國立交通大學

機械工程學系

碩士論文

The characterization and permeability analysis of gas diffusion layer in the fuel cell

研 究 生:蕭梓源 指導教授:楊文美 博士

中華民國九十七年七月

燃料電池之氣體擴散層特性及透水分析 The characterization and permeability analysis of gas diffusion layer in the fuel cell

研究生:蕭梓源

Student : Zih-Yuan- Siao

指導教授:楊文美

Advisor: Wen-Mei Yang

國立交通大學 系 程 A Thesis

Submitted to Institute of Mechanical Engineering **College of Engineering** National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of **Master of Science** in

Mechanical Engineering

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

摘要

本研究針對燃料電池中氣體擴散層之多孔性(porous)結構,探 討鐵氟龍在各種修飾條件下之微結構變化,並進一步了解其透水特 性。實驗以商業用之 SGL-10AA 為氣體擴散層,將不同濃度之鐵氟 龍(DuPont TE-3893)以熱處理程序改變其微孔尺寸及分佈,並藉由 Darcy's Law 關連其水滲透度與各孔徑微結構之關係,以期提供燃料 電池之最佳氣體擴散層條件。

氣體擴散層方面可藉由鍍覆鐵氟龍增加其疏水性,以期達到良好 的排水效果,進而提升燃料電池效能。本實驗中所使用的 SGL-10AA 薄膜經由汞壓法得知其平均孔徑約為 61 µm,且孔隙度會隨著鍍覆量 增加而明顯下降,有鑑於目前大多數的研究只將修飾後的薄膜直接進 行電池效能分析,根據其結果判斷最佳的鍍覆濃度,本研究將從材料 的性質去探討影響疏水效能的重要參數。

"munu

誌謝

本論文可以順利完成,在此感謝指導教授楊文美 博士的一年來 的督促與教誨,以及工業技術研究院的陳玉芬 博士和周彦伊 博士不 遺餘力的細心指導,和王啟川 博士、簡國祥 博士、楊愷祥 博士平 日給予的建議,謹誌於此,由衷表達感激與謝意。承蒙口試委員 崔 燕勇 教授、游明輝 教授及陳玉芬 博士於口試期間,給予論文指正 與寶貴的意見,使本論文更為嚴謹、完整,亦在此表示感謝。

感謝實驗室學長豪傑、家宏、聰哥與永銓,同學小尤、阿杰的大 力相助和無私的奉獻,還有榮豐、詒翔、國元、莊仔、阿哲、家偉、 小草、譯心、勝富、孟成和書琳這些同學,和學弟仁均、俊傑在生活 中帶來的歡樂與鼓勵,使得研究生活更為充實平順,並感謝在交通大 學求學時間所有指導過我的師長,使我在學識的領域上有所成長,在 此獻上最誠摯的謝意。

最後謹以本論文獻給我的父母和家人,感謝生活上的關懷與照 顧,並在精神上全力的支持,此恩此情銘感於心。

Π

摘要	I
誌謝	II
表目錄.	V
圖目錄.	
符號表.	1
第一章	緒論2
1-1	前言2
1-2	文獻回顧
1-3	研究目的5
第二章	實驗分析與原理7
第三章	實驗方法
3-1	材料與設備11
	3-1-1 材料11
	3-1-2 設備
3-2	實驗方法
	3-2-1 GDL疏水處理與實驗規劃13
	3-2-2 透水分析系統(一)13
	3-2-3 透水分析系統(二)14
第四章	結果與討論17
4-1	鐵氟龍鍍覆分析17
4-2	薄膜特性分析17
	4-2-1 表面結構
	4-2-2 接觸角量測
	4-2-3 汞壓法之孔徑分布圖
	4-2-4 孔徑與孔隙度分析19
4-3	GDL透水分析19

4-3-1 透水系統(一)	19
4-3-2 透水系統(二)	21
第五章 結論	23
參考文獻	24

表目錄

表1	不同GDL之型號、規格	.27
表2	參考文獻之薄膜規格和貢獻	.28
表3	水珠在鍍覆不同濃度鐵氟龍之GDL上的接觸角角度	.30
表4	不同鍍覆量下,薄膜每一g的孔洞總體積	.31
表5	在相同鍍覆條件下,不同熱處理溫度之差異	.32

圖目錄

圖1	燃料電池基本構造[1]	.33
圖2	Darcy's law流通多孔性薄膜之示意圖	.34
圖3	流體傳輸路徑圖[11]	.35
圖4	理論模型示意圖	.36
圖5	接觸角量測儀	.37
圖6	接觸角示意圖	.38
圖7	光學顯微鏡	.39
圖8	熱處理設備	.40
圖9	透水系統(一)	.41
圖10	透水系統(一)之測試段	.42
圖11	透水系統(二)	.43
圖12	擴散層經鍍覆之SEM(a)無鍍覆(b)有鍍覆鐵氟龍(無熱處理)	.44
圖13	薄膜經鍍覆後(a)增加之重量百分比(b)單位面積增加之重量	.45
圖14	薄膜經鍍覆且熱處理之SEM(a)Wt=0%(b)25%(c)53%(d)132%	646
圖15	透光性Wt=(a)0%(b)25%(c)53%(d)132%	.48
圖16	接觸角Wt=(a)0%(b)25%(c)53%(d)132%	.49
圖17	薄膜經鐵氟龍修飾後之小孔孔徑分布	.50
圖18	薄膜經鐵氟龍修飾後之大孔孔徑分布	.51
圖19	不同鍍覆量之孔隙度與平均孔徑	.52
圖20	在不同鍍覆量下,流體通過薄膜所需之P _{min} 和r _{max}	.53
圖21	不同水柱高度之m-t圖Wt=(a)0 %(b)25 %(c)53 %(d)132 %	.54
圖22	不同鍍覆量,其不同孔徑大小所提供的滲透度	.56
圖23	不同鍍覆量,k與r ² 之關係	.57
圖24	不同鍍覆量,各孔洞之K與其r ² 關係圖	.58
圖25	不同鍍覆量,K與r ⁴ 之關係圖	.59

