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摘要摘要摘要摘要    

Vortex-shedding 屬於流體力學中的外流場問題，產生的原因是當流體通過不同形狀

的物體時，使物體的尾流產生週期性的剝離的渦流現象，此現象就稱 vortex-shedding。

常發現在鳥在空中飛行、車子在路面上行走、橋的橋墩以及氣流受到島嶼影響等。在過

去也有很多科學家做過相關的研究，但是大多數的研究 vortex-shedding 都是在連續流及

不可壓縮流流場的範圍，而少數針對稀薄流體區域做研究，主要由於在稀薄流體區做實

驗以及在非穩態流場模擬也較為困難。 

本文的目的是使用直接模擬蒙地卡羅法及結構性格網來模擬次音速流體通過垂直

平板，研究 vortex-shedding 現象。我們使用 time-averaging with temporal variable time step

平均取樣時間方法的模擬，這種方法稱為 TVTS。 

利用不同 Unsteady time average with temporal variable time step (TVTS)、particle per 

cell、number of temporal node、domain size 以及 Reynolds number 等這些參數，觀察垂直

平板尾流層產生 vortex-shedding 的變化情形。 

由結果顯示 TVTS=100 和 150 設定條件下，尾流層都會發生擺動的現象，而

TVTS=100 的時候，尾流層產生明顯 vortex-shedding。當固定 TVTS=100，模擬不同

Reynolds number，則會發生 Strouhal number 和 aerodynamics coefficient 會隨著 Reynolds 

number 增加。 
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Abstract 

The phenomena of vortex shedding associated with the subsonic external flow problems 

in different length scales are visible everywhere in fluid dynamics. For example, aviation of 

fruit flies and birds, driving car in the wind, flowing river through piers under a bridge, and 

the air current interaction with an island and so forth. A large number of experimental and 

numerical studies have been reported on the vortex-shedding flows in the continuum limit, 

while there have been very few studies focusing on similar flows in the rarefied gas regime. 

Major obstacle of the investigation in rarefied regime mostly came from the difficulties of 

experiments and also numerical simulations for unsteady flows in this regime. 

In the present paper, a general-purpose Parallel Direct Simulation Monte Carlo Code, 

named PDSC, is used to simulate the subsonic flow pasts a 2D vertical plate for studying the 

vortex-shedding phenomena. An unsteady time-averaging with temporal variable time step 

sampling method, called TVTS. Parametric studies, including temporal variable time step 

(TVTS) factor, particles per cell, number of temporal nodes, domain size and Reynolds 

number, are conducted to obtain the Strouhal number and aerodynamics coefficients. The 

results are compared to experimental data in the continuum region and simulations from the 

literature wherever they are available. Results of TVTS=100 and 150 has oscillation 

phenomenon, but results of TVTS=100 has results clear vortex shedding. Both the Strouhal 

number (0.174, 0.188, and 0.21) and the average drag coefficients (1.05, 1.14, 1.35, and 1.4) 

are increased with respect to Re=73, 126, 287 and 412 respectively, expect that the Strouhal 
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value of Re=73 case is unavailable because the vortex is steady.  
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max

Thr
Kn  : the threshold value of continuum breakdown parameter 

QKn  : local Knudsen numbers based on flow property Q 
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Chapter 1 Introduction 

 

1. 1    Motivation and Background 

1.1. 1 Importance of Flow past a Vertical Flat Plate 

The phenomena of vortex shedding associated with the subsonic external flow problems 

in different length scales are visible everywhere in fluid dynamics. The periodic two 

-dimensional vortex shedding behind bluff bodies exposed to uniform flow has fascinated 

researchers since the days of Leonardo da Vinci. The occurrence of this flow phenomenon is 

due to instabilities and depends on the geometry of the bluff body and the Reynolds number; 

it has often been the cause of failure of flow-exposed structures in various fields of 

engineering. 

The motion of a viscous incompressible fluid past an object results in the generation of a 

wake containing a double row of vortices, the so-called von Kármán [T. von Kármán, 1956]. 

The behavior of such flows may be characterized through a single parameter, the Reynolds 

number. From experimental observations it is held that for small values of Re less than some 

threshold value Reynolds number the flow is steady, whilst when Reynolds number is 

exceeded the flow becomes unsteady and vortices are shed, leading eventually to regular 

periodic shedding. As Re increases still further, eventually a turbulent regime is encountered 

and the vortex shedding pattern then assumes an irregular structure.  

At Re < 40 a stationary, symmetric vertical pattern is formed behind a buff body, and at 

higher Reynolds a periodic wake is formed. Wake formation is described in detail by Younis 

[1988] and Roshko [1954]. As Reynolds the flow separates from the plate ends creating free 

shear layers that continue downstream before rolling into vortices4. These disturbances 

develop increasingly closer to the plate. 

Finally, above about Re = 60 eddies are shed alternately from the laminar separation 
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points on either side of the plate, corresponding to the plate tips. Thus, a vortex will be 

generated in the region behind the separation point on one side, while a corresponding vortex 

on the other side will break away from the cylinder and move downstream in the wake. When 

the attached vortex reaches a particular strength, it will in turn break away and a new vortex 

will begin to develop again on the second side and so on. 

A unique relationship is found to exist between Re and the dimensionless Strouhal 

number, St. Roshko [1954] noted that the bluffness of a body is related to the ratio of wake 

width to body size. A bluffer body diverge the flow more extensively producing a wider wake 

and a lower shedding frequency. Roshko [1954] determined that St for flow over a flat plate 

remained nearly constant, 0.13≤ St ≤ 0.140, over a wind rang of Re. 

 

1.1. 2 Classification of Flow Rarefaction 

Knudsen number (Kn=λ/L) is usually used to indicate the degree of rarefaction. Note that 

the mean free path λ is the average distance traveled by molecules before collision and L is 

the flow characteristic length. In general, flows are divided into four regimes and three 

solutions. When the local Kn number approaches zero, the flow reaches inviscid limit and can 

be solved by Euler equation. As local Kn increases, molecular nature of the gas becomes 

dominated. Hence, when the flow is close to the continuum regime (Kn approach 0.01), the 

well known Navier-Stokes equation may be applied to yield accurate result for engineering 

purposes. For Kn larger than 0.01, continuum assumption begins to break down and the 

particle-based method is necessary and a kinetic approach, based on the Boltzmann equation 

[Cercignani, 1998]. It is important to note that the kinetic approach is valid in the whole range 

of the gas rarefaction. This is an important advantage when systems with multiscale physics 

are investigated; however it is rarely used to numerically solve the practical problems because 

of two major difficulties. They include higher dimensionality (up to seven) of the Boltzmann 

equation and the difficulties of correctly modeling the integral collision term. The well known 
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direct simulation Monte Carlo (DSMC) method [Bird, 1994] is also a powerful computational 

scheme.  

 

1.1.3 Direct Simulation Monto Carlo Method 

Direct Simulation Monte Carlo (DSMC), was proposed by Bird to solve the Boltzmann 

equation using direct simulation of particle collision kinetics, and the associated monograph 

was published in 1994 [Bird’s book]. Later on, both Nanbu [1986] and Wagner [1992] were 

able to demonstrate mathematically that the DSMC method is equivalent to solving the 

Boltzmann equation as the simulated number of particles becomes large. The DSMC method 

is a particle method for the simulation of gas flows. The gas is modeled at the microscopic 

level using simulated particles, which each represents a large number of physical molecules or 

atoms. The physics of the gas are modeled through the motion of particles and collisions 

between them. Mass, momentum and energy transports between particles are considered at 

the particle level. The method is statistical in nature and depends heavily upon 

pseudo-random number sequences for simulation. Physical events such as collisions are 

handled probabilistically using largely phenomenological models, which are designed to 

reproduce real fluid behavior when examined at the macroscopic level. This method has 

become a widely used computational tool for the simulation of gas flows in the transitional 

flow regime, in which molecular effects become important. 

The DSMC method becomes very time-consuming as the flow approaches continuum 

regime since the sampling cell size has to be much smaller than the local mean free path for 

the solution to be accurate. Several remedies in speeding up the DSMC computation include: 

(1) parallel computing [Robinson, 1996-1998]; (2) variable time-step scheme for steady flows 

[Kannenberg, 2000]; (3) sub-cells within each sampling cell [Bird’s book, 1994], and (4) 

unsteady flows sampling. Details of the “parallel computing”, “variable time-step scheme” 

and “sub-cell” can be found in those references cited in the above and are not described here 
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for brevity. Only “unsteady flows sampling” concept is described here since it was rarely 

discussed in detail in the literature. Unsteady flow simulations have difficulties in DSMC 

sampling, Cave, et al. [2008] developed new model for under-expanded jets from sonic 

nozzles during the start up of rocket nozzles and during the injection phase of the Pulsed 

Pressure Chemical Vapor Deposition (PP-CVD) process. But sampling over a small time 

interval requires either a very large number of simulated molecules or the average of a large 

number of separate simulations (“ensemble-averaging”). The costs high computational 

expense and large memory. Xu [1993] used one method of decreasing the statistical scatter of 

the results is to using statistical smoothing procedures in two dimensional unsteady problems. 

Wagner [1992] proved Bird’s two-dimensional axis-symmetric code which incorporates 

unsteady sampling techniques in which a number of time intervals close to the sampling point 

are averaged (“time-averaging”); however this is single processor code. The increased 

computational capacities of parallel-DSMC techniques have the potential to enable the 

simulation of time-dependent flow problems at the near-continuum regime. 

Accordingly, in this thesis develops an unsteady time-averaging sampling method [Cave, 

et al., 2008] for flow past a vertical plate and uses DSMC rapid ensemble averaging method 

(DREAM) to reduce the statistical scatter with an acceptable runtime for unsteady flow 

simulation. 

 

1. 2 Literature Survey 

Flat plate flows are encountered in systems not in equilibrium. Proto-type flows of this 

kind are circular cylinder problem and flat plate flow problem in two or three dimension. The 

circular cylinder problem has been studies [Blasius, 1908]. Recently remarks advance in 

numerical integration of the Navier-Stokes equations has been made owing to the tremendous 

of development high-speed computers, and time-dependent solutions for impulsively started 

flow past a circular cylinder. G.A.Bired et al [1997] calculated the two dimensional flow over 
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a vertical plate at Knudsen number of 0.0025 and 0.005 for Mach number of 0.5 using the 

direct simulation Monte Carlo method. S.Taneda, et al [1971] was investigated the separated 

flow past a flat plate experimentally. Their measurement were conducted using 

flow-visualization techniques for the length of wake bubble at Reynolds numbers ranging 

from 18.1 to 1135.Taneda, et al [1963] was investigated experimentally at Reynolds number 

ranging from -110 to
-510 .They measured import points resulting from experiments are that the 

drag and life coefficients. 

Cave et al., [2008] developed a unsteady sampling procedures for the parallel direction 

simulation Monte Carlo method. This paper is simulations of a shock tube and the 

development of Couette flow are then carried out as validation studies. To overcome the large 

computational expense and memory requirements usually involved in DSMC simulations of 

unsteady flows. “Time-averaging” method was implemented which has considerable 

computational advantages over ensemble-averaging a large number of separate runs. Also, in 

order to reduce the statistical scatter with an acceptable runtime for unsteady flow simulation 

using DSMC technique. DSMC-DREAM (Rapid Ensembled Average Method) was 

developed whereby a combination of time- and ensemble-averaged data was build up by 

regenerating the particle data a short time prior to the sampling point of interesting, assuming 

a Maxwell-Boltzmann distribution of particle velocities. In this thesis, we used this method 

and validated this code. 

 

1. 3 Specific Objectives of the Thesis 

The current objectives of the thesis are summarized as follows: 

1. To simulation of subsonic (Ma=0.77) flow over a two-dimensional vertical flat plate 

and vortex shedding behind a vertical flat plate using parallelized DSMC code (PDSC). 

2. To simulation vertical flat plate, including same vertical flat plate with height of 0.02 

m in the all cases. 
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3. To simulation vertical flat plate using an unsteady time-averaging with temporal 

variable time step sampling method. 

4. To discuss the effects of TVTS (Unsteady time average with temporal variable time 

step) factor, Particle per cell, Number of temporal node, Domain size and Reynolds 

Number.  

The organization of the thesis is stated as follows: Chapter 1 describes the Introduction, 

Chapter 2 describes the Numerical Method, Chapter 3 describes Simulation Results and 

finally Chapter 4 recommendation of future work. 
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Chapter 2 Numerical Method 

 

2. 1 The Boltzmann Equation 

The Knudsen number (Kn) is used to indicate the degree of rarefaction. In Figure 2.1, 

flows are divided into four regimes and three solutions. We have found the Boltzmann 

equation is valid for all flow regimes which from 10 to 0.0001. It is one of the most important 

transport equations in non-equilibrium statistical mechanics, which deals with systems far 

from thermodynamics equilibrium. There are some assumptions made in the derivation of the 

Boltzmann equation which defines limits of applicability. They are summarized as follows: 

1. Molecular chaos is assumed which is valid when the intermolecular forces are 

short range. It allows the representation of the two particles distribution function 

as a product of the two single particle distribution functions. 

