)
E(Q)

Obviously, the finite transmission zeros are the roots of the equation
PQ)=0 (2.12)

Solving the equation (2-12) can help to understand the dependence between the
coupling coefficients and finite transmission zeros, thus enabling to get more insight
to control the finite transmission zeros. An example to illustrate this procedure would
be clear. Take a conventional 3-order trisection coupling scheme shown in Fig. 2.4 as

an example.

O Source/Load
. Resonator

Mbs

Msi M

M3

Fig. 2.4. The coupling route of the example filter

The coupling matrix corresponds to the coupling topology of Fig. 2.4 is

0 My O 0 0
MSI Mll MIZ M13 O
M= 0 M, M, M, 0 (2.13)
O M13 M23 M33 M3L
| 0 0 0 M, 0 |
By solving P(Q2) = 0, one can find the roots, and it can be expressed as
Q:_Mzz_,_% (2-14)

13

When -M,, +(M,,M,,/M,,) >0, a transmission zero on upper stopband occurs.
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Coupling schemes

Ms2 Mo

3-order trisection

Mz Mos
Msi M3 M2 Mss
Mss M Msi— M " M

4-order mixed cascade

4-order quadruplet st
quadruplet and trisection

Mg‘g MZL
Msi M
4-order canonical form Doublet

Box section Cul-de-sac

S-order cascade quadruplet

Table 2.1 Interesting well-known coupling topologies.

While —M,, +(M,M,,/M;)<0, a transmission zero on lower stopband is created.
Several interesting well-known coupling schemes [6], [7], [66], [67] are shown in
Table 2.1.

From the discussion as described above, we know the cross-coupled filter
exhibits finite transmission zeros (attenuation poles), which means the responses of
cross-coupled filters may correspond to the generalized Chebyshev responses. In fact,
how to generate the S,,(s) andS,,(s) corresponding to the generalized Chebyshev

functions and find the corresponding coupling matrices are important and
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well-established. Many synthesis methods for cross-coupled filters have been
proposed in [20], [34]-[37]. In this dissertation, we adopted the simple recursion
formula [34] proposed by Smain Amari to determine the low-pass prototype with
generalized Chebyshev responses and focused on the transversal array method [37]
proposed by Richard Cameron to obtain coupling matrices.

The reflection and transfer polynomials of cross-coupled filters with generalized
Chebyshev responses can be obtained by using the recursion formula as follows. The

transfer function S>(@") is
Sa1 (@)

where o' is the frequency variable in a low-pass prototype, ¢ is a constant related to

2 1

S 2.15)
1+&°Fy (o)

the inband return loss R which is
=100 1] (2.16)
The characteristic filtering function Fy(@")1s

F, (a)')=cosh[ﬁ:cosh_l (x”)] , X, _o-le), (2.17)

Cl-o0'e,

n=1

where, s, =jo', is the location of the nth transmission zero in the low-pass
normalized domain, and |Fy( @'=%1)|=1 for all value of N. The function Fy( ") is a

rational function, and it can be expressed as
, by (@) by (@)
N (CU ): N =

ARG

n=1 w

n

(2.18)

To compute Py(®') a simple recursion relation is established between Py (@'),
Py ®' ) and Pyi( o' ). Using the identity cosh(a+f)= -cosh(a)cosh(p)

F sinh(a)sinh(p), we can write

' N
Py (@) =cosh [Z cosh™ (x,)+ cosh™ (E )j

@ N+1

n=1
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N N
= sinh (Z cosh™(x, )j sinh(cosh™' (x,,,)) + cosh(z cosh™ (x,))x, .,

n=1 n=l1

(2.19)
Py (@)

N
::sinh(}:coshl(mjsirm(coshl(xw))-mN+1

n=1 N

Similarly,

ot (o)
N = —sinh(Z“cosh‘1 (x, )jsinh(cosh‘1 (xN))+xN ND— (2.20)

n=1 N
From equation (2.19) and (2.20), by using hyperbolic identities the recursion relation
is obtained as the following equation.
2 > 1/2
Y (1-1 o
, ) [ N+l
Py, (@)=-P (@ )(1— J ( )

v (1-1e7)"

@ N
( 1]@—vwaﬂyz
+ @' ‘ 7
(1=1/07)

@ N
where the polynomials Po(@')=1, Pi\(@")=w'-1/ @', . Thus, the transfer and reflection

(2.21)

+P, (o) o'
N( ) o'y,

polynomials for the generalized Chebyshev filtering function can be expressed in the

form
' ) DZ D2 ' D
1S, (@) :5§:%§3:E%’M %Jw)=—§ (2.22)
E.-D. F; F,
15, (") =1-]S,, (") == o 8 (0) =2 (2.23)
N N N

The next step is to synthesize the coupling matrix.

When concerning the canonical transversal topology, considering admittance
function is advantageous to synthesize this transversal coupling scheme. The first step
is to construct the two-port short-circuit admittance parameter matrix [Yy] for the
overall network. Fig. 2.5 shows a two-port network terminated in a 1 Q resistance,
and Fig. 2.6 is the canonical transversal topology.

Following the analytical formula in [37], one can get the transversal matrix

having the following form
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Fig. 2.6. Canonical transversal topology.

| Mg, Mg, Mg |
MSI M11 0 ML1
M=|Mg, 0 . .
MM, (2.24)
_MSL MLl MLn 0 i

The corresponding coupling route of the transversal topology is shown in Fig. 2.6.
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Detailed derivation procedures can be found in [37]. Here, we only summarized
important equations and design parameters of the transversal topology. First, the
admittance function [Yy] can be synthesized from the transfer and reflection
polynomials in (2.22) and (2.23). The numerator and denominator polynomials for the
121(s) and yo(s) elements of [Yy] are built up directly from the transfer and reflection
polynomials for S»;(s) and Sii(s). Then, the following equation for the admittance
matrix [Yy] for the overall network:

[YN]{y“(S) y”(s)}:{[go K}i ) F”‘ r”"} (2.25)

Yo (S) Y (S) D ok

Here, the residues 7, and 2 may be found from partial fraction expansions of the
denominator and numerator polynomials for y,;(s) and y»(s), and the purely real
eigenvalues A, of the network found by rooting the denominator polynomial common
to both y,;(s) and y»x(s), which has‘purely imaginary roots = j).

Second, another two-port admittance matrix [Yy] is to cascade the elements in
Fig. 2.6(c), thus gives an ABCD transfer matrix for the kth “low-pass resonator” as

follows:

(2.26)

which can then be converted into the equivalent short-circuit y-parameter matrix

1 . |: M;K MSKMLK:| (2 27)

Yel= 7~ 5~
[k] (SCk+JBk) My M ML21<

The admittance matrix [Yy] for the parallel-connected transversal array is the sum of
the y-parameter matrices for the N individual sections, plus the y-parameters matrix

[vsz] for the direct source-load coupling inverter Msp
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|0 M y 1 M: MM
[YN]:]|:M OSL:|+Z ' |: SK SK2 LK:| (228)
SL k) MSKMLK MSK

Comparison of (2.25) and (2.28) shows

e _ Mg M i
- JjA C,+JjB

(S J k) (S k 2] k) (2.29)
Do _ M«

(s—j4) (sC, +jB,)
Thus, by equating the real and imaginary parts in (2.29), important extracted circuit
parameters are
C, =1
Be(=My) =4, (2.30)
My =1y,
MSKMLK = erk
The synthesis of the transversal topology:is complete.

Although the coupling matrix of. the transversal topology is so far synthesized,
the transformations of coupling matrices; from the transversal topology to the wanted
coupling schemes are necessary due to the easy realization of coupling schemes. Fig.
2.7 shows a diagram describing what topologies is a 3-order transversal topology
transformed into. In [37], it is difficult to determine the rotation angles of the
sequence of similar transformation. So, the eigenvalue approach [51] to optimizing
the coupling matrix of the wanted couping scheme is adopted in this dissertation. It is
very powerful for extracting the coupling matrix of filters with order under 14. A

briefly review of this method is discussed as follows.

The transversal coupling matrix (2.24) is denoted as

0 Kg Fsp
M=\rs A r, (2.31)
Fsr Kz 0
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] A 3-order transversal topology

Mz

Ms: M3

Mss3 M
3-order quadruplet
Extended doublet

Moo
3-order cascade trisection

Fig. 2.7. A diagram shows that a'3-order transversal topology transforms into a

wanted coupling topology.

Let R denote the product of elementary plane rotations involving orthogonal

rotations among the planes 1 to N

(2.32)

=~
Il
(=
SARES

where X is an orthogonal matrix, and 0 represents the zero vector. Applying

similarity transformations to the matrix M one obtains desired coupling matrix M

in the form
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T
1o olfo & o o o | 0 (Xz) om
M=10 X 0|lrs A r, |0 X 0| =|Xr; XAX" Xr, | (233)
0 0" 1lry rp 0J0 0" 1] | x  (xr,) 0

It is important to keep in mind that similarity transformations preserve eigenvalues, so

the matrix M preserves the eigenvalues of the matrix M . Let A= [iP; A7 fz],
where A are the eigenvalues of the transversal coupling matrix M that is

synthesized using the analytic method in [37], A are the eigenvalues of upper

principal submatrix obtained by deleting the last row and column of matrix M and

A7 are the eigenvalues of the lower principal submatrix obtained by deleting the

AP Azl ~z2

first row and column of the matrix—M ~ And let iz[i A A } are the

eigenvalues of the coupling matrix created in the course of optimization and its upper
and lower principal submatrices, respectively. Then, a cost function may be
formulated to be minimized:
A~ T /A~
C=(i-2) (A-4) (2.34)
This is a least squares optimization problem. Several optimization methods such as
Newton method, conjugate gradient method, etc. can minimize the cost function C

through the gradient with respect to the coupling elements of M , and thus enable in

[

=A.

2.1.2 Useful Impedance and Admittance Inverters and Coupled-Line Circuits
Before introducing impedance and admittance inverters, the prototype of
generalized bandpass filters should be mentioned. To begin with, low-pass prototype

in Fig. 2.2 is transformed in to bandpass filters by applying the low-pass to bandpass
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Fig. 2.8. Bandpass filters. (a) Use impedance inverters. (b) Use admittance inverters.
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Fig. 2.9. Generalized bandass filters. (a) K-inverters. (b) J-inverters.

frequency transformation. Fig. 2.8(a) and (b) show the transformed bandpass filters
corresponding to Fig. 2.2(a) and (b), respectively.

Actually, for the purpose of general design including not only the lumped LC
resonators but also the distributed circuit resonators, two important generalizations for
bandpass filter design are shown in Fig. 2.9. Here, two quantities, called the reactance

slope parameter and susceptance slope parameter, respectively, are introduced as

x = @ (@) (2.35)
2 do

0=,
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b =&dB”. (a))
"2 do

(2.36)

0=,

where Xr,.(a)) is the reactance of i-th series resonator tank in Fig. 2.9(a) and

B, (a)) is the susceptance of i-th shunt resonator tank in Fig. 2.9(b).

Therefore, design parameters of generalized bandpass filters in Fig. 2.9(a) and

Fig. 2.9(b) are

/Z FB X, /Z FB

K, = 0—le , K., = FBW HXiXia s Ky v = O—WxN (2.37)
808 8i8it1 |;_1on-1 EnEnni

Jor >

Y, FBWb, bb, |Y,FBWb
=/ : i = FBW, | = s Iy = : = (2.38)
8081 8i8it1 |, 1on1 EnEn+i

where FBW is the fractional bandwidth, and g,,g,.......,g,,, can be obtained in

section 3.21~ section 3.24 of [6] for various filtering functions.

In the following, several numerous equivalent circuits operating as inverters are
introduced. All necessarily give an image phase of some odd multiple of +90 degree,
and some of inverters have good inverting properties over a much wider bandwidth.
In addition, some of inverters have the property of the finite frequency pole-producing
function.

One of the simplest forms of inverters is a quarter-wavelength of transmission
line. In this case, the quarter-wavelength transmission line corresponds to an inverter
parameter of K = Z; Ohms where Z, is the characteristic impedance of the line.
Similarly, the quarter-wavelength transmission line also serves as an admittance
inverter, and the admittance inverter parameter is J = ¥y where Y} is the characteristic
admittance of the line. The inverter properties of the line are relatively narrow-band in
nature.

Other inverters exhibiting a wider bandwidth than that of the quarter-wavelength
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Fig. 2.10. Inverters.

(a) Lumped-element K inverters.

@)
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T
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J =

ZO -|— ——1/((0C
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(b) Lumped- and

distributed-elements K inverters. (b) Lumped-element J inverters. (b) Lumped- and

distributed-elements J inverters.

transmission line are shown in Fig. 2.10 [27]. For K-inverters, those shown in Fig.

2.10(a) are particularly useful in circuits where the negative L or C can be absorbed
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Fig. 2.11. Pole-producing admittance inverters [57].

into adjacent positive series element of the same type so as to give a resulting circuit
having all positive elements. The inverters shown in Fig. 2.10(b) are particularly
useful in circuits where the line of positive or negative electrical length ¢ shown in
the figures can be added to or subtracted from adjacent lines of the same impedance.
Figs. 2.10(c) and (d) show four inverting circuits which are of special interest for use
as J inverters. These J-inverter circuits are the dual of K-inverter circuits. The design
parameters are provided as shown in-the figure.

Recently, a realization of the inverter shown in Fig. 2.11 which is to use a Pi of

parallel LC sections is proposed by Levy [57]. This inverter introduces a pole at
w, =1/yLC (2.39)
And the susceptance of the inverter is
@,C-1/(w,L)=J (2.40)
where @, is the mid-band or synchronous frequency of the filter to be designed. The
values of C and L are then obtained from (2.39) and (2.40).
The equivalent circuits of coupled-line circuits in narrowband filter applications
are also related to J-K inverters. The four coupled-line circuits [27], [92]-[94]

parallel-coupled open-ended and short-ended circuits as well as antiparallel-coupled
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Fig. 2.12. Parallel- and antiparallel-coupled line circuits and its equivalent circuits.
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open-ended and short-ended circuits, which are used as basic building blocks in
microwave filters are shown in Fig. 2.12. The electrical parameters of these circuits
are expressed by even- and odd-mode impedance Zoe, Zoo, and electrical coupling
angle 6. Design parameters of the four coupled-line circuits related to the
corresponding equivalent circuits comprising an inverter and two transmission lines
are provided in the figure.
2.1.3 Segmentation Method for Coupled Resonator Filters

For coupled resonator filters, segmentation method is frequently used to extract
external O and coupling coefficients, which means to compute input/output (I/O)
coupling and coupling strengths between two resonators. In the segmentation method,
the coupling strength between resonators is tested pair by pair to obtain the
approximated coupling strength. The external. coupling, the coupling between the
first/last resonator to the source/load, is calculated by excluding other resonators. In
fact, this method should be traced back to Dishal’s method [38] in 1951. Dishal
presented a simple method of tuning up a multiple-resonant-circuit filter quickly and
exactly. He described how to extract the external Q and the coupling between rth and
(r+1)th adjacent resonators in a waveguide filter. A detail description of Dishal’s
method to be used in microstrip resonator filters is presented by Hong and Lancaster
[6]. In the following, four basic coupling structures, electric coupling, magnetic
coupling, mixed coupling, external quality factor of singly loaded resonator, are
reviewed.

First, electric coupling is concerned. An equivalent lumped-element circuit

shown in Fig. 2.13(a) may be employed to represent two asynchronous-tuned coupled

. -1/2
resonators. The resonant frequencies of the two resonators are @, =(L,C,) " and

oy, =(L,C, )_l/ g respectively, and the two resonators are coupled to each other
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Fig. 2.13. (a) Electrical coupling. (b) Magnetic coupling. (c¢) Mixed couplingt.

electrically through mutual capacitance €.~ The resonant condition of the circuit of
Fig. 2.13(a) is

Z  =—7

inL inR

(2.41)

where Z, , and Z,, are the input impedances when looking at the right and left of

reference plane 7T of Fig. 2.13(a). From (2.41), an eigenequation is

ok _Job, L (2.42)
1-0’L (C,-C,) 1-0’L,(C,-C,) joC,
After some manipulations, (2.42) can be solved as
LC, +L,C,)++(L,C,~L,C,) +4LL,C>
o < A LC) (LG - LG +4L LG, o

2(L,L,CC, - LLCy)
The electric coupling coefficient is defined as k,=C, //C,C,, and then through

some manipulations one can obtain the electric coupling coefficient
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1 222 222
_ & & W, — 0 _ Wy — Wy

+ - 5 > > (2.44)
CC, A W, + @, Wy, + Wy

in accordance with the ratio of the coupled electric energy to the average stored
energy, where the positive sign should be chosen if a positive mutual capacitance is
defined.

Similarly, for the magnetic coupling circuit as shown in Fig. 2.13(b), the

magnetic coupling coefficient is

I 1 2 2\? 222
ko=t :+_(w02 n 6001} (0)2 — @ ) _(a’oz mm} (2.45)
m - 2, 2 2 2 :
LL, 2\ 0y @y W, + @, Wy, + Wy,

,and for the mixed coupling circuit of Fig. 2.13(c), the mixed coupling coefficient &,

1s

1 —ldp,\? 2 2 \?
k =k —k =+_(92+5@J [aﬁ_wi]_(ﬂﬂ_@“] (2.46)
X e m - 2 2 2 2 '
2\ @y oy W, + 0, Wy + Wy,
The detailed derivation is described in [6].

The last one to be concerned is the external quality factor. Shown in Fig. 2.14 is
an ideal, lossless LC tank connected to external loads. In this case, power dissipation
occurs, and it affects the sharpness of resonant response, which depends upon the
ratio of the amount energy stored in the capacitor of inductor to that dissipated in the

external load or loads. In Fig. 2.14, the reflection coefficient Sj; at the excitation port

of resonator is

G-7Y

= i 2.47
1= Gar (2.47)
where Y;, is the input admittance of the resonator
Y = joC+—— jo,c| L - (2.48)
joL w, o

Note that @, = 1/ vV LC s the resonant frequency of the resonator. Around resonant
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Fig. 2.14. Equivalent circuit of the I/O resonator with single loading.

frequency @w=w,+Aw and definition of the external quality factor

0, =w,C/G=1/(w,LG), one can derive

1-j0,(200/ @)
"1+ 0, (200 @)

(2.49)

Because the resonator is assumed to be lossless, this leads to the unity of S;; around

resonance. In (2.42), phase responses of Syyshould be concerned. When /S, =-90°,
implying quantity O, (2A®/w@,)- must equal to 1, while S, =90°, implying
quantity O, (2A®/@,) must equal to -1. Therefore, it results in O, (A, /0, )=1.

So, one may extract the corresponding external quality factor from a given loaded

resonator through its phase response with respect to frequency

& i
0, =—t-=to (2.50)
‘ Aa)i90 Af_*'90

It should be noted that the reference plane of S;; in the EM simulation may not
exactly match that of equivalent circuit in Fig. 2.14, which leads to an extra phase
shift such that the phase of the simulated S;; does not equal to zero at resonance. To
solve this problem, the resonant frequency can firstly be determined from the peak of
the group delay response. Then, find the frequencies at which the phase shifts +90°
with respect to the resonant frequency from the phase response. Finally, use (2.50) to

compute external quality factor.
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(c) (d)
Fig. 2.15. Typical coupling structures of coupled resonators. (a) Electric coupling. (b)
Magnetic coupling. (c¢) and (d) Mixed coupling.

P

] Phase 7

Phase

Magnitude

(a) (b)
Fig. 2.16. A diagram of simulated responses of (a) electric coupling and (b)

magnetic coupling.

Actually, the applications of the above-derived formulas for extracting coupling
coefficients and external quality factors have been extensively used in microstrip
cross-coupled filters [6], [70]-[73], [75], [80]-[81], [83]. For the purpose of
demonstration, the open-loop resonators are taken as examples to the four basic
coupling structures. Fig. 2.15 shows typical coupling structures of coupled resonators.

Performing the EM simulations on the circuits shown in Fig. 15, one can observe

simulated resonator’s frequency responses of the electric coupling and magnetic
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(a) (b)
Fig. 2.17. Two typical feeding structures of coupled-resonator filters. (a) Tapped-line

coupling. (b) Coupled-line coupling.

+90 degree at f2

Sk |
Fig. 2.18. A diagram of simulated responses of the circuits in Fig. 2.17(b)

coupling, which are shown in Fig. 2.16(a) and (b), respectively. The responses of the
mixed coupling are either Fig. 2.16(a) or Fig. 2.16(b). Based on (2.44) ~ (2.46), one
may extract coupling coefficients between two coupled resonators.

Shown in Fig. 2.17 are two typical feeding structures for coupled-resonator
filters. Performing the EM simulations on the circuits, the simulated responses are
shown in Fig. 2.18. Based on (2.50), one may extract external quality factor Q.

2.1.4 Stepped Impedance Resonators

In this section, the characteristics and important design parameters of the stepped
impedance resonators will be briefly reviewed. The stepped impedance resonator is a
TEM or quasi-TEM mode resonator composed of more than two transmission lines

with different characteristic impedance. In this dissertation, only the stepped impedan-
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Fig. 2.19. Quarter-wavelength stepped impedance resonator type.

ce resonator comprising two transmission lines with two different characteristic
impedances is considered. Fig. 2.19 shows a quarter-wavelength stepped-impedance

resonator. Based on the theory of transmission line, the input impedance Z;, is

7 =z, Z tan6 + Z, tan 6,
Z,—Z tang, tan 0,

2.51)

The parallel resonance occurs when Y, =1/Z, =0. Then, the resonant condition is

R, =tan 6, tan 6, (2.52)
where R, =Z,/Z, . This resonant condition is useful in obtaining the fundamental
and spurious resonances. The overall electrical length of the stepped impedance

resonator in Fig. 2.19 is

0, =6,+6,=6+tan" (R, /tan6)) (2.53)

A special condition is to assume 6, =6, =6, =tan"'\|/R, as the structure of

stepped impedance resonator. Thus, when R, <1, 6, attains a minimum value of
2R
(6,) =tan”'| =—% (2.54)
min 1— RZ
When R, >1, 6,, attains a maximum value of

(6, )max = tan”' [%} (2.55)

With the knowledge of &,,, the first spurious frequency fsa can be obtained as
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V4
Ssa —[m—llfo (2.56)

More detailed descriptions of the stepped impedance resonator can be found in [92].
2.1.5 Relations between the Coupling Matrix and Design Parameters of
Coupled-Resonator Filters

Consider the circuit of Fig. 2.9(b) in section 2.1.2. The generalized bandpass
filter circuit using admittance inverters can be related to the corresponding coupling
matrix.

First, for experimental determination of couplings, the input/output external

quality factors and coupling coefficients are defined as

b b
Qe,in :—l > Qe,nut =—"7= (257)
o /%, o /Yy
Jo
i Jaj+l
S+l Jj=lto(n-1) 1f bb] A (258)
Jog+

Where b, is susceptance slope parameter which is defined as

b :&dBi(a))

2.59
T de (2.59)

It should be noted that obtaining the inverter parameters from coupling coefficients
need to know the slope parameter of the resonators. The inverter parameter is more
useful for filter design analysis because it contains more information than coupling
coefficient.

Then, consider the equivalent circuit of n-coupled resonators in low pass domain
as shown in Fig. 2.3(a). Here, for simplicity, 2-order coupled resonators are taken as

an example. Applying lowpass to bandpass transformation

1
Q=1 h=111) (2.60)

the bandpass filter circuit is shown in Fig. 2.20 with

43



L =L =L=FBW/am,

1
¢=C,=C=———
FBW * ,
a)OL:L:FBW (2.61)
,C

The use of (2.59) can derive the slope parameter of the resonators as

1
b =w,C=—— 2.62
i 0 FBW ( )

Thus, the external quality factor of the first and last resonator is

1 1

Con =32 wFmw S TN B

(2.63)

Note that the admittance inverter Jo; before impedance scaling is denoted as M.

Coupling coefficients can also be derived as
J12
\bb,

The use of (2.57)~(2.59) and (2.63)+(2.64) can design a filter with knowledge of

ky, = = J,,*FBW = M,, * FBW (2.64)

slope parameters which contain more information on filters.

Jﬂ.J

Joz2
Sy/A N 3
lE \‘_.-“ : Jﬂ‘.l ?LF:GEIH’I -ul 1,2 §LF =C7§ B '-II--t Z} "’u

13

Fig. 2.20. A 2-order cross-coupled bandpass filter circuit.

2.2 Distributed Circuits with Transmission Line Elements
A common approach to the design of a practical distributed circuit is to explore
some approximate equivalence between it and a lumped element and other distributed
circuit. Actually, some of possible equivalences have already been discussed in

connection with the design of low- and high-pass filters. In the following, how
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distributed transmission line functions to be treated as lumped inductor and capacitor
elements and unit element will be introduced. This also includes the famous Kuroda
identities, Richards theorem, and the synthesis procedures of the distributed
transmission line.
2.2.1 Richards Variable and Transmission Line Networks

Due to the use of distributed transmission line, transmission line equation should

be concerned
., Z,+jZ,tan0

Z (=7 — L2 2.65
”’( ) 0ZO+jZL‘[an6’ ( )

Here, the transmission line assumed to be lossless. In (2.65), it shows the input
impedance of the transmission line with characteristic impedance Z, and to be
terminated with a load impedance Z; .

Based on (2.65), Richard proposed a frequency transformation that is

S=jQ=tanf= jtan(ﬂj (2.66)
2w,

where w is the usual real radian frequency variable, ,is the radian frequency at
which all line lengths are a quarter-wave long, Q is the distributed radian frequency
variable, and S is called Richards variable.

It is interesting to show the mapping of this frequency transformation (2.66). Fig.

2.21 shows the relationship between @ and Q. The response of the distributed circuit

repeats in frequency intervals of 2e,. This mapping is theoretically exact at all

frequencies.

By replacing the reactance elements, a lumped element LC network with a

realizable impedance Z (s)in the s plane, where s = jo, may be converted into one

consisting of uniform sections with an impedance Z (S ) in the S plane, where
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Fig. 2.21. Mapping between real frequency variable @ and distributed frequency

variable Q.
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Fig. 2.22. Element transformation corresponding to the Richards transformation

S = jtan (72'60/ 2a)0) . Fig. 2.22 depicts the equivalence between the lumped and
distributed circuits in the s and S planes. The impedance of a lumped inductor L in the
s plane is Z (s) =sL , while considering a short-circuited line of characteristic
impedance Z; the impedance of the short-circuited line is

Z(S)=jZ,tan0 = SZ, (2.67)
which is derived by using (2.65). Thus, the S-plane inductor with inductance value Z,

is recognized as the input impedance of a short-circuited line of characteristic
impedance Z, in the s plane. Similarly, for the S-plane capacitor with capacitance
value 1/Z, is recognized as the input impedance of an open-circuited line of

characteristic impedance Z, in the s plane. Thus, the impedance of the open-
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Fig. 2.23. Richards transmission applied to an interconnecting transmission line.

circuited line is

— ZO
jtan@

(2.68)

Z(s)

Another concerned network is an interconnecting transmission line in the s plane.
The effect of the Richards transformation on the interconnecting transmission line is
to turn it into a unit element (U.E.), which is shown in Fig. 2.23. The transformation
can be further illustrated by considering the 4ABCD matrix of the interconnecting

transmission line of the form

A B cost . jZ,;sin0
S (2.69)
C D Jj¥sin@ < cosd

which transforms into a unit element in the S-plane with an ABCD matrix:

{A B} 1 {1 ZOS} 2.70)
C Dl V1-s*[%S 1 '

after dividing each matrix element by cos@ and substituting S for jtané . Related
discussions on a unit element will be introduced in the following subsections.
2.2.2 Richards Theorem and Kuroda ldentities
In addition to the basic S-plane distributed inductors and capacitors defined by
the Richards transformation, a unit element (U.E.) may also be defined. UEs are
commensurate sections of transmission line which may be employed to separate
circuit elements in the high-frequency circuits. The Richards theorem states a UE may

always be extracted from a distributed S-plane reactance function and the remainder
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O_
Z(8) Z,(5)

Fig. 2.24. A circuit used to illustrate the Richards theorem.

function is guaranteed to be positive real and of one degree less than the original one.
The characteristic impedance of this UE has the value of the one-port immittance with
S replaced by unity. The Richards theorem permits a canonical realization of a
reactance function as a cascade of UEs terminated in either an open circuit or a short
circuit [130].

The observation of the matrix-in (2.70) shows-that the unit element must create a
half-order transmission zero atS ==1. The unit element, therefore, does produce a
transmission zero, but the zero occurs at' S'=%1 on the real axis of the S-plane. In

other words, there is no transmission zero on the ;jQ axis of the S-plane. The

following statement will give a clear description of Richards theorem (unit element).

Fig. 2.24 shows the input impedance Z (S) of a transmission line of

characteristic impedance Z;, terminated in an impedance ZI(S ) is given from

transmission line theory (see from (2.65)) by
Z(8)=2,(2,(S)+52,)/(52,(5)+2,) (2.71)

After manipulation, (2.71) becomes

(2.72)
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Again, the Richards theorem states that a unit element Z(l) may always be
extracted from an impedance function and the remainder impedance Z, (S ) is
positive real and in the reactance function Z (S) of one degree less than Z(S). Let

S=1in (2.71) lead to Z(l):ZO. Indeed, the characteristic impedance of the unit
element shown in Fig. 2.241s Z,.

Combining (2.72) and Z (1) =Z, yields

7(8)-sz(1)

Z, (S)ZZ(I)W

(2.73)

From (2.73) it can be shown that a common factor (S2 —1) can be cancelled in both
numerator and denominator polynomialsof' Z, (S ) , and the reactance function

Zl(S ) can then be obtained. At this time, the extraction of the unit element is

complete.

As shown in Fig. 2.25, there are four different Kuroda identities [131], which
facilitate the movement of one of the four basic types of reactance branches through a
single unit element. The first and second identities shown in Figs. 2.25(a) and (b)
respectively are called the first type of Kuroda identities, while the third and fourth
identities shown in Figs. 2.25(c) and (d) respectively are called the second type of
Kuroda identities. The first identity provides equivalence between a shunt capacitor
and a UE circuit to a UE and series inductor, and in the case of the second, a series
inductor is transformed into a shunt capacitor on the opposite side of the UE. The
third identity shows that a shunt inductor transforms into another shunt inductor and
an ideal transformer with a turns ratio of 1:#”, and in the case of the fourth, a series

capacitor transforms into another series capacitor and an ideal transformer with a
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Fig. 2.25. The four Kuroda identities where n’ =1+2,/Z7,.

turns ratio of n”:1.

It should be emphasized here that the Kuroda identities apply specifically to
S-plane networks. This means that in terms of the equivalent distributed s-plane
elements, the lengths of the reactive stubs (equivalent to the S-plane inductors and
capacitors) and the adjacent transmission lines (equivalent to the unit elements) must

all be identical.
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2.2.3 Transmission Line Approximating Functions and Synthesis Procedure

In this dissertation, due to the concerned network as shown in Fig. 1.3, Marchand
balun is inherently a band-pass network. Thus, filter theorem can be adopted to
synthesize the Marchand balun. The key point is to determine the polynomial of
reflection coefficient for a cascade of unit elements and prototype LC distributed
elements. Table 2.2 provides each of the distributed L, C and U.E. and its
corresponding ABCD matrices. For showing how to obtain the reflection coefficient, a
prototype circuit shown in Fig. 2.26 is taken as an example. The first is to utilize the

ABCD parameter in Table 2.2 and obtain the overall cascaded ABCD matrices

45 35 4 T Sl 7

(2.74)
1 { 1 2035}
VI-82 1S
Then, the reflection coefficient is given by the well-known formula
A(S)+B(S)=C(S)-D(S

Actually, in [132]-[136] distributed transmission line elements have been studied
and some approximating functions are obtained to be suitable to the corresponding
circuit networks. For the concerned prototype circuits shown in Fig. 2.26, the
generalized magnitude squared high- and low-pass transfer functions with Chebyshev
responses are described and summarized by Horton and Wenzel [135]. The
characteristic functions associated with the high- and low-pass prototype circuits are

given by

2
1-8; 1-S]
K(S*)=|T, (S—jT = |-U, (S—] U, = (2.76)
S 1-58? S 1-5?
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Filter elements ABCD
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Table 2.2. ABCD matrices for distributed LC ladder and a unit element.