圖26	不同鍍覆量,各孔徑之孔洞個數	60
圖27	不同熱處理製程之K與r ² 比較	61

符號表

A	透水面積,m ²
С	無因次參數
D	孔洞直徑,µm
Κ	渗透度,m ²
Κ	$\equiv kA/\mu L$, $m^4 s/kg$
L	薄膜厚度,m
n _{pore}	孔洞個數,個
Р	給定之壓力,Pa
Q	體積流率,m ³ /s
$Q_{\rm pore}$	單孔之體積流率,m ³ /s
r	孔洞半徑,µm
r _{avg.}	平均孔洞半徑,µm
γ_{water}	水之表面張力, N/m 1896
μ	流體黏滯係數,N×s/m ²
θ	接觸角之角度,°

第一章 緒論

1-1 前言

燃料電池 (Fuel Cell) 係氫能源之一重要應用,是具有潛力的無 污染發電工具,目前已經有許多國家已經在著手進行研究,預計可成 為二十一世紀的重要能源裝置。燃料電池是一種將化學自由能直接轉 化為電能而不需經由熱能轉換的裝置,只需利用氫氣和甲醇等燃料與 純氧或空氣分別在電池的兩極進行氧化-還原反應的模式,從中獲得 產生之直流電。燃料電池為高效率、潔淨、多元化能源使用,可應用 於車輛動力、分散式發電、3C 資訊產品電源等商業產品。其多元化 研發領域及應用產品,將提供部份產業轉型成為知識密集、永續環保 的綠色科技產業[1]。

如圖 1 所示燃料電池之核心設計包括陽極板 (Anode)、陰極板 (Cathode)、電解質 (Electrolyte) 和外部電路 (Electric circuit),其 工作原理是氫氣通過導氣板到達陽極,在陽極催化劑之作用下,一個 氫分子分解成兩個質子和兩個電子,在陰極板上,氧氣(或空氣)通 過導氣板到達陰極。同時,質子穿過電解質到達陰極,電子則經外電 路到達陰極,形成電流。在陰極催化劑作用下,氧原子與質子和電子 發生反應生成水。

目前燃料電池的限制主要來自氣體擴散層(Gas diffusion layer,簡 稱 GDL),除提供反應性氣體外,亦期待能具備反應膜組內之排水功 能,避免被所生成之水阻塞,影響電池的效能。氣體擴散層的種類繁 多,大部分使用碳紙但也有部分使用碳布,不同的厚度也會影響到電 池效能,甚至有些會為了增加氣體流通而鍍覆微孔層(Microporous Layer)。本實驗使用鐵氟龍(Polytetrafluoroethylene,簡稱 PTFE)修飾 GDL 薄膜,希望能夠提升其疏水能力,因為薄膜的孔洞結構已被改 變,故藉由透水系統去分析薄膜的滲透度等參數,探討在不同鍍覆濃

度下之薄膜對流場或疏水性質所造成的影響。透水系統分為兩套,其 一使用完全乾燥的薄膜,隨著注入之水柱高度提升而增加薄膜透水面 積,吾人探討不同孔徑的孔洞,其面積分布的比例和滲透度間的關連 性。其二先將流體完全地充滿孔洞空間,其工作流體為一穩態、單相、 不可壓縮的均勻流,再將兩者作個對照和比較。

1-2 文獻回顧

Bevers [2]針對碳紙所影響電池性能的三個重要特性去做研究, 其目的不在於找出最佳值,而是利用不同的鐵氟龍含量與熱處理溫度 去做分析,其影響電池的三種特性分別為:碳紙的疏水性、氣體的擴 散能力和碳紙的導電度,而 PTFE 的負載量是以碳紙增加的重量百 分比進行換算,負載的範圍從0%~200%,最大誤差控制在5%左 右,而熱處理的溫度控制在360℃~420℃,從其中發現到氣體壓力 隨著熱處理溫度增加而減小,尤其在高的 PTFE 負載情況下更加明 顯,主要是因為 PTFE 負載增加時,碳紙表面孔隙被覆蓋的情況也會 隨著增加,故氣體壓力就會隨之增加,以幫助氣體有效通過孔隙到達 內部,且因為 PTFE 負載增加時,碳紙表面覆蓋過多 PTFE,會形成絕 緣的效果,此時碳紙的導電度的影響性就增加了,但一經過高溫處理 時,PTFE 會溶解而滲入內部,此時碳紙具備良好的疏水性,使得氣 體較易進入內部反應,而碳紙的導電度在高熱處理溫度的情況下,其 表面的絕緣影響變小,幾乎可以被忽略。

Lufrano [3]使用固定碳量與10%~60%不同含量之PTFE混合然 後塗佈在碳紙上,並搭配不同負載的鉑(Pt),置備不同的電極,而主 要目的為找出最佳的氣體分布,獲得最佳的電池性能。在此研究中, 可以初步了解到碳與PTFE所形成的多孔性介質對於氣體的擴散有重 大的影響,他們採用了氫氣分別對空氣和氧作測試,並發現使用20% 之PTFE含量可以成功地改善電壓的損失,主要是因為適當的PTFE含

量可以適時的改善水管理,並讓質子交換膜達到一個適當的水合作 用,如果PTFE的量太低,雖然可以避免阻抗的增加,卻無法適時的 移除水分,但PTFE的含量太高,則整體阻抗就會大大的提高,也是 會造成電池性能的下降。

Wilde [4] 氣體擴散層需具備為低且為常數的電阻率,避免過大的 電阻造成電池效能下降,藉由增加為了固定的電池模組的壓縮力,發 現電阻率被實質地減少,但滲透度也因此被減少(包含反應物和質 傳)。