2. Distribution functions do not change before particle collision. This implies that the 

encounter is of short time duration in comparison to the mean free collision time. 

3. All collisions are binary collisions. 

4. Particles are uninfluenced by intermolecular potentials external to an interaction. 

According to these assumptions, the Boltzmann equation is derived and shown as Eq. (2.1) 

  

4

2 ' '

1 1

0

( ) ( ) ( )
( )i i c

i i i

nf nf nf f
u F n f f ff g d dU

t x u x

π

σ
∞

−∞

∂ ∂ ∂ ∂
+ + = = − Ω

∂ ∂ ∂ ∂ ∫ ∫  (2.1) 

Meaning of particle phase-space distribution function f  is the number of particles with 

center of mass located within a small volume 3
d r  near the point r , and velocity within a 

range 3
d u , at time t . iF is an external force per unit mass and t  is the time and iu is the 

molecular velocity. σ is the differential cross section and dΩ  is an element of solid angle.  

The prime denotes the post-collision quantities and the subscript 1 denotes the collision 

partner. Meaning of each term in Eq. (2.1) is described in the following; 
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1. The first term on the left hand side of the equation represents the time variation of 

the distribution function of the particles (unsteady term). 

2. The second term gives the spatial variation of the distribution function (flux term). 

3. The third term describes the effect of a force on the particles (force term). 

4. The term at right hand side of the equation is called the collision integral (collision 

term). It is the source of most of the difficulties in obtaining solutions of the 

Boltzmann equation. 

In general, it is difficult to solve the Boltzmann equation directly using numerical 

method because the difficulties of correctly modeling the integral collision term. Instead, the 

DSMC method was used to simulated problems involving rarefied gas dynamics, which is the 

main topic in the current thesis. 

 

2. 2 General Description of the Standard DSMC 

In order to the expected rarefaction caused by the rarefied gas flows, the direct 

simulation Monte Carlo (DSMC) method which is a particle-based method developed by Bird 

during the 1960s and is widely used an efficient technique to simulate rarefied gas regime 

[Bird, 1976 and Bird, 1994]. In the DSMC method, a large number of particles are generated 

in the flow field to represent real physical molecules rather than a mathematical foundation 

and it has been proved that the DSMC method is equivalent to solving the Boltzmann 

equation [Nanbu, 1986 and Wagner, 1992]. The assumptions of molecular chaos and a dilute 

gas are required by both the Boltzmann formulation and the DSMC method [Bird, 1976 and 

Bird, 1994]. An important feature of DSMC is that the molecular motion and the 

intermolecular collisions are uncoupled over the time intervals that are much smaller than the 

mean collision time. Both the collision between molecules and the interaction between 

molecules and solid boundaries are computed on a probabilistic basis and, hence, this method 

makes extensive use of random numbers. In most practical applications, the number of 
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simulated molecules is extremely small compared with the number of real molecules. The 

general procedures of the DSMC method are described in the next section, and the 

consequences of the computational approximations can be found in Bird [Bird, 1976 and Bird, 

1994].  

In DSMC, there are three molecular collision models for real physical behavior and 

imitate the real particle collision, which are the Hard Sphere (HS), Variable Hard Sphere 

(VHS) and Variable Soft Sphere (VSS) molecular models, in the standard DSMC method 

[Bird, 1994]. The collision pairs then are chosen by the acceptance-rejection method. The no 

time counter (NTC) method is an efficient method for molecular collision. This method yield 

the exact collision rate in both simple gases and gas mixtures, and under either equilibrium or 

non-equilibrium conditions. 

Figure 2.2 is a general flowchart of the DSMC method. Important steps of the DSMC 

method include setting up the initial conditions, moving all the simulated particles, indexing 

(or sorting) all the particles, colliding between particles and sampling the molecules within 

cells to determine the macroscopic quantities. The details of each step will be described in the 

following; 

� Initialization 

The first step to use the DSMC method in simulating flows is to set up the geometry and 

flow conditions. A physical space is discredited into a network of cells and the domain 

boundaries have to be assigned according to the flow conditions. An important feature has to 

be noted is the size of the computational cell should be smaller than the mean free path, and 

the distance of the molecular movement per time step should be smaller than the cell 

dimension. After the data of geometry and flow conditions have been read in the code, the 

numbers of each cell is calculated according to the free-stream number density and the current 

cell volume. The initial particle velocities are assigned to each particle based on the 

Maxwell-Boltzmann distribution according to the free-stream velocities and temperature, and 
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the positions of each particle are randomly allocated within the cells.  

� Molecular Movement 

After initialization process, the molecules begin move one by one, and the molecules 

move in a straight line over the time step if it did not collide with solid surface. For the 

standard DSMC code by Bird [Bird, 1976 and Bird, 1994], the particles are moved in a 

structured mesh. There are two possible conditions of the particle movement. First is the 

particle movement without interacting with solid wall. The particle location can be easy 

located according to the velocity and initial locations of the particle. Second is the case that 

the particle collides with solid boundary. The velocity of the particle is determined by the 

boundary type. Then, the particle continues its journey from the intersection point on the cell 

surface with its new absolute velocity until it stops. Although it is easier to implement by 

using structured mesh, it is difficult for those flows with complex geometry. 

� Indexing 

The location of the particle after movement with respect to the cell is important 

information for particle collisions. The relations between particles and cells are reordered 

according to the order of the number of particles and cells. Before the collision process, the 

collision partner will be chosen by a random method in the current cell. And the number of 

the collision partner can be easy determined according to this numbering system. 

� Gas-Phase Collisions 

The other most important phase of the DSMC method is gas phase collision. The current 

DSMC method uses the no time counter (NTC) method to determine the correct collision rate 

in the collision cells. The number of collision pairs within a cell of volume CV  over a time 

interval t∆  is calculated by the following equation; 

crTN VtcFNN /)(
2

1
max ∆σ  (2.2) 

N and N  are fluctuating and average number of simulated particles, respectively. NF  
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is the particle weight, which is the number of real particles that a simulated particle represents.  

Tσ  and rc  are the cross section and the relative speed, respectively.  The collision for each 

pair is computed with probability 

 max)/()( rTrT cc σσ  (2.3) 

The collision is accepted if the above value for the pair is greater than a random fraction.  

Each cell is treated independently and the collision partners for interactions are chosen at 

random, regardless of their positions within the cells.  The collision process is described 

sequentially as follows:  

1. The number of collision pairs is calculated according to the NTC method, Eq. (2.2), 

for each cell. 

2. The first particle is chosen randomly from the list of particles within a collision cell. 

3. The other collision partner is also chosen at random within the same cell. 

4. The collision is accepted if the computed probability, Eq (2.3), is greater than a 

random number. 

5. If the collision pair is accepted then the post-collision velocities are calculated using 

the mechanics of elastic collision. If the collision pair is not to collide, continue 

choosing the next collision pair. 

6. If the collision pair is polyatomic gas, the translational and internal energy can be 

redistributed by the Larsen-Borgnakke model [Borgnakke and Larsen, 1975], which 

assumes in equilibrium. 

The collision process will be finished until all the collision pairs are handled for all cells 
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and then progress to the next step. 

� Sampling 

After the particle movement and collision process finish, the particle has updated 

positions and velocities.  The macroscopic flow properties in each cell are assumed to be 

constant over the cell volume and are sampled from the microscopic properties of each 

particle within the cell.  The macroscopic properties, including density, velocities and 

temperatures, are calculated in the following equations [Bird, 1976 and Bird, 1994]; 
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n, m are the number density and molecule mass, receptively. c, co, and c’ are the total 

velocity, mean velocity, and random velocity, respectively. In addition, Ttr, Trot, Tv and Ttot are 

translational, rotational, vibration and total temperature, respectively. rotε and vε are the 

rotational and vibration energy, respectively. rotζ  and vζ  are the number of degree of 

freedom of rotation and vibration, respectively. If the simulated particle is monatomic gas, the 

translational temperature is regarded simply as total temperature. Vibration effect can be 

neglect if the temperature of the flow is low enough.                                                                                                       

The flow will be monitored if steady state is reached.  If the flow is under unsteady 

situation, the sampling of the properties should be reset until the flow reaches steady state.  



 

 13 

As a rule of thumb, the sampling of particles starts when the number of molecules in the 

calculation domain becomes approximately constant. 

 

2. 3 General Description of the PDSC 

Although the large number of molecules in a real gas is replaced with a reduced number 

of model particles, there are still a large number of particles must be simulated, leading to 

tremendous computer power requirements and needing to cost a lot of computational time. As 

a result, parallel DSMC method is developed to solve the problem. Figure 2.3 illustrates a 

simplified flow chart of the parallel DSMC method used in the current study. The DSMC 

algorithm is readily parallelized through physical domain decomposition. The cells of the 

computational grid are distributed among the processors. Each processor executes the DSMC 

algorithm in serial for all particles and cells in its domain. Data communication occurs when 

particles cross the domain (processor) boundaries and are then transferred between 

processors. 

 Parallel DSMC Code (PDSC) is the main solver used in this thesis, which utilizes 

unstructured tetrahedral mesh. Figure 2.4 is the features of PDSC and brief introduction is 

listed in the following paragraphs. 

1. 2D/2D-axisymmetric/3-D unstructured-grid topology: PDSC can accept either 

2D/2D-axisymmetric (triangular, quadrilateral or hybrid triangular-quadrilateral) or 

3D (tetrahedral, hexahedral or hybrid tetrahedral-hexahedral) mesh [Wu et al.’s JCP 

paper, 2006]. Computational cost of particle tracking for the unstructured mesh is 

generally higher than that for the structured mesh. However, the use of the 

unstructured mesh, which provides excellent flexibility of handling boundary 

conditions with complicated geometry and of parallel computing using dynamic 

domain decomposition based on load balancing, is highly justified. 

2. Parallel computing using dynamic domain decomposition: Load balancing of PDSC 

is achieved by repeatedly repartitioning the computational domain using a 

multi-level graph-partitioning tool, PMETIS [Wu and Tseng, 2005] by taking 
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advantage of the unstructured mesh topology employed in the code. A decision 

policy for repartition with a concept of Stop-At-Rise (SAR) [Wu and Tseng, 2005] 

or constant period of time (fixed number of time steps) can be used to decide when 

to repartition the domain. Capability of repartitioning of the domain at constant or 

variable time interval is also provided in PDSC. Resulting parallel performance is 

excellent if the problem size is comparably large. Details can be found in Wu and 

Tseng [Wu and Tseng, 2005]. 

3. Spatial variable time-step scheme: PDSC employs a spatial variable time-step 

scheme (or equivalently a variable cell-weighting scheme), based on particle flux 

(mass, momentum, energy) conservation when particles pass interface between cells. 

This strategy can greatly reduce both the number of iterations towards the steady 

state, and the required number of simulated particles for an acceptable statistical 

uncertainty. Past experience shows this scheme is very effective when coupled with 

an adaptive mesh refinement technique [Wu et al.’s CPC paper, 2004]. 

4. Unsteady flow simulation: An unsteady sampling routine is implemented in PDSC, 

allowing the simulation of time-dependent flow problems in the near continuum 

range [JCP paper submitted in June 2007].  A post-processing procedure called 

DSMC Rapid Ensemble Averaging Method (DREAM) is developed to improve the 

statistical scatter in the results while minimizing both memory and simulation time. 

In addition, a temporal variable time-step (TVTS) scheme is also developed to speed 

up the unsteady flow simulation using PDSC. More details can be found in [JCP 

paper submitted in June 2007]. Details of the idea and implementation are described 

next. 

5. Transient Sub-cells: Recently, transient sub-cells are implemented in PDSC directly 

on the unstructured grid, in which the nearest-neighbor collision can be enforced, 

whilst maintaining minimal computational overhead [JFM paper under preparation, 

2007]. 

 

2. 4 General Description of Unsteady Sampling Method in DSMC [JCP 

paper in March 2008] 

In section 2.3, the PDSC code has been specifically designed for simulating steady flows, 
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therefore some modification is need for unsteady sampling. The unsteady sampling method 

has been described in detail in the paper [Cave, et al., 2008]. 

There are two methods for unsteady sampling, the differences illustrated in Figure 2.5 

and the details will be described in the following; 

7. The “Ensemble-Average” method, require multiple simulation runs. The flow flied is 

sampled at the suitable sampling times during the run. The sampling simulation 

outputs from each run are averaged over the runs. There the results are vary precise, 

but the method is very computational expensive. Because a large of runs is required 

to reduce the statistical scatter to smooth data and a large amount of memory is 

needed to record the sampling data for each simulation.  

8. The “Time-Average” method, require one simulation run. It averages a number of 

time steps over an interval before the sampling time. However it suffers a potential 

disadvantage in that the results will be “smeared” over the time over which samples 

are taken. Hence the sample time must be sufficiently short to minimizes time 

“smearing” and yet long enough to obtain a good statistical sample. This method of 

time averaging has been used previously by Auld to model shock tube flow [Auld, 

1992] 

In PDSC, the method of time-averaging was implemented [Cave, et al., 2008]. Here a 

technique called the temporal variable time step (TVTS) method was used to reduce the 

simulation time by increasing the time step between sampling. The code has an option for the 

user to choose specific output flow times or for output at regular intervals. Figure 2.6 shows 

the flow chart of the PDSC method with the unsteady sampling procedures implemented. 

Here M is the output matrix for sampling interval M. Most parts of the procedure are the same 

as the steady simulation except the sampling data must be reset after completing each 
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simulation interval. 

 

2. 5 DSMC Rapid Ensemble Averaging Method (DREAM) [JCP paper 

March 2008] 

Because reducing the statistical scatter greatly, in time-average data requires a very large 

number of simulation particles with consequent large computational times. In the thesis, we 

have adapted DREAM code which has been described in detail in this paper by [Cave, et al., 

2008]. The illustrated in Figure 2.7 

First, we select a raw data set X-n produced by PDSC n sampling intervals prior to the 

sampling interval of interest X. New particle data is generated from the macroscopic 

properties in data set X-n by assuming a Maxwellian distribution of velocities. The standard 

PDSC algorithm is then used to simulate forward in time until the sampling period of interest 

X is reached. The time steps close to the sampling point are time-averaged in the same way as 

in PDSC and this process is repeated a number of times, thus building up a combination of 

ensemble-averaged and time-averaged data without having to simulate from zero flow time 

for each run. This process reduces the statistical scatter in the results by adding to the number 

of particles in the sample, rather than by some artificial smoothing process.  Because only a 

short period of the flow is processed in this way, the scheme has significant memory and 

computational advantages over both ensemble-averaging and using a greater number of 

particles in the time-averaging scheme. 
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Chapter 3 Results and Discussion 

A large number of experimental and numerical studies have been reported on the 

vortex-shedding flows in the continuum limit, while there have been very few studies 

focusing on similar flows in the rarefied gas regime. Major obstacle of the investigation in 

rarefied regime mostly came from the difficulties of experiments and also numerical 

simulations for unsteady flows in this regime. A general-purpose Parallel Direct Simulation 

Monte Carlo Code, named PDSC, is used to simulate the subsonic flow pasts a 2D vertical 

plate for studying the vortex-shedding phenomena. 

 

3. 1 Problem Description and Test Conditions 

To demonstrate the capability of the unsteady function in PDSC, a number of simulations 

of the flow past a vertical plate were conducted. A systematic study, including the effects of 

TVTS (Unsteady time average with temporal variable time step) factor, particle per cell, 

number of temporal node, domain size and Reynolds number, was first undertaken. Only one 

parameter was varied at a time for a set of simulations to determine its effect on the flow 

solution while the other simulation parameters remained unchanged from the control case. 

 

3.1 1 Test Flow past a Vertical Flat Plate with Different TVTS Factors 

Figure 3.1 (b) shows the computational domains for the developing vertical flat plat flow. 

Flow and simulation conditions are summarized in Table 1. The control parametric study is 

about the number of simulation TVTS (Unsteady time average with temporal variable time 

step) factor. Five cases, such as 100, 150, 198, 220 and 300 simulated TVTS factor are 

proposed here. The calculation employed the hard sphere molecular model for which 

Reynolds number is related Mach number and Knudsen number by Equation give this all case. 

At time t=0, Mach number =0.77 of flow past a vertical flat plate with a height of 50 
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free-stream mean free paths. Knudsen number 0.01 with Re=126. Monatomic air is used as 

the working gas. The initial temperatures inside the diffuse wall temperatures are set to 300 K. 

A sampling time step of 7.48×10
-9

s was used. Figure 3.2 (b) shows Uniform mesh distribution 

is used throughout the present study in all cases. The total quadrilateral cell number is 

125,000 (500 by 250, ∆x=∆y~2λ). The number of simulated particle per cell is set about 100. 

Each temporal node has 10,000 time steps and the last 100 time steps are sampled, which 

implies the flow properties are obtained by sampling about 10,000 simulated particles. 

In the current research, an ARA PC cluster system (12-node, dual cores/dual processors 

per node, AMD 2.2 GHz, RAM 16GB per node, InfiniBand networking) is used. All 

simulations were conducted with only 12 processors and the transient adaptive sub-cell 

module is also activated to obtain more correct collision behavior.  

 

3.1 2 Test Flow past a Vertical Flat Plate with Different Particles per cell 

Figure 3.1 (b) shows the computational domains for the developing vertical flat plat flow. 

Flow and simulation conditions are summarized in Table 2. The control parametric study is 

about the number of simulated particles per cell. Three cases, such as 50, 100, and 200 

simulated particles per cell are proposed here. The calculation employed the hard sphere 

molecular model for which Reynolds number is related Mach number and Knudsen number 

by Equation give this all case. At time t=0, Mach number=0.77 of flow past a vertical flat 

plate with a height of 50 free-stream mean free paths. Knudsen number 0.01 with Re=126. 

Monatomic air is used as the working gas. The initial temperatures inside the diffuse wall 

temperatures are set to 300 K. A sampling time step of 7.48×10
-9

s was used. Figure 3.2 (b) 

shows Uniform mesh distribution is used throughout the present study in all cases. The total 

quadrilateral cell number is 125,000 (500 by 250, ∆x=∆y~2λ). The factor of TVTS=100 is 

used and all simulations has vortex shedding. The number of simulated particle per cell is set 

about 100. Each temporal node has 10,000 time steps and the last 100 time steps are sampled, 
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which implies the flow properties are obtained by sampling about 5,000, 10,000 and 20,000 

simulated particles. 

In the current research, an ARA PC cluster system (12-node, dual cores/dual processors 

per node, AMD 2.2 GHz, RAM 16GB per node, InfiniBand networking) is used. All 

simulations were conducted with only 12 processors and the transient adaptive sub-cell 

module is also activated to obtain more correct collision behavior.  

 

3.1 3 Test Flow past a Vertical Flat Plate with Different Number of 

Temporal Nodes 

Figure 3.1 (b) shows the computational domains for the developing vertical flat plat flow. 

Flow and simulation conditions are summarized in Table 3. The control parametric study is 

about the number of simulated number of temporal node. Three cases, such as 140, 280, and 

560 simulated number of temporal node are proposed here. The calculation employed the hard 

sphere molecular model for which Reynolds number is related Mach number and Knudsen 

number by Equation give this all case. At time t=0, Mach number=0.77 of flow past a vertical 

flat plate with a height of 50 free-stream mean free paths. Knudsen number 0.01 with Re=126. 

Monatomic air is used as the working gas. The initial temperatures inside the diffuse wall 

temperatures are set to 300 K. A sampling time step of 7.48×10
-9

s was used. Figure 3.2 (b) 

shows Uniform mesh distribution is used throughout the present study for all cases. The total 

quadrilateral cell number is 125,000 (500 by 250, ∆x=∆y~2λ). The factor of TVTS=100 is 

used and all simulations has vortex shedding. The number of simulated particle per cell is set 

about 100. Temporal node are 10,000, 5,000 and 2,500 time steps and the last 100 time steps 

are sampled, which implies the flow properties are obtained by sampling about 10,000 

simulated particles. 

In the current research, an ARA PC cluster system (12-node, dual cores/dual processors 

per node, AMD 2.2 GHz, RAM 16GB per node, InfiniBand networking) is used. All 
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simulations were conducted with only 12 processors and the transient adaptive sub-cell 

module is also activated to obtain more correct collision behavior.  

 

3.1 4 Test Flow past a Vertical Flat Plate with Different Domains Sizes 

Figure 3.1 (a)-(b) shows the computational domains for the developing vertical flat plat 

flow. Flow and simulation conditions are summarized in Table 4. The control parametric 

study is about the number of simulated domain size. Three cases, such as 500 by 150 (H=3L), 

500 by 250 (H=5L) and 500 by 350 (H=7L) simulated domain size are proposed here. The 

calculation employed the hard sphere molecular model for which Reynolds number is related 

Mach number and Knudsen number by Equation give this all case. At time t=0, Mach 

number=0.77 of flow past a vertical flat plate with a height of 50 free-stream mean free paths. 

Knudsen number 0.01 with Re=126. Monatomic air is used as the working gas. The initial 

temperatures inside the diffuse wall temperatures are set to 300 K in the cases. A sampling 

time step of 7.48×10
-9

s was used. Figure 3.2 (a)-(b) shows Uniform mesh distribution is used 

throughout the present study for all cases. The total quadrilateral cell number are 75,000 (500 

by 150, ∆x=∆y~2λ), 125,000 (500 by 250, ∆x=∆y~2λ) and 175,000 (500 by 350, ∆x=∆y~2λ), 

respectively. The factor of TVTS=100 is used and all simulations has vortex shedding. The 

number of simulated particle per cell is set about 100. Each temporal node has 5,000 time 

steps and the last 100 time steps are sampled, which implies the flow properties are obtained 

by sampling about 10,000 simulated particles. 

In the current research, an ARA PC cluster system (12-node, dual cores/dual processors 

per node, AMD 2.2 GHz, RAM 16GB per node, InfiniBand networking) is used. All 

simulations were conducted with only 12 processors and the transient adaptive sub-cell 

module is also activated to obtain more correct collision behavior.  

 

3.1 5 Test Flow past a Vertical Flat Plate with Different Reynolds Numbers 
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Figure 3.1 (b) shows the computational domains for the developing vertical flat plat flow. 

Flow and simulation conditions are summarized in Table 5. The control parametric study is 

about the number of simulated Reynolds number. Four cases, such as 73, 126, 287 and 412 

simulated Reynolds numbers are proposed here. The calculation employed the hard sphere 

molecular model for which Reynolds number is related Mach number and Knudsen number 

by Equation. At time t=0, Mach number=0.77 of flow past a vertical flat plate with height of 

50 and 100 free-stream mean free paths. Knudsen number 0.017, 0.01, 0.0044 and 0.0031 

with Re=73, Re=126, Re=287 and Re=412, respectively. Monatomic air is used as the 

working gas. The initial temperatures inside the diffuse wall temperatures are set to 300K in 

all cases. The simulation time step were set at 1.27×10
-8

s, 7.48e×10
-9

s, 3.74×10
-9

s and 2.25×

10
-9

s. Figure 3.2-Figure 3.5 shows Uniform mesh distribution is used throughout the present 

study for all cases. The total quadrilateral cell number are 125,000 (500 by 250, ∆x=∆y~λ), 

125,000 (500 by 250, ∆x=∆y~2λ), 500,000 (1000 by 500, ∆x=∆y~2λ) and 500,000 (1000 by 

500, ∆x=∆y~3λ) with Re=73, Re=126, Re=287 and Re=412, respectively. The factor of 

TVTS=100 is used and all simulations has vortex shedding. The number of simulated particle 

per cell is set about 100. Each temporal node has 5,000 time steps and the last 100 time steps 

are sampled, which implies the flow properties are obtained by sampling about 10,000 

simulated particles. 

In the current research, ARA PC cluster system (12-node, dual cores/dual processors per 

node, AMD 2.2 GHz, RAM 16GB per node, InfiniBand networking) and HP 64bit Cluster 

(28-node, NCHC) are used. All simulations were conducted with 12 and 28 processors and 

the transient adaptive sub-cell module is also activated to obtain more correct collision 

behavior.  

 

3. 2 Effects of TVTS Factor 

Table 1 show a comparison of the experimental results of [Roshko, A, et al., 1954] with 
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several other numerical and experimental result, result the current research. Figures 3.6- 

Figures 3.20 show the contours of u-velocity and v-velocity components and the streamline 

at t=74.8, 972.4, 8527.2, 8602, 8676.8, and 8751.6 µs with different TVTS factors (100, 150, 

198, 220 and 300), respectively. Figure 3.22-Figure 3.26 are the time traces of u-velocity and 

v-velocity component at points of (0.03, 0.01), (0.06, 0.01), (0.09, 0.01), (0.03, 0.), (0.06, 0.) 

and (0.09, 0.), respectively. Some investigations and conclusions are made as follows: (a) 

The computational times for TVTS=100, 150, 198, 220 and 300 took about 40.8, 35.57, 

33.31, and 32.67 and 31.84 hours, respectively, which shows the larger TVTS factor has 

better computational efficiency due to less particle tracking and particle sub-cell 

identifications. But the results of using TVTS=198, 220 and 300 do not have 

vortex-shedding situation. (b) Both of cases using TVTS=100 and 150 have oscillation 

phenomenon, but results of TVTS=100 has relative clear vortex shedding. (c) From the 

streamline in Figure 3.16-Figure 3.20, he counterclockwise-rotating vortex is generated at 

the lower tip of the plate and convected to downstream. Then the clockwise-rotating vortex 

is form behind the upper tip of the plate in turn. (d) From Figure 3.22-Figure 3.26, the ranges 

of u-velocity and v-velocity components become smaller when the larger value of TVTS was 

applied. 

Among the most critical parameters associated with periodic vortex shedding is St 

(Strouhal number). [Roshko, A, et al., 1954] has provided the most extensive data on the 

Strouhal number for various geometries, including the flat plate. For a flat plate at Re=126, 

[Roshko, A, et al., 1954] experimentally determined Strouhal number and Drag coefficient 

of 0.165 and 1.46. 

Table 1 show a comparison of the experimental results of [Roshko, A, et al., 1954] with 

several other numerical and experimental result, result the current research. The PDSC 

results of Strouhal number (St=f*L/U∞) are computed to be 0.167 and 0.167 with TVTS 

factor=100 and 150, respectively, where f is shedding frequency from a single edge, U∞ is 
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free-stream speed and L is vertical flat plate of height. Because the simulation which employ 

TATS=198, 220 and 300 exhibit only slight periodic disturbances and so it is difficult to 

determine a value for the Strouhal number. The value at TVTS factor=100 and 150 

compared with experimental results [Roshko, A, et al., 1954] of St=0.165 differs 1.21%, 

1.21%. The PDSC results of drag coefficient CDave are computed to be 1.14, 1.11, 1.02, 1.03, 

and 1.06 with TVTS factor=100, 150, 198, 220 and 300, where CDave is the average drag 

coefficient used to determine the PSMC simulation. The drag coefficient, which is used to 

express the drag on the object in moving flow, is defined as Fd/2ρU
2
A, where Fd, ρ, U and A 

are drag force, flow density, flow velocity and the characteristic of frontal area. The value at 

TVTS=100, 150, 198, 220 and 300 compared with experimental results [Roshko, A, et al., 

1954] of CD=1.46 differs 21.92%, 23.97%, 30.13%, 29.45% and 27.4%. We can see the 

results of TVTS=100 are closer to the experimental data. In order to prevent the smear-out 

situation, TVTS=100 is selected for further simulation. 

 

3.2 1 General Simulation Results 

Figure 3.6-Figure 3.15 (a)-(f) shows contours of U-velocity and V-velocity at different 

instant times for 2D vertical vortex-shedding problem. We were observed results different 

TVTS factors which there were no phenomenon of oscillations and vortex shedding with 

TVTS factor=198, 220 and 300. Because the particles move far away from their regeneration 

position, effectively constraining the final solution to be too close to the macroscopic 

properties of the regeneration data. Using a greater unsteady time average with temporal 

variable time step (TVTS) and ensemble run results in a further reduction of scatter, however 

it is interesting to note that reduction in statistical scatter remains almost the same.       

Figure 3.16-Figure 3.20 (a)–(f) shows streamline at different instant times for 2D vertical 

flat plat vortex-shedding problem. The streamlines are crack. Because of simulation transient 

regime and data are not fine when using DSMC technique. The streamline patterns show that  
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during the starting flow the cavity behind the cylinder is closed. However, once the 

vortex-shedding process beings, this so-called ‘closed’ cavity becomes open and 

instantaneous ‘alleyways’ of fluid are formed which penetrate the cavity. TVTS factor= 

100,150, 198, 220 and 300 are shows the phase-averaged plots for the first four phases of 

cycle at t= 8527.2, 8602, 8676.8, and 8751.6 µs. 

 

3.2 2 Property Distributions of Vertical Flat Plate  

In order to observe influence of the profile on eddies creation, we select different six 

position of points in Figure 3.21 (b), which including x=0.03, y=0.01; x=0.06, y=0.01; x=0.09, 

y=0.01; x=0.03, y=0; x=0.06, y=0 and x=0.09, y=0. 

Figure 3.22-Figure 3.26 (a)-(f) shows time trace of stream-wise U-velocity and 

V-velocity distributions for 2D vertical flat plate vortex-shedding problem in different TVTS 

factors. We were observed results the ranges of u-velocity and v-velocity components become 

smaller when the larger value of TVTS was applied. For example, the ranges of v-velocity 

component at point (0.03, 0) of TVTS=100, 150, 198, 220 and 300 are within -240~+250, 

-150~+150, -40~+50 m/s, -40~+40 m/s and -40~+50 m/s, respectively. This is because the 

time step is too large and the flow is smeared out for the flow with larger TVTS factor. Thus 

the angular momentum is not conserved and the vortex shedding is disappeared for the cases 

of TVTS=198, 220 and 300. 

Figure 3.27 (a)-(e) shows time trace of drag Coefficient distributions for 2D vertical flat 

plate vortex-shedding problem in different TVTS factors. The other parameter used to 

determine the accuracy of the PDSC simulation is CD. Because of the vortex shedding, the Cd 

oscillates about an average value with constant amplitude once steady state shedding is 

reached. Base upon vortex shedding theory CD has a frequency twice that of f. However, in 

the simulation, regular oscillations were been hidden by the random scatter present in the 

PDSC result. The influence of the stream distance on the drag coefficient was seen to 
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insignificant. 

Figure 3.28 (a)-(e) shows time trace of Pressure distributions for 2D vertical flat plate 

vortex-shedding problem in different TVTS factors. The other parameter used to determine 

the accuracy of the PDSC simulation is Pressure. Because of the vortex shedding, the Pressure 

oscillates about an average value with constant amplitude once steady state shedding is 

reached. The influence of the stream distance on the pressure distributions was seen to 

insignificant. 

 

3.2 3 Stagnation Point From Flow past a Vertical Flat Plate 

Figure 3.29 shows the stagnation point from flow past a vertical plate with different 

TVTS factors at normalized time. This stagnation distance and time instant are normalized by 

the length of plate (L) and the flow transit time (L/U), which is defined as the time required 

for the flow move a distance equal to the length of the plates. The distance of the stagnation 

point moves further to the downstream with time. The differences between the proposed 

results and the experimental data are due to the Knudsen number of experiments are four to 

five orders smaller than the simulation and the working fluid is water. We were observed 

different TVTS factors which the present PDSC result of TVTS factors=100 and 150 are in 

good agreement with the experimental work of [Taneda and Honji, 1971]. 

 

3. 3 Effects of Particle per cell 

Table 2 show a comparison of the experimental results of [Roshko, A, et al., 1954] with 

several other numerical and experimental result, result the current research. Figures 3.30- 

Figures 3.38 show the contours of u-velocity and v-velocity components and the streamline at 

t=74.8, 972.4, 8527.2, 8602, 8676.8, and 8751.6 µs with different particles per cell (50, 100 

and 200), respectively. Figure 3.39-Figure 3.41 are the time traces of u-velocity and v-velocity 

component at points of (0.03, 0.01), (0.06, 0.01), (0.09, 0.01), (0.03, 0.), (0.06, 0.) and (0.09, 
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0.), respectively. Some investigations and conclusions are made as follows: (a) The 

computational times for particle per cell=50, 100, and 200 took about 21.6, 40.8 and 81.6 

hours, respectively, which shows the larger particle per cell cost high computational and 

larger memory. (b) The particle per cell =50, 100, 200 are used and all simulation has vortex 

shedding. (c) The contours of velocity components, streamline, and the time traces of velocity 

components at different locations show that the results with more simulated particles are less 

scattered because more sampling particles are obtained. 

Table 2 shows flow past a vertical plate with different particles per cell. The PDSC 

results of Strouhal number (St=f*L/U∞) are computed to be 0.17, 0.167 and 0.173 with 

particles per cell = 50, 100, and 200, respectively. The value at particle per cell =50, 100 and 

200 compared with experimental results [Roshko, A, et al., 1954] of St=0.165 differs 3.03%, 

1.21% and 4.85%. The PDSC results of drag coefficient CDave are computed to be 0.79, 1.14, 

and 1.14 with particle per cell =50, 100 and 200, respectively. The value particle per cell =50, 

100 and 200 are compared with experimental results [Roshko, A, et al., 1954] of Cd=1.46 

differs 45.89%, 21.92% and 21.92 %. As you can see, the particle number per cell shows 

insignificant impact to the Strouhal number, but the average drag coefficient of using fewer 

simulated particles is much smaller than the value of using more simulated particles. Basically, 

simulation with more particles can predict more accurate results, but the following 

simulations still use 100 particles per cell due to the computational cost is affordable. 

                                                                                                                                                   

3.3 1 General Simulation Results 

Figure 3.30-Figure 3.35 (a)–(f) shows contours of U-velocity and V-velocity at different 

instant times for 2D vertical vortex-shedding problem. There were both phenomenon of 

oscillations and vortex shedding when particles per cell=50, 100 and 200 are employed. The 

continuum solution is not shown for clarity different number of particle per cell. It can be seen 

from these results that the flow profile is insensitive to the number of simulation particle, 
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however, as would be expected, the statistical increases as the number of particle is reduced, it 

is necessary to minimize the number of particles while maintaining a sufficient number to 

statistical accuracy. It can be concluded that 100 particle per sampling cell should be 

maintained for accurate unsteady PDSC simulation, whilst maintaining acceptable 

computational times.   

Figure 3.36-Figure 3.38 (a)–(f) shows streamline at different instant times for 2D vertical 

flat plat vortex-shedding problem. The streamlines are crack. Because of simulation transient 

regime and data are not fine when using DSMC technique. The streamline patterns show that  

during the starting flow the cavity behind the cylinder is closed. However, once the 

vortex-shedding process beings, this so-called ‘closed’ cavity becomes open and 

instantaneous ‘alleyways’ of fluid are formed which penetrate the cavity. Particle per cell = 

50, 100 and 200 are shows the phase-averaged plots for the first four phases of cycle at t= 

8527.2, 8602, 8676.8, and 8751.6 µs.    

    

3.3 2 Property Distributions of Vertical Flat Plate 

In order to observe influence of the profile on eddies creation, we will select different six 

position of points in Figure 3.21 (b), which including x=0.03, y=0.01; x=0.06, y=0.01; x=0.09, 

y=0.01; x=0.03, y=0; x=0.06, y=0 and x=0.09, y=0. 

Figure 3.39-Figure 3.41 (a)-(f) shows time trace of stream-wise U-velocity and 

V-velocity distributions for 2D vertical flat plate vortex- shedding problem in different 

particles per cell. We were observed results the ranges of u-velocity and v-velocity 

components. The ranges of v-velocity component at point (0.03, 0) of particle per cell=50, 

100 and 200 are within -240~+250, -240~+250 and -220~+250 m/s, respectively. 

Figure 3.42 shows time trace of drag Coefficient distributions for 2D vertical flat plate 

vortex-shedding problem in different particles per cell. The influence of the stream distance 

on the drag coefficient was seen to insignificant. 
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Figure 3.43 shows time trace of Pressure distributions for 2D vertical flat plate 

vortex-shedding problem in different particles per cell. The influence of the stream distance 

on the pressure distributions was seen to insignificant. 

 

3.3 3 Stagnation Point From Flow past a Vertical Flat Plate 

Figure 3.44 shows the stagnation point from flow past a vertical plate with different 

particles per cell at normalized time. We were observed different particles per cell which the 

present PDSC result of particles per cell=50, 100 and 200 are in good agreement with the 

experimental work of [Taneda and Honji, 1971]. 

 

3. 4 Effects of Number of Temporal Node 

Table 3 show a comparison of the experimental results of [Roshko, A, et al., 1954] with 

several other numerical and experimental result, result the current research. Figures 3.45- 

Figures 3.53 show the contours of u-velocity and v-velocity components and the streamline 

with different number of temporal node (140, 280 and 560), respectively. Figure 3.54-Figure 

3.56 are the time traces of u-velocity and v-velocity component at points of (0.03, 0.01), (0.06, 

0.01), (0.09, 0.01), (0.03, 0.), (0.06, 0.) and (0.09, 0.), respectively. Some investigations and 

conclusions are made as follows: (a) The computational times for number of temporal 

node=140, 280, and 560 took about 21.6, 24 and 36.48 hours, respectively, which shows the 

larger number of temporal node cost high computational and larger memory. (b) The number 

of temporal node=140, 280 and 560 are used and all simulation has vortex shedding.  

Table 3 shows flow past a vertical plate with different number of temporal nodes. The 

PDSC results of Strouhal number (St=f*L/U∞) are computed to be 0.167, 0.164 and 0.174 

with number of temporal node=140, 280 and 560, respectively. The value at number of 

temporal node =140, 280, and 560 compared with experimental results [Roshko, A, et al., 

1954] of St=0.165 differs 1.21%, 0.61% and 5.45%. The PDSC results of drag coefficient 
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CDave are computed to be 1.14, 1.13, and 1.14 with number of temporal node =140, 280 and 

560, respectively. The value number of temporal node=140, 280 and 560 at compared with 

experimental results [Roshko, A, et al., 1954] of CD=1.46 differs 21.92%, 22.6% and 21.92 %. 

As you can see, the number of temporal node shows insignificant impact to the average 

drag coefficient, but the Strouhal number of using more number of temporal nodes is much 

smaller than the value of using less number of temporal nodes. Basically, simulation with 

more number of temporal nodes can predict more accurate results, but the following 

simulations still use number of temporal node=280 due to the computational cost is 

affordable. 

 

3.4.1 General Simulation Results 

Figure 3.45-Figure 3.50 (a)–(f) shows contours of U-velocity and V-velocity at different 

instant times for 2D vertical vortex-shedding problem. We were observed results different 

number of temporal nodes which there were both phenomenon of oscillations and vortex 

shedding with number of temporal nod =140, 280 and 560. 

Figure 3.51-Figure 3.53 (a)–(f) shows streamline at different instant times for 2D vertical 

flat plat vortex-shedding problem. The streamlines are crack. Because of simulation transient 

regime and data are not fine when using DSMC technique. The streamline patterns show that  

during the starting flow the cavity behind the cylinder is closed. However, once the 

vortex-shedding process beings, this so-called ‘closed’ cavity becomes open and 

instantaneous ‘alleyways’ of fluid are formed which penetrate the cavity. Number of temporal 

node =140, 280 and 560 are shows the phase-averaged plots for the first four phases of cycle. 

 

3.4.2 Property Distributions of Vertical Flat Plate 

In order to observe influence of the profile on eddies creation, we will select different six 

position of points in Figure 3.21 (b), which including x=0.03, y=0.01; x=0.06, y=0.01; x=0.09, 
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y=0.01; x=0.03, y=0; x=0.06, y=0 and x=0.09, y=0. 

Figure 3.54-Figure 3.56 (a)-(f) shows time trace of stream-wise U-velocity and 

V-velocity distributions for 2D vertical flat plate vortex-shedding problem. We were observed 

results different number of temporal node which time trace of stream-wise U-velocity and 

V-velocity distribution would yield period of fluctuation with number of temporal node =140, 

280 and 560. The influence of the down-stream distance on stream-wise was seen to be 

sinusoidal. For example, the ranges of v-velocity component at point (0.03, 0) of number of 

temporal node=140, 280 and 560 are within -240~+250, -240~+250 and -240~+250 m/s, 

resulting in a limit cycle for v phase portrait. 

Figure 3.57 shows time trace of drag Coefficient distributions for 2D vertical flat plate 

vortex-shedding problem in different number of temporal nodes. The influence of the stream 

distance on the drag coefficient was seen to insignificant. 

Figure 3.58 shows time trace of Pressure distributions for 2D vertical flat plate 

vortex-shedding problem in different number of temporal nodes. The influence of the stream 

distance on the pressure distributions was seen to insignificant. 

 

3.4.3 Stagnation Point from Flow past a Vertical Flat Plate 

Figure 3.59 shows the stagnation point from flow past a vertical plate with number of 

temporal nodes at normalized time. We were observed different number of temporal nodes 

which the present PDSC result of number of temporal nodes =140, 280 and 560 are in good 

agreement with the experimental work of [Taneda and Honji, 1971]. 

 

3. 5 Effects of Domain Size 

Table 4 show a comparison of the experimental results of [Roshko, A, et al., 1954] with 

several other numerical and experimental result, result the current research. Figures 3.60- 

Figures 3.68 show the contours of u-velocity and v-velocity components and the streamline at  
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t=37.4, 972.4, 8602, 8714.2, 8826.4, and 8938.6 µs with different domain sizes (H=3L, H=5L 

and H=7L), respectively. Figure 3.69-Figure 3.71 are the time traces of u-velocity and 

v-velocity component at points of (0.03, 0.01), (0.06, 0.01), (0.09, 0.01), (0.03, 0.), (0.06, 0.) 

and (0.09, 0.), respectively. Some investigations and conclusions are made as follows: (a) The 

simulation domains have dimensions of 10L×3L, 10L×5L, and 10L×7L with same cell size, 

which took 31.2, 50.4, and 69.6 hours, respectively, which shows the larger domain size cost 

high computational and larger memory. (b) All of these simulations have oscillation behind 

the vertical plate and the vortices are shed in turn with time. 

Table 4 shows flow past a vertical plate with different domain sizes. The PDSC results of 

Strouhal number (St=f*L/U∞) are computed to be 0.186, 0.164 and 0.164 with cell 

number=500 by 150 (H=3L), 500 by 250 (H=5L) and 500 by 350 (H=7L), respectively. The 

value at cell number=500 by 150 (H=3L), 500 by 250 (H=5L) and 500 by 350 (H=7L) 

compared with experimental results [Roshko, A, et al., 1954] of St=0.165 differs 12.73%, 

0.61% and 0.61%. The PDSC results of drag coefficient CDave are computed to be 0.93, 1.13, 

and 1.2 with cell number=500 by 150 (H=3L), 500 by 250 (H=5L) and 500 by 350 (H=7L), 

respectively. The value cell number=500 by 150 (H=3L), 500 by 250 (H=5L) and 500 by 350 

(H=7L) at compared with experimental results [Roshko, A, et al., 1954] of CD=1.46 differs 

36.3%, 22.6% and 17.81 %. The reason is because the upper and bottom boundaries of small 

domain are too close that the Maxwellian assumption at these boundaries is incorrect. 

Although the average drag coefficients for 10L×5L and 10L×7L domains are not exactly the 

same, the difference of average drag coefficient is insignificant and the domain of 10L×5L is 

selected and should be larger enough by considering the trade-off between the results and 

computational cost. 

 

3.5.1 General Simulation Results 

Figure 3.60-Figure 3.65 (a)–(f) shows contours of U-velocity and V-velocity at different 
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instant times for 2D vertical vortex-shedding problem. We were observed results different 

domain sizes which there were both phenomenon of oscillations and vortex shedding with cell 

number=500 by 150 (H=3L), 500 by 250 (H=5L) and 500 by 350 (H=7L). It is evident that 

the proximity of the domain size boundaries to the side of the plate directly affects the 

shedding vortex wake, and therefore the St. By moving the sides away, the effect is 

minimized. Also, the closeness of the front of the domain size boundary to the plate directly 

affects CDave. It can be concluded that cell number=500 by 250 sampling cell should be 

maintained for accurate unsteady PDSC simulation.  

Figure 3.66-Figure 3.68 (a)–(f) shows streamline at different instant times for 2D vertical 

flat plat vortex-shedding problem. The streamlines are crack. Because of simulation transient 

regime and data are not fine when using DSMC technique. The streamline patterns show that 

during the starting flow the cavity behind the cylinder is closed. However, once the 

vortex-shedding process beings, this so-called ‘closed’ cavity becomes open and 

instantaneous ‘alleyways’ of fluid are formed which penetrate the cavity.  

 

3.5.2 Property Distributions of Vertical Flat Plate  

In order to observe influence of the profile on eddies creation, we will select different six 

position of points in Figure 3.21 (a)-(b), which including x=0.03, y=0.01; x=0.06, y=0.01; 

x=0.09, y=0.01; x=0.03, y=0; x=0.06, y=0 and x=0.09, y=0. 

Figure 3.69-Figure 3.71 (a)-(f) shows time trace of stream-wise U-velocity and 

V-velocity distributions for 2D vertical flat plate vortex- shedding problem in different cell 

number. We were observed results. Time trace of stream-wise U-velocity and V-velocity 

distribution would yield period of fluctuation when cell number= 500 by 150 (H=3L), 500 by 

250 (H=5L) and 500 by 350 (H=7L) are employed. The influence of the down-stream 

distance on stream-wise was seen to be sinusoidal. The stream-wise velocity is seen 

approximately vary between -250 and 300 of the stream-wise and has a distinct harmonic, 
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resulting in a limit cycle for u-v phase portrait. 

Figure 3.72 shows time trace of drag Coefficient distributions for 2D vertical flat plate 

vortex-shedding problem in different cell number. The influence of the stream distance on the 

drag coefficient was seen to insignificant. 

Figure 3.73 shows time trace of Pressure distributions for 2D vertical flat plate 

vortex-shedding problem in different cell number. The influence of the stream distance on the 

pressure distributions was seen to insignificant. 

 

3.5.3 Stagnation Point From Flow past a Vertical Flat Plate 

Figure 3.74 shows the stagnation point from flow past a vertical plate with different 

domain sizes at normalized time. We were observed different domain sizes which the present 

PDSC result of cell number=500 by 250 (H=5L) and 500 by 350 (H=7L) are in good 

agreement with the experimental work of [Taneda and Honji, 1971]. 

 

3. 6 Effects of Reynolds Number 

From experimental observations the flow has steady vortex when the Reynolds number 

is smaller than a critical value, while the flow becomes unsteady and vortices are shed 

periodically when the Reynolds number is increased. As Re increases further, eventually a 

turbulent regime is encountered and the vortex-shedding pattern becomes an irregular 

structure. This observation is obtained from Roshko’s experiments in the continuum regime 

[Roshko, A, et al., 1954]. It should be interesting to study the vortex-shedding problem of a 

subsonic flow in rarefied or transient flow regimes by using the particle method. 

Table 5 shows flow past a vertical plate with different Reynolds numbers. The PDSC 

results of Strouhal number (St=f*L/U∞) are computed to be 0.174, 0.188 and 0.21 with 

Reynolds number=126, 287 and 412, respectively. Because the simulation which employ 

Reynolds number=73 exhibit only slight periodic disturbances and so it is difficult to 
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determine a value for the Strouhal number. Figure 3.94 shows Strouhal number variation as a 

function of Reynolds number. The value at Reynolds number=126, 287 and 412 compared 

with experimental results [Roshko, A, et al., 1954] of St=0.165, St=0.147, and St=0.142 with 

Re=126, Re=287, and Re=412 differs 5.45%, 27.9% and 47.9%. The PDSC results of drag 

coefficient CDave are computed to be 1.05, 1.14, 1.35 and 1.4 with Reynolds number=73, 126, 

287 and 412, respectively. The value cell Reynolds number=73, 126, 287 and 412 at 

compared with experimental results [Roshko, A, et al., 1954] of CD=1.43, CD=1.46, CD=1.63 

and CD=1.9 with Re=73, Re=126, Re=287, and Re=412 differs 26.6%, 21.92%, 17.18% and 

26.32 %.  

Both the Strouhal numbers (0.174, 0.188, and 0.21) and the average drag coefficients 

(1.05, 1.14, 1.35, and 1.4) are increased with respect to Re=73, 126, 287, and 412, 

respectively, expect that the Strouhal value of Re=73 case is unavailable because the vortex is 

steady. 

 

3.6.1 General Simulation Results 

Figure 3.75-Figure 3.86 (a)–(f) shows contours of U-velocity and V-velocity at different 

instant times for 2D vertical vortex-shedding problem. From these figures you can see each 

case has different vortex patterns and the flow of Re=73 has no sign of vortex shedding. The 

vortices are shed to the downstream and the irregular pattern is observed in the far field for 

the case of high Reynolds number. 

 

3.6.2 Property Distributions of Vertical Flat Plate  

In order to observe influence of the profile on eddies creation, we will select different six 

position of points in Figure 3.21 (b), which including x=0.03, y=0.01; x=0.06, y=0.01; x=0.09, 

y=0.01; x=0.03, y=0; x=0.06, y=0 and x=0.09, y=0. 

Figure 3.87-Figure 3.90 (a)-(f) shows time trace of stream-wise U-velocity and 
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V-velocity distributions for 2D vertical flat plate vortex-shedding problem in different 

Reynolds number. Some observations are listed below; (a) The data of Re=73 is scattered that 

the frequency is hardly measured, which leads to the Strouhal number is unavailable. (b) For 

the other three cases, the flow behind the vertical plate is decreased at the beginning and then 

approaches quasi-steady. The developing times for the periodic vortex shedding are reduced 

with increasing Reynolds numbers. (c) The magnitudes of v-velocity component are increased 

with higher Reynolds number because the no-slip boundary effect is relative insignificant. 

Figure 3.91 shows time trace of drag Coefficient distributions for 2D vertical flat plate 

vortex-shedding problem in different cell number. The influence of the stream distance on the 

drag coefficient was seen to insignificant.  

Figure 3.92 shows time trace of Pressure distributions for 2D vertical flat plate 

vortex-shedding problem in different cell number. The influence of the stream distance on the 

pressure distributions was seen to insignificant. 

Figure 3.96 show dimensions critical time at which the symmetrical twin vortices begin 

to become asymmetrical against Reynolds number. The critical time at which the wake begins 

to become asymmetrical is plotted against Reynolds number. It is found that critical time 

decreases monotonically Reynolds number, where ν  the kinematic viscosity, t the time and 

L the vertical flat plate of height. 

 

3.6.3 Stagnation Point From Flow past a Vertical Flat Plate 

Figure 3.93 shows the stagnation point from flow past a vertical plate with Reynolds 

numbers at normalized time. We were observed different Reynolds number which the present 

PDSC result of Reynolds number=126 and 287 are in good agreement with the experimental 

work of [Taneda and Honji, 1971]. Stagnation points distribution of Reynolds number=73 and 

412 is thought to difference due to the experimental results being conducted in continuum 

conditions. 



 

 36 

3. 7 Effects of Knudsen Number 

Figure 3.95 shows Strouhal number variation as a function of Knudsen number. We were 

observed results. Strouhal number increase with increase Knudsen number at the same Mach 

number (M=0.77). The Knudsen number the simulation has a significant effect on the 

quantitative accuracy of the result. As Knudsen number directly relates to the closeness of 

given simulation to the ‘continuum’ results, it is important that the effect of this parameter be 

characterized. Especially since current computers are not capable of simulating continuum 

conditions, it is useful to determine if a trend exists as Knudsen number is varied. If a 

reasonable trend does exist, it may allow extrapolation to the continuum result. 

For the control case, Knudsen number= 0.01 Variation in Knudsen number is achieved 

through variation in the number density. The main difference in these techniques is that, 

although both also alter Reynolds numbers, the change in number density also changes the 

static density. 

 

Chapter 4 Conclusions and Recommendation of Future 

Work 

 

4. 1 Summary 

The current study carries out the simulations of vertical flat plate flow at various TVTS 

(Unsteady time average with temporal variable time step) factor, Particle per cell, Number of 

temporal node, Domain size and Reynolds number using a parallelized DSMC code (PDSC) 

with unsteady sampling technique. Important conclusions are summarized as follows:  

1. Vertical simulations subsonic flow over a two-dimensional vertical flat plate and vortex 

shedding behind a vertical flat plate using parallelized DSMC code. (PDSC) 

2. Results of TVTS=100 and 150 has oscillation phenomenon, but results of TVTS=100  
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has relative clear vortex shedding. 

3. Simulation with more particles can predict more accurate results, but the following 

simulations still use 100 particles per cell due to the computational time are affordable. 

4. The different of drag coefficient is insignificant and the domain of 10L×5L is selected 

and should be larger enough by considering the balance between the results and 

computational. 

5. The suggested TVTS factor is 100 to save the computational time and a domain of 10L×

5L with one hundred simulated particles per cell in average should be good enough to 

obtain accurate results for the following simulations. 

6. Both the Strouhal numbers and the average drag coefficients are increased with respect 

to Re=73, 126, 287 and 412, respectively, expect that the Strouhal valume of Re=73 case 

is unavailable because the vortex is steady. 

 

4. 2 Recommendation of Future Work 

Based on this study, future work is suggested as follows: 

1. To simulate the flows in detail by changing the ratio of height to width of the vertical flat 

plate. 

2. Optimization of the time-averaging sampling technique, to ensure more the lowest 

possible statistical scatter within the flow macroscopic properties and to minimize 

statistical bias due to repeated sampling of identical particles during the sampling period. 

3. To simulate the flows in detail by different shape bodies for unsteady flow simulation 

using PDSC technique. 

4. We will simulate to unsteady flows by using DREAM techniques 

5. Comparisons of computations of flow using both DSMC and Navier-Stokes equations. 

 



 

 38 

References 

[1] Auld, D. J., “Direct molecular simulation (DSMC) of shock tube flow”, in Proc. First European 

Computational Fluid Dynamics Conference, Brussels, Belgium, September, 1992. 

[2] Bird, G. A., Molecular Gas Dynamics, Clarendon Press, Oxford, UK, 1976. 

[3] Bird, G. A., “Monte Carlo Simulation in an Engineering Context”, Progr. Astro. Aero, 74, 

pp.239-255, 1981. 

[4] Bird, G. A., “Definition of Mean Free Path for Real Gases”, Phys. Fluids, 26, pp.3222-3223, 

1983. 

[5] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University 

Press, New York, 1994. 

[6] Borgnakke, C. and Larsen, P. S., “Statistical Collision Model for Monto Carlo Simulation of 

Polyatomic Gas Mixture”, Journal of Computational Physics, 18, pp. 405-420, 1975. 

[7] Cercignani, C. and Cortese, S., “Validation of a Monte Carlo simulation of the plate Couette flow 

of a rarefied gas”, J. Stat. Phys. 75, 817, 1994. 

[8] Cercignani, C, The Boltzmann Equation and Its Application, Springer, New York, 1998. 

[9] Cave, H. M., Krumdieck, S.P., and Jermy, M.C., “Development of a model for high precursor 

conversion efficiency pulsed-pressure chemical vapor deposition (PP-CVD) processing”, Chem. 

Eng. J., 2007. 

[10] Cave, H. M., Tseng, K.-C., Wu, J.-S., Jermy, M. C., Huang, J.-C. and Krumdieck, S. P., 

“Implementation of Unsteady Sampling Procedures for the Parallel Direct Simulation Monto 

Carlo Method”, J. of Computational Physics, 2008. 

[11] Hou, S., Zou, Q., Chen, S., and Doolen, G., “Simulation of cavity flow by the lattice Boltzmann 

method”, J. Comput. Phys. 118, 329, 1995. 

[12] Huang, J.-C., “A study of instantaneous starting cylinder and shock impinging over wedge flow”, 

in Proc. 10th National Computational Fluid Dynamics Conference, Hua-Lien, Taiwan, August 



 

 39 

2003 (in Chinese). 

[13] Karniadakis, G.E., and Beskok, A., Micro Flows. Fundamentals and Simulation, Springer, New 

York, 2001. 

[14] Nanbu, K., “Theoretical Basis on the Direct Monto Carlo Method”, Rarefied Gas Dynamics, 1, 

Boffi, V. and Cercignani, C. (editor), Teubner, Stuttgart, 1986. 

[15] Naris, S., and Valougeorgis, D., “The driven cavity flow over the whole range of the Knudsen 

number”, Physics of Fluids, 17, 2005. 

[16] Robinson, C. D., and Harvey, J. k., “ A parallel DSMC Implementation on Unstructured Meshes 

with Adaptive Domain Decomposition”, Proceeding of 20
th
 International Symposium on 

Rarefied Gas Dynamics, pp. 227-232, Shen, C. (editor), Peking University Press, 1996. 

[17] Robinson, C. D., and Harvey, J. k., “Adaptive Domain Decomposition for Unstructured Meshes 

Applied to the Direct Simulation Monte Carlo Method”, Parallel Computational Fluid Dynamics: 

Algorithm and Results using Advanced Computers, pp. 469-476, 1997. 

[18] Robinson, C. D., Particle Simulations on Parallel Computers with Dynamic Load Balancing, 

Imperial College of Science, Technology and Medicine, UK, Ph.D. Thesis, 1998. 

[19] Tseng, K.-C., Cave, H. M., Wu, J.-S., Huang, J.-C., Lian, Y.-Y., Jermy, M. C. and Krumdieck, S. 

P., “Implementation of Transient Sub-Cells on Unstructured Grids for the Parallel Direct 

Simulation Monto Carlo Method”, Journal of Computational Physics, 2007 (submitted) 

[20] Wagner, W., “A convergence proof for Bird’s Direct simulation Monte Carlo method for the 

Boltzmann equation”, Journal State Physics, 66(3/4), pp. 1011-1044, 1992. 

[21] Wu, J.-S., and Tseng, K.-C., “Parallel DSMC Method Using Dynamic Domain Decomposition”, 

International Journal for Numerical Methods in Engineering, Vol. 63, pp. 37-76, 2005.  

[22] Wu, J.-S., Lee, W.-S., Lee, Fred and Wong, S.-C., “Pressure Boundary Treatment In 

Micromechanical Devices Using Direct Simulation Monto Carlo Method”, JSME International 

Journal, Series B, 44(3), pp. 439-450, 2001. 

[23] Wu, J.-S., and Hsu Y.-L., “Derivation of Variable Soft Sphere Model Parameters in 



 

 40 

Direct-Simulation Monte Carlo Method Using Quantum Chemistry Computation”, Japanese 

Journal of Applied Physics, 42, pp. 7574-7575, 2003. 

[24] Wu, J.-S., Tseng, K.-C., and Wu, F.-Y., “Parallel Three Dimensional Simulation Monte Carlo 

Method Using Adaptive Mesh and Variable Time Step“, Computer Physics Communications”, 

Vol. 162, No. 3, pp. 166-187, 2004. 

[25] Wu, J.-S., Lian, Y.-Y., Cheng, G., Koomullil, R. P., and Tseng, K.-C., “Development and 

Verification of a Coupled DSMC-NS Scheme Using Unstructured Mesh“, Journal of 

Computational Physics, Vol. 219, No. 2, pp. 579-607, 2006. 

[26] Xu, D.Q., Honma, H., and Abe, T., “DSMC approach to nonstationary Mach reflection of strong 

incoming shock waves using a smoothing technique”, Shock Waves, 3(1), 67, 1993. 

[27] S.Taneda and H.Honji,”Unsteady flow past a flat plate normal to the direction of 

motion”J.Phys.Soc.Japan,30,262-273(1971). 

[28] Taneda,”Experimental Investigatgion of the wall-Effect on a cylindrical Obstacle 

Moving in a Viscous Fluid at Low Reynolds Numbers”J.Phys.Soc.Japan,Vol.19,No.6 

,June,1964. 

[29] R.D.Blevins,Flow-Induced Vibration,Van Nostrand Reinhold Company, New 

York,1977,Chap 1. 

[30] Roshko,A.,”On the drag and Shedding Frequency of Two-dimensional Bluff 

Bodies,”National Advisory Committee for Aeronautics Report NACA-TN-3169,July 

1954. 

[31] A.Rosko,”On the development of turbulent wake from vortex stress”,NACA 

Tech.Rep.1191,1954. 

[32] G.A.Bird,”Knudsen and Mach Number Effect on The Development of Wake Instabilitions” 

AIAA-98-0785,1997. 

[33] J.L T. and Dr. D. J A.,”Direct Simulation(Monte Carlo)of Two Dimensional Vortex Streets” 

AIAA-98-2671,1998. 



 

 41 

[34] J.D.Hudson and S.C.R.Dennis,”The Flow of a Viscous Incompressib Fluid Past a Normal flat 

At low and intermediate Reynolds Numbers:the wake.”J.Fluid Mech.(1985),Vol.160,pp.369-383. 

[35] H.R.Tamaddon-Jahromi, P. Townsend and M.F. Webster,“Unsteady Viscous Flow Past a Flat Plat  

Orthogonal to The FLlow.Computers Fluids Vol.23,No.2,pp433-446,1994. 

[36] Fady M. Najjar and S.P. Vanka,”Simulations of The Unsteady Separated Flow Past A Normal 

Flat Plate.”International Journal For Numerical Methods in Fluids,Vol.21,525-547. 

[37] T.von Kármán, Uber den mechanismus des widerstandes,den ein bewegter Körper in einer 

Flűssigkeit erzeugt.In Collected Works,Vol. 1,pp. 339-358(1911).Published by 

Butterworth,London(1956). 

[38] H.Blasius:Z.Math.Phys.56(1908) 1. 

[39] Yourus, BAL. “On Modeling the Vortex Shedding From Bluff Bodics in Laminar and Turbulent 

     Streams.” Presented at the Seventh International Conference on Offshore Mechanics and Arctic 

     Engineering, Houston. TX, February 7-12, 1988. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 42 

Table 1  Flow past a vertical plate with different TVTS factors 

* Strouhal No. (St) =0.165 [Roshko, 1954] (Exp.) 

** Drag Coefficient (Cd) = 1.46 [Roshko, 1954] (Exp.) 

Condition/case Case 1 Case 2 Case 3 Case 4 Case 5 

TVTS (MULTDTM) 100 150 198 220 300 

Reynolds No. 126 

Mach No. 0.77 (U=267.19 m/s) 

Knudsen No. 0.01 (n=6.3e21 #/m
3
) 

Temperature (K) 300  

Particle per cell (#) 100 

Cell No. 500 by 250 (∆x = ∆y~ 2λ) 

Simulation Particles 12500,000 

Time step (s) 7.48e-9 

Number of temporal nodes 140 

Oscillation Yes Yes N/A N/A N/A 

Shedding Yes Yes N/A N/A N/A 

St No. (PDSC) 0.167 0.167 N/A N/A N/A 

CDave No. (PDSC) 1.14 1.11 1.02 1.03 1.06 

PDSC  (St) - Exp.  (St)
×100%

Exp.  (St)
*  1.21% 1.21% N/A N/A N/A 

D D

D

PDSC  (C )-Exp.  (C )
×100%

Exp.  (C )
** 21.92% 23.97% 30.13% 29.45% 27.4% 

Running time (hr) 40.8 35.57 33.31 32.67 31.84 
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Table 2  Flow past a vertical plate with different particles per cell 

* Strouhal No. (St) =0.165 [Roshko, 1954] (Exp.) 

** Drag Coefficient (Cd) = 1.46 [Roshko, 1954] (Exp.) 

Condition/case Case 1 Case 2 Case 3 

Particle per cell (#) 50 100 200 

Simulation Particles 6250,000 12500,000 25000,000 

Reynolds No.  126 

Mach No. 0.77 (U=267.19 m/s) 

Knudsen No. 0.01 (n=6.3e21 #/m
3
) 

Temperature (K) 300  

Cell No. 500 by 250 (∆x = ∆y~ 2λ) 

Time step (s) 7.48e-9 

TVTS (MULTDTM) 100 

Number of temporal nodes 140 

Oscillation Yes Yes Yes 

Shedding Yes Yes Yes 

St No. (PDSC) 0.17 0.167 0.173 

CDave No. (PDSC) 0.79 1.14 1.14 

PDSC  (St) - Exp.  (St)
×100%

Exp.  (St)
*  3.03% 1.21% 4.85% 

D D

D

PDSC  (C )-Exp.  (C )
×100%

Exp.  (C )
** 45.89% 21.92% 21.92% 

Running time (hr) 21.6 40.8 81.6 
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Table 3  Flow past a vertical plate with different number of temporal nodes 

* Strouhal No. (St) =0.165 [Roshko, 1954] (Exp.) 