Tl T
1 UE, UE, UE3}1

Zin
(a)
I%I—’ — |UE; — |UE, p— UE; %
Zlin
(b)

Fig. 2.26. (a) A possible high-pass prototype circuit. (b) A possible low-pass
prototype circuit
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and

2
S S\1-5; S S\1-5;
K(S*)=|T, (—JT 4 |-U, [—JUW — < (2.77)
Sc S.A1-§? Sc S.A1-§>
respectively, where 7, (x)and U, (x)are the unnormalized Chebyshev polynomials

of the first and second kind of order n:

T, (x)= cos(n cos”' x)

U, (x) :sin(n cos™' x) (2.78)
, S.=JQ., Q.is the cutoff frequency which occurs at half power (-3dB), and m is
the number of a mixed cascade ladder elements and n is the number of unit elements.

Furthermore, it is recalled that the scattering parameters are related to the

characteristic function K(S*)and the ripplélevel ¢ of the circuit by

2 1

5 O ) @79
) ezK(Sz)

Qe vver ) (280

Then the appropriate poles and zeros of ‘SII(S )‘2 must be assigned to Su(S )and

S, (=S) with the knowledge that
2
1S, (S) =5, (8)*5,,(-S) (2.81)
The next step 1s to derive the input impedance function Z,, (S ) shown in Fig.
2.26. The source resistance is assumed to be unity. The relationship between S, (S )

and Z, (S) is expressed as

(2.82)
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Finally, the circuit networks shown in Fig. 2.26 are synthesized using the method of

standard element extraction which can be found in [135]-[137].
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Chapter 3 Quarter-Wave Stepped-Impedance Resonator Filters with
Quadruplet and Canonical Form Responses

In this chapter, compact microstrip quarter-wave stepped-impedance resonator
(SIR) bandpass filters with quadruplet and canonical form responses are proposed.
The proposed quadruplet filter can be designed to have a pair of transmission zeros to
achieve sharp selectivity. In addition, by applying an extra source-load coupling, two
additional transmission zeros on both side of passband are created to further enhance
the selectivity. Because the quarter-wave SIRs are adopted, the circuit size of the
filters can be largely reduced and the upper stopband can be extended. Two
generalized Chebyshev filters corresponding to quadruplet and canonical form
coupling schemes are fabricated. Simulated and measured results are matched very

well.

3.1 Introduction

Compact and high-performance microstrip bandpass filters are important
building blocks in wireless and mobile communications due to their small size, ease
of fabrication and light weight. In many literatures, half-wave or quarter-wave
resonators are utilized to design microstrip bandpass filters. The conventional
parallel-coupled filters using half-wave resonators have a large circuit size, and they
don’t exhibit generalized Chebyshev responses for high selectivity [69], [97]. The
hairpin and quarter-wave resonators with cross couplings are proposed to solve the
problems [72], [75]-[77]. However, these filters still suffer from spurious responses
due to the distributed nature. The filters with half-wave resonators depict spurious
responses at twice of the center frequency, and the filters with quarter-wavelength

resonators have spurious responses at three times of the center frequency.
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Recently, many efforts focus on the half-wave and the quarter-wave SIRs to
design cross-coupled filters [78]-[80]. In [78], the fourth order filter utilizing both A/2
and A/4 resonators shows a good rejection bandwidth and high selectivity. However,
control of the physical parameters of the open stubs of the A/2 SIR-like resonators
(resonator 1 and 4) are not easy because they not only suppress the high-order
resonances but also implement the external coupling to maintain the appropriate
passband performance. In [79], although a good selectivity is obtained, both the
coupling routes and the physical layout are too complicated so that the synthesis of
the coupling matrix and final fine tuning of the physical layout are too time
consuming. In [80], the A/4 SIR filter shows good selectivity. However, to design the
locations of the transmission zeros is very complicated and too much depends on
experience.

In this chapter, we propose two.microstrip A/4 SIR filters both with generalized
Chebyshev responses. The proposed filters can overcome the above problems. Fig.
3.1(a) and Fig. 3.1(b) show two fourth-order filters with cross coupling that one is
without source-load coupling and the other is with source-load coupling. The filter in
Fig. 3.1(a) has a pair of transmission zeros due to quadruplet coupling scheme
whereas the filter in Fig. 3.1(b) has two pairs of transmission zeros due to canonical
form coupling scheme. A coupling enhancement line between source and load in Fig.
3.1(b) is used to control the source-load coupling strength. Thus, with the coupling
enhancement line, two extra transmission zeros can be controlled easily with a little
influence on passband performance. In addition, the A/4 stepped impedance resonators
are used to obtain compact size and to push the high order spurious frequencies to as
high as possible. Therefore, the proposed filters are suitable for bandpass filters with

small size, wide stopband and sharp selectivity in a modern communication system.
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(a)

Via Hole Via Hole

Via Hole

Enhancing line of
source-load coupling

(b)

Fig. 3.1. The circuit layouts of the proposed microstrip quarter-wave SIR filters. (a)
The fourth-order quadruplet filter. (b) The fourth-order quadruplet filter with
source-load coupling.

3.2 Coupling Schemes and Stepped Impedance Resonators
The circuit layout in Fig. 3.1(a) and Fig. 3.1(b) can be modeled as the quadruplet
coupling scheme shown in Fig. 3.2(a) and the canonical coupling scheme depicted in
Fig. 3.2(b) respectively. Here, the resonators are represented by dark dots, the source
and load are empty dots, the solid lines between resonators indicate main coupling,
and the broken lines indicate the cross coupling. As shown in Fig. 3.1(a) and Fig.
3.1(b), the unwanted cross coupling exists and leads the coupling route to be

complicated. Thus, to avoid the design complexity, we ignore the unwanted cross
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Fig. 3.2. Coupling schemes for the bandpass filters proposed in this chapter. (a)
Quadruplet. (b) Canonical form.

coupling in the coupling scheme when designing the filter. This would simplify the
coupling matrix.

When designing a cross-coupled filter with the corresponding coupling scheme
shown in Fig. 3.2(a), the first step is to extract a coupling matrix which satisfies the
specification. In our designed case, the quadruplet filter without source-load coupling
is realized to have one pair of real frequency transmission zeros at normalized
frequency Q=+2 for selectivity. The center frequency, fractional bandwidth, and
maximum in-band return loss of both filters are 2.45 GHz, 8%, and 20dB, respectively.

By using the synthesis technique in [37], the coupling matrix is obtained as

0 10236 0 0 0 0
1.0236 0 08706 0 -01705 0
| 0 08706 0 07673 0 0 3.1)
0 0 07673 0 08706 0
0  -01705 0 08706 0  1.0236
0 0 0 0 1026 0 |

The next step is to implement the coupling matrix in microstrip technology. For
compact size and wide upper stopband, the A/4 SIR is a good choice to realize the

proposed filter. In the following, we would briefly illustrate basic properties of the

SIR.
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Via Hole
Zin 92 01

Fig. 3.3. The basic structure of the quarter-wave SIR.

Fig. 3.3 is a basic structure of the quarter-wave stepped impedance resonator (A/4
SIR). This resonator comprises two transmission lines with different characteristic
impedances. The transmission line of the high impedance Z; and the electrical length
6, is connected to ground through a via-hole. The transmission line of the low
impedance Z, and the electrical length 6, is connected to the high impedance
transmission line and the other end.is open;eircuited. The input impedance of the A/4

SIR can be derived easily as follows [92]

7 =z, Z;tan0,+ Z, tan 0, 32)
Z,-Z tanf, tand,

The parallel resonance occurs when Y;,, = 1/Z;, = 0, then we can obtain a useful

equation as follows
R, =tanf, tan @, (3.3)

where Ry is the impedance ratio of the SIR given as
R, =—= (3.4)

It can be seen from (3.3) and (3.4) that the important parameters of the resonance
condition of SIR are #,, 6, and R;. When 6,=60,, the overall electrical length

Ora(=0,+6-) of the resonator and the first spurious frequency fsa are obtained as
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0, = tan (3.5)

A[2JR,
1-R,

T

B .
S an' JR, Jo (3.6)

For designing the quadruplet filter proposed in this chapter, we would consider
different coupling mechanisms. Figs. 3.4(a)-(c) show three types of coupled
microstrip SIRs. The coupling between two resonators in Fig. 3.4(a) is electric
coupling due to the stronger electric field around the coupling gap. The coupling in
Fig. 3.4(b), on the other hand, is a magnetic coupling due to the inductance
contributed by the via-hole. For the coupling of the structure in Fig. 3.4(c), both the

electric and magnetic couplings occur at both the coupling sides, and it is a mixed

coupling.
Via Hole ViaHole %
(a) (b)
Via Hole

Via Hole -

Via Hole

(c) (d)

Fig. 3.4. Basic coupling structures of the proposed filters. (a) The electric coupling.
(b) The magnetic coupling. (c) The mixed coupling. (d) The coupled-line coupling for
input/output coupling.

Once the coupling matrix, the type of the resonators and the circuit layout of the

filter are determined, we could follow the procedure defined in [6] to determine the
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length of each A/4 SIR and the spacing between two A/4 SIRs so as to get the initial
physical parameters. The length of the SIR might be adjusted until the resonance
occurs at the center frequency. The spacing between two resonators in Figs. 3.4(a) and
3.4(c) can be determined from the two resonant peaks in the transmission coefficients.
In Fig. 3.4(b), the two A4 SIRs couple through the via hole inductance, and the
coupling coefficient can also be obtained. The input and output coupling coefficients
in Fig. 3.4(d) are determined by observing the phase of the reflection coefficient. It
should be pointed out that in Fig. 3.1(a) two short transmission lines are used to
enhance the coupling between source and resonator 1 and load and resonator 4,
respectively. Therefore, we can roughly obtain each element of the coupling matrix
shown in (3.1).
3.3 Filter Design Examples and Results

The proposed filters are built'on a 20-mil-thick Rogers RO4003 substrate with &,
= 3.38, tano = 0.0021. The commercial EM simulation software Sonnet 9.0 [100] is
used to perform the actual computation as described above. The specifications of the
filter in Fig. 3.1(a) are described in previous section. Here, the dimensions of the
resonator 1 are the same as the resonator 4 and the resonator 2 are the same as the
resonator 3. The values of Z; and Z, for resonator 1 and 4 are chosen as 121 and 41.78
Q, respectively. The values of Z; and Z, for resonator 2 and 3 are chosen as 121 and
24.93 Q, respectively. Thus, from (3.3)-(3.6), the values of Rz and 6, for resonator 1
are 0.206 and 24.41 degree, respectively, and the values of Rz and 6, for resonator 2
are 0.3453 and 30.44 degree, respectively.

The initial dimensions are then fine tuned to achieve the original specifications.
The dimensions (mm) of the filter shown in Fig. 3.1(a) are W,=0.15, W,=3.10,
W3=1.52, L,=4.27, L,=4.82, Ls=5.28, L4,=5.87, $,=0.13, $,=0.38, S3=1.29, S4,=0.15,
Ls=2.54, L&=10.82. The diameter of the via-hole is 0.81 mm. The second filter shown
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(b)

Fig. 3.5. The constructed filters. (a) The-quadruplet filter. (b) The quadruplet filter
with source/load coupling.

in Fig. 3.1(b) is a canonical form filter that two cross couplings one between resonator
1 and 4 the other one between source and load are included. This would create two
extra finite transmission zeros to improve selectivity. Fortunately, one can add the
source-load coupling as a perturbation that other portion of the filter could keep
unchanged. Therefore, all of the dimensions of the filter in Fig. 3.1(b) are the same as
Fig. 3.1(a) except for the source-load coupling enhancement line. The dimensions
(mm) of the second filter are W,=0.2, S5=0.25, L;=1.17, Ls=0.61. Figs. 3.5(a) and
3.5(b) show the pictures of the two constructed filters.

Fig. 3.6(a) shows the measured in-band performance of the first constructed filter.
Good agreement between the simulated and measured results is observed. The
midband insertion loss is 2.7 dB and the return loss is greater than 14 dB. The

simulated and measured wide-band performances of the filter from 1 GHz up to 14
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Fig. 3.6. Measured and simulated performances of the quadruplet filter of Fig. 4.5(a).
(a) In a narrow-band. (b) In a wide band.
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GHz are illustrated in Fig. 3.6(b). The measured transmission performance of the
filter is with a rejection level better than 30 dB up to 12.5 GHz.

The in-band performance of the second constructed filter is shown in Fig. 3.7(a).
The measured positions of the two additional transmission zeros contributed by
source-load coupling are just a little drift compared with the simulated results. The
measured insertion loss is 2.75 dB and the return loss is greater than 17 dB. The
measured upper stopband performance of the filter shown in Fig. 3.7(b) follows the

simulation and achieves an attenuation level exceeding 27 dB up to 12.7 GHz.
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Fig. 3.7. Measured and simulated performances of the quadruplet filter with

source/load coupling in Fig. 3.5(b). (a) In a narrow-band. (b) In a wide band.
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Chapter 4 Microstrip Parallel-Coupled Filters with Cascade
Trisection and Quadruplet Responses

Microstrip parallel-coupled filters with generalized Chebyshev responses are
presented. The basic structure of the proposed filter is a conventional parallel-coupled
filter which the physical dimensions can be easily obtained by the well-known
analytical method. With the aid of the equivalent circuit corresponding to a
conventional parallel-coupled filter, the relative insertion phase from source or load to
each open-end of resonators can be easily obtained by observing the two-port
admittance matrix. Applying the cross coupling from source or load to a proper
nonadjacent resonator, a trisection or a quadruplet coupling scheme can be realized
with prescribed transmission zeros. More importantly, the proposed trisection can be
designed to have a transmission zero on the lower or upper stopband by just adjusting
the length of the cross coupling strip. Using the proposed structure, the conventional
time-consuming adjusting procedure to obtain initial physical dimensions of filters is
no longer required. In this chapter, a fourth-order parallel-coupled filter is used as the
basic structure to demonstrate various combinations of transmission zeros. Simulated

and measured results are well matched.

4.1 Introduction
High performance microwave filters are essential circuits in many microwave
systems where they serve to pass the wanted signals and suppress unwanted ones in
frequency domain [26]. Cross-coupled filters are attractive since they exhibit highly
selective responses which are required in modern communication system. Among
these cross-coupled filters, the cascade trisections (CT) and cascade quadruplets (CQ)

[6], [71], [73], [81], [82], [95] are two of the most commonly used coupling schemes.
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Besides the cross-coupled coupling schemes, other coupling topologies such as
doublet, extended doublet and box-section were also found interesting [66], [86] and
have been successfully implemented in microstrip form [88], [89]. In brief, all of the
mentioned filters are designed to have finite transmission zeros for better selectivity.

To design a cross-coupled filter such as the filters in [6], [71], [73], [81], [95],
the following procedures are usually taken. The first step is to synthesize a coupling
matrix corresponding to a desired response. Secondly, decide the suitable physical
layout of the resonator. Thirdly, adjust distance and orientation of two neighboring
resonators two by two to get proper signs and magnitudes of the corresponding
coupling coefficients. In this step, the Dishal’s method [38] is usually used. A detailed
description of Dishal’s method is given in [6]. Finally, fine tune the whole circuit. The
third and final steps are the most tedious and. time-consuming steps because, in the
third step, they need to generate design curves of coupling and external Q from an EM
field solver and, in the final step, one resonator may have many neighbors that when
adjusts the distance and orientation against one neighbor the coupling strength with
other neighbors may change. Therefore, the iterative adjusting procedure might
require. Another drawback to design the conventional cross-coupled filter is that if
one coupling coefficient in the coupling matrix changes sign, the physical layout must
be reconfigured. For example, in the case of cascade trisection filters of [73],
completely different orientations of the resonators must be adopted for a trisection
having a lower stopband transmission zero and a trisection having an upper stopband
transmission zero because there is one coupling coefficient changed sign. This means
that the time-consuming adjusting step described above must be done separately in
two cases.

Another interesting cross-coupled filter based on a parallel-coupled filter

structure was proposed by Hong and Lancaster [96]. In [96], an extra microstrip line
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couples the nonadjacent resonators (resonator 1 and 4 in the paper) to produce
transmission zeros. By adjusting the length of this extra coupling microstrip line and
gaps of the coupling sections, the locations of the transmission zeros can be
manipulated. This kind of filter has the benefit of simple layout, manageable
transmission zeros, and much less time for adjusting layout than conventional
cross-coupled filters. However, it has some problems. The extra coupling microstrip
line has its own resonant frequencies. If the electrical length of this extra coupling
microstrip line is not integer multiples of 180°, spurious responses appear at these
resonant frequencies on lower or upper stopband. The spurious resonance can
seriously degrade the stopband performance of the filter. The situation becomes more
severe as the extra coupling line becomes longer. If the electrical length of this extra
coupling microstrip line is integer multiples:of 180°, it becomes an extra resonant
node in the coupling route. This ‘extra resonant node causes the coupling diagram
more complex when synthesizing a proper coupling matrix corresponding to a desired
response. One way to solve this problem is to use source or load to nonadjacent
resonators cross couplings [82]. Unlike [96], the extra coupling line in [82] is directly
connected to source or load so that no self-resonance of this extra coupling line will
occur. The filter in [82] can largely simplify the design procedures of a CT filter due
to its conventional microstrip parallel-coupled filter structure. The CT filter in [82]
introduces cross couplings of M, and My, ; to generate two trisections that two
independently controllable transmission zeros on upper stopband are produced.
However, the realizable response of the filter in [82] is limited to be the CT filter with
two upper stopband transmission zeros.

In spite of the cross-coupled schemes, the coupling schemes such as doublet,
extended doublet and box-section are introduced [66], [86]. The main characteristic of

these coupling schemes is the ability to shift a transmission zero from one side of
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passband to the other by just adjusting the resonant frequencies of resonators in the
box portion of the coupling scheme, and this is so-called zero shifting characteristic.
Recently, a fourth-order box-section filter proposed by Amari et al. [88] and filters
with box-like coupling schemes proposed by Liao ef al. [89] have been successfully
implemented using microstrip lines. The drawback of the former is that it needs to use
the Dishal’s method as described above. The latter used an E-shaped two-mode
resonator, namely even- and odd-mode, to support corresponding coupling schemes
such as doublet, extended doublet, and box-section. Unfortunately, when designing
such a two-mode filter, the physical dimensions of the resonators are very sensitive
especially the dimensions of the two-mode resonator. While tuning the filter, carefully
adjusting physical parameters of the two-mode resonator is required because some
dimensions of the two-mode resonator influence not only the position of the
transmission zero but also the in-band return loss. It means that designer should spend
much time to tune.

In this chapter, we propose new cross-coupled filters based on a conventional
parallel-coupled filter, and all of the shortcomings described above can be solved.
Basically, this newly proposed filter structure takes the advantages of the Hong’s filter
[96] and Liao’s filter [82]. Fig. 4.1(a) shows the schematic layout of the proposed
filter with a fourth order filter as an example where the crossing coupling between
source or load and nonadjacent resonators are presented by dotted lines. Its equivalent
coupling diagram is shown in Fig. 4.1(b). The filter has the advantage of using the
simple synthesis procedure presented in [97] to serve as the initial design. In Figs.
4.1(a) and (b), although the figures show multiple cross coupling routes from source
to nonadjacent resonators, only one of them is chosen in the design procedures.
Similar situation occurs in the load end. Then, by observing the relative phase shifts

of main and cross-coupled paths between source or load and one of the nodes of the
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Fig. 4.1. The cross-coupled parallel coupled filter. (a) The schematic layout. (b)

Coupling and routing scheme corresponding to (a).

interested resonator, filters with generalized Chebyshev responses can be
implemented. Applying suitable cross coupling paths and phases, the proposed filter
could be CT, CQ, or combination of quadruplet and trisection. It is important to note
that in the trisection configuration the transmission zero can be located on either
lower or upper stopband by just applying the suitable cross coupling in Fig. 4.1(a).
Therefore, the design procedures of the proposed filter are easy without using of the
Dishal’s method or the method presented in [6]. Besides, it is more flexible to locate

the transmission zeros.

4.2 Phase Relationships and Generation of Finite Transmission Zeros

The purpose in this section is to explore the relative phase shifts of the main
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coupling path from source or load to resonators and to apply suitable phase shifts of
the cross coupling paths to generate finite frequency transmission zeros on either
upper stopband, or lower stopband, or both of the stopbands. Let us take a fourth

order filter as an example.

F i 6 H

Fig. 4.2. The equivalent lumped-element circuit of a fourth-order parallel coupled

filter.

In the beginning, the initial design of the proposed filters is based on the
conventional parallel-coupled filter presented by Cohn [97]. Fig. 4.2 shows the
lumped-element equivalent circuit of a‘fourth-order parallel-coupled filter shown in
Fig. 4.1(a). Cross couplings are not introduced at this moment. Here, it should be
pointed out that the Ilumped-element equivalent circuit should include the
phase-reversing transformer in every resonator. Although the phase-reversing
transformer is often omitted in a conventional parallel-coupled filter due to no effect
on the magnitude of filter response, it is, however, very important in the proposed
cross-coupled filters. Let us now check phase relationships from source or load to
resonators. In order to observe the relative phase conveniently, we sequentially
number the corresponding nodes of Figs. 4.1(a) and 4.2 as A-J from source to load.
Therefore, the relative phases in the lumped-element circuit model of Fig. 4.2 can be
determined, and all of the insertion phases between node A and nodes B-J in Fig.
4.1(a) are obtained easily. Consider each box in Fig. 4.2 which represents an ideal
admittance inverter having constant image admittance and constant phase shift of —
90° for all frequencies. Let nodes A and B to be the input and output ports of the

admittance inverter J,3. The matrix element Y34 of the two-port admittance matrix can
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then be determined. Thus, the phase of Yz, is —90° over both the frequency ranges f
< fo andf > fo where fj is the center frequency of the filter. Also, the phase shift
of the phase-reversing transformer is — 180° for all frequencies. Consequently, the
phase of Y¢y is —270° over both the frequency ranges f < fo and /' > f. Next,
consider Yp, that the shunt inductor/capacitor pair as shown in Fig. 4.2 is a resonator.
The phase shift of a resonator at off-resonance frequencies is dependent on whether
the frequency is above or below resonance. As f < f; the admittance of the resonator
is inductive and the phase shift should be —90°. Similarly, as f* > fp, the admittance
of the resonator is capacitive and the phase shift should be +90°. As a result, the
phase shift of Yp4 is —90° when f < fo (—90°—90°—180°—90° = —450° = —
90°) and +90° when f > fo (—90°+90° —180°—90° = —270° = +90°).
Following similar analyzing procedures described above, one can observe every
relative phase shift between node A and nodes B-J. The phase relationships from
source or load to resonators can be easily observed by using any commercial circuit
simulator. Table 4.1 summarizes the phase relationships between node A and nodes
B-J as f < fo and f > fo. The method is applicable to any order of a
parallel-coupled filter. As a result, the relative phase shifts between node A and nodes
B-J in Fig. 4.1(a) are identical to those of the lumped-element filter in Fig. 4.2

Next, the cross coupling paths will be studied. When a cross coupling path is
applied to node A and another node in the nonadjacent resonator and its phase delay is
180° out of phase with the main path, a transmission zero appears.

The trisection coupling scheme in this filter can be formed by adding a cross
coupling path from source to the second resonator. The two ends of the second
resonator corresponds to node D and node E. Assume the cross coupling path is
applied from source to node D. Because the phase of the main coupling path Yp, is

+90° as f > fo, the phase of the cross coupling path from source to node D should
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be —90°asf > fyin order to have a upper stopband transmission zero. On the other
hand, if the cross coupling path is applied between source and node E, the filter can
also have a upper stopband transmission zero when the phase of cross coupling path
Yeq is +90° as /' > fy due to —90° of phase in the main path Yz as f > f. In
contrast to a upper stopband transmission zero as discussed above, a lower stopband
transmission zero could also be possible by applying—90° phase shifts of the cross
coupling path Yz, as f < fywhere it is 180° out of phase with that of the main path
Yr4. In spite of the source, the load can also be cross-coupled to the third resonator in
Fig. 4.1(a) to form another trisection.

Another popular coupling scheme is so called quadruplet where two transmission
zeros, one on upper stopband and the other on lower stopband, are generated by
applying just one cross coupling path. The quadruplet cross coupling could be from
source to the third resonator or from load to the second resonator. Utilizing similar
phase analysis method as trisection, the phase relationship of the quadruplet coupling
scheme can be easily obtained. Let us use the cross coupling path from source to node
G as an example. The phase shift of the main path Yg4is +90°asf < foandf > fo.
As mentioned above, as long as the phase shift of the cross coupling path Y4 is —
90°, two transmission zeros on both lower and upper stopband should appear.
Similarly, the quadruplet cross coupling path could also be formed from source to
node F.

Table 4.1 summarizes the phase relationships that may help a designer to judge
the relative phase of the main coupling from source or load to each node and to apply
proper phase of the cross coupling to create desired transmission zeros. After the
positions of the transmission zeros being qualitatively determined, the proper strength
of the cross coupling should be quantitatively determined for a desired specification.

Full discussion will be presented in section 4.3.
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The main The cross coupling path Response Delay line Frequency
coupling path electrical response

length predicted

f<fy | >fo f<fo >fo

Ya(Yn) -90 -90 | Not applicable | Not applicable

Yea(Yny) | ¥90 | +90 | Notapplicable | Not applicable

Ypa(Yar) -90 +90 -90 -90 Trisection with a TZ 0° or
on upper stopband 360°
Ypa(Yar) -90 +90 +90 +90 Trisection with a TZ 180°

on lower stopband

Yia(Yry) +90 -90 -90 -90 Trisection with a TZ 0° or
on lower stopband 360°
Yia(Yry) +90 -90 +90 +90 Trisection with a TZ 180°

on upper stopband

e

Yea(Ye) | 90 | -90 +90 +90 Quadruplet 180°
Yoa(Yoy) | +90 | +90 -90 -90 Quadruplet 360°
Yua(Ycr) -90 +90 *
Yia(Ysy) +90 -90 *
Yia(Yas) -90 -90 *

%

. it is a cross coupling not belongs to trisection or quadruplet and beyond the scope of this research.

Table 4.1. The relative phase shifts of the main coupling path, the proper phases of
the cross coupling paths to generate transmission zeros, corresponding responses,

and delay line electrical length.

4.3 Cross-Coupling Schemes
Two coupling schemes, namely the CT and the mixed cascade quadruplet and
trisection [65], are possible for our fourth-order examples. Fig. 4.3(a) and Fig. 4.4(a)
show the CT and the mixed cascade quadruplet and trisection coupling schemes

respectively.  Although the CT and the mixed cascade quadruplet and trisection
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Fig. 4.3. The cascaded trisection filter. (a) The coupling scheme. (b) The

corresponding equivalent lumped-element circuit of a fourth-order parallel coupled
filter with cross couplings. Either the inverter.Jap or Jag corresponds to Ms, and

either the inverter Jjr or Jjg corresponds to-M;;..

O Source/Load

(b)
Fig. 4.4. The mixed cascaded quadruplet and trisection filter. (a) The coupling

scheme. (b) The corresponding equivalent lumped-element circuit of a fourth-order
parallel coupled filter with cross coupling. Either the inverter Jar or Jag corresponds

to Ms; and either the inverter Jir or Jjg corresponds to Mj;.
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coupling schemes have already proposed in literatures, the microstrip implementation
using parallel-coupled structure is first proposed in this research. Here, the resonators
are represented by dark dots, the source and load are empty dots, the solid lines
between resonators indicate the main coupling, and the broken lines indicate the cross
coupling.

The lumped-element equivalent circuit of the fourth-order parallel-coupled filter
with CT cross coupling scheme is shown in Fig. 4.3(b). Either the inverter J4z or
inverter Jyp in Fig. 4.3(b) corresponds to the cross coupling Ms; in Fig. 4.3(a), and
similar situation applies to the inverter J» and the inverter J;;. Choosing either J,z or
Jup 1n the source end and either Jyr or Jy¢ in the load end, different signs of Ms, and
M3, can be implemented. Thus, two trisections are formed and each trisection can
create a transmission zero on either lower or upper stopband. To demonstrate the
mentioned properties, three CT filters are discussed as examples.

The first CT filter is with the following parameters. Its low-pass prototype is
with two transmission zeros at Q=3 and Q= —2, and a maximum in-band return loss
of 20dB. The coupling matrix corresponding to Fig. 4.3(a) is shown in (4.1) where the

synthesizing techniques in [37] are used.

0 0.9024 —04910 0 0 0
0.9024  0.7905 0.6581 0 0 0
~0.4910 0.6581 -0.3186 0.7285 0 0 41
M = 4.1)
0 0 0.7285 0.1845 0.7990 0.3197
0 0 0  0.7990 —0.5601 0.9763
|0 0 0 03197 09763 0 |

In the coupling matrix, Ms;= —0.4910 and M3,=0.3197 are in different sign
because one transmission zero on upperstopband is due to M3, and the other
transmission zero on lower stropband is due to Ms,. Because a capacitive coupling
provides -90° of phase shift for /' < fyand f > f;, from Table 4.1, an upper stopband

transmission zero would be created if a capacitive cross coupling is applied between
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nodes J and G. Therefore, J;g could be chosen capacitive to realize Mj;;. Similarly, if a
capacitive cross coupling existed between nodes A and E, there would be a finite
transmission zero on the lower stopband. Thus, one may choose J,z with capacitive
cross coupling to implement Ms,. Due to the physical distance of node A to node E, a
delay line is introduced to implement cross coupling between nodes A and E. Thanks
to this delay line, more flexible design can be achieved. When capacitive coupling in
cooperation with a delay line of electrical length 360°, the overall relative phase shift
of the cross coupling is still —90° (—360°—90°= —90°) for /' < fo and /' > f;.
And in Table 4.1, relative phase shift of the main coupling path from node A to E is
90° on f < f;. Consequently, a finite transmission zero on the lower stopband is
generated.

The second CT filter is with two:transmission zeros at Q=3 and Q=2 in the
lowpass domain, and with similar in band. return loss of 20dB. The synthesized

coupling matrix is depicted in (4.2).

0 09167 04889 0 0 0
09167 —0.7411 0.6714 0 0 0
0.4889 0.6714 04288 0.7357 0 0 490
M= (4.2)
0 0 0.7357 0.3471 0.8118 0.3179
0 0 0 08118 —0.4744 0.9891
0 0 0 03179 0.9891 0

Note that the sign of Mjs, changes from negative to positive. Therefore, one may
choose Jyp as a capacitive cross coupling to achieve Ms»=0.4889 and keep Jjg
unchanged.

The third CT filter has similar passband return loss but with two lowpass domain
transmission zeros at Q= —3 and Q= — 2. From the reversal property of the coupling
matrix the absolute values of the matrix elements should equal to those of (4.2) and
M1, Moy, M3z, My, Msy, Mos, M3;, and M;; should change sign [98]. The coupling

matrix is shown in (4.3).
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0 0.9167 —0.4889 0 0 0 |
09167 0.7411 0.6714 0 0 0
—-0.4889 0.6714 —0.4288 0.7357 0 0
M = (4.3)
0 0 0.7357 -0.3471 0.8118 —0.3179
0 0 0 0.8118 0.4744 0.9891
i 0 0 0 —-0.3179 0.9891 0 |

Thus, we may choose J,z with capacitive cross coupling to achieve Mg, = —
0.4889 and choose J;» with capacitive cross coupling to achieve M3 = —0.3179.
Again, due to physical distances of node A to node E and node J to node F, two
capacitive cross coupling in cooperation with two delay lines of electrical length 360°
implement the desired J4z and Jjr. The lowpass domain responses of the three CT

filters are shown in Fig. 4.5.
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Fig. 4.5. The low-pass responses of the three CT filters with all in-band return
loss 20dB. Case 1, normalized transmission zeros at Q=23 and Q= —2. Case 2,
normalized transmission zeros at Q=3 and Q=2. Case 3, normalized transmission
zeros at Q= —3 and Q= —2.

Fig. 4.4(a) shows the coupling scheme of the fourth order mixed cascade
quadruplet and trisection filter. This topology is particularly interesting because the
quadruplet part can produce a pair of transmission zeros on both sides of the stopband,
and the trisection part could generate another transmission zero on whatever location

we want. Fig. 4.4(b) is the lumped-element equivalent circuit of a fourth-order
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parallel-coupled filter with the mixed cascade quadruplet and trisection cross coupling
where the nodes A-J in Fig. 4.4(b) correspond to the similar nodes in Fig. 4.1(a).
Again, either the inverter J r or J4¢ in Fig. 4.4(b) can implement the cross coupling
Ms; in Fig. 4.4(a), and either the inverter Jr or Jjg in Fig. 4.4(b) can realize the cross
coupling Mj;; in Fig. 4.4(a). Let us consider the quadruplet portion of the mixed
cascade quadruplet and trisection filter first. Suppose that a capacitive coupling gap is
applied at node F. From Table 4.1, a delay line with electrical length of 180° should be
involved between source and capacitive coupling gap (node F) to create proper phases
of the cross coupling (—180°—90°= —270°= +90° for /' < fyandf > fp) so thata
pair of transmission zeros could create on both sides of the stopband. Oppositely, if
the capacitive gap is applied at node G to realize the cross coupling, the inserted delay
line between node A and G should be,360% Considering the layout, a capacitive gap
applied to the node F is preferable. The trisection portion of the mixed cascade
quadruplet and trisection filter is stmilar to that of CT filter we discussed earlier. If a
finite transmission zero on the upper stopband is wanted, one may choose the
capacitive inverter Jye in Fig. 4.4(b) to implement the cross coupling M3, in Fig.
4.4(a). Contrarily, if a finite transmission zero on the lower stopband is wanted, the
cross coupling M3, in Fig. 4.4(a) could be realized by the capacitive inverter Jyr in Fig.
4.4(b). To reach nodes J-F a delay line with an electrical length of 360° should be
involved.

The delay line and the coupling gap form an overall phase shift of —90° (—
360°—90°= —90° for f < foandf > f;). In brief, a mixed cascade quadruplet and
trisection filter can have not only a pair of transmission zeros on both sides of the

stopband but also another transmission zero on either upper or lower stopband.
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4.4 Filter Design Examples

Since a mixed cascade quadruplet and trisection filter contains two types of cross
couplings and is more general than a CT filter, two fourth-order parallel-coupled
filters with the mixed cascade quadruplet and trisection cross coupling are chosen as
examples in this section to demonstrate the feasibility of the proposed structures. A
0.508-mm-thick Rogers RO4003 substrate with a dielectric constant of 3.58 and loss
tangent of 0.0021 is used to implement these mixed cascade quadruplet and trisection
filters.

The first mixed cascade quadruplet and trisection filter is designed to have a pair
of real frequency transmission zeros at normalized frequencies of Q=12 a real
frequency transmission zero at a normalized frequency of Q=4 in the lowpass
domain, and a passband return loss of 20dB.Fig. 4.4(a) shows the coupling scheme of
the mixed cascade quadruplet and trisection filter. Equation (4.4) is the synthesized

coupling matrix.

0 1.0039 0 —0.1998 0 0
1.0039 0.0111 1.0020 0 0 0
o= 0 1.0020 0.0317 0.5879 0 0 (4.4)
—0.1998 0 0.5879 0.1788 0.8409 0.2136
0 0 0 0.8409 -0.3487 1.0010
| 0 0 0 0.2136 1.0010 0 |

Then, the filter is transformed from the lowpass domain to the bandpass domain
with the center frequency of fy=2.4 GHz and the fractional bandwidth of 7%. The
response after transformation is depicted in Fig. 4.6(a).

The design procedures are described briefly in the following.

First, calculate the initial design by applying Cohn’s analytical synthesis method
[99] to realize the in-line part of the coupling matrix. For our fourth-order filter, the
in-line part coupling elements are Ms;, M;,, M>;, M3, and M. That is to get the
J-inverter values from these coupling elements, and using Cohn’s formula to get the
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Fig. 4.6. The ideal responses of the two CQT filters. (a) The bandpass response
corresponding to (4.4) with a typical Chebyshev response as a reference. (b) The

bandpass response corresponding to (4.5).

even- and odd-mode impedances of each parallel-coupled section corresponding to
the J-inverter values. Note that no cross couplings are introduced at this moment so
that the electrical length of each parallel-coupled section is 90°. After this, the layout
can be modified according to [69] that each resonator’s vertical position can be
vertically flipped to make cross couplings easy to apply. In this example, the source
feeding line and the first resonator is vertically flipped so as the load feeding line and
the last resonator such that the nodes to implement the cross coupling of Ms; and M3,
can be accessed. The parallel-coupled filter portion in Fig. 4.7(a) depicts the

modification of the layout.
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Fig. 4.7. The circuit layouts of ‘the proposed filters. (a) The first designed mixed
cascaded quadruplet and trisection~ filter. ~The length and line width of
coupling/shielding line are 4.318 mm ‘and 0.177 mm, respectively. (b) The second

designed mixed cascaded quadruplet and trisection filter.

Second, if nodes A and F are chosen to implement the cross coupling of Mg;= —
0.1998, a delay line with an electrical length of 180° in cooperation with a capacitive
coupling should be used. The reason to use the 180° delay line is described in the
previous section. The initial length of the capacitive coupling gap is obtained by the
circuit simulator such as Agilent’s Advanced Design System (ADS) [99]. For
simplifying the layout, the width of the delay line is fixed to be 0.254 mm and the
coupling gap between the delay line and the resonator 3 is also fixed to be 0.254 mm.

Now, the resonator 3 is coupled to the source through the delay line. The electrical
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length of the delay line is adjusted to be 180° at the center frequency. The coupling
length can be easily adjusted by using the three-coupled-line model in ADS where the
line widths and gap widths keep unchanged. Because tuning of the coupling length in
the circuit simulator can be almost real time. The initial coupling length can be fast
obtained as 3.937 mm. Therefore, the physical layout of the quadruplet portion of the
first mixed cascade quadruplet and trisection filter is obtained.

Finally, the trisection portion of this mixed cascade quadruplet and trisection
filter is the same as that of CT filter described in [82] where an upper stopband
transmission zero can be easily obtained. As the similar method proposed in [82], a
coupling/shielding line is adopted here at the node J of the output feed line. This
would be the simplest way to implement M3, where a transmission zero at a
normalized frequency of Q=4 could 'be created. Finally, fine tuning might be
required using EM simulator. After fine tuning of the whole circuit with the
commercial EM simulator Sonnet [100], ‘all physical dimensions of the filter are
obtained. The circuit layout and the detailed dimensions are shown in Fig. 4.7(a) and
in Table 4.2, respectively, and the photo of the filter is depicted in Fig. 4.8(a).

The second mixed cascade quadruplet and trisection filter is designed to have a
pair of real frequency transmission zeros at normalized frequencies of Q=12, a real
frequency transmission zero at a normalized frequency of Q= —5 in the lowpass

domain, and a passband return loss of 20dB. The synthesized coupling matrix is

shown in (4.5).
0 1.0041 0 —0.1986 0 0
1.0041 -0.0090 1.0019 0 0 0
M= 0 1.0019  -0.0250 0.5871 0 0 4.5)
—0.1986 0 0.5871 —-0.1435 0.8579 -0.1700
0 0 0 0.8579 0.2785 1.0094
L 0 0 0 —0.1700 1.0094 0 ]
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(b)
Fig. 4.8. The layouts of the implemented filters. (a) The first designed filter. (b) The
second designed filter.

Similarly, the lowpass prototype is transformed into bandpass domain with the
center frequency of fy=2.4 GHz and the fractional bandwidth of 7%. The transformed
bandpass response is depicted in Fig. 4.6(b). The initial dimensions of the
parallel-coupled portion of the filter are calculated by the analytical method as
described in the first filter. Again, let us look at the quadruplet portion of the filter first.
This time, the nodes A and G in Fig. 4.4(b) are chosen to implement the cross
coupling between source and resonator 3. From (4.5), the synthesized cross coupling
value should be Mg;= —0.1986. Therefore, a delay line with an electrical length of
360° in cooperation with a capacitive coupling would be appropriate to implement the
Mg;. Again, the width of the delay line is fixed to be 0.254 mm and the coupling gap
is also fixed to be 0.254 mm. Then, the initial coupling length of 3.937 mm is
obtained by the circuit simulator. Finally, let us look at the trisection portion of the

filter. Now, the nodes J and F are chosen to implement the cross coupling between
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The dimensions of the first designed mixed cascaded quadruplet and

trisection filter corresponding to layout in Fig. 7(a) (in mm)

L1 Lg L} L4 L5 Lﬁ L7

18.999 | 19.181 17.779 | 17.830 | 19.253 | 17.729 | 19.253

Ls Ly S; S A\ Sy Ss

19.075 17.729 0.177 0.508 0.965 0.558 0.177

W/ Wg W3 W4 W5 Gl G2

0.660 1.143 1.092 1.193 0.254 0.254 0.254

G; Gy T, T, T; T,

0.203 0.203 9.652 18.288 | 5.181 3.810

The dimensions of the second designed mixed cascaded quadruplet

and trisection filter corresponding to layout in Fig. 7(b) (in mm)

L[ Lz L3 L4 Lj Lﬁ L7

19.100 19.253 | 19.805 | 17.754 | 18.872 | 18.669 | 17.754

Lg S; S, S3 Sy w, W,

19.050 0.177 0.508 0.939 0.558 0.736 1.270

Ws W, Ws W G, G G;

1.143 1.320 0.711 0.254 0.203 0.076 0.254

T/ Tz T3 T4 Tj Tﬁ T7

3.733 60.960 2.794 6.045 5.588 3.810 3.632

Tg Ty Tl(} TII TIZ

52.628 2.794 16.281 | 3.276 1.143

Table 4.2. The physical dimensions of the two

proposed filters.
resonator 3 and load. A delay line with an electrical length of 360° in cooperation with
a capacitive cross coupling could realize the cross coupling with the correct phase and
amplitude. The strip width of the delay line is still fixed to be 0.254 mm. Different
from the former, the capacitive coupling gap is now fixed to be 0.762 mm in this case.
Similarly, the initial coupling length of 1.143 mm is obtained by the circuit simulator.
Same as the first filter, the initial physical dimensions of the second filter can be

obtained from ADS, and then, the EM simulation to fine tune the physical dimensions
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might be required. After fine tuning with the commercial EM simulator Sonnet, the
circuit layout and the detailed dimensions are shown in Fig. 4.7(b) and in Table 4.2,

respectively. The circuit photo is shown in Fig. 4.8(b).

4.5 Results and Discussion

Shown in Fig. 4.9(a) are the measured and simulated performances of the
first mixed cascade quadruplet and trisection filter. The measured center
frequency, fractional bandwidth, and in-band insertion loss are 2.4GHz, 7%, and
1.8dB respectively which are in good agreement with the simulated results. The two
transmission zeros contributed by the quadruplet part are at 2.23 GHz and 2.585 GHz,
and also agree well with the simulation. The third transmission zero is at 2.82 GHz,
and the little deviation might come. from ‘the much weaker and more sensitive
coupling between the coupling/shiclding line and resonator 3 than that of the
quadruplet portion.

Fig. 4.9(b) shows the measured performance of the second mixed cascade
quadruplet and trisection filter. Again, the measured center frequency, fractional
bandwidth, in-band insertion loss, and two transmission zeros contributed by the
quadruplet part of the filter are also in good agreement with the simulated results. The
third transmission zero, similarly, shows a little frequency drift to lower frequency
compared with the simulation.

The sensitivity analysis of the proposed filters to manufacturing tolerances can be
performed in two conditions. One is over etching 0.0508 mm (2 mil), the other is
under etching 0.0508 mm (2 mil). Take the first mixed cascade quadruplet and
trisection filter as an example and simulate it in two conditions using EM simulator
Sonnet. The simulated responses are shown in Fig. 4.10. It is found that the proposed

cross-coupled filters are not very sensitive to the manufacturing tolerances.
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Fig. 4.9. The measured and simulated performances of the two implemented filters. (a)
The first designed filter. (b) The second designed filter.
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Fig. 4.10. The sensitivity analysis of the first mixed cascade quadruplet and trisection
filter for under etching of 0.0508 mm (2mil) and over etching of 0.0508 mm
respectively.
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Another concern is that as the finite transmission zeros get closer to the passband,
the values of the cross coupling should be higher and some dimensions of the circuit
layouts must change. On the other hand, for a highly asymmetrical response with the
transmission zeros very close to the pass-band, the lengths of the resonators should be
modified because the trisection portion of the filter becomes highly asynchronously
tuned. How close the transmission zeros to the passband can be before the layout
becomes impractical for fabrication or the design becomes very difficult to get
estimate.

The situation can be summarized in two cases. The first case is the pair of
quadruplet transmission zeros very close to the passband, and the second case is the
trisection transmission zero very close to the passband. Let us take the first mixed
cascade quadruplet and trisection filter,in Fig:4.7(a) as an example to study these two
cases.

In the first case, as the pair of quadruplet transmission zeros move from Q=12

to Q=1=1.4 in the lowpass domain, the corresponding coupling matrix M is obtained

as
0 0.8849 0 —0.4935 0 0
0.8849 -0.0108 1.0967 0 0 0
M= 0 1.0967 0.0306 0.3780 0 0 (4.6)
—0.4935 0 0.3780 0.1746 0.8488 0.2054
0 0 0 0.8488 —0.3212 0.9940
0 0 0 0.2054 0.9940 0 |

Then, following the design procedures described above, the EM simulated
response and the detailed dimensions are shown in Fig. 4.11 and Table 4.3,
respectively. It is found that the coupled section length 74 of the delay line is
increased from 3.81 mm to 8.382 mm to achieve the proper value of Ms,. Also, it is
reasonable that some dimensions such as §;, S3 and G, in Fig. 4.7(a) are changed
corresponding to the variation of matrix elements. It can be observed in Table 4.3 that
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Fig. 4.11. The simulated performances of the first mixed cascaded quadruplet and

trisection filter with finite transmission zeros at Q=+1.4 , 4.

the layout dimensions are still good for printed circuit board process. It seems that the
cross coupling strength could be implemented much stronger. However, it must be
noted that increasing the value of 7, causes much higher unwanted coupling of M. It
may cause the transmission zeros to drift slightly. The drift of transmission zeros
becomes worse as the cross coupling becomes stronger.

In the second case, as the trisection transmission zero moves from Q=4 to Q=
1.5 and the pair of quadruplet transmission zeros move from Q = 2 to Q= 13 in

the lowpass domain, the coupling matrix is obtained as

0 1.0214 0 —0.0955 0 0 |
1.0214  0.0453  0.9545 0 0 0
vl 0 0.9545 0.1102  0.6936 0 0 4.7)
—-0.0955 0 0.6936 0.4277 0.4560 0.6541
0 0 0 0.4560 —0.9655 0.7903
i 0 0 0 0.2054  0.7903 0 |

As can be seen in the equation (4.7) that the highest absolute value of the
diagonal elements is M,~=-0.9655. The high value of M,, means that the length of
resonator 4 should be largely modified. If the length of coupled-line section changes
too much, the main coupling strength may change such that the dimensions need to be

adjusted. Also, for the highly asymmetric trisection transmission zero closer to the
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The filter with finite transmission zeros at Q=+1.4 , 4. The length and line
width of the coupling/shielding line are 4.318 mm and 0.177 mm,

respectively

L[ Lz L3 L4 Lj Lﬁ L7

18.923 19.227 17.907 17.78 19.431 17.627 19.177

Ly Ly N S, S;3 Sy Ss

19.075 17.627 0.228 0.482 1.194 0.584 0.203

W1 Wz W3 W4 W5 GI GZ

0.660 1.066 1.092 1.193 0.254 0.330 0.178

G; Gy T, T, T; T,

0.305 0.229 7.493 18.262 3.987 8.382

The filter with finite transmission zeros at Q=+1.5, £3. The length and line
width of the coupling/shielding line are 9.144 mm and 0.127 mm,

respectively.

L1 Lg L3 L4 Li L6 L7

18.186 18.135 19.304 19.304 17.830 19.075 18.110

Ls Ly M S5 S; Sy Ss

18.542 18.618 0.152 0.584 0.711 1.066 0.228

W] W2 W3 W4 W5 GI GZ

0.711 1.168 1.194 0.889 0.254 0.330 0.508

G; Gy T, T, T Ty

0.355 0.127 9.906 19.685 6.527 3.81

Table 4.3. The dimensions of the first designed mixed
cascaded quadruplet and trisection filter with finite

transmission zeros closer to the passband.

passband, the width and length of the coupling/shielding line become narrower and
longer, respectively. And the gap between the coupling/shielding line and the third
resonator shown in Fig. 4.7(a) becomes too narrow to be realized. In this case the
iteration process should be adopted. Nevertheless, this process can be done in the
circuit simulator ADS so that it is not very time-consuming to get the initial layout.
Then, in this condition of the highly asymmetric response, the EM simulation to fine
tune the physical dimensions must be required. After fine tuning with the commercial
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Fig. 4.12. The simulated performances of the first mixed cascaded quadruplet and

trisection filter with finite transmission zeros at Q=+1.5, £3

EM simulator Sonnet, the EM simulated response and the detailed dimensions are
shown in Fig. 4.12 and in Table 4.3, respectively. It is found that the length and width
of the coupling/shielding line are 9.144 mm and 0.127 mm, respectively. The gap G,

is 0.127 mm. The manufacturing process can still support the narrow width and small

gap.
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Chapter 5 Bisymmetric Coupling Schemes for Implementation of
Low-Order Generalized Chebyshev Planar Filters with Transmission
Zeros Very Close to the Passband

This chapter proposes some new coupling schemes where the corresponding
coupling matrices show the bisymmetric property. The proposed bisymmetric
coupling schemes are suitable for low-order high selectivity planar filters. Using the
bisymmetric coupling schemes, the strength of cross coupling can be much weaker
than the conventional trisection or quadruplet filters with the same transmission zero
positions. The source and load to nonadjacent resonators cross couplings are applied
to implement the proposed bisymmetric coupling schemes. Most of the proposed
coupling schemes have the properties of synchronous-tuned resonators, bisymmetric
coupling matrices, and relatively weak cross-coupled strengths for finite transmission
zeros close to the passband. The bisymmetric coupling matrix implies a symmetrical
layout that fine tuning of the filter would be much easier. All of the proposed coupling
schemes are compared with the conventional coupling schemes through the coupling
matrices when synthesizing generalized Chebyshev filtering functions. Each proposed
coupling scheme is realized by a microstrip parallel-coupled filter structure with cross
couplings from source and load to nonadjacent resonators. Measured and simulated

responses arc presented.

5.1 Introduction
Filters are important components of microwave communication system. Among
various filtering functions, the generalized Chebyshev filters are attractive because
they offer excellent frequency responses with sharp cutoff skirts and low passband
insertion loss. The sharp skirt is due to the presence of transmission zeros brought

from infinite to finite frequencies. The transmission zeros at precise frequencies in a
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microwave filter reject the specific unwanted signals. In the literatures, especially for
cross-coupled filters, the cascade trisection (CT) and cascade quadruplet (CQ) are two
of the most commonly used coupling schemes. They have been found many
applications in many years [6], [7], [52], [61]. More progressively, source and load to
nonadjacent resonator cross couplings [66], [67] can also achieve high selectivity
responses such as trisection and quadruplet with low-order resonators but less
passband loss. Other coupling scheme such as the doublet has the zero-shifting
property that shifts a transmission zero from one side of passband to the other by just
adjusting the resonant frequencies of two resonators [66], [89]. Among these coupling
schemes, some of them are asynchronous-tuned, e.g. trisection, and doublet. In some
particular situations, strong asynchronous-tuned resonators may cause problems
during fine tuning of the filter especially for the planar filters.

For instance, the two-pole trisection coupling scheme in Fig. 5.1(a) [66] has the
asynchronous-tuned resonators and . the ' corresponding coupling matrix is not
bisymmetric. As a result, when the transmission zero gets closer to the passband, the
cross coupling Ms, may become too large to realize and the alignment of the resonant
frequency could be a tough task. Another example as shown in Fig. 5.1(b) that the
conventional third-order CT has two controllable transmission zeros. In this case, the
corresponding coupling matrix is not bisymmetric no matter the response is
symmetric or not. Again, when a finite transmission zero is very close to the band
edge, the value of the cross coupling would be too large to implement and the
resonators are highly asynchronous-tuned. In some cases, although the resonator is
synchronous-tuned, the cross coupling may be too large to implement as the
transmission zero gets close to the passband. For example, Fig. 5.1(c) depicts a
third-order quadruplet [67], although the coupling scheme is synchronous-tuned, the

coupling matrix would not be bisymmetric and the cross coupling Ms; would be large
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as two transmission zeros are very close to the passband. It can be summarized that to
implement a planar filter with transmission zeros very close to the passband usually
encounters several difficulties. First, the layout is asymmetric unless the coupling
matrix is bisymmetric. Second, the coupling strength might be too large to implement.
Finally, for coupling schemes including a trisection, the alignment of
asynchronous-tuned resonators might be a difficult task.

Parallel-coupled line filters as shown in [101] were proposed to achieve
generalized Chebyshev responses. Due to the conventional parallel-coupled structure
a good initial design can be obtained with the well-known analytical design method.
The cross coupling of the filter from source or load to nonadjacent resonators can be
easily introduced by adding delay lines with proper electrical lengths. Using this filter
structure, however, to realize the conventional cascade quadruplets and cascade
trisections with transmission zeros very close to the filter passband also encounters
the problems of unrealizable cross coupling in planar form, highly asynchronously
tuned resonators for a trisection and an asymmetric layout due to a symmetric
coupling matrix.

Therefore, the objective of this chapter is to propose new coupling schemes as
shown in Fig. 5.1(d)-(h) to solve or alleviate the problems described above. The
proposed coupling schemes are suitable for implementations of low-order planar
generalized Chebyshev filters with transmission zeros very close to the passband. The
coupling scheme in Fig. 5.1(d) has two overlapped trisections that two trisections are
with the identical coupling coefficients. The filter response of Fig. 5.1(d) is similar to
that of single trisection when realizing a generalized Chebyshev response [35], [37]. It
should be emphasized that the cross couplings, Ms> and M;;, of two overlapped
trisections in Fig. 5.1(d) share the energy of the cross coupling Ms, in Fig. 5.1(a).

Similar overlapping configurations apply to Figs. 5.1(e) and (f) that two identical
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Fig. 5.1. Cross coupling schemes generating transmission zeros at precise frequencies.
Conventional coupling schemes: (a) two-pole trisection. (b) three-pole cascade
trisections (CQ). (c) three-pole quadruplet. Proposed coupling schemes: (d) two-pole
interactive cross-coupling trisection scheme. (e) three-pole interactive cross-coupling
quadruplet scheme. (f) four-pole interactive cross-coupling quadruplet scheme. (g)
modified four-pole canonical form scheme with two pairs of transmission zeros. (h)

modified three-pole cascade trisections (CT) scheme.
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quadruplets in each figure are overlapped. Again, the generalized Chebyshev
responses of Figs. 5.1(e) and (f) can be synthesized the same as single quadruplet. The
coupling scheme in Fig. 5.1(g) is modified from Fig. 5.1(f) that an extra cross
coupling from source to load is introduced. One additional pair of transmission zeros
can be created by the source to load cross coupling. Consequently, two pairs of
transmission zeros can be implemented with a fourth-order filter for maximum
selectivity. Another proposed coupling scheme is shown in Fig. 5.1(h) that two
identical overlapped trisections are applied to source and load to resonators 1 and 3
respectively and another trisection is implemented between resonators 1, 2, and 3. The
generalized Chebyshev response of Fig. 5.1(h) is identical to that of two cascaded
trisections in Fig. 5.1(b) that two transmission zeros can be located at any positions on
the stopband. It will be shown that the proposed coupling schemes can facilitate the

realizations of high performance filters.

5.2 The New Modified Coupling Schemes
In the following, all the coupling matrices are discussed corresponding to the

generalized Chebyshev responses [35], [37].

A. Review of conventional coupling schemes

Figs. 5.1(a) and (c) show two coupling schemes, one is a two-pole trisection and
the other is a three-pole quadruplet. Consider Fig. 5.1(a) first. By introducing the
cross coupling Ms; a finite transmission zero occurs. The corresponding coupling

matrix M of the trisection in Fig. 5.1(a) can be written as

0 M, M 0
M = Mg, M, M, 0 (5.1)
Mg, M, M, M,
0 0 M, 0
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where Mg#M>;, M #M>;. The coupling matrix of the trisection is asynchronously
tuned and symmetric. Although the matrix is symmetric, the physical structure of the
filter is asymmetric. Another concerned coupling diagram is quadruplet shown in Fig.
5.1(c). The cross coupling Ms; generates two finite transmission zeros on both

stopband. The corresponding coupling matrix M is

0 Mg, 0 Mg 0]
Mg, 0 M, 0 0
M= 0 M, 0 M, 0 (5.2)
MS3 0 M23 O M3L
0 0 0 M, 0

where Mg #M31, M;;#M>;. The coupling matrix is synchronously tuned and
symmetric. Again, the physical layout is asymmetric.

A conventional three-pole CT is'shown.in Fig. 5.1(b). Two trisections can
generate two transmission zeros due to the two corresponding cross couplings, Ms;

and M, respectively. The general form of the coupling matrix can be expressed as

0 M, M, 0 0
Mg M, M, 0 0
M=\Mg M, M, My, M, (5.3)
0 0 My My M
| 0 0o M, M, 0 |

It can be observed from (3) that M #M,#M;s3, Ms#EM;r, M2#M>3, Msy#Moy. This
means that the filter should be asynchronously tuned and should have an asymmetric
layout.

In the following, the modified cross coupling schemes are proposed. They have a
similar concept that is to guide a cross coupling path into two interacting cross
coupling paths. Therefore, some interesting properties occur and may be useful for

designing planar filters.
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B. The proposed coupling schemes

The proposed coupling schemes are shown in Fig. 5.1(d)-(h) and will be
discussed as follows.

As can be seen in the two-order trisection in Fig. 5.1(d), we introduce another
identical cross coupling path M/, to share energy of cross coupling Ms,. The coupling
scheme becomes two identical overlapped trisections. Thus, the corresponding
coupling matrix is synchronous tuned and bisymmetric as shown in (5.4).

0 M, My, O
M
. M“ (5.4)

S1

S1 0

In (5.4), the matrix is bisymmetric because Ms;=M>,, Ms;=M;;, M;;=M>;. The
relationships between a coupling matrix'and the responses of S1;(Q2) and $,(Q2) are

shown as follows.

S, =124/}, (5.5)

Sy = _2j[A71 ]N+2,1 (5.6)
Here, A=Q[U,]+[M]- j|R]and the low-pass normalized domain to bandpass

real frequency transformation is Q=(f,/AfNf/f,—fo/f), [U,]is similar to the

(N+2)x(N+2) identity matrix, except that [U, ]“ =[uU,] 0, [M]is the

N+2,N+2 =
(N+2)x(N+2) coupling matrix, fy is the center frequency of the filter and Af is its
bandwidth, and [R] 1s a (N+2)x(N+2) matrix whose only nonzero entries are
Ri1=Rn+2n+2=1. Also, the transfer polynomial for the generalized Chebyshev filtering

function can be expressed as
PQ
SZI(Q):Q (5.7)

Thus, one can obtain the position of finite transmission zero by solving the
equation P(€2)=0 using (5.6).
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Applying P(Q2)=0 to the coupling matrix (5.4) of the proposed two-order
trisection filter, an explicit expression between the coupling elements and the

transmission zero Q is obtained as

MlZ(Mél +M;2)+2M11MS1M52
2MSIMS2

Q=

(5.8)
Based on (8), the following properties can be summarized.
1)M§1 +M§2 >2M M g, , and in most cases |M;s| > M.

2) If Mg; > 0, Ms; > 0 and M;, > 0, Q would be greater than zero. Thus, the finite
transmission zero would be on the upper stopband.
3) If Mg; > 0, Ms, < 0 and M;, > 0, Q would be smaller than zero. Thus, the finite
transmission zero would be on the lower stopband.

Another coupling scheme in Fig. 5.1(e) is a third-order quadruplet filter. Similar
to the proposed trisection filter, we.introduce another cross coupling path M;;, to share
energy of cross coupling Ms;. The coupling scheme becomes two identical overlapped

quadruplets. Thus, the corresponding matrix M shown in (5.9) becomes a bisymmetric

matrix.
0 M, 0 Mg, 0]
MSI 0 MIZ O MS3
M= 0 M, 0 M, 0 (5.9)
MS3 0 MIZ O MSI
0 Mg 0 Mg 0|

In (5.9), Ms;=M;3;, Mj>=M>;3, and Ms;=M;;. From (5.9), the position of

transmission zero Q in the low-pass domain should satisfy (5.10).

2
Qz _ _Mlzz(Mm _MS3)
2Ms1M53

(5.10)

From (5.10), two possible conditions are described as following.

1) If Ms;Ms; > 0, it would result in Q? < 0. Thus, two imaginary frequency zeros can
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be designed to have group-delay-flattening response.
2) If Mg;Ms; < 0, it would result in ©* > 0. Thus, it can be designed to generate a pair
of attenuation poles.

Similarly, the coupling scheme in Fig. 5.1(f) also comprises two identical
overlapped quadruplets, and the corresponding coupling matrix is bisymmetric and
synchronously tuned. In addition, extra cross coupling from source to load can be
applied as shown in Fig. 5.1(g) to generate two additional transmission zeros.

Finally, consider another modified third-order coupling diagram shown in Fig.

5.1(h). It also has a bisymmetric but asynchronously tuned coupling matrix as shown

in (5.11)
0 M, 0 Mg O ]
MSI Mll M12 M13 MS3
M= 0 M, My M, 0 (5.11)
MSS M13 M12 Mll MSI
0 Mg 0 Mg 0|

In the following section, we will take filter examples with defined specifications.

5.3 The Synthesized Coupling Matrices and the Parallel-Coupled Line Section
To compare the properties of the proposed coupling schemes with the
conventional coupling schemes, all generalized Chebyshev filters described in this

Section are normalized with the passband return loss of 20dB.

A. The element values of the synthesized coupling matrices

The first example corresponds to Figs. 5.1(a) and (d) where two-pole trisection
filters with an upper stopband transmission zero at Q=3 are designed. Applying the
synthesis technique in [37], [52], the coupling matrix (5.12) corresponds to Fig. 5.1(a)

and the coupling matrix (5.13) corresponds to Fig. 5.1(d) are obtained.
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0 1.0788  0.6717 0

1.0788 —0.8998 13075 0
M= (5.12)
0.6717 13075 0.7283 1.2708

0 0 1.2708 0

0 1.2219  0.3493 0

12219 —0.0858 1.5402  0.3493
M= (5.13)
03493  1.5402 —0.0858 1.2219

0 0.3493  1.2219 0

From (5.12), large values of M;;=-0.8998 and M,,=0.7283 cause the length of the
resonators to be largely adjusted that the main coupling would be affected accordingly.
Moreover, the large value of Ms,=0.6717 implies a strong cross coupling from source
to resonator 2.

In contrast, the newly proposed coupling matrix shown in (5.13) is
synchronously tuned and has very small value of M;,=-0.0858 that the resonator
length only needs a tiny adjustment. Furthermore, the value of cross coupling
M;s,=0.3493 reduces to about half of the conventional one. Also, one can quickly tune
a filter based on (5.4) due to its bisymmetric property.

Changing the position of the transmission zero from Q=3 to Q=-5 and applying
the synthesis technique in [37], [52] the coupling matrices corresponding to Fig. 5.1(a)

and Fig. 5.1(d) can be obtained as shown in (5.14) and (5.15), respectively.

0 1.1725 —-0.4051 0
1.1725 0.5784 1.5278 0

M = (5.14)
~0.4051 1.5278 -0.4774 1.2405
0 0 1.2405 0
0 12234 —02054 0
12234 0.0505 1.6165 —0.2054
M = (5.15)
~0.2054 1.6165 0.0505 1.2234
0  -02054 12234 0
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The second example corresponds to Figs. 5.1(b) and (f) that both filters are
designed with two transmission zeros at Q=1.6, and -2. The synthesized coupling

matrices corresponding to Fig. 5.1(b) and Fig. 5.1(h) are shown in (5.16) and (5.17),

respectively.
0 0.7516  0.7555 0 0 |
0.7516 -1.0914 0.5112 0 0
M =|0.7555 05112 0.0198 0.7223 -0.6193 (5.16)
0 0 0.7223 09886 0.8673
0 0 —-0.6193 0.8673 0 |
0 1.0418 0 —-0.2246 0
1.0418  0.0725 09444  0.2289 —0.2246
M = 0 0.9444 —-0.2281 0.9444 0 (5.17)
—-0.2246 0 0.9444  0.0725  1.0418
0 —0.2246 0 1.0418 0 |

For the conventional CT filter.an (5.16), the asynchronous tuning of the resonator
length would be as high as -1.0914 and 0.9886 which correspond to 2.66% length
decrease and 2.5% length increase of original length change respectively when
fractional bandwidth of the filter is 5%. This would certainly causes the difficulties
during fine tuning of the filter. Moreover, the strong cross coupling Ms,=0.7555
which is even stronger than the main coupling Mg;=0.7516. Again, implementation of
such a strong cross coupling would be a problem.

The proposed filter in (5.17) has much smaller length adjustment of M,,=-0.2281
and M;;=M;;=0.0725 which correspond to 0.56% length decrease and 0.18% length
increase of original length change respectively when fractional bandwidth of the filter
is 5%. According to our experience, this will not be hard to fine tune. Furthermore,
the cross couplings of M;3=0.2289 and Ms;=M;;=-0.2264 are less than one third of the
cross couplings in the conventional CT filter in (5.16).

The third example corresponds to Figs. 5.1(c) and (e) that both filters are
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designed with two finite transmission zeros at Q=+1.6. The synthesized coupling

matrices corresponding to Fig. 5.1(c) and Fig. 5.1(e) are shown in (5.18) and (5.19),

respectively.
0 0.9128
0.9128 0
M = 0 1.1642
—-0.5697 0
| 0 0
0 1.0344
1.0344 0
M = 0 0.9414
—0.2963 0
0 —0.2963

0
1.1642
0
0.6458
0

0
0.9414
0
0.9414
0

—-0.5697
0
0.6458
0
1.0760

—-0.2963

0
0.9414
0
1.0344

0

0

0
1.0760

0

0
—-0.2963
0
1.0344
0

(5.18)

(5.19)

Due to very close transmission zeros of Q=+1.6, the cross coupling Ms;=-0.5697

in (5.18) is very strong. Moreover, the layout of the filter must be asymmetric.

However, in (5.19), the coupling matrix is bisymmetric, and the cross couplings

M 1=Mys3=-0.2963 are only about half'of the conventional quadruplet filter in (5.18).

Again, the bisymmetric coupling matrix in (5.19) implies a symmetrical layout that

fine tuning of the filter would be much easier.

Two overlapped quadruplet structure in Fig. 5.1(e) can be extended to the

fourth-order filter as shown in Fig. 5.1(f). In this case, the transmission zeros can be

even more close to the passband. For example, the coupling matrix of transmission

zeros at Q=+1.3 is obtained as (5.20).

0 0.9654 0 —-0.2986 0 0
0.9654 0 1.0059 0 0 0
0 1.0059 0 0.3597 0 —-0.2986
M= (5.20)
—-0.2986 0 0.3597 0 1.0059 0
0 0 0 1.0059 0 0.9654
0 0 —-0.2986 0 0.9654 0
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Again, the coupling matrix implies a symmetric layout and moderate cross
couplings of M, =Ms3=-0.2986.

The coupling scheme in Fig. 5.1(f) can be further extended by applying the cross
coupling from source to load (Msz) as shown in Fig. 5.1(g). The coupling scheme in
Fig. 5.1(g) has two additional transmission zeros on both side of passband. For
instance, the coupling matrix of the filter with two pairs of transmission zeros located

at Q=+1.3, £3 are obtained as (5.21).

0 09584 0  -02963 0  0.0655
09584 0 1.0190 0 0 0
0 1.0190 0 03259 0  —0.2963
M = (5.21)
~02963 0  0.3259 0 1.0190 0
0 0 0 1.0190 0  0.9584
00655 0 —0.2963.°°0"%, 0958 0 |

Because of the synthesized coupling matrices corresponding to the definite
specifications, the properties of the three conventional coupling schemes and the
proposed coupling schemes described above can be summarized as follows. For the
trisection filters in Figs. 5.1(a) and (b), if the transmission zeros are very close to
passband, the filters will be highly asynchronously tuned, and the cross couplings will
be very large. The circumstances can be observed in (5.12) and (5.16). Thus, it results
in manufacturing problems of planar forms such as microstrip. The planar filters of
these kinds have two difficulties. First, the implementation of strong cross couplings
always causes serious unwanted cross couplings and distorts the filter response.
Second, the alignment of resonant frequencies of the seriously asynchronously tuned
resonators always affects the desired coupling strength. For the filter in Fig. 5.1(c),
although the quadruplet filter is synchronously tuned, the first difficulty still exists. It

can be inspected in (5.18). The problems can be solved by the proposed modified
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cross coupling schemes. By observing the coupling matrices in (5.13), (5.17) and
(5.19), the proposed coupling schemes can implement filters with transmission zeros
much closer to the passband than conventional CT and CQ filters. It should be noted
that the coupling matrix in (5.17) corresponding to the coupling scheme in Fig. 5.1(h)
has much smaller values of the cross couplings and much less asynchronous tuning
frequencies than that of Fig. 5.1(b). In addition, the coupling matrices show the
bisymmetric property. Bisymmetric matrices can have symmetric physical layouts.
The symmetric layouts make the fine tuning of the filters much easier than the filters
with asymmetric layouts because the number of tuning variables is halved in the

symmetric case.

90° ar f, 90° 90°
ol ] oL H jyg [C_—_—_—710
[ FO
(a) (b)

Fig. 5.2. (a) Parallel-coupled line section and (b) its equivalent circuit using a

J-inverter.

B. The Parallel-Coupled Line Realizations

All of the proposed coupling schemes have the property that they all have the
cross couplings between source and load and nonadjacent resonators. Therefore, the
proposed coupling schemes are extremely suitable for parallel-coupled filter
realizations [69], [93], [97], [101]. Fig. 5.2(a) shows the parallel-coupled line section
and its equivalent circuit is illustrated in Fig. 5.2(b). Each coupled-line section has an
electrical length of 90° at the frequencies according to the values of diagonal elements
in the coupling matrix. Thus, the values of the admittance inverters corresponding to

the main coupling element values of the coupling matrix can be obtained from (5.22).
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After calculating each J-inverter, the even- and odd-mode characteristic

impedances of each coupled-line section can be approximately obtained from (23).

Ji—li Ji—li ’
1+ =+ :
Y, Y,
1 J"“+[‘]"“ﬂ (i=12,.,N+1) (5.23)
- - 1=12,.., .
Y, Y,

After achieving the core portion of the parallel-coupled filter, the cross couplings

are then applied following the procedures described in [101].

5.4 Design Examples-and Experiment Results

Several examples in this section will-be implemented using microstrip line. The

Rogers RO4003 substrate with a dielectric constant of 3.58 and thickness of 20 mils is

chosen for implementations of the filters.

A. The trisection filters corresponding to Figs. 5.1(d) and (h)

The first two examples are two-order modified trisection filters and their

coupling scheme is shown in Fig. 5.1(d). The transmission zero is located at Q=3 for

one filter and Q=-5 for the other. The corresponding coupling matrices are shown in

(5.13) and (5.15) respectively. The transformed matrices responses with a center

frequency of 2.45 GHz and fractional bandwidth of 3% are shown in Fig. 5.3. From

(5.22) and (5.23) the electrical parameters of the main coupling path can be obtained

as Zpel = Zoe3 = 606.78 Q, Zpo1 = Zpo3 =40.25 Q, Zper = 53.89 Q, and Z,,, = 46.63 Q
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Fig. 5.4 The layouts and the simulated and measured performances of the filters in
Fig. 5.1(d). (a) Layout for the design with a transmission zero at Q=3 (unit: mils). (b)
Layout for the design with a transmission zero at Q=-5 (unit: mils). (¢) Simulated and
measured results corresponding to Fig. 5.4(a). (d) Simulated and measured results

corresponding to Fig. 5.4(b).

corresponding to (13), and Z,e1 = Zye3 = 66.81 Q, Zyp1 = Zpp3 =40.25 Q, Zper = 54.10 Q,
and Z,,, = 46.48 Q corresponding to (5.15). The electrical lengths of the coupled-line
sections are all 90° at 2.45 GHz. Due to the very small frequency shifts caused by My,
and M,,, there is almost no need to modify the length of the resonator. Then, follow
[103] to add cross coupling paths. Figs. 5.4(a) and (b) show the physical dimensions
of the filters. In Fig. 5.4(b), the electrical length of two identical delay lines is 360° at
center frequency for realizing the cross couplings Mg, and M;;. The full EM simulated
results of the filter structures were performed to take all the EM effects into
consideration by using a commercial electromagnetic simulator Sonnet [100]. The
EM simulated and measured results of the two filters are shown in Fig. 5.4(c) and Fig.

5.4(d). In Fig. 5.4(d), there is an additional transmission zero at about 2.1 GHz due to
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Fig. 5.5. The proposed three-order CT filter. (a) Ideal real frequency responses. (b)

Layout (unit: mils). (¢) Simulated and measured results.

the unwanted cross coupling Ms;. For the CT filter corresponding to Fig. 5.1(h), the
calculated ideal bandpass responses with Q=1.6 and -2, center frequency of 2.4 GHz,
and fractional bandwidth of 5% are shown in Fig. 5.5(a). Then, taking the similar

procedures as described above, and performing a full EM simulation to fine tune the
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responses, the final layout is obtained as shown in Fig. 5.5(b). It should be
emphasized that the J-inverter equivalent in Fig. 5.2(b) is only valid at center
frequency. The more the asynchronous tuning is, the more discrepancy of the
equivalent circuit will be. Here, the equivalent circuit model is still valid because the
asynchronous tuning is small. The electrical length of the two identical delay lines is
360° at the center frequency. Fig. 5.5(c) depicts the EM simulated and measured
results. In Fig. 5.5(c), there are two additional transmission zeros at about 2.02 GHz

and 2.98 GHz due to the unwanted cross coupling Ms;.

B. The quadruplet filters corresponding to Figs. 5.1(e) and (f) and the modified
canonical-form filter corresponding to Fig. 5.1(g)

For the quadruplet filter in Fig. 5.1(e), the ideal bandpass responses calculated
from (5.19) with transmission zeros at Q==1.6; center frequency of 2.4 GHz, and
fractional bandwidth of 5% are depicted in Fig. 5.6(a). The ideal bandpass responses
excluding all cross coupling elements in (5.19) are also shown in Fig. 5.6(a). It can be
obviously seen that adding the cross couplings in the proposed coupling scheme
influence the in-band responses very little even for transmission zeros very close to
the passband. Figs. 5.6(b) and 5.6(c) show the physical dimensions and the simulated
and measured performances. In order to reveal the merit of the proposed filter, a
quadruplet filter with coupling scheme in Fig. 5.1(c) with the same specification is
designed, and its synthesized coupling matrix is in (5.18). The detail dimensions to
achieve the specification are shown in Fig. 5.6(d). As can be seen in the layout that
the gap used to realize the cross coupling Ms; in Fig. 5.1(c) is only 1 mil (0.025mm)
which is far beyond the limit of standard printed circuit board process.

Similarly, the same concept of the filter in Fig. 5.1(¢e) can also be applied to the

fourth-order quadruplet filter in Fig. 5.1(f). Again, two finite transmission zeros at
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Fig. 5.6. The proposed third-order quadruplet filter. (a) Two ideal frequency
responses: one is to consider the matrix in (5.19) solid line and the other is to exclude
all the cross-coupling elements in (5.19) dotted line. (b) Layout (unit: mils). (c)
Simulated and measured performances. (d) Layout for realizing the coupling scheme
in Fig. 5.1(c).

Q=+1.3 are very close to the passband. The synthesized coupling matrix is shown in
(5.20). The bandpass filter is designed with a center frequency of 2.4 GHz and
fractional bandwidth of 7%. The ideal responses, physical dimensions, and the

simulated and measured results are shown in Fig. 5.7.

LN
oo oo

IS11|’|82‘I| dB

O N AN
SO oo

o)
-0

frequency(GHz)

(a)

«—— 748 —>

o 40— ?720 .

; 3 3

it

I == S, St A7 T L Iy
[« 4

L1775 N

360 kB P 5 310
215 70 AL 73 3

A 10 v

(b)

111



\\\\\\\ —|S11]:simulation
—|S21]|:simulation
[S11]:measurement
. . [S21]:measurement . .
_5?.9 2 21 22 23 24 25 26 27 28 29
Frequency (GHz)

(c)
Fig. 5.7. The modified fourth-order quadruplet filter. (a) Ideal responses. (b) Layout
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(unit: mils). (c) Simulated and measured performances.

By introducing the source-load cross coupling as shown in Fig. 5.1(g), the
canonical form response with two additional transmission zeros than the quadruplet
on both sides of passband are created. In this example, two additional transmission
zeros at Q=£3 are chosen. The synthesized coupling matrix is shown in (5.21). The
observation between the coupling matrices in (5.20) and (5.21) shows that it is no
need to modify the main structure. The physical layout is shown in Fig. 5.7(b) that
only modification is to add two extra delay lines to realize the coupling Ms;. The ideal
responses, physical dimensions, and the simulated and measured results are shown in

Fig. 5.8. Due to the physical layout of the filter, a bond wire is needed to realize Mg; .
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Fig. 5.8. The modified fourth-order quadruplet filter with source-load cross coupling.

(a) Layout (unit: mils). (b) Simulated and measured performances.
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Chapter 6 Exact Synthesis of New High-Order Wideband Marchand
Balun

New high-order Marchand baluns with ultra wideband performances are
proposed in this chapter. The Marchand baluns are synthesized based on an S-plane
highpass prototype using the Richards’ transformation. The responses of the
synthesized high-order Marchand baluns are exactly predicted at all real frequencies.
The electrical lengths of all the transmission line elements are a quarter-wavelength
long at the center frequency. Two fifth-order Marchand baluns with synthesized
reflection coefficients -20.53dB and -21.71dB which correspond to 131% and 152%
bandwidth respectively are directly realized using the combinations of microstrip line,
slotline and coplanar stripline sections. Simulated and measure results are showed. In
addition, the sixth-order prototype of Marchand balun is presented to discuss.

6.1 Introduction

Baluns [119] are widely used in ‘many radio frequency and microwave
communication systems. The main function of baluns is to transform an unbalanced
transmission signal to a balanced transmission signal, and vice versa. Thus, baluns
can be used in antennas excitation or balanced circuit topologies such as balanced
mixers, push-pull amplifiers, and phase shifters. There are many types of baluns as
proposed in [111], [112], [123], [124]. Among the various kinds of balun, Marchand
balun [102], [106], [107], [115], [120] is extremely popular because of its
comparative good wideband amplitude and phase balance than that of the others.
Several methods of fabrication have been proposed to realize Marchand balun [102],
[106], [107], [115], [120], [121], [122], [125], [126], [141], [142].

In designing coupled-line Marchand balun, various analysis methods were
presented. In [122], [141], using relationships of the power wave in a balun to derive

the scattering parameters can analyze a symmetrical Marchand balun, but it is exact
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only at the center frequency. In [125], inclusion of the parameter of the electrical
length of the transmission line can predict broadband performances, but the approach
lacks generality. Furthermore, to achieve wider bandwidth multi-conductor coupled
lines to realize tight couplings were presented. Another method is the even- and
odd-mode analysis method. However, it is limited to the case of a symmetrical
coupled-line Marchand balun with maximum flat responses. Actually, exact synthesis
of conventional Marchand baluns has been presented in [102], [106], [107], [115]. A
Chebyshev response can be synthesized using the synthesis method. In focusing on
planar coupled-line technology to realize Marchand baluns, useful design values of
even- and odd-mode parameters in each coupled line are available in [115].
Nevertheless, when bandwidth of a balun is a major consideration, one should
concern the limited range of practical ‘even- and odd-mode impedance values of
coupled lines.