Lee [5]利用改變不同的壓縮高度,藉由電性分析獲得極化曲線, 証實它在燃料電池的操作是一個重要的最佳化過程,目的在於了解滲 透度如何隨著壓縮量改變。

Feser [6]壓縮氣體擴散層去量測在Instron機構中的負載力,藉著 在環形物打入壓縮空氣,計算它們在平面的滲透度,由測量通過擴散 層之流率和壓差,假設氣體為不可壓縮和使用Darcy's 定律,使用 最小平方法去吻合數據獲得滲透度。

Gray [7]先驗證Darcy's Law的一般式,再說明有些系統並不適用 於Darcy's Law,藉由其實驗數據修正原本的一般式,提供一個試用 範圍更廣的關係式。

Park [8]薄膜隨著Teflon的鍍覆濃度增加會影響電極中之液相水經由GDL排至流道,特別在高相對濕度的情況下。從I-V效能曲線發現到GDL的毛細力在水傳輸時並不是主要的驅動力,而是流體和水蒸汽的剪應力,這是因為GDL和micro-layer(ML)在比較上孔徑較大。當在GDL上使用ML時,燃料電池的I-V效能變得比較穩定也有效的增高,關於水管理的部份,ML扮演緩衝區的重要角色,防止電極過於乾燥或水氾濫,所以當完整的設計GDL,毛細力、剪應力和蒸汽等驅動水傳輸時,必須考慮ML和GDL的結構。

Kong [9]指出疏水擴散層的孔徑分布會由薄膜原本的孔洞和熱

處理所決定,其證實了擴散層的孔徑尺寸分布比起它整體孔隙度,對 於電池內部的質傳過程是更關鍵的參數,孔洞資料從汞壓入孔隙中得 到,在燃料電池的效能測試和交流電阻抗分析,指出效能的損失是由 於減少了擴散層的大孔體積,造成了質傳限制,而水氾濫的問題主要 在討論孔洞中的凝結現象。

Prasanna [10]研究氣體擴散層,即碳紙對燃料電池的影響,根據 GDL的厚度、尺寸分布、氣體滲透度、電阻和疏水性等性質來研究。 電池效能與GDL的物理性質有關,當反應物從氧氣改變成空氣,根據 獲得氧氣的情況考量電極的質傳現象。氣體滲透度和GDL的孔徑尺寸 對於電池效能是最重要的因素,當平均孔徑尺寸的範圍介於25~40 µm,GDL的厚度和氣體滲透度,在降低氧氣之獲得中扮演重要角色。 GDL在大孔徑尺寸相較於小孔徑,水氾濫的情形較為嚴重。GDL的 最佳鐵氟龍鍍覆濃度為20%,超過此含量,由於孔隙度減少因而GDL 的氣體滲透度也會減少。

Benziger [11]指出質子燃料電池通常使用經過鐵氟龍處理過的碳 布或碳紙,因為氣體擴散層為疏水性,故需要施加壓力使水能過通過 這些材料的孔洞。經過鐵氟龍處理的碳布和碳紙變得更疏水,沒有水 能夠通過薄膜,直到壓力到達5~10 kPa,水才能夠克服在最大孔洞 中與鐵氟龍接觸的表面張力。碳布的最大孔徑為250 µm,Toray公司 出產的碳紙則為40 µm,增加給定的靜壓能夠使水通過GDL更小的孔 洞,水流過的範圍佔GDL孔洞之體積不到1%。

1-3 研究目的

GDL 排水不良的問題已成為燃料電池商業化瓶頸之一,現今為 提升反應膜組之排水效率,大多將氣體擴散層(多孔性碳纖維薄膜) 鍍覆鐵氟龍(Teflon)進行疏水修飾,以期減少水氣凝結於碳膜微孔 中,有鑑於目前大多數的研究,只將 GDL 修飾之後,便置入電池模 組進行效能測試,並無具體說明影響效能的細部因素,如表1所示, 故本研究針對氣體擴散層對其孔隙度、平均孔徑、孔洞數目、孔洞分 佈和滲透度等參數,探討其對疏水效能的影響。

本實驗有兩套透水系統,在透水系統(一)的部份,除了藉由慢慢 增加的水柱高度量測能讓水通過薄膜的最小壓力,同時將水柱高度固 定,以期能將最大孔洞之流率固定,獲得滲透度之定值,另將水柱高 度不斷提升,讓水能夠通過次大的孔洞和更小的孔洞,根據計算得到 每個不同孔徑之孔洞所佔的孔數和各孔洞所提供之滲透度之值,因而 得到孔徑之分布,了解不同孔洞所佔之比例,並與汞壓法所得的結果 比較是否合理。而在透水系統(二)利用完全透水的薄膜,與系統(一) 的結果對照,並量測不同熱處理製程的薄膜,了解溫度對透水性能的 影響。

第二章 實驗分析與原理

如圖 2 所示,一般多孔性薄膜之透水特性可以Darcy's law來描述,當流體通過時,其體積流率Q (Units of volume per time, m³/s) 與薄膜兩側壓差 ΔP (Pressure drop, N/m²) 關係可表示如下,此數學 式只適用於層流,即圓管的雷諾數(Re number)小於 2100:

$$Q = \frac{kA}{\mu} \frac{\Delta P}{L} \tag{1}$$

其中 k 可以表示為:

$$k = Cd^2 \tag{2}$$

其中A為透水面積(The cross-sectional area, m²)、 μ 為流體黏滯係數 (Viscosity, Ns/m²)、k為滲透度(Permeability, m²)、d為孔徑大小 (The average or effective pore diameter, m)、C為無因次係數。 若將其他參數定義成 $K = \frac{kA}{\mu L}$,則式(1)可簡化成

$$Q = K\Delta P \tag{3}$$

氣體擴散層是多孔性薄膜,必須允許反應氣體在電極與電解液介 面傳輸,和提供一個路徑讓反應所產生的水從催化層,氣體和液體在 燃料電池的傳輸情形如圖 3 所示,氧氣或空氣通過流道,必須從 GDL 擴散至催化層,催化層有質子和電解液層反應,因而產生水,水必須 從催化層移動至 GDL,最後進入流道,部分的水會進入電解液層, 當液態水在 GDL 累積,氣體從流道傳輸到催化層會被阻塞,因減少 燃料電池層的輸出功率。

本實驗主要在測量需要給定多少壓力,才能將水推過不同鍍覆濃 度的氣體擴散層,水柱高度所造成的 ΔP,可將水壓入特定孔洞,孔 洞之半徑計算藉由楊格方程式:

$$\Delta P = \frac{2 \,\gamma_{water} \,\cos\theta}{r_{pore}} \tag{4}$$

其中γ_{water}為水的表面能, cos θ 為水與孔洞表面的接觸角。假設流過 薄膜的水為層流,孔洞為圓柱型,則流過每個孔洞的體積流率為:

$$Q_{water}^{pore} = \frac{\pi r_{pore}^4 \Delta P}{8\mu L}$$
(5)

已知水的總體積流率(Qtotal),可估算孔洞的個數:

$$n_{pore} = \frac{Q_{water}^{total}}{Q_{water}^{pore}} \tag{6}$$

當注入水柱高度增加並將高度固定,給定的壓力也隨之加大,此時除 了最大孔洞有流體通過,次大的孔洞也開始有流體通過,其理論模型 如圖4所示,計算方式如下:

ALL DAY

由式(3)可知:

$$Q_{1} = K_{1}\Delta P_{1}$$
其中 P_{1} 為最低水柱高,由 K 之定義可知:
 $K_{1} = \frac{k_{1}A_{1}}{\mu L}$
(7)
(8)

將透水面積定義為孔洞數與單孔面積之乘積:

$$A_1 = n_1 \pi r_1^2$$
 (9)

其中r1為最大孔徑,根據式(4)可表示如下:

$$r_1 = \frac{2\gamma_{water} \cos\theta}{\Delta P_1} \tag{10}$$

n1為最大孔洞數,由式(6)可表示如下:

$$n_1 = \frac{Q_1}{Q_{pore\,(\uparrow\uparrow\downarrow\downarrow)}}\tag{11}$$

在固定高度時, n₁、K₁為定值,且由式(5)可知每個大孔所通過的流量如下,代回式(11)便可知大孔的孔洞數目:

$$Q_{pore(\mathfrak{K}\mathfrak{FL})} = \frac{\pi \,\Delta P_1 \, r_1^4}{8\mu \mathrm{L}} \tag{12}$$

當水柱高度增加,此時流量增加為Q',此流量為大孔跟次大的孔(稱 之為小孔)所貢獻的,故將之表示為下式:

$$Q' = Q_{\pm \mp \downarrow} + Q_{\mu \pm \downarrow} \tag{13}$$

因為水柱高度增加,所以 $Q_{\pm 1} \neq Q_1$,已知大孔所貢獻的 K_1 為定值,故此時大孔的流量如下

$$Q_{\pm \pm L} = K_1 \Delta P_2 \tag{14}$$

同理 $Q_{\Lambda H} = K_2 \Delta P_2$, K_2 為小孔之滲透度, 代回式(13)可得:

$$Q' = K' \Delta P_2 = K_1 \Delta P_2 + K_2 \Delta P_2 \tag{15}$$

將式(15)之 ΔP_2 消去得: $K' = K_1 + K_2$ 由(16)便可求得小孔之K值: $K_2 = K' - K_1$ (16)
(17)

由式(14)、式(15)可得小孔的流量如下:

 $Q_{\text{tr}} = Q' - Q_{\text{tr}} = Q' - K_1 \Delta P_2 \tag{18}$

同大孔之孔數定義,式(11)可知:

$$n_{2} = \frac{Q_{\text{MFL}}}{Q_{\text{pore}(\text{MFL})}} = \frac{Q'K_{1}\Delta P_{2}}{Q_{\text{pore}(\text{MFL})}}$$
(19)

同理可知,隨著水柱高度的增加,便可以得知不同孔洞所提供的K 值:K₁、K₂...K_N,和其孔洞數量n₁、n₂...n_N,由式(9)可知道每個孔洞 所佔的透水面積A₁、A₂...A_N,便可求得各孔洞的滲透度值k₁、k₂...k_N, 吾人根據此實驗數據去做之後的分析與探討,期望能在這些參數中找 出影響疏水能力的關鍵原因。

第三章 實驗方法

3-1 材料與設備

3-1-1 材料

(a) GDL :

使用SGL公司出產的 10AA碳紙,厚度 0.381 mm,單位面積重量 約為 79 g/m², porosity約為 91%,另有已經修飾過的規格品,型號為 10BA、10BB、10BC,其性質列於表 1。

(b) 鐵氟龍:

Dupont 公司所生產的TE-3893,鐵氟龍分子在溶液中所佔的比例約60%,其外觀為乳白色液體,還有安定劑等成分佔鐵氟龍總重量的6%,安定劑的熔點為270°C,樹脂分子熔點為337°C,故將熱處理溫度設定為350°C以上,避免薄膜鍍覆上鐵氟龍以外成分。

3-1-2 設備

(A) 接觸角量測儀:

使用德商 Kruss 公司所設計的影像式接觸角量測儀(Drop Shape Analysis System DSA100 with EDM/ODM-Module),如圖 5 所示,使 用泡滴法(Sessile Drop Method),首先利用注射針頭產生定量體積, 設定為 10 µl,所使用的流體為去離子水,針頭可手動調升降至載物 平台上的薄膜處,使液珠與微結構相接觸,然後上升針頭,讓液珠與 針頭分離,觀察液珠在微結構上分佈大小,量測液滴與薄膜表面的靜 態接觸角,其為固體表面和液滴切線的夾角,如圖 6 所示,當角度 小於 90 度代表親水,反之則為疏水。角度的計算方式,使用其套裝 軟體中的 Tangent method,用圓錐形剖面方程式找出水滴完整的曲 線,其方程式的微分可以得到水滴三相接觸點的斜率及接觸角。

(B) 掃描電子顯微鏡(SEM):

掃描電子顯微鏡簡稱掃描電鏡,利用高能電子束在試片上掃描, 放大和顯示成像,最高可放大至幾萬倍,成像顯示為黑白,主要對試 片表面進行分析,試片需要有導電性且不含水分,也可以將凹凸不平 的金屬或非金屬之斷口顯示得很清楚,使其變得很有立體感。掃描電 鏡是研究固體試片表面形貌與結構之有效工具,吾人主要使用電子顯 微鏡,掃描薄膜經鐵氟龍修飾之後,其表面隨著濃度有何明顯變化。 電子顯微鏡的型號為 JEOL-7000F,在此實驗中,將試片裁切成適當 大小,利用碳膠將其黏貼在鋁製圓形 stage 上,使試片與 stage 之間 能充分導電,再將整個 stage 置入掃瞄式電子顯微鏡的真空室內,以 觀察其表面結構與孔隙分布。

(C) 光學顯微鏡:

AND DE LE COLORIZE

OLYMPUS公司出產之研究用正立顯微鏡,如圖7所示,型號為 BX51,其目鏡為10倍一共2個,物鏡有4種倍率可選用,分別為5、10、 20、50倍,吾人物鏡只使用5倍,利用上光源打在薄膜表面,觀察其 分布狀況與鍍覆後的影響,並利用下光源觀察其透光情形。

(D) 熱處理設備

如圖8所示:

a. 壓力表:查看管內壓力。

- b. 石英管:透明且耐高溫,薄膜置於管內中央。
- c. 高溫爐: 熱源, 加溫處。
- d. 質量控制面板:控制進口氣體流量。
- e. 閥門: 氣體控制閥。
- f. 溫度面板:可知管內溫度,並可設定加熱溫度。
- g. 恆溫水槽:冷卻密封石英管所用的O-ring。

h. 真空幫浦:除氣。

3-2 實驗方法

3-2-1 GDL疏水處理與實驗規劃

為更符合一般燃料電池開發規格,本研究以商用 GDL 薄膜 (SGL-10AA)作為探討對象,並採用市售 DuPont TE-3893 鐵氟龍分 散液進行薄膜疏水處理,其調配過程如下:

a. 將薄膜置入真空烘箱乾燥,乾燥後測量原始重量。

- b. 將 Teflon 溶液加入去離子水稀釋,藉此調配濃度。
- c. 將薄膜浸泡在溶液中,浸泡時間約30分鐘。
- d. 將其放入真空烘箱,開始抽真空至底壓,再加熱至120°C持溫4~6 小時,目的將水分乾燥,再紀錄重量變化。

將塗佈後的薄膜,經由高溫爐加熱處理,其過程如下:

- a. 將薄膜放置於石英板載具,再平行放入石英管內,將位置調整至
 加熱區。
- b. 開始抽真空至底壓,為確保管內是乾淨的。
- c. 溫度設定:以3°C/min兩階段加熱至 120℃與 350℃下各持溫 30 min進行熱處理。
- d. 將氮氣流量設定為 200 SCCM,持續通入管中,讓壓力上升至1 大氣壓後,再將閥門打開通大氣。
- e. 加熱結束後開始爐冷,冷卻後將薄膜取出,紀錄重量變化。

在此實驗中所使用的基底碳紙,其碳纖維呈現不規則的網狀分 布,在參考文獻[12]中有提到,並做過不同碳纖維測試,使用此碳纖 維分布的碳紙,在經過疏水處理後,可具有較好的孔隙分布。在此實 驗中,實驗的規劃如下:使用 GDL 基底做疏水處理,觀察其孔隙大小 與分布、氣體滲透率、接觸角以及疏水特性。

3-2-2 透水分析系統(一)

實驗系統如圖9所示:

a. 水槽:供給水。

- b. 蠕動式幫浦:將工作流體打入流道,可調整轉速以控制體積流率, 根據管子的粗細調整流量的最大值,型號為 EYELA-MP1000。
- c. 壓克力管件。
- d. 測試段:主要材質為透明壓克力管,薄膜上下端皆為一體成型的 壓克力管與壓克力平板,內徑皆為14mm,上管管長為80cm,等 於水柱可加的最大高度,下管管長為1cm,流體可順著管壁滴到 電子天平,如圖10所示。
- e. 燒杯:收集通過薄膜的水。
- f. 電子天平:連接至電腦,記錄每 5 秒的重量,可得重量對時間的 變化,並換算成流率。

ALL IN

- g. 三腳架:固定測試段。
- h. 電腦:紀錄重量變化之數據。

實驗方法如下:將所鍍覆的薄膜,置於真空烘箱以120度乾燥4 小時,乾燥完畢後固定於測試段中,pump流量設定0.2g/min,隨著 水柱高度增加慢慢向薄膜施加壓力,直到有水通過薄膜時,將當時水 柱高度視為最低水柱,藉由控制 pump 流量使高度固定,藉此固定通 過最大孔洞的流率、滲透度等性質,隨後將高度從最低水柱高提升, 每次增加1~5公分水柱並且固定高度,獲得最大孔洞和次小孔洞的總 流率,經由計算得到次小孔洞的滲透度、孔數等性質。

3-2-3 透水分析系統(二)

圖 11 顯示 GDL 透水實驗裝置,主要可分為透水系統、壓力量 測與流量分析等三大部份:。

a. 針筒式注射幫浦: 可精準的控制體積流率, 型號為 KDS-100。

b. 壓力計:測量入口端壓力值。

c. 差壓計:測量入口端與進口端之壓力差。

- d. SDBS:供應差壓計電壓,以電壓值對應壓力值,1伏特對應差壓 計最小壓力範圍,5伏特對應最大壓力。
- e. 電子秤: 測量通過薄膜之實際流量。
- f. Holder:將薄膜固定於流道中,以測量薄膜對流場壓力之影響。
- g. 控制閥:用來趕走管路內氣泡。
- h. 燒杯:收集通過薄膜的水。
- i. 訊號擷取器(NI DAQPad-6015): 讀取壓力值, 並將數據輸入電腦。
- j. 電腦:紀錄壓力與流量的數據。量測方法如下:
- 1. 將薄膜浸泡在酒精中,使用超音波儀器去除氣泡。
- 2. 將 holder 充满水後,將薄膜放入其中,避免薄膜接觸空氣過久。
- 3. 將兩者置入系統,設定好 pump 之流量再啟動。
- 紀錄第4~6分鐘與7~10分鐘,兩段時間出、入口端的平均壓差 與平均流量。

驗証流量與壓力是否成正比且線性關係,再將值代入Darcy's Law,計算薄膜在完全潤濕的情況下,其平均滲透度,重複量測相同 濃度的薄膜,以獲得實驗之誤差範圍。

3-2-4 汞壓法

測定方法是將汞(Hg)以高壓注入經過乾燥脫氣處理之試體中,量 測壓入試體中的汞體積與灌入壓力,再經楊格方程式換算可以獲得待 測試體的孔隙直徑大小、孔隙分布情況、孔隙率、孔隙比表面積等資 料,將本實驗所使用的SGL-10AA碳紙,送測至台大粉粒體實驗室, 水銀測孔儀為美國Micromeritics出產之Autopore 9520。汞壓法應用公 式為:

$$D = -4\gamma \cos\theta/P \tag{19}$$

其中:

D: 孔洞直徑(pore diameter)

γ: 表面張力(surface tension)

θ: 接觸角(contact angle)

P: 給定壓力(applied pressure)

假設 $\gamma \mathcal{B} \theta$ 為定值,當給定 P,即可算出對應的 D,目前設定值 為 γ =485 dynes/cm; θ =130°。

第四章 結果與討論

4-1 鐵氟龍鍍覆分析

圖 12(a)為未經過任何處理的 10AA 薄膜,使用 SEM 放大 50 倍, 可觀察出碳紙本身的分布錯綜複雜,浸泡在鐵氟龍溶液且乾燥後,所 有的孔洞都被鐵氟龍所覆蓋,如圖 12(b)所示。鑑於一般 GDL 多侷 限在 25~40%鐵氟龍濃度操作,本研究將定量分析鐵氟龍濃度,探 討各種鐵氟龍鍍覆濃度對 GDL 微結構變化與透水性能之關係。圖 13 (a)顯示 GDL 於各鐵氟龍濃度鍍覆後所增加之重量百分比,其計算公 式如下:

$$Wt\% = \frac{W_t - W_o}{W_o} \times 100\%$$
(19)

其中W_t與W_o分別代表熱處理後與原始之GDL薄膜重量。如圖 13 (a)所 示,GDL重量隨鐵氟龍濃度升高而增大,當含浸鐵氟龍濃度在 30 % 時,其GDL重量可增加 0.5 倍;甚至是 60 %時,鐵氟龍鍍覆量高達 GDL重量1倍以上,圖13(b)則為不同鍍覆濃度時,單位面積所鍍覆上 的鐵氟龍重量。

4-2 薄膜特性分析

4-2-1 表面結構

薄膜經鍍覆後且經過熱處理時,當增加之Wt%=25%時,如圖 14(b),與無鍍覆的薄膜(圖 14(a))比較明顯有白色物附著在碳壁上, 隨著Wt%之增加,白色物所佔的比例和分布情形更加的明顯,如圖 14(c)、(d),圖14之放大倍率皆為50倍。圖 15(a)、(b)、(c)、(d)是 使用光學顯微鏡,在放大倍率 50倍之下,使用下光源觀察不同鍍覆 濃度之下各薄膜的透光性,可以發現到隨著濃度增加,其透光性從 圖 15(a)至圖 15(d)慢慢降低,是因為孔隙度減低的緣故。

4-2-2 接觸角量測

表3顯示各鐵氟龍量下之GDL表面水接觸角值,利用接觸角量 測觀察GDL經鐵氟龍修飾過後之疏水性能評估。比較鐵氟龍鍍覆前 後之接觸角度從130°提高至139°,如圖16(a)和圖16(b),代表疏 水程度提高,但是隨著鍍覆量增加(25%~132%),接觸角僅些微 上升(139°~142°),如圖16(b)至圖16(d),整體變化不大,此係 因GDL薄膜經熱處理後,鐵氟龍會滲入薄膜內部,因此將進一步分 析其GDL內部孔徑大小與孔隙度等微結構變化。

4-2-3 汞壓法之孔徑分布圖

根據台大粉粒體實驗室的送測結果,得知孔洞的總體積在尚未鍍 覆(0%)時為 3.8469 ml/g, 孔洞體積隨著鍍覆量增加而減少, 其值如 表 4 所示,當鍍覆量(Wt%)達到 132%時,總體積只剩 1.4748 ml/g, 此結果也與光學顯微鏡所拍攝的透光性照片符合。吾人將小孔洞與大 孔洞與大孔洞的分布個別討論,其中圖 17 為小孔的孔徑分布圖,縱 軸之體積比為每個孔洞所佔的體積除以在不同鍍覆量之下薄膜的總 體積,可知比起有鍍覆鐵氟龍的薄膜,無鍍覆(Wt%=0%)的薄膜的小 孔所佔的體積比最高,隨著鍍覆量的上升會有越來越多的小孔被堵 塞,而小孔只佔孔洞總體積的5%以下。而在大孔部分,如圖 18 所 示,未鍍覆的(0%)大孔洞可分為兩個鋒值,先觀察最大的鋒值,Wt=0 %的最大鋒值落於 1.29×10⁻⁹ m², 佔總體積的 14 %, 當鍍覆量(Wt %) 提高到 25 %時,鋒值落在 2.03×10⁻⁹ m²,佔總體積的 12 %,可發現到 主要孔洞慢慢往大孔徑偏移,當鍍覆量(Wt %)提高至53%時,鋒值 還是在 2.03×10⁻⁹ m²,但佔總體積的比例已提高到 18 %,最後鍍覆 Wt=132%時,鋒值已經偏移到3.58×10⁻⁸m²,由於此時小孔洞大幅度 减少,相對的鋒值佔所有體積的19%,為4種試片之首,所以經過 鐵氟龍鍍覆的薄膜,會隨著鍍覆量增加,其平均孔洞也相對增加。

4-2-4 孔徑與孔隙度分析

由圖 19 可知,GDL 之孔隙度隨著 PTFE 含量增加而降低,當鍍 覆量從 0%上升至 132%時,薄膜孔隙度從 91%降至 78%;但 GDL 之平均孔徑卻由 61 µm 上升至 76 µm,推測某些小孔徑之孔洞被鐵氟 龍所阻塞所致,因此當鐵氟龍鍍覆量越高時,被阻塞的小孔洞也相對 增加,造成 GDL 薄膜孔隙度雖下降,但整體平均孔徑反而增加。由 於 GDL 孔隙度下降主要係由整體的孔洞降低所致,可預期燃料電池 性能會因氣相燃料供給效率不佳而下降。未來,如何在 GDL 薄膜疏 水處理時,仍保持薄膜小孔洞比例來維持燃料通量,將是提高或維持 燃料電池性能之一重要技術。

4-3 GDL透水分析

4-3-1 透水系統(一)

圖20為不同鍍覆濃度的薄膜,流體能通過薄膜的最低水柱高換 算成所給定的壓力,另使用式(11)推算其最大孔徑,由圖可知,雖然 鍍覆鐵氟龍之後接觸角增加,證明其疏水性提高,原本預估水柱高度 可能因此隨著鍍覆量上升,但結果卻不然,最低水柱高度之Wt%由 大至小排列為:0%、25%、53%、132%,所以高度是跟孔洞的最 大孔徑有關。

圖 21(a)為未鍍覆的10AA,在不同高度時的重量(m)與時間(t) 圖,斜率為體積流率,當水柱高度為27.7公分時,開始有水通過薄膜, 將此高度定為最低水柱高度,由高度換算得最小壓力,當水柱維持固 定高度,其時間對質量的變化為線性,代表水通過薄膜的流率是固定 的,當高度與流率皆為固定,由Darcy's Law可得之滲透度為定值, 可由式(10)推算當時壓力所對應的孔徑之數量,當高度慢慢提升,由 於開始有水從更小的孔洞通過,因為透水面積的增加,使得整體的滲 透度提高,將此歸類於小孔的貢獻,區分不同的孔徑所提供的滲透 度,再做更深入的分析。同理可知,圖21(b)、(c)、(d)分別為Wt=25%、 53%及132%的m-t圖,最低水柱高度並不單純因為鍍覆濃度的增加而 增加,而是因為修飾之後改變了孔洞的結構,影響到各濃度的疏水效 果。

由式(3)可以得知K與透水面積呈正比關係,圖22為每個孔洞所 提供的K,對應其透水面積nπr²,因為π為常數,故對nr²作圖,斜率代 表k,可知在相同的透水面積之下,k值大小由小至大為:Wt=0%、 25%、132%、53%,當修師低濃度的鐵氟龍時,疏水的效果確實變 好,但是鍍覆至Wt=132%,k值不增反減,似乎修飾的濃度有一個最 佳範圍,以下將n與r的參數分別對滲透度作討論:

(a) 將各個孔洞之孔徑平方 (r^2) 所對應的滲透度(k)作圖,如圖 23 所 示,發現雖然薄膜經過鐵氟龍修飾後,會改變其孔徑大小,但其實都 要符合 $k = \frac{1}{8}r^2$,所以r不會影響k的值,也就是薄膜的疏水能力,此 係數 1/8 與在圓管層流的假設條件有關,因為 $Q = \frac{\pi r^4 \Delta P}{8\mu L} = \frac{kA}{\mu L} \Delta P$,故k與 r^2 的無因次參數為 1/8。另將K對 r^2 作圖,如圖 24 所示,其斜率代 表透水面積,可知 0%主要的透水面積集中在較小的孔徑,隨著鍍覆 濃度的增加,主要的透水面積會往較大的孔洞擴散,此實驗結果與汞 壓法的孔徑分布相互對應,即當濃度提高時其孔洞分佈會集中在大孔 洞。

(b) 由於 $K = \frac{n\pi r^4}{8\mu L}$,所以將K對 r^4 做圖,如圖25所示,其斜率代表n值的大小,可以發現K值只受到孔數n的影響,K值大小與n呈正比關係,而孔數的變化是因為鍍覆濃度的影響,故當在相同孔徑的情況之下, 孔洞數就會影響疏水能力K的好壞,其n值由小到大分別為:Wt=0%、25%、132%、53%,與圖22的結果相符合。

(c) 圖26為不同鍍覆量的薄膜,其孔徑所對應的孔徑個數,由於透水

實驗所能測量的孔徑範圍有限,故討論2×10⁻⁵~6×10⁻⁵m的孔徑,無 鍍覆的薄膜的峰值在2×10⁻⁵m左右,孔洞個數比鍍覆量25%的還低, 由汞壓法得知鍍覆之後主要孔徑的峰值會漸漸往較大孔徑移動,故 Wt=0%的薄膜的鋒值應比2×10⁻⁵m還小,只是因實驗操作時水柱高度 無法繼續增加,故解析度不足,當鍍覆量提高到53%時,整體的孔 洞數有下降的趨勢,而Wt=132%則孔洞數下降越明顯,與汞壓法分 析之孔隙度下降趨勢類似。

4-3-2 透水系統(二)

此系統主要是量測薄膜所有孔洞完全透水時的情形,其鍍覆濃度 列於表5,當未修飾SGL-10AA薄膜,含浸在6種不同濃度的鐵氟龍溶 液中,經過加熱至350度持溫30分的熱處理過程時,其鍍覆量列於表 中,之後以相同的含浸過程,改變其熱處理條件,可發現到薄膜的鍍 覆量會隨著熱處理溫度提高而下降,而相同的熱處理溫度但加熱時間 延長,也會使鍍覆量下降,在此實驗中吾人採取製程差異最多的試片 去進行透水實驗,在加熱350度持溫30分的製程中,選用鍍覆量(Wt%) 為58.8%、79.4%、112.8%、203.5%,另外在加熱450度持溫4小時 的製程中,選用鍍覆量(Wt%)為4.63%、19.2%、37.4%、48.4%、 67.8%,吾人根據實驗系統量得K值,每一個實驗點代表不同鍍覆量 的薄膜, 經由多次實驗的平均值, 且對汞壓法所量測的平均孔徑平方 值(rave²)做圖,如圖27所示,因為在加熱450度持溫4小時的製程中, 鍍覆量明顯低於加熱350度持溫30分之製程,故其平均孔徑之平方值 的order集中在 10^{-10} m²,而之前也提到,鍍覆量越多會使小孔洞被覆 蓋,造成平均孔徑上升,而圖27之斜率值,斜率越大代表疏水能力越 好,在此得到一個重要結論,雖然氣體擴散層藉由鍍覆鐵氟龍來增加 其疏水能力,但是過量的鐵氟龍反而會因為可透水的面積減少,造成 疏水能力下降,且小孔過少其實不利於燃料輸送,故修飾濃度有其最 佳範圍。

在透水系統(一)中,使用未鍍覆(Wt=0%)的SGL-10AA薄膜,當 水柱高度在50公分時,為所給定的最大壓力,此時透過的孔洞面積為 最大值,所得之K值為7.49×10⁻¹⁰(m⁴s/kg),而在透水系統(二)時,同 樣使用未鍍覆(Wt=0%)的SGL-10AA薄膜,量測到在所有孔洞的均為 透水時,其K值為9.73×10⁻⁹(m⁴s/kg),大於只有部分孔洞的情況,由 於實際應用在燃料電池時,未必所有的孔洞均有流體通過,故在此作 一個參考。

第五章 結論

本文藉由透水系統去分析鐵氟龍之鍍覆量對薄膜疏水效果影響,綜合上一章結果無人可得以下結論:

- 未鍍覆的 SGL-10AA 薄膜,本身的接觸角角度就有 130 度,經過 鍍覆之後角度有提升至 139 度,表示疏水性有增加,但隨著鍍覆 量增加角度變無明顯變化。
- 2. GDL 之孔隙度會隨著 PTFE 含量增加而降低,當鍍覆量(Wt%)從 0%上升至132%時,薄膜孔隙度從91%降至78%,但平均孔徑 卻由61µm上升至76µm,推測小孔徑之孔洞被鐵氟龍所阻塞所 致,因此當鐵氟龍鍍覆濃度越高時,被阻塞的小孔洞也相對增加, 造成 GDL 薄膜孔隙度雖下降,但整體平均孔徑反而增加。
- 最低水柱的高度不與鍍覆量正比,而是決定於修飾後的薄膜之最 大孔徑。
- 4. 滲透度(k)之值與孔徑(r)的平方值呈現一個線性之關係,也就是 $k = \frac{1}{8}r^2$ 。
- 影響 K 值也就是疏水能力的參數只有孔洞數(n),與其成正比關係 而不與鍍覆量成正比。
- 6. 薄膜含浸在相同鐵氟龍溶液,但不同的熱處理製程會影響其鍍覆 量,鍍覆量會隨著加熱溫度和加熱時間增加而減少,此處發現加 熱 450 度持溫 4 小時的製程,透水效果比加熱 350 度持溫 30 分鐘 更佳,表示鍍覆量對於疏水性有其最佳濃度。
- 相同未鍍覆的薄膜,在兩套透水系統有不同的 K 值,由於完全透水的薄膜透水面積較大,故其值大於部分透水是合理的。

參考文獻

- 蘇艾、翁芳柏,"氫能源與燃料電池",元智大學燃料電池中心, 2007。
- D. Bevers, R. Rogers, M. V. Bradke, "Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells," Journal of Power Sources, Vol. 63, pp.193-201, 1996.
- 3. F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, L. Giorgi,
 " Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs," Journal of Applied Electrochemistry, Vol. 29, pp. 445-448, 1999.
- 4. P. M. Wilde, M. Mandle, M. Murata, N. Berg, "Structural and physical properties of GDL and GDL/BPP combinations and their influence on PEMFC performance", Fuel Cells 3 180–184, 2004.
- W. K. Lee, C. H. Ho, J. W. Zee, M. Murthy, "The effects of compression and gas diffusion layers on the performance of a PEM fuel cell ", J. Power Sources 84, 45–51, 1999.
- 6. J. P. Feser, A. K. Prasad, S. G. Advani, "Experimental characterization of in-plane permeability of gas diffusion layers", Fuel Cell Research Laboratory, Department of Mechanical

Engineering, University of Delaware, Newark, DE 19716-3140, 2006.

- W. G. Gray, C. T. Miller, "Examination of Darcy's Law for Flow in Porous Media with Variable Porosity ", Environ. Sci. Technol, 38, 5895-5901, 2004.
- G. G. Park, Y. J. Sohn, T. H. Yang, Y. G. Yoon, W. Y. Lee, C. S. Kim [,] " Effect of PTFE contents in the gas diffusion media on the performance of PEMFC, Fuel Cell Research Center, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon, 305-343, Republic of Korea 2003.
- 9. C. S. Kong, D. Y. Kim, H. K. Lee, Y. G. Shul, T. H. Lee, "Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells", Department of Chemical Engineering, Yonsei University, 134 Shinchon Dong, Sudaemoon Ku, 120-749, Seoul South Korea, 2002.
- M. Prasanna, H. Y. Ha, E. A. Cho, S. A. Hong, I. H. Oh, "Influence of cathode gas diffusion media on the performance of the PEMFCs", Fuel cell Research Center, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
- J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, "Water flow in the gas diffusion layer of PEM fuel cells", Department of Chemical Engineering, Engineering Quadrangle A323, Princeton

University, Princeton, NJ 08544-5263, USA, 2005.

- J. