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貧油潤滑下深孔鑽刀桿受側向制振之行為研究

學生：陳重延                                                                 指導教授：秦繼華博士

國立交通大學機械工程學系

摘要

深孔技術可適用於鑽銷孔深度直徑比較高的孔加工，本文研究BTA (Boring and 

Trapanning Association) 深孔鑽受側向制振及貧油潤滑下的刀桿行為，其中使用磁流變

阻尼器來進行制振。本文基於應用運送流體的管子及Bernoulli-Eulerian理論，建立一個

貧油潤滑下深孔鑽刀桿在受側向制振的動態方程式，藉此探討刀桿受到流體流動及阻

尼器影響下的特徵值。
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The shaft behavior of deep hole drilling tool under lateral 

vibration control with minimum quantity lubrication

Student: Chung-yen Chen                                                    Advisor:Jih-Hua Chin

Department of Mechanical Engineering 

National Chiao Tung University

Abstract

Deep hole technique can be used to drill hole with high depth-diameter-ratio. The 

propose of the study is investigated the shaft behavior of BTA (Boring and Trapanning 

Association) deep  hole drilling under lateral vibration control with minimum quantity 

lubrication. The lateral vibration is controlled by magneto-rheological damper. The study is 

based on theories of pipes conveying fluid with a velocity and Bernoulli-Eulerian theory. The  

eigenvalues of the shaft effected by fluid flow and damper is investigated.
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Chapter 1 Introduction

1.1 Motivation of the Study

In metal machining process, the realization of dynamic behavior in cutting tool is very 

helpful for manufacturing, design, control and automation. Because of very long shaft of the 

deep  hole drilling, the effects of weak stiffness and vibration of the shaft reduce the quality of 

cutting process on the tool head. In order to ensure the quality  of drilling, the vibration control 

is important. Recently, some new materials used for vibration isolation like electro-

rheological fluids (ERF) and magnetro-rheological fluids (MRF). Compare to traditional 

damper, ERF and MRF damper can adjust its damping coefficient  by changing electric field 

and magnetic field. The application and theories about the shaft behavior of deep hole 

drillings with MRF damper are rarely seen. By obtaining the behavior of the shaft applying 

MRF damper, we can provide the knowledge to operator, designer, in order to improve the 

deep hole drilling process.

Besides the topic of quality, the cost  and environment issues in machining process 

attract more and more attention. As a result, minimum quantity lubrication (MQL) substitues 

for flood lubrication in kinds of machining processes. MQL is a lubrication method that mix 

air and cutting fluid in order to reduce the use of cutting fluid. To obtain the behavior of the 

shaft applying MQL is helpful to cost and environment. However, on the other hand the 

reduce of cutting fluid may cause the machining unstable and increase the vibration. 

Combining MRF damper and MQL, the machining quality and cost in BTA drilling 

process is considered and complementary.
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1.2 Purpose of the Study

In this study we will adopt the concept of the mixing air and lubrication but increase 

more lubrication than traditional MQL and control lateral vibration with MRF. The influence 

of application of MQL and MRF in BTA  is due to the change of shaft behavior. The purpose 

of this study is to find the eigenvalue of a BTA shaft with MQL and MRF damper and obtain 

the influence of the eigenvalues by damper and fluid-flow.

1.3 Overview 

1.3.1 Overview of BTA

Boring Trepanning Association (BTA) is a deep hole drilling process used to drill hole 

with high depth-to-diameter ratios above 100 see Fig 1.1. Fig.1.2. In BTA operation, good 

tolerances with respect to bore diameter, roundness and straightness can be obtained. It is 

characterized by  its long tool shafts which are long hollow pipe conveying pressurized fluid. 

There a lots of advantages of the BTA drilling system include: (1) better productivity (2) high 

quality (3) quick drill head exchange (4) large hole diameter (5) trepanning (6) better chip 

removal (7) extreme drilling depth. With such excellent machining performance, BTA are 

often applied in high precision manufacturing such as military industry, machine tool and 

automobile industries. Applications examples are hydraulic cylinders, landing gears for 

aircraft, large holes in diesel truck applications, turbines, heat exchangers, and oil industry 

components, etc.［1］

There are two important topics in BTA, one is the coolant fluids and the other is the 

vibration isolation of the shaft. In BTA operations, quantities of highly pressurized coolant 

fluids is used and play an important role. They must mainly guarantee chips evacuation 

through the shaft, secondly provide lubrication and cooling, lastly protect workpiece and tool 

from corrosion. Since BTA shaft is characterized by  its long shaft which is hollow and 
2 



symmetrical with an unsymmetrical cross-section of rotating tubes filled with pressurized 

fluids, the rotating and  axial compressive forces exerted on the shaft lead to vibration. The 

flood lubrication and vibration isolation of the shaft  is important to cutting quality in view of 

hole cutting tolerances, roundness, and straightness.