The purpose of this chapter is to propose new higher-order wideband Marchand
baluns. Emphasis is placed on new Marchand baluns with higher order more than a
conventional fourth-order Marchand balun and realizable ultra-wideband baluns in
planar technology. In synthesizing Marchand balun, exact synthesis of filters with
circuit analysis to then obtain prescribed characteristic functions [134], [135] can be
used to extract element values of Marchand balun. Thus, the design of the proposed
baluns is based on S-plane high-pass prototype using Richards’ transformation S =
jtan(mt/2(ffo), where f; is the center frequency of the passband, and f'and S are the real
frequency domain and Richards’ frequency domain variables, respectively. By
applying proper circuit transformations, the original distributed circuit of the proposed
Marchand balun as shown in Fig. 6.1 can be converted into a fifth-order S-plane
high-pass prototype balun. With the aid of synthesis method, all elements of the

synthesized prototype can be obtained. Thus, the design parameters of the original
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Fig. 6.1. The distributed circuit of the proposed fifth-order Marchand balun.

circuit in Fig. 6.1 can be controlled. Direct realization of the proposed original balun
circuit with very wideband responses is presented in planar form. In addition, a
six-order Marchand balun is presented to discuss.
6.2 Derivation of a Fifth-Order Marchand Balun

The proposed distributed circuit of Marchand balun shown in Fig. 6.1 is
composed of one open-ended stub, two short-ended stubs, one uniform transmission
line connected to input port (unbalanced port), one uniform transmission line
connected to two short-ended stubs, and two identical uniform transmission lines
individually connected to two output ports (balanced ports) with impedance values
corresponding to Z¢, Z; and Z;,, Z,, Z», Z3, respectively. The electrical lengths of all
the stubs and uniform transmission lines are 90° at center frequency. Due to
differential outputs, the two output ports can be combined into one port. Thus, the
two-port distributed circuit can be simplified that is shown in Fig. 6.2(a). Its

equivalent S-plane high-pass prototype is shown in Fig. 6.2(b). S is the Richards

116



Balanced
2R | Port2

223 A,/4

@)
C
|
ve M| UE UE
Z 7, L3 | z |L3 | 2z 2R
(b)

Fig. 6.2. The proposed fifth-order Marchand balun. (a) The two-port distributed
circuit simplified in Fig. 6.1. (b) Its S-plane high-pass circuit.

variable defined as

v . zf
S—JQ—]tanQ—]tan(zf] (6.1)

0

where f is the center frequency of the passband, and f and S are the real frequency
domain and Richards’ frequency domain variables, respectively. The open-ended and
short-ended stubs in the f~-plane become a capacitor and inductors, respectively, in the
S-plane. The interconnecting uniform transmission lines in the f~plane are turned into
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Circuits in the f~plane Circuits in the S-plane ABCD Parameters

SV S

: : 0 1
Z
I 0
<> gLZ 1 .
0 SL
0 —O
Oc——=0 O_UE 1 { 1 ZS]
Z -—> 7 A_s218/z 1

Table 6.1 The relationships between distributed circuits in the f~plane and high-pass

circuits in the S-plane, and the cortesponding A BCD parameters.

the unit elements (UE) in the S-plane though the effect of the Richards transformation.
The description of the parameters of the three important components in high-pass
prototype is shown in Table 6.1.

To derive a final fifth-order Marchand balun, circuit transformations will be used.
Firstly, the circuit transformation to be used is the Kuroda’s identity as shown in Fig.
6.3(a) [131]. The Kuroda transformation is now applied to the shunt inductor L, in Fig.
6.2(b), thus changing the position of the shunt inductor from one side of the unit
element Z, to another side. The transformed circuit is shown in Fig. 6.3(b) with the
following transformation equation.

w14l (6.2)
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Fig. 6.3. The first transformation. (a)The kuroda identity transformation from [131].
(b) After kuroda identity transformation in Fig. 6.2(b).

Secondly, observation of the two shunt inductors connected by the 1 : n* transformer

shown in Fig. 6.3(b) shows that ene redundant shunt inductor exists. Hence, to

combine the redundant element,-a new circuit transformation should be derived.

Consider the new circuit transformation in Fig: 6.4(a). The ABCD-parameters of the

left circuit in Fig. 6.4(a) are

1 1
1 — 0
G|
I_S 0 n2 SL2
1
1 n’

off 1 Z,S
el 1
ZUEI
ZUEIS
n2

2 2 2
1-8%| n +nS n'Z,, )

SLZ ZUEI

And the ABCD-parameters of the right circuit in Fig. 6.4(a) are

1 o] 1
11S2 Loa]2
SLZ ZUE3
1
| n
“Jiost| ! S

7 .S
UE3 iz O
",
0 n
ZUE3Sn2

2¢Qr' + 2
n'SL, n'Z,, L,

(6.3)

(6.4)
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Fig. 6.4. The second transformation. (a) New exact circuit transformation. (b) Apply

exact circuit transformation in Fig. 6.4(a) to Fig. 6.3(b).

C
UE _II_ UE UE
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Fig. 6.5. The final fifth-order S-plane high-pass prototype of Marchand balun.

Assume that (6.3) equal to (6.4), the transformed parameters can be obtained as

follows.

(6.5)

Thirdly, by applying the new derived circuit transformation the further transformed
circuit can be obtained, which is shown in Fig. 6.4(b). Finally, the two shunt inductors
can be combined, and the 1:n* transformer can be absorbed into the load termination.
Consequently, the final fifth-order Marchand balun prototype is shown in Fig. 6.5

with the following relations:
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Z;=Z—§ (6.6)
n
LL
=12 (6.7)
n"(Lin"+L,)
. 2Z
Z,="=3 (6.8)
n
R':z—f (6.9)
n

The design parameters in (6.2) and (6.6)-(6.9) complete the transformation of the

balun prototype of Fig. 6.2(b) into that of Fig. 6.5.

6.3 Synthesis and Design of Two Balun Examples
A. Synthesis Procedures

Before designing the proposed balun, two important points should be addressed
in the following. The first point is to determine.a characteristic transfer function of the
fifth-order Marchand balun. The: second point is to apply exact synthesis to the
proposed balun such that the wideband responses can be predicted.

By observing the prototype circuit in Fig. 6.5, the suitable characteristic function
exhibiting the Chebyshev responses, which is comprehensively discussed in [135], is
given by:

> S, VI=SE | (S J1-82 2
K®f =2 T(?]T[WJ UW(SJU"(W] 610

where S.=j tan(7z /2 fo) , fc1s the filter cutoff frequency that is used to determine

the bandwidth of the balun, ¢ specifies equal-ripple value, and 7,,(x) and U,,(x) are the
unnormalized Chebyshev polynomials of the first and second kinds of degree m,
respectively. In (10), the subscript m and n denote the number of high-pass ladder

elements (series capacitors and shunt inductors) and unit elements, respectively.

Given ‘K (S ) ’ , the square of the magnitude of the input reflection coefficient is
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obtained using

. |K(s)
15, (S) =——"—= (6.11)
1+‘K(S)‘
Then, S,,(S) can be found with the knowledge that
15, (S) = 5., ()8, (=S) (6.12)

The relationship between input impedance Z (S ) and S, (S ) with a normalized

source resistance of 1-Q is

(6.13)

The circuit prototype to be synthesized is shown in Fig. 6.5. The first element
type to be extracted is the unit element. By applying Richards’ theorem a unit element

can be obtained using

ZUE,i ) Zin,i (1) (6.14)

where Z,,, denotes the impedance value of i unit elements and Z,,, (1)is the input

UE,i i

impedance looking from /™ unit elements.

The input impedance of the remaining network after removal of the unit element is

| 8,,(1)=Z,(S)
Z,:(8)=2,,(1) S7.(8)-7,,(1)

(6.15)

where the common (S>-1) factor can be cancelled.

The second and third element types to be extracted are the series capacitor and
shunt inductor. The method that is used to synthesize lumped element ladder networks
can be applied to this balun prototype and obtain the element values of the series

capacitor and shunt inductor.
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B. Two Example Designs

The two examples of fifth-order equal ripple wideband Marchand baluns
corresponding to the S-plane high-pass prototype as shown in Fig. 6.5 are considered
in this chapter.

The first designed balun is with a center frequency f, of 2 GHz, a normalized
cutoff frequency of S¢=j0.6 corresponding to bandwidth of 131%, and ripple level

€=0.0945 corresponding to a return loss of 20.53 dB. By using (6.10), the

characteristic polynomial |K (S )|2 can be constructed as

0.19655° +0.93045° +1.43325* +0.78555° +0.1400

K(S) =
| ( )| S +38%-38°+ 54

(6.16)

Then, the square of the magnitude of the input reflection coefficient is established by

(6.11), and with the knowledge of (6.12) it can lead to

0.44338* +1.0496S° + 0.3743

S$,,(8) = 5 2 3 2 (6.17)
S +3.71028" + 528475 +3.8768S° +1.45455 + 0.3741
Use of (6.13) can obtain the polynomial of the input impedance as
5 4 3 2
Z.(8)= S +4.15358" +5.2847S8° +4.9264S5" +1.45455 +0.7484 (6.18)

S° +3.26695" +5.2847S° +2.82725° +1.4545S

The following step is to synthesize the element values in Fig. 6.5. To extract a unit
element and obtain the input impedance of the remaining network, (6.14) and (6.15)
are used. And the standard synthesis procedure of lumped element ladder networks is
to extract a series capacitor and a shunt inductor. Thus, the circuit parameters of the

first designed balun in a normalized source resistance of 1-Q are:
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(6.19)

And then substituting (6.19) into (6.2) and (6.6)-(6.9) and de-normalizing to 50-Q

system give the design parameters of Fig. 6.1 as follows.
Z,=635Q
Z.=43.25Q
Z,, =170.71 Q
Z,=70.71Q
Z,=22193Q
Z,=39.36 Q

(6.20)

The second designed balun is with a center frequency fy of 2 GHz, a normalized
cutoff frequency of Sc=j0.4 corresponding to bandwidth of 152%, and ripple level
€¢=0.08243 corresponding to a return loss  of 21.71 dB. Similarly, follow the

synthesized procedures as described inthe first'designed balun. The polynomial of the
input impedance Z,_ (S) , the circuit parameters corresponding to Fig. 6.5 in a

normalized source resistance of 1-Q, and the design parameters of Fig. 6.1 in 50-Q

system are shown in (6.21)-(6.23), respectively.
S° +3.7080S5" +4.14208° +2.7908S7 +0.5574S +0.1700

Z.(S)= 6.21
n(5) S% +3.04325* +4.14208" +1.8277S* +0.5574S (621
Z, =1.1701
C =2.4243
Z,=1
: (6.22)
L =2.4243
Z,=0.8546
R =1
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Z,=5851Q

Z.=20.62Q
Z, =170.71Q

(6.23)
Z,=70.71Q
Z,=0.CQ
Z,=42.73 0

The ideal responses of the two designed balun corresponding to the circuit of Fig.

6.5 are shown in Fig. 6.6.

S, .IS,,| (dB)
o
o

1
I~
o
ST T
tnn
I

0 05 1 15 2 25 3 35 4
Frequency (GHz)

Fig. 6.6. The ideal responses of the first and second designed baluns with bandwidth
of 131%and 152%, respectively.

6.4 Physical Implementation and Experimental Results

The implementations of the two designed wideband baluns in Section 6.3.B are
constructed using hybrid microstrip line, slotline and coplanar stripline structures. A
0.635-mm-thick RT/Duroid 6010 substrate with a dielectric constant of 10.2 and a
loss tangent of 0.0023 is used to implement these wideband balun circuits. The
distributed circuits to be directly realized are the circuit shown in Fig. 6.1. Here, the
two short-ended stubs Z;; and Z;,, the uniform transmission line Z,, the open-ended
stub Z¢, and other uniform transmission lines Z; and Z; are implemented by coplanar
striplines, a slotline, and microstrip lines, respectively [138]-[140]. All the stubs and
uniform transmission lines are with electrical lengths of 90° at center frequency of

fo=2 GHz.
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Fig. 6.7. Physical layout of the first designed fifth-order balun with Sc=70.6 (unit:

mm).

The first designed wideband balun with design parameters of (6.20) is
implemented and its detailed physical dimensions are shown in Fig. 6.7. The design
was accomplished with a commercial EM simulator Ansoft’s High Frequency
Structure Simulator (HFSS). Fine tuning in HFSS was performed to take all the EM
effects into consideration. Fig. 6.8(a) shows the magnitudes of the ideal synthesized,
simulated and measured performances. The measured return losses are better than 10
dB from 0.7 to 3.5 GHz. The measured amplitude balance and phase difference are

shown in Fig. 6.8(b). The amplitude balance is within +1 dB from 0.72 to 3.62 GHz

and the phase difference is within 180° £10° from 0.7 to 3.53 GHz.
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Fig. 6.9. Physical layout of the second designed fifth-order balun with Sc=70.4 (unit:

mm).

A second implementation is the second designed wideband balun with design
parameters of (6.23). It should be pointed out that the impedance value of Z;, is
higher than 1000 Q, thus leading to the removal of the Z;, section. The physical balun
layout with detailed dimensions is shown in Fig. 6.9. The magnitudes of the ideal
synthesized, simulated and measured performances are shown in Fig. 6.10(a). The

measured return losses are better than 10 dB from 0.52 to 3.68 GHz. Fig. 6.10(b)
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shows the measured amplitude balance and phase difference. The amplitude balance

is within 1 dB from 0.46 to 3.75 GHz and the phase difference is within

180° £10° from 0.46 to 3.62 GHz.
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Fig. 6.11. The sixth-order S-plane high-pass prototype of Marchand balun.

6.5 A Sixth-Order S-plane Prototype Balun
An effective way to increase the order of Marchand balun is to add nonredundant
unit elements. Fig. 6.11 shows the S-plane prototype circuit of a sixth-order Marchand
balun. The best description of its rationality of the circuit is to present a synthesis
example. Here, define a ripple level £=0.1807 corresponding to a return loss of 14.9
dB and a normalized cutoff frequency of Sc=j0.3 corresponding to bandwidth of
162.88%. Following the procedures in:(6.10)-(6.13), the polynomial of the input

impedance can be obtained as

1.17798° +4.29508° +9.25558* + 6.34025° + 4.08115* +0.6273S + 0.2090
0.82215° +4.29508° +5.90815* + 6.34025° +1.8829S5% + 0.6273S
(6.24)

which is then synthesized using standard element extraction. The circuit parameters

Zin (8=

with a little optimization in a normalized source resistance of 1-Q are

Z,=1.3074

C=22339

Z,=1.1595

Z,=0.7626 (6.25)
L =1.9815

Z,=0.676

R =1

Therefore, upon the values of the circuit parameters, such a sixth-order prototype

circuit of Marchand balun is suited for designs of very wideband baluns.
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Chapter 7 Conclusion and Future Work
7.1 Conclusion

This dissertation is devoted to the design of parallel-coupled filters with cross
coupling, stepped impedance resonator filters with sharper selectivity and wide
stopband rejection, development of new cross coupling schemes, and novel wideband
Marchand balun.

A review of related filter synthesis methods, impedance and admittance inverters,
coupled-line circuits, stepped impedance resonators, segmentation method using
coupled-resonators theory, and distributed transmission line theory including Richards
theory and element extraction are given in Chapter 2.

In chapter 3, the proposed cross-coupled filters are simple and easy to design.
The cross-coupled filters have the advantages of small circuit size, high selectivity
and wide rejection bandwidth. The circuit layout is easy to apply the source-load
coupling and adjust the coupling strength.

The parallel-coupled filters with generalized Chebyshev responses are introduced
in Chapter 4. The proposed filters can be quickly designed due to the well-known
analytical design method based on a conventional parallel-coupled structure. The
arbitrarily located transmission zeros have been fully discussed by observing the
relative phase shifts of the lumped-element equivalent circuit of the parallel-coupled
filter. With this approach, it is easy to design the parallel-coupled filter with a CT, a
CQ, or a mixed cascaded quadruplet and trisection response. This newly proposed
filter structure has shown properties of insensitive layout, flexible responses, good
performance, and quick design procedures.

The success in the development of novel coupling schemes which are all with the
properties of bisymmetric coupling matrix, weak cross couplings, and

synchronous-tuned or very tiny asynchronous-tuned resonators has been demonstrated
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in chapter 5. Due to the bisymmetric coupling matrices, the physical layouts of the
filters to be realized may be symmetric. The proposed bisymmetric coupling schemes
are suitable for designing microwave filters with transmission zeros very close to the
passband.

In chapter 6, higher-order Marchand baluns have been proposed. The initial
distributed circuit of fifth-order Marchand balun to be directly realized can be
transformed into the final prototype circuit via a series of circuit transformations. Two
examples of fifth-order Marchand baluns with ideal bandwidth of 131% and 152% are
synthesized and implemented. In addition, the sixth-order Marchand balun has been

introduced and discussed.

7.2 Future'Work

The higher-order Marchand -baluns have been synthesized based on S-plane
high-pass prototype. The design of high-pass prototype is that the electrical length of
all the transmission line sections is 90° at the center frequency of f;,. To reduce the
circuit size, an S-plane bandpass prototype of Marchand balun may be proposed so
that the electrical length of each transmission line section is less than 90° at the center
frequency of f,. A description of the synthesis technique based on S-plane bandpass
prototype is given in [143]. With the synthesis technique, higher-order Marchand

baluns with compact sizes and wideband performances will be studied in the future.
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