** Drag Coefficient (Cd) = 1.46 [Roshko, 1954] (Exp.) 

Condition/case Case 1 Case 2 Case 3 

Number of temporal node 140 280 560 

Reynolds No. 126 

Mach No. 0.77 (U=267.19 m/s) 

Knudsen No. 0.01 (n=6.3e21 #/m
3
) 

Temperature (K) 300 

Particle per cell (#) 100 

Cell No. 500 by 250 (∆x = ∆y~ 2λ) 

Simulation Particles 12500,000 

Time step (s) 7.48e-9 

TVTS (MULTDTM) 100 

Oscillation Yes Yes Yes 

Shedding Yes Yes Yes 

St No. (PDSC) 0.167 0.164 0.174 

CDave No. (PDSC) 1.14 1.13 1.14 

PDSC  (St) - Exp.  (St)
×100%

Exp.  (St)
*  1.21% 0.61% 5.45% 

D D

D

PDSC  (C )-Exp.  (C )
×100%

Exp.  (C )
** 21.92% 22.6% 21.92% 

Running time (hr) 21.6 24 36.48 
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Table 4  Flow past a vertical plate with different domain sizes 

* Strouhal No. (St) =0.165 [Roshko, 1954] (Exp.) 

** Drag Coefficient (Cd) = 1.46 [Roshko, 1954] (Exp.) 

Condition/case Case 1 Case 2 Case 3 

Cell No. 

500 by 150 

(H=3L)  

(∆x =∆y ~ 2λλλλ) 

500 by 250 

(H=5L)  

(∆x =∆y ~ 2λλλλ) 

500 by 350 

(H=7L)  

(∆x =∆y ~ 2λλλλ) 

Simulation Particles 7500,000 12500,000 17500,000 

Reynolds No. 126 

Mach No. 0.77 (U=267.19 m/s) 

Knudsen No. 0.01 (n=6.3e21#/m
3
) 

Temperature (K) 300 

Particle per cell (#) 100 

Time step (s) 7.48e-9 

Number of temporal nodes 140 

Oscillation Yes Yes Yes 

Shedding Yes Yes Yes 

St No. (PDSC) 0.186 0.164 0.164 

CDave No. (PDSC) 0.93 1.13 1.2 

PDSC  (St) - Exp.  (St)
×100%

Exp.  (St)
*  12.73% 0.61% 0.61% 

D D

D

PDSC  (C )-Exp.  (C )
×100%

Exp.  (C )
** 36.3% 22.6% 17.81% 

Running time (hr) 31.2 50.4 69.6 
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Table 5  Flow past a vertical plate with different Reynolds numbers 

* Re=73, 126, 287 and 412 with Strouhal No. (St) =0.152, 0.165, 0.147, and 0.142 [Roshko, 

1954] (Exp.) 

** Re=73, 126, =287 and 412 with Drag Coefficient (Cd) = 1.43, 1.46, 1.63 and 1.9 [Roshko, 

1954] (Exp.) 

Condition/case Case 1 Case 2 Case 3 Case 4 

Reynolds No. 73 126 287 412 

Knudsen No. 0.017 0.01 0.0044 0.0031 

Number density (#/m
3
) 3.2e21 6.3e21  1.3e22 2.1e22  

Cell No. 500 by 250 500 by 250 1000 by 500 1000 by 500 

Cell size ∆x =∆y ~ λ ∆x =∆y ~2λ ∆x =∆y ~2λ ∆x = ∆y ~3λ 

Simulation Particles 12500,000 12500,000 50000,000 50000,000 

Time step (s) 1.27E-8 7.48E-9 3.74E-9 2.25E-9 

Number of temporal nodes 280 560 430 630 

Mach No. 0.77 (U=267.19 m/s) 

Temperature (K) 300 

Particle per cell (#) 100 

TVTS (MULTDTM) 100 

Oscillation N/A Yes Yes Yes 

Shedding N/A Yes Yes Yes 

St No. (PDSC) N/A 0.174 0.188 0.21 

 CDave No. (PDSC) 1.05 1.14 1.35 1.4 

PDSC  (St) - Exp.  (St)
×100%

Exp.  (St)
*  N/A 5.45% 27.9% 47.9% 

D D

D

PDSC  (C )-Exp.  (C )
×100%

Exp.  (C )
** 26.6% 21.92% 17.18% 26.32% 

Running time. (hr) 53.52 50.4 360.5 504.5 
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Figure 2. 1  Classifications of Gas Flows. 
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Figure 2. 2  Flow chart of the DSMC method. 
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Figure 2. 3  Simplified flow chart of the parallel DSMC method for np processors. 
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Figure 2. 4  The additional schemes in the parallel DSMC code. 
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Figure 2. 5  Sampling method in DSMC include (a) steady sampling (b) unsteady ensemble 

sampling (c) unsteady time averaging.(d) unsteady time averaging with temporal variable 

time step (TVTS). 
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Figure 2. 6  Simplified flow chart of the unsteady parallel DSMC method. 
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Figure 2. 7  Simplified flow chart of the DSMC Rapid Ensemble Averaging Method 

(DREAM) 
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(a) 

 

(b) 

 

(c) 

Figure 3.1  Computational domains for the developing vertical flat plat flow. (a) H=3L; (b) 

H=5L; (c) H=7L  

Speed of Flow u 

Speed of Flow u 

Speed of Flow u 
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(a) 500 by 150 (H=3L) 

 

(b) 500 by 250 (H=5L) 

 

(c) 500 by 350 (H=7L) 

 

Figure 3. 2  The mesh for Re=126 and Kn=0.01 vertical flat plat flow. (a) 500 by 150 

(H=3L); (b) 500 by 250 (H=5L); (c) 500 by 350 (H=7L) (∆x = ∆y~ 2λλλλ) 
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Figure 3. 3  The mesh for Re=73, Kn=0.017 and Mesh=500 by 250 vertical flat plat. (∆x = 

∆y~ λλλλ) 

 

Figure 3. 4   The mesh for Re=287, Kn=0.0044 and Mesh=1000 by 500 vertical flat plat. (∆x 

= ∆y~ 2λλλλ)  

 

Figure 3. 5  The mesh for Re=412, Kn=0.0031 and Mesh=1000 by 500 vertical flat plat. ( ∆x 

= ∆y~ 3λλλλ ) 
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Figure 3. 6  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 1, TVTS factor = 100) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 7  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 1, TVTS factor = 150) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 8  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 1, TVTS factor = 198) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 9  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 4 at Table 1, TVTS factor = 220) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 10  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 5 at Table 1, TVTS factor = 300) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 11  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 1, TVTS factor = 100) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 12  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 1, TVTS factor = 150) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 13  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 1, TVTS factor = 198) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 14  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 4 at Table 1, TVTS factor = 220) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 15  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 5 at Table 1, TVTS factor = 300) (a) 74.8 µ s; (b) 972.4 µ s; 

(c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 16  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 1 at Table 1, TVTS factor = 100) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 17  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 2 at Table 1, TVTS factor = 150) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 18  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 3 at Table 1, TVTS factor = 198) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 19  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 4 at Table 1, TVTS factor = 220) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 20  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 5 at Table 1, TVTS factor = 300) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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(b) 

 

(c) 

             Reference points for U-Velocity at (0.03, 0.01), (0.06, 0.01), (0.09, 0.01) 

             Reference points for V-Velocity at (0.03, 0), (0.06, 0), (0.09, 0) 

Figure 3. 21  Sketch of the vortex shedding flow after a vertical flat plat flow. (a) H=3L; (b) 

H=5L; (c) H=7L 
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Figure 3. 22  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in TVTS factor=100. (Case 1 at Table 1) (a) x=0.03, y=0.01; (b) 

x=0.06, y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0   
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Figure 3. 23  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in TVTS factor=150. (Case 2 at Table 1) (a) x=0.03, y=0.01; (b) 

x=0.06, y=0.01;(c) x=0.09, y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Figure 3. 24  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in TVTS factor=198. (Case 3 at Table 1) (a) x=0.03, y=0.01; (b) 

x=0.06, y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Figure 3. 25  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in TVTS factor=220. (Case 4 at Table 1) (a) x=0.03, y=0.01; (b) 

x=0.06, y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Figure 3. 26  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in TVTS factor=300. (Case 5 at Table 1) (a) x=0.03,y=0.01; (b) 

x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Condition/case Case 1 Case 2 Case 3 Case 4 Case 5 

TVTS (MULTDTM) 100 150 198 220 300 

Reynolds No. 126 

CDave No. (PDSC) 1.14 1.11 1.02 1.03 1.06 

CD No. 

[Roshko, 1954] (Exp.) 
1.46 

D D

D

PDSC  (C )-Exp.  (C )
×100%

Exp.  (C )
 21.92% 23.97% 30.13% 29.45% 27.4% 

 

Figure 3. 27  Time trace of Drag Coefficient distributions for 2D vertical flat plate vortex- 

shedding problem. (a) TVTS factor=100 (Case 1 at Table 1); (b) TVTS factor=150 (Case 2 

at Table 1); (c) TVTS factor=198 (Case 3 at Table 1); (d) TVTS factor=220 (Case 4 at Table 

1); (e) TVTS factor=300 (Case 5 at Table 1) 
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Figure 3. 28  Time trace of Pressure distributions for 2D vertical flat plate vortex-shedding 

problem. (a) TVTS factor=100 (Case 1 at Table 1); (b) TVTS factor=150 (Case 2 at Table 1); 

(c) TVTS factor=198 (Case 3 at Table 1); (d) TVTS factor=220 (Case 4 at Table 1); (e) 

TVTS factor=300 (Case 5 at Table 1) 
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 Figure 3. 29  The stagnation point for flow past a vertical flat plate with different TVTS 

factors at normalized time. (Table 1) 
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Figure 3. 30  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 2, Particle per cell = 50) (a) 74.8 µ s; (b) 972.4 

µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 31  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 2, Particle per cell = 100) (a) 74.8 µ s; (b) 972.4 

µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 32  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 2, Particle per cell = 200) (a) 74.8 µ s; (b) 972.4 

µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 33  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 2, Particle per cell = 50) (a) 74.8 µ s; (b) 972.4 

µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 34  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 2, Particle per cell = 100) (a) 74.8 µ s; (b) 972.4 

µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 35  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 2, Particle per cell = 200) (a) 74.8 µ s; (b) 972.4 

µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 

 

 



 

 88 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 3. 36  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 1 at Table 2, Particle per cell = 50) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 37  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 2 at Table 2, Particle per cell = 100) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 38  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 3 at Table 2, Particle per cell = 200) (a) 74.8 µ s; (b) 972.4 µ s; (c) 

8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s
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Figure 3. 39  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in Particle per cell = 50. (Case 1 at Table 2) (a) x=0.03, y=0.01; 

(b) x=0.06, y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Figure 3. 40  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in Particle per cell = 100. (Case 2 at Table 2) (a) x=0.03,y=0.01; 

(b)x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Figure 3. 41  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in Particle per cell = 200. (Case 3 at Table 2) (a) x=0.03,y=0.01; 

(b) x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) x=0.09, y=0 
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Condition/case Case 1 Case 2 Case 3 

Particle per cell (#) 50 100 200 

Reynolds No.  126 

CDave No. (PDSC) 0.79 1.14 1.14 
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Figure 3. 42  Time trace of Drag Coefficient distributions for 2D vertical flat plate vortex- 

shedding problem. (a) Particle per cell = 50 (Case 1 at Table 2); (b) Particle per cell = 100 

(Case 2 at Table 2); (c) Particle per cell = 200 (Case 3 at Table 2) 
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Figure 3. 43  Time trace of Pressure distributions for 2D vertical flat plate vortex-shedding 

problem. (a) Particle per cell = 50 (Case 1 at Table 2); (b) Particle per cell = 100 (Case 2 at 

Table 2); (c) Particle per cell = 200 (Case 3 at Table 2) 
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Figure 3. 44  The stagnation point for flow past a vertical flat plate with different particles 

per cell at normalized time. (Table 2) 
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Figure 3. 45  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 3, Number of temporal node = 140) (a) 74.8 µ s; 

(b) 972.4 µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 46  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 3, Number of temporal node = 280) (a) 37.4 µ s; 

(b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 47  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 3, Number of temporal node = 560) (a) 18.7 µ s; 

(b) 729.3 µ s; (c) 7349.1 µ s; (d) 7461.3 µ s; (e) 7554.8 µ s; (f) 7648.3 µ s 
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Figure 3. 48  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 3, Number of temporal node = 140) (a) 74.8 µ s; 

(b) 972.4 µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 49  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 3, Number of temporal node = 280) (a) 37.4 µ s; 

(b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 50  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 3, Number of temporal node = 560) (a) 18.7 µ s;  

(b) 729.3 µ s; (c) 7349.1 µ s; (d) 7461.3 µ s;(e) 7554.8 µ s; (f) 7648.3 µ s 
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Figure 3. 51  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 1 at Table 3, Number of temporal node = 140) (a) 74.8 µ s; (b)  

972.4 µ s; (c) 8527.2 µ s; (d) 8602 µ s; (e) 8676.8 µ s; (f) 8751.6 µ s 
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Figure 3. 52  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 2 at Table 3, Number of temporal node= 280) (a) 74.8 µ s; (b) 

972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 53  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 3 at Table 3, Number of temporal node = 560) (a) 18.7 µ s; (b) 

729.3 µ s; (c) 7349.1 µ s; (d) 7461.3 µ s; (e) 7554.8 µ s; (f) 7648.3 µ s 
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Figure 3. 54  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in Number of temporal node = 140. (Case 1 at Table 3) (a) 

x=0.03, y=0.01; (b) x=0.06, y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; (e) x=0.06, y=0; (f) 

x=0.09, y=0 
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Figure 3. 55  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in Number of temporal node = 280. (Case 2 at Table 3) (a) 

x=0.03, y=0.01; (b) x=0.06,y=0.01; (c) x=0.09,y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; 

(e) x=0.06, y=0; (f) x=0.09, y=0 
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Figure 3. 56  Time traces of stream-wise U-velocity and V-velocity for 2D vertical flat plate 

vortex- shedding problem in Number of temporal node = 560. (Case 3 at Table 3) (a) 

x=0.03, y=0.01; (b) x=0.06,y=0.01; (c) x=0.09,y=0.01; (c) x=0.09, y=0.01; (d) x=0.03, y=0; 

(e) x=0.06, y=0; (f) x=0.09, y=0 
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Condition/case Case 1 Case 2 Case 3 

Number of temporal node 140 280 560 

Reynolds No. 126 

CDave No. (PDSC) 1.14 1.13 1.14 

CD No. 

[Roshko, 1954] (Exp.) 
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Figure 3. 57  Time trace of Drag Coefficient distributions for 2D vertical flat plate vortex- 

shedding problem. (a) Number of temporal node = 140 (Case 1 at Table 3); (b) Number of 

temporal node = 280 (Case 2 at Table 3); (c) Number of temporal node = 560 (Case 3 at 

Table 3) 
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Figure 3. 58  Time trace of Pressure distributions for 2D vertical flat plate vortex-shedding 

problem. (a) Number of temporal node = 140 (Case 1 at Table 3); (b) Number of temporal 

node = 280 (Case 2 at Table 3); (c) Number of temporal node = 560 (Case 3 at Table 3) 
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Figure 3. 59  The stagnation point for different Number of temporal nodes at normalized 

time. (Table 3) 
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Figure 3. 60  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 4, Cell Number = 500 by 150 (H=3L)) (a) 37.4 

µ s; (b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 61  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 4, Cell Number = 500 by 250 (H=5L)) (a) 37.4 

µ s; (b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 62  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 4, Cell Number = 500 by 350 (H=7L)) (a) 37.4 

µ s; (b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 63  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 4, Cell Number = 500 by 150 (H=3L)) (a) 37.4 

µ s; (b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 64  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 4, Cell Number = 500 by 250 (H=5L)) (a) 37.4 

µ s; (b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 65  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 4, Cell Number = 500 by 350 (H=7L)) (a) 37.4 

µ s; (b) 972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 66  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 1 at Table 4, Cell Number = 500 by 150 (H=3L)) (a) 37.4 µ s; (b) 

972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 67  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 2 at Table 4, Cell Number = 500 by 250 (H=5L)) (a) 74.8 µ s; (b) 

972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 68  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 3 at Table 4, Cell Number = 500 by 350 (H=7L)) (a) 37.4 µ s; (b) 

972.4 µ s; (c) 8602 µ s; (d) 8714.2 µ s; (e) 8826.4 µ s; (f) 8938.6 µ s 
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Figure 3. 69  Time traces of stream-wise U-velocity and -Velocity for 2D vertical flat plate 

vortex- shedding problem in Cell Number = 500 by 150. (Case 1 at Table 4, H=3L) (a) 

x=0.03, y=0.01; (b) x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06,y=0; (f) 

x=0.09,y=0  
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Figure 3. 70  Time traces of stream-wise U-velocity and V-Velocity for 2D vertical flat plate 

vortex- shedding problem in Cell Number = 500 by 250. (Case 2 at Table 4, H=5L) (a) 

x=0.03, y=0.01; (b) x=0.06,y=0.01; (c) x=0.09,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) 

x=0.06,y=0; (f) x=0.09,y=0  
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Figure 3. 71  Time traces of stream-wise U-velocity and V-Velocity for 2D vertical flat plate 

vortex- shedding problem in Cell Number = 500 by 350. (Case 3 at Table 4, H=7L) (a) 

x=0.03, y=0.01; (b) x=0.06,y=0.01; (c) x=0.09,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) 

x=0.06,y=0; (f) x=0.09,y=0  
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Condition/case Case 1 Case 2 Case 3 

Cell No. 500 by 150 (H=3L) 500 by 250 (H=5L) 500 by 350 (H=7L) 

Reynolds No. 126 

CDave No. (PDSC) 0.93 1.13 1.2 

CD No. 

[Roshko, 1954] (Exp.) 
1.46 
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D

PDSC  (C )-Exp.  (C )
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Figure 3. 72  Time trace of Drag Coefficient distributions for 2D vertical flat plate vortex- 

shedding problem. (a) Cell Number = 500 by 150 (Case 1 at Table 4, H=3L); (b) Cell 

Number = 500 by 250 (Case 2 at Table 4, H=5L); (c) Cell Number = 500 by 350 (Case 3 at 

Table 4, H=7L) 
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Figure 3. 73  Time trace of Pressure distributions for 2D vertical flat plate vortex-shedding 

problem. (a) Cell Number = 500 by 150 (Case 1 at Table 4, H=3L); (b) Cell Number = 500 

by 250 (Case 2 at Table 4, H=5L); (c) Cell Number = 500 by 350 (Case 3 at Table 4, H=7L) 
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Figure 3. 74  The stagnation point for different domain sizes at normalized time. (Table 4) 
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Figure 3. 75  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 5, Reynolds number=73) (a) 63.5 µ s; (b) 1651.0 

µ s; (c) 9080.5 µ s; (d) 9207.5 µ s; (e) 9334.5 µ s; (f) 9461.5 µ s 
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Figure 3. 76  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 5, Reynolds number=126) (a) 18.7 µ s; (b) 

729.3 µ s; (c) 7349.1 µ s; (d) 7461.3 µ s; (e) 7554.8 µ s; (f) 7648.3 µ s 
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Figure 3. 77  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 5, Reynolds number=287) (a) 18.7 µ s; (b) 878.9 

µ s; (c) 4301.0 µ s; (d) 4357.1 µ s; (e) 4413.2 µ s ; (f) 4469.3 µ s 
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Figure 3. 78  Contours of U-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 4 at Table 5, Reynolds number=412) (a) 11.25 µ s; (b) 

855.0 µ s; (c) 2452.5 µ s; (d) 2520.0 µ s; (e) 2587.5 µ s; (f) 2655.0 µ s 
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Figure 3. 79  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 1 at Table 5, Reynolds number=73) (a) 63.5 µ s; (b) 1651.0 

µ s; (c) 9080.5 µ s; (d) 9207.5 µ s; (e) 9334.5 µ s; (f) 9461.5 µ s 
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Figure 3. 80  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 2 at Table 5, Reynolds number=126) (a) 18.7 µ s; (b) 

729.3 µ s; (c) 7349.1 µ s; (d) 7461.3 µ s ;(e) 7554.8 µ s; (f) 7648.3 µ s 
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Figure 3. 81  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 3 at Table 5, Reynolds number=287) (a)18.7 µ s; (b) 878.9 

µ s; (c) 4301.0 µ s; (d) 4357.1 µ s; (e) 4413.2 µ s; (f) 4469.3 µ s 
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Figure 3. 82  Contours of V-velocity at different instant times for the 2D vertical flat plate 

vortex-shedding problem. (Case 4 at Table 5, Reynolds number=412) (a) 11.25 µ s; (b) 

855.0 µ s; (c) 2452.5 µ s; (d) 2520.0 µ s; (e) 2587.5 µ s; (f) 2655.0 µ s 
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Figure 3. 83  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 1 at Table 5, Reynolds number=73) (a) 63.5 µ s; (b) 1651.0 µ s; (c) 

9080.5 µ s; (d) 9207.5 µ s; (e) 9334.5 µ s; (f) 9461.5 µ s 
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Figure 3. 84  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 2 at Table 5, Reynolds number=126) (a) 18.7 µ s; (b) 729.3 µ s; (c) 

7349.1 µ s; (d) 7461.3 µ s; (e) 7554.8 µ s; (f) 7648.3 µ s 
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Figure 3. 85  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 3 at Table 5, Reynolds number=287) (a) 18.7 µ s; (b) 878.9 µ s; (c) 

4301.0 µ s (d) 4357.1 µ s; (e) 4413.2 µ s; (f) 4469.3 µ s 
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Figure 3. 86  Streamline at different instant times for the 2D vertical flat plate vortex- 

shedding problem. (Case 4 at Table 5, Reynolds number=412) (a) 11.25 µ s; (b) 855.0 µ s; (c) 

2452.5 µ s; (d) 2520.0 µ s; (e) 2587.5 µ s; (f) 2655.0 µ s 
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Figure 3. 87  Time traces of stream-wise U-velocity for 2D vertical flat plate vortex- 

shedding problem in Reynolds number=73. (Case 1 at Table 5) (a) x=0.03, y=0.01; (b) 

x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06,y=0; (f) x=0.09,y=0 
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Figure 3. 88  Time traces of stream-wise U-velocity for 2D vertical flat plate vortex- 

shedding problem in Reynolds number=126. (Case 2 at Table 5) (a) x=0.03, y=0.01; (b) 

x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06,y=0; (f) x=0.09,y=0 

 



 

 141 

0 2000 4000 6000 8000 10000

Time (µs)

-150

-100

-50

0

50

100

150

200

250

300

350

400

U
-V

e
lo

c
it
y
 (

m
/s

)

 

(a) 

0 2000 4000 6000 8000 10000

Time (µs)

-50

0

50

100

150

200

250

300

350

400

U
-V

e
lo

c
it
y
 (

m
/s

)

 

(b) 

0 2000 4000 6000 8000 10000

Time (µs)

0

50

100

150

200

250

300

350

400

U
-V

e
lo

c
it
y
 (

m
/s

)

 

(c) 

0 2000 4000 6000 8000 10000

Time (µs)

-450
-400
-350
-300

-250
-200
-150
-100
-50

0
50

100
150
200
250
300
350
400
450

V
-V

e
lo

c
it
y
 (

m
/s

)

 

(d) 

0 2000 4000 6000 8000 10000

Time (µs)

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

V
-V

e
lo

c
it
y
 (

m
/s

)

 

(e) 

0 2000 4000 6000 8000 10000

Time (µs)

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

V
-V

e
lo

c
it
y
 (

m
/s

)

 

(f) 

 

Figure 3. 89  Time traces of stream-wise U-velocity for 2D vertical flat plate vortex- 

shedding problem in Reynolds number=287. (Case 3 at Table 5) (a) x=0.03, y=0.01; (b) 

x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06,y=0; (f) x=0.09,y=0 
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Figure 3. 90  Time traces of stream-wise U-velocity for 2D vertical flat plate vortex- 

shedding problem in Reynolds number=412. (Case 4 at Table 5) (a) x=0.03, y=0.01; (b) 

x=0.06,y=0.01; (c) x=0.09,y=0.01; (d) x=0.03, y=0; (e) x=0.06,y=0; (f) x=0.09,y=0 
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Condition/case Case 1 Case 2 Case 3 Case 4 

Reynolds No. 73 126 287 412 

 CDave No. (PDSC) 1.05 1.14 1.35 1.4 

CD No. 

[Roshko, 1954] (Exp.) 
1.43 1.46 1.63 1.9 

D D

D

PDSC  (C )-Exp.  (C )
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Figure 3. 91  Time trace of Drag Coefficient distributions for 2D vertical flat plate vortex- 

shedding problem. (a) Reynolds number=73 (Case 1 at Table 5); (b) Reynolds number=126 

(Case 2 at Table 5); (c) Reynolds number=287 (Case 3 at Table 5); (d) Reynolds 

number=412 (Case 4 at Table 5) 
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Figure 3. 92  Time trace of Pressure distributions for 2D vertical flat plate vortex-shedding 

problem. (a) Reynolds number=73 (Case 1 at Table 5); (b) Reynolds number=126 (Case 2 at 

Table 5); (c) Reynolds number=287 (Case 3 at Table 5); (d) Reynolds number=412 (Case 4 

at Table 5) 
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Figure 3. 93  The Stagnation point from flow past a vertical plate at normalized time. (a) 

Reynolds number=73 (Case 1 at Table 5); (b) Reynolds number=126 (Case 2 at Table 5); (c) 

Reynolds number=287 (Case 3 at Table 5); (d) Reynolds number=412 (Case 4 at Table 5) 
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Figure 3. 94  Strouhal number variation as a function of Reynolds number. (Table 5) 
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Figure 3. 95  Strouhal number variation as a function of Knudsen number. (Table 5) 
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Figure 3. 96  Dimensionless critical time at which the symmetrical twin vortices to become 

asymmetrical against Reynolds number. (Table 5) 