1.3.2 Overview of MQL

Mostly we regarded flood lubrication as necessary in BTA operation due to above-

mentioned reasons.  But for the companies, the costs related to cutting fluids represent a large 

amount of the total machining costs. As reported form some research [2,3], metal-working 

fluids cost ranges from 7 to 17% of the total machining cost, while the tool cost ranges from 2 

to 4%; Besides environmentally conscious machining is required for reducing impacts 

directly to the machine shop environment and indirectly to the global environment [4,5].

Considering the high cost associated with the use of cutting fluids and projected 

escalating costs when the stricter environmental laws are enforced. Moreover, the serious 

environmental pollution and waste disposal problems when flood coolants are used are not 

ignorable.

In order to alleviate the above-mentioned negative effects, some alternatives such  as 

minimum quantity  lubrication (MQL) has been developed and introduced in last decade. 

Minimal quantity  lubrication [6, 7] is a technique introduced in machining to obtain safe, 

environmental and economic benefits, reducing the use of coolant lubricant fluids in metal 

cutting. 

Mostly, Minimum quantity  lubrication (MQL) refers to the use of cutting fluids of only 

a minute amount typically of a flow rate of 50 to 500 ml/hour which is about three to four 

orders of magnitude less than the amount commonly used in flood cooling condition. First of 
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all it  is necessary to mix air and lubricant to obtain the mixture to be spread on the cutting 

surface. Because of intensive research work conducted in the last few years, minimum 

quantity lubrication (MQL) is now an established alternative to conventional flood cooling in 

drilling [8, 9].

1.3.3 Overview of MRF

The other important topic is the vibration isolation of shaft in BTA. Magneto-

rheological fluids are widely used for vibration isolation recently. Magneto-rheological fluids 

are materials that respond to an applied magnetic field with a  change in rheological behavior 

[10]. The important characteristic of these fluid is their ability  to reversibly change from free-

flowing liquid to semisolids having a controllable yield strength in milliseconds when 

exposed to a magnetic field [11]. The first  reports on suspensions that react on a magnetic 

fluid with a reversible change of their flow properties can be credited to Rabinow J. in 1948 

[12] . The late 1940s and early 1950s actually saw more patents and publications about MR 

fluid .

Using the rheological effect of these smart fluids, various MR fluid dampers can be 

built  to adjust the damping or stiffness properties of vibration systems. MRF dampers do not 

need a mechanical valve to change the force characteristic of the damper. They use the unique 

characteristic of a MR fluid; that is controllability  of effective viscosity  by applying an 

external magnetic field. 
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1.4 Literature Review

1.4.1 Literature review of BTA

Sakuma, et  al. [13] showed that the effect of tool head vibration formed a polygonal 

hole. He proposed a simple formula to describe the mechanism of formation of multi-corner 

shaped holes. But the bending vibration of the shaft conveying fluid was not considered in his 

study. Chandrashekhar, et al. [14、14(b)] constructed a mathematical cutting force model 

using thin shear plane theory  and established a stochastic resultant force system in BTA deep-

hole machining to estimate the cutting force under different  cutting conditions. 

Chandrashekhar [15] established a three-dimensional physical model of the machining system 

which considered the interaction between workpiece and drill shaft and simplified it to a 

discrete second order pumped mass system. Blevins [16] studied the planar lateral motion of 

the pipes conveying constant velocity of fluid flow and the critical flow velocity causing 

buckling of the pipe. Newland [17] proposed the vibration of the beam with travelling load 

and solved the problem. Yumshtyk and Kedrow [18] measured the lateral vibration of a 

Gundrill tool shaft during drilling and proved that  the steady support  is efficient is 

suppressing lateral vibration. Kirrillin [19] constructed a set  of simple second-order 

differential equations and experimentally  studied the vibration using a vibratory exciting in 

the Gundrill. Lundgren, et al. [20] investigated the three dimensional lateral vibration of the 

tube with uniform annular cross section conveying fluid flow with constant velocity and 

Edelstein, et  al. [21] used the equation which was derivated in and applied the finite element 

method to obtain the oscillations. Paidoussis and Issid [22] proposed the extension of the 

fluctuation of flow velocity  of fluid. Paidoussis [23] investigated the dynamics of the tube 

containing fluid flow. Yoshizawa, et al. [24] proposed a method about the theory  of the pipes 

conveying fluid with fluctuation velocity to obtain the critical flow velocity and the maximum 

values of the static deflection of the buckling pipes. Thompson and Lunn [25] considered the 

5 



pipe with an end follower thrusting to the mechanically  applied forces and presented static 

elastic formulation concluding the net effect on pipes conveying fluid and proposed the 

criterion of stability and critical flow velocity. Chin and Lee [26] made a study on the tool 

eigenproperties of a BTA deep hold drill. It is still incomplete because the torsional behavior 

of the shaft was not included. Hill and Swanson [28] proposed a lumped mass study on the 

tubes conveying fluid. Sugiyama, et al. [29] studied the spring effect on pipes conveying 

fluid. The pipe theories aforementioned covered the stability and critical velocity due to 

flutter but did not specifically consider the torsional behavior. Chin and Hsieh [30] derived 

the three dimensional general equations of motion for the tool shaft of BTA deep hole drill 

which included the general terms for torsion. Eshleman and Eubanks [31,32] investigated the 

effect of axial torque in the critical speeds of a continuous rotor whose motion was described 

by a set of partial differential equations including the effects of transverse shear, rotation 

speeds for all possible combinations of free, clamped, hinged, and guided boundary 

conditions. Lee et al [33] studied the dynamic response of a rotating shaft subject to a moving 

load. Employing a Rayleigh beam model, Lee and Jei [34] analyzed rotating shaft problems 

including the effects of the gyroscopic or Coriolis acceleration terms. In subsequent paper. 

Katz et al [35] sloved a spinning Timoshenko beam loaded  by moving forces. Hung 

and Chen [37] studied the dynamic response of a orthotropic beam due to moving harmonic 

loads and unified expression for the rotating natural frequencies as functions of rotations. Han 

and Zu [38] utilized model analysis with a body-fixed axis formulation method to study  the 

dynamic response of rotating shafts. Zu and Han [39] discussed the dynamic response of a 

rotating Timoshenko beam with general boundary  conditions and subjected to a moving load. 

Edelstein and Chen [42] developed the equations governing the stability of a conveying fluid 
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tube which is clamped at  one end and free at the other with a variable knife-edge support at 

some interior point.

1.4.2 Literature Review of MQL

Weinert [43] established minimum quantity  lubrication as alternative to conventional 

flood cooling in drilling. Heinemann [44] investigated minimum quantity  lubrication results 

in a satisfactory  tool life for small diameter drills when deephole drilling, as very  recent work 

has revealed. Barrow [45] states that lubrication is most effective at low cutting speeds, 

whereas cooling becomes increasingly important at higher cutting speeds. Haan et. al [46] 

showed drilling is supposed to be a high-speed operation, lubrication cannot occur, because 

the lubricant cannot penetrate into the tool–workpiece interface quickly enough. The 

importance of cooling in drilling was demonstrated by Rehbein [47], who was able to prolong 

the tool life by blending the minimum quantity  lubricant with water. Many successful results 

have been reported on tool wear reduction in end milling, drilling, turning, etc. by  Kishawy 

[48] 、 Rahman [ 49]、 Brinksmeier [50]、 Hanyu [51]、 Machado [52] and Wakabayashi 

[53]。

 1.4.3 Literature Review of MRF

There are many researchers have studied the general aspects and applications of ER/MR 

dampers. Some of them focused on the vibration control of rotor systems by ER fluid 

dampers. Nikolajsen and Hosque [54、55] first proposed a multi-disk ER fluid damper 

operating in shear flow mode and studied the effectiveness of the multi-disk ER fluid damper 

operating in shear flow mode and studied the effectiveness of the multi-disk ER fluid damper 

in controlling the vibration of rotor systems when passing through the critical speeds. Vance 

and Ying [56] developed Nikolajsen and Hoque’s test rig and demonstrated the dynamic 

behavior of the rotor systems supported on the multi-disk ER fluid damper. Quite recently 
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Wang and Meng[57], Zhu et  al. [58], Forte et al.[59], presented some paper on MR fluid 

dampers for rotor systems. Wang and Meng [57] studied experimentally the vibration 

controllability by a shear mode MR fluid damper for a rotor system, and found that the MR 

fluid damper has a strong effect on the stiffness and stability  of the rotor system. Zhu et al.

[58] presented an MR fluid squeeze film damper can effectively  control the vibration of a 

rotor system. 
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Fig. 1.1 System of BTA drill

Fig 1.2 System of BTA drill
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Chapter 2 Equation of Motion

2.1 Properties of Magneto - Rheological Fluids

The magnetorheological response of MR fluids results from polarization induced in the 

suspended particles by application of an external field. The interaction between the resulting 

induced dipoles causes the particles to form columnar structures, parallel to the applied field. 

These chain-like structures restrict the motion of the fluid, thereby increasing the viscous 

characteristics of the suspension. The mechanical energy  needed to yield these chain-like 

structures increases as the viscous characteristics of the suspension. The mechanical energy 

needed to  yield these chain-like structures increase as the applied field increase resulting in a 

field dependent yield stress. In  the absence of an applied field, MR fluids exhibit Newtonian-

like behavior. Thus the behavior of controllable fluids is often represented as a Bingham 

plastic having a variable yield strength. In this model, the flow is governed by  Bingham’s 

equations

 
τ = τ 0 (H )sgn( γ ) + µ γ

where τ is total shear stress; τ0 is yield stress yield induced by magnetic field;  γ  is shear 

strain rate. Note that normally  the viscosity of MR fluid µ is a function of shear strain rate. 

Obviously, when the properties of the MR fluid and the parameters of the magnetic circuit are 

determined, increasing the current can strengthen the magnetic field, and then increase the 

yield stress of the MR fluid. Below the yield stress, the material behavior visco-elastically

τ = Gγ ,τ < τ y
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where G is the complex material modules. It  has been observed in the literature that  the 

complex modulus is also field dependent.

There is three working mode of MRF operations depending on the type of deformation 

employed: shear mode, flow mode or squeeze mode. Here we adopt shear mode shown in Fig.

2.1

In shear mode, the total force can be separated into a viscous (pure rheological) 

component Fr  and a magnetic field dependent (magneto-rheological) component FS. 

 
Fs = τ 0 (H )sgn( γ )Lw = τ 0 (H )sgn(S)Lw

Fr =
µSLw
g

We could used above two equation established the minimum volume of active fluid.

V = Lwg =
µ
τ 0

2

⎡

⎣
⎢

⎤

⎦
⎥ ×

Fr
FS

⎡

⎣
⎢

⎤

⎦
⎥ × FS × S

2.2 Effect of MQL 

The basic assumption regarding the fluid flow are (1) It is incompressible Newtonian 

fluid (2) The fluid motion is a flow with average velocity relative to the shaft.

In the case of incompressible flow through the bore of tool shaft, the nature of the flow 

is determined by the value of the Reynolds number. 

Re = ρ fUD / µ
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where ρ f is the density of the fluid, U is the average flow velocity, D is the internal 

diameter of shaft of the fluid, and µ is the viscosity  of the fluid. The flow is laminar when 

Re ≤ 2300 .

Because the Reynolds number is small, the fluid flow is laminar ( Chapter 4 ) . Since the 

shaft is of small displacement, we assume that  fluid flow in a shaft is similar to the flow in a 

tube. The velocity can be obtained by  knowing fluid quantity fq  and the cross-sectional of 

fluid flow Af :

U =
fq
Af

Due to the incompressibility of fluid, the high pressure gas will reduced the cross-

sectional of fluid when applying MQL. If the volume ratio of  gas to fluid is t ,the cross-

sectional of the fluid flow is 

Af =
πD2

4(1+ t)

2.3 Equation of Motion Without Damper

In the chapter, we drive the equation of motions of BTA drill shafts, containing flowing 

fluid and subjected to a axial compressive force. The equation of motions of the  BTA drill 

shaft is based on Euler-Bernoulli beam model.

The basic assumptions for the shafts in deriving the governing equations are as follow: 

(1) The drill shaft has a uniform cross section along its length L . (2) The plane section is 

normal to the centrical line of the drill shaft  in the undeformed geometry  and Poisson’s effects 
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are ignored, i.e., stresses through the thickness of the shaft are ignored. (3) The drill shaft is 

balanced, i.e., at every  cross section, the mass center coincides with the geometric center.  (4) 

Axial deformations due to axial compressive force applied at the ends are ignored. (5) The 

fluid-flow velocity is constants in axial direction.(6)The drill shaft is assumed to be isotropic 

and homogeneous.

The system to be dealt with is shown in Fig 2.2. The differential equations of motion of 

the dill shaft can be derived by applying Hamilton’s principle, given by:

δ (T −V +W )dt
t2

t1

∫ = 0                                                                                       (2.1)

where T and V are the kinetic and potential energies and  δW is the virtual work done 

by the axial compressive force. All of the quantities are specified on the moving co-ordinate 

system in subsequent discussion.

The kinetic energy of the drill shaft due to transverse and flowing fluid could be express 

as:

 

T =
1
2

(ρ
0

L

∫ A u22 + ρ f Af u
2 + 2ρ f AfU u ′u + ρ f AfU

2 )dx                                             (2.2)

where ρ is the mass density of drill tube, A is the cross-sectional area of the drill tube, 

ρ f is the density  mass of fluid,Af is the cross-sectional of fluid flow, u is the lateral 

displacement , the primes and overdots denote partial derivatives with respect to x ant time t . 

The potential energy of the drill shaft due to bending and shear is expressed as:

V =
1
2

EI ′u 22

0

L

∫ dx                                                                                                          (2.3)
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where E is Young’s modulus of the drill tube, I  is transverse moment of inertia of a 

cross-section of the drill.

Since axial compressive force for a Euler-Bernoulli beam is ignored:

W = 0                                                                                                                          (2.4)

Applying Hamilton’s principe, the equations of motion for a rotating drill shaft 

containing flowing fluid and subject to a axial compressive force in a moving co-ordinate 

system can obtained as:

 

u +
2ρ f AfU
ρA + ρ f Af

′u +
ρ f AfU

2

ρA + ρ f Af

′′u +
EI

ρA + ρ f Af

′′′′u = 0                                         (2.5)

If the flowing fluid is ignored for a non-rotating drill shaft, it is the same as the 

equations in [26]. This equations indicate that transverse motion is damped by  the velocity of 

the fluid.

2.4 Simplified Equation of Motion With Damper

The equation of BTA drill shaft damped by a damper with damping constant c at 

x =αL can obtained as:

 

u +
2ρ f AfU
ρA + ρ f Af

′u +
ρ f AfU

2

ρA + ρ f Af

′′u +
EI

ρA + ρ f Af

′′′′u +
c

ρA + ρ f Af

uδ(x −αL) = 0    (2.6)

where δ (x) denotes the Dirac function

The Eq(2.6) can be nondimensionalized by the following dimensionless parameters:

x =
x
L
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U =UL(
ρ f Af

EI
)1/2

ρ f =
ρ f Af

ρA + ρ f Af

c = c
L

[EI(ρA + ρ f Af )]
1/2 =

c
(ρA + ρ f Af )Lω

ω 2 =
EI

(ρA + ρ f Af )L
4

where ω denotes the eigenfrequency of the undamped beam without fluid.

which takes the following form:

 
u + 2Uρ f

1/2
′u +U 2

′′u + ′′′′u + c uδ(x −α ) = 0                                                              (2.7)

we set following parameters:

k1 = 2Uρ f
1/2

k2 =U
2

we get

 
u + k1 ′u + k2 ′′u + ′′′′u + c uδ(x −α ) = 0                                                                        (2.8)

The corresponding boundary conditions for both clamped ends are:

u(0,t) = ′u (0,t) = u(L,t) = ′u (L,t)

15 



Fig. 2.1 Shear mode of MRF

Fig. 2.2 Damped beam system containing flowing fluid 
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Chapter 3 Method of Solution

3.1 Eigenvalues of the Equation of Motion

An approximate series solution of the differential equation (2.6) from Galerkin’s 

Method can be used in the form

 

u(x ,t) ≈ ur (x )ηr (t)
r=1

n

∑                                                                                                 (3.1)

where ur (x ) are the orthogonal eigenfunctions or mode shape functions of the no fluid 

contained Euler-Bernoulli beam with the same boundary conditions of the system and ηr (t)

are the time dependent generalized coordinates.

The eigenfunctions ur (x) are found to be

ur (x ) = cosh(βr x ) − cos(βr x ) − σ r[sinh(βr x ) − sin(βr x )]                                             (3.2)

with

σ r =
coshβr − cosβr

sinhβr − sinβr

                                                                                                  (3.3)

where βr are the solution of

cosh(βr )cos(βr ) = 1                                                                                                      (3.4)

The values of βr can not expressed as exact forms and we can compute these values 

listed in Table 3.1. Also the first five mode shape of  undamped shaft shown in Fig. 3.1
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Substituting equation (3.1) into equation (2.8) and both sides of the equation are 

multiplied by the sth eigenfunction us (x) and integrated from 0 to 1.By using the 

orthogonality  property of the eigenfunctions, the following set of ordinary differential 

equations for the ηs (t) is obtained

 

ars ηr + k1brs ηr + k2crsηr + drsηr + cus (α ) ur (α )
r=1

n

∑ ηr = 0                                           (3.5)

The elements of matrices ars ,brs ,crs ,drs are:

 

ars =
0       r ≠ s
1          r = s     
⎧
⎨
⎩

 

brs =
4βr

2β 2
s

βr
4 − βs

4 {(−1)
n+m −1}     r ≠ s

0                                                                                 r = s     

⎧
⎨
⎪

⎩⎪

 

crs =
4βr

2β 2
s

βr
4 − βs

4 (βrσ r − βmσm ){(−1)
n+m −1}      r ≠ s

−βrσ r                                                                                                                           r = s     

⎧
⎨
⎪

⎩⎪

 

drs =
0       r ≠ s
βr
4     r = s     

⎧
⎨
⎩

We can obtain the following form 

 
Ars ηr + Brs ηr + Crsηr = 0                                                                                               (3.6)

where 

Ars = ars

Brs = k1brs + cus (α )ur (α )
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Crs = k2crs + drs

If we let 

 

Q =
ηr

ηr

⎧
⎨
⎩

⎫
⎬
⎭

P = 0 I
−A−1C −A−1B

⎛

⎝
⎜

⎞

⎠
⎟

or the form of 

 
Q = PQ                                                                                                                         (3.7)

It is an eigenvalue problem and by letting 

Q(t) = Qeλt                                                                                                                   (3.8)

and substituting it into Eq (3.7) we have

PQ = λQ                                                                                                                      (3.9)

We can solve the eigenvalues of the matrix P ,and find 2r eigenvalues λ j which are 

complex numbers composed of real parts and image parts. Note that the image parts are equal 

to the dimensionless eigenfrequencies of the tool shaft system.

The modal natural frequency ω i ,  modal damping ratio ζ i  can be defined as following:

ω i = (λ jλ j+1)
1/2                                                                                                           (3.10)

ζ i = −
λ j + λ j+1

2ω i

                                                                                                          (3.11)
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3.2  Sensitivities of Eigenvalues

To obtained the effect of damping coeffcient and position of damper , neglect the 

flowing fluid factor. In reference, the sensitivity of eigenvalues of a viscously damped 

clamped-free Bernolli-Euler beam was investigated. Thus the sensitivity  of eigenvalues with 

respect to the changes in the magnitude of the damping constat and location of the damper 

attachment point can be obtained.[60] 

Thus the system of equation of damped shaft without fluid from equation (3.5) is:

 

ars ηr + drsηr + cus (α ) ur (α )
r=1

n

∑ ηr = 0                                                                          (3.12)

If the solution of the form 

ηs (t) = ηse
λt

and substituting it into (3.12), the following set of equations are obtained:

[(λ2I +Ω) + λca(α )aT (α )]η = 0                                                                                (3.13)

where 

η = [η1,...,ηn ]
T

a(x ) = [u1(x ),...,u2 (x )]
T

Ω = diag(β 4 )

then

det[(λ2I +Ω) + λca(α )aT (α )] = 0                                                                             (3.14)

By using the formula :

det(Α + ΒppT ) = detA{1+ ΒpTΑ−1p}

we can find the following correspondences 
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Α = λ2I +Ω  ,  p = a(α )   ,  Β = cλ

Hence the characteristic equation (3.14) can be reformulated as

 1+ cλ ur
2 (α )

λ2 + β 4
r

= 0
r=1

n

∑

Then we can begin with the sensitivity of the eigenvalues with respect  to the viscous 

damping constant c .

∂λ
∂c

= ′λ =
−λ

c 1+ 2λ 3c ur
2 (α )

(λ2 + β 4
r ) ^ 2r=1

n

∑⎡

⎣
⎢

⎤

⎦
⎥

                                                             (3.13)

Hence, it give an approximate formula for the eigenvalue λ(c) if the damping constant 

of the damper is changed by a small amount Δc

λ(c + Δc ) ≈ λ(c ) + ′λ Δc                                                                                  (3.14)

By the similar operation [60]

∂λ
∂α

=

− ur (α )ur′ (α )
λ2 + β 4

rr=1

n

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ur
2 (α )

λ2 + β 4
r

− 2λ ur
2 (α )

λ2 + β 4
r( )2r=1

n

∑
r=1

n

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                             (3.15)

where ur′ (α ) = βr sinh(βrα ) + sin(βrα ) − σ r[cosh(βrα ) − cos(βrα )][ ]  

λ(α + Δα ) ≈ λ(α ) + ∂λ
∂α

Δα                                                                              (3.16)
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Mode r βr Mode r βr

1 4.73004 6 20.4204

2 7.8532 7 23.5619

3 10.9956 8 26.7035

4 14.1372 9 29.8451

5 17.2788 10 32.9867

Table 3.1 The values of βr

1st
2nd 3rd

4th

5th

0.2 0.4 0.6 0.8 1.0

!2

!1

1

2

Fig 3.1 Undamped mode shapes of mode 1~5 

22 



Chapter 4 Simulation

In order to solve the eigenvalue problem of BTA shaft, the following values from 

Catalog are used to examine the forgoing theoretical analysis:

Tube Length:L = 1.6m

Tube internal diameter:11.5mm

Tube external diameter:17.0mm

Cross-sectional area of the shaft:A = 1.231×10−4m2

Cross-sectional area of the fluid:Af = 1.039 ×10
−4m2

Tube density:ρ = 7860kg / m3

Fluid density:ρ f = 871kg / m
3

Absolute viscosity: µ = 0.383kg / m ⋅ sec

Fluid  quantity : fq = 60l / min

Young’s Modulus:E = 2.06 ×1011Pa

Moment of inertia: I = 3.214 ×10−9m2

Catalog recommends the fluid quantity fq = 50 ~ 100l / min .When fluid quantity 

fq = 60l / min we have

U =
fq
Af

=
60l / min

1.039 ×10−4m2 = 9.625m / sec
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Re =
ρ fUD
µ

=
866 × 9.625 × 0.023

0.383
= 500.6

We obtain that the fluid flow is laminar, and assumption in Chapter 2.2 is correct.

4.1 Calculate the Eigenvalue Problem

 

Table 4.1 shows the undamped natural frequencies of the tool shaft without fluid c = 0 ,

U = 0 . In order to figure out the damped natural frequencies and damping ratio effected by 

fluid and damper, Table 4.2 is the natural frequencies and damping ratio of damped shaft 

without fluid when damper placed at  0.6L ,c = 100N / (m / s) ,U = 0 . The natural frequencies 

and damping ratio decrease as the damping coefficient increases. But the effect of damper on 

mode 1, mode 4, mode  6, mode 7, mode 9 are more obvious due to the displacement of 

damper.

Table 4.3 is the natural frequencies and damping ratio shaft without damper with fluid 

U = 9.625m / sec ,c = 0 . The natural frequencies and damping ratio decrease as the flow 

velocity  increases. Compared the effect  between damper and fluid flow that damper causes 

more change of frequencies and damping ratio. But the influence of damper is dependent on 

the damper location. 

Finally Table 4.4 shows the damped natural frequencies and damping ratio of the tool 

shaft with fluid when damper placed at 0.6L ,c = 100N / (m / s) ,U = 9.625m / sec . 
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Table 4.1 Undamped natural frequencies of the tool shaft without fluid flow 

U = 0 c = 0

mode Natural  Frequencies

1 22.3732784

2 61.6727502

3 120.9032193

4 199.8604238

5 298.5569294

6 416.9927361

7 555.1631316

8 713.0769122

9 890.7299940

10 1088.1223768

Table 4.2 Damped Natural Frequencies and damping ratio of the Tool Shaft              

without fluid flowU = 0 c = 100

mode Natural  Frequencies Damping Ratio

1 21.9141356 0.201550731

2 61.6306496 0.036943528

3 120.9002976 0.006951992

4 199.8176701 0.020683087

5 298.5569115 0.000345840

6 416.9790264 0.008108901

7 555.1590495 0.003834828

8 713.0763723 0.001230591

9 890.7203114 0.004662689

10 1088.1223719 0.000095731
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Table 4.3  Natural Frequencies and damping ratio of the shaft without damper              

with fluid flow U = 9.625m / sec ,c = 0

mode Natural  Frequencies Damping Ratio

1 22.3715884 0.001648109

2 61.6717211 0.000597856

3 120.9024871 0.000304963

4 199.8598553 0.000184483

5 298.5564647 0.000123497

6 416.9923432 0.000088420

7 555.1627913 0.000066414

8 713.0766121 0.000051706

9 890.7297255 0.000041394

10 1088.1221340 0.000033884

Table 4.4 Damped Natural Frequencies and damping ratio of the tool shaft with fluid 

when damper placed at 0.6L , c = 100N / (m / s) ,U = 9.625m / sec

mode Natural  Frequencies Damping Ratio

1 21.9048214 0.203213791

2 61.6282566 0.037541995

3 120.8993091 0.007256998

4 199.8163386 0.020867630

5 298.5564341 0.000469338

6 416.9783345 0.008197329

7 555.1585678 0.003901245

8 713.0760268 0.001282298

9 890.7198710 0.004704084

10 1088.1221255 0.000129616
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4.2 Sensitivity of the Eigenvalues of the Shaft with Damper

Table 4.5 gives an indication on the accuracy of the sensitivity related equation (3.14) 

Small changes of the damping constant c = 100N / (m / s) are taken as Δc = 1,5,10

respectively. Similarly Table 4.6 gives an indication on the accuracy of the sensitivity-based 

formula (3.16) . Small changes in the location of the damper attachment point are taken as 

Δα = 0.0005,0.001,0.005 .

Table 4.5 Eigenvalues due to the change of the damping constant c by Δc

Δc = 1 Δc = 5 Δc = 10

-4.508387 ± 21.909544 i -4.504536 ± 21.891178 i -4.499721 ± 21.868222 i

-2.276462 ± 61.630189 i -2.268675 ± 61.628346 i -2.258942 ± 61.626044 i

-0.839698 ± 120.900269 i -0.836420 ± 120.900156 i -0.832322 ± 120.900015 i

-4.133730 ± 199.817668 i -4.133730 ± 199.817662 i -4.133731 ± 199.817655 i

-0.103314 ± 298.556911 i -0.103544 ± 298.556912 i -0.103836 ± 298.556913 i

-3.382580 ± 416.979025 i -3.387492 ± 416.979021 i -3.393631 ± 416.979016 i

-2.128986 ± 555.159050 i -2.129110 ±555.159052 i -2.129266 ± 555.159054 i

-0.877605 ± 713.076371 i -0.877985 ± 713.076368 i -0.878464 ± 713.076364 i

-4.153231 ± 890.720311 i -4.153368 ± 890.720313 i -4.153540 ± 890.720314 i

-0.104178 ± 1088.12237 i -0.104225 ± 1088.12237 i -0.104283 ± 1088.12237 i

27 



Table 4.6 Eigenvalues due to the change of the damper attachment point  α byΔα

Δα = 0.0005 Δα = 0.001 Δα = 0.005

-4.501316 ± 21.915787 i -4.493253 ± 21.917441 i -4.27734 ± 21.930771 i

-2.296618 ± 61.629973 i -2.314835 ± 61.629292 i -2.460658 ± 61.623642 i

-0.821902 ± 120.900425 i -0.803443 ± 120.900549 i -0.661704 ± 120.901408 i

-4.142648 ± 199.817485 i -4.151160 ±199.817308 i -4.20441 ± 199.816195 i

-0.114861 ± 298.556907 i -0.127070 ± 298.556902 i -0.245863 ± 298.556828 i

-3.345933 ± 416.979312 i -3.310006 ± 416.979598 i -3.006178 ± 416.981899 i

-2.179115 ± 555.158854 i -2.229248 ± 555.158655 i -2.625986 ± 555.156920 i

-0.831969 ± 713.076426 i -0.787356 ± 713.076477 i -0.467411 ±713.076759 i

-4.171926 ± 890.720223 i -4.188836 ± 890.720144 i -4.257137 ± 890.719820 i

-0.126961 ± 1088.122369i -0.151934 ± 1088.12236 i -0.426376 ± 1088.12229 i

4.3 Shaft Behavior Effected by Placement of Damper

The vibration of any modes can be controlled by changing the damper attachement 

point. Seeing mode shape (Fig. 3.1), the damper position can be selected to control the natural 

frequency and damping ratio of any modes. In order to obtain the effect, the damper placed at  

0.3L ,0.5L ,0.8L is chosen to control the mode 2, mode 1 and mode 3.

Table 4.7 and Table 4.10 shows the natural frequency  and damping ratio controlled of  

each modes at different damper placement. The smaller natural frequency and larger damping 

ratio of mode 1 is at   0.5L , mode 2 at 0.3L , mode 3 at 0.8L . The results is exactly   the same 

as prediction that obtained by mode shape (Fig. 3.1). 

28 



Table 4.7 Natural frequency due to placement of damper 

Mode 0.3L 0.5L 0.8L

1

2

3

4

5

22.22667439 21.71949620 22.3583680

61.48373026 61.67275024 61.5947930

120.89254994 120.82996362 120.8631327

199.86006195 199.86042384 199.8260821

298.53250491 298.52654171 298.5553666

Table 4.8 Damping ratio due to placement of damper 

Mode 0.3L 0.5L 0.8L

1

2

3

4

5

0.114290593 0.239977559 0.03650243

0.078328539 0 0.05026455

0.013284855 0.034805757 0.04002990

0.001902990 0 0.01853719

0.127910337 0.014267223 0.00323560

4.4 Shaft Behavior Effected by MQL Applying

Finally, Table 4.9 and Table 4.10 compare the natural frequency  and damping ratio 

when MQL applying under the ratio of gas to fluid is 0.2, 0.5 and 0.8. The flow velocity U

and cross-section area of fluid Af  are listed in Table 4.11. The results show the natural 

frequency decrease and damping ratio increase as the air increase.
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Table 4.9 Natural frequency due to the ratio of gas to fluid 

Mode Ratio = 0.2 Ratio = 0.5 Ratio = 0.8

1

2

3

4

5

6

7

8

9

10

22.371255 22.370756 22.370258

61.671516 61.671211 61.670905

120.902341 120.902123 120.901905

199.859742 199.859572 199.859402

298.556372 298.556233 298.556094

416.992264 416.992147 416.992029

555.162723 555.162621 555.162519

713.076552 713.076462 713.076372

890.729671 890.729591 890.729511

1088.122085 1088.122012 1088.121940

Table 4.10 Damping ratio due to the ratio of gas to fluid 

Mode Ratio = 0.2 Ratio = 0.5 Ratio = 0.8

1

2

3

4

5

6

7

8

9

10

0.001659903 0.001672063 0.001680330

0.000602128 0.000606528 0.000609517

0.000307141 0.000309385 0.000310908

0.000185801 0.000187158 0.000180795

0.000124379 0.000125287 0.000125904

0.000089052 0.000089702 0.000090143

0.000066888 0.000067377 0.000067771

0.000052076 0.000052456 0.000052714

0.000041689 0.000041994 0.000042200

0.000003412 0.000034376 0.000034545
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Table 4.11 Flow velocity U and cross-section area of fluid due to the ratio of gas to fluid

Ratio U(m / sec) Af (m
2 )

0.2 11.554 8.655 ×10−5

0.5 14.443 6.924 ×10−5

0.8 17.332 5.77 ×10−5
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Chapter 5 Conclusions

This study deals with the eigenvalues of a damped BTA drill shaft with fluid-flow. The 

boundary conditions of the beam is assumed clamped-clamped. Also the sensitivity formulas 

with respect to changes in the magnitude of the damping constan and location of the damper 

attachment point have been established. 

By doing research on eigenvalues and sensitivity, it is helpful when engineers design a 

changeable damping system like MR damper or optimize design about the damper location 

and damping coefficient. Finally, this study has established a simple formula about the 

influence of natural frequency and damping ratio of BTA shaft when applying MQL.
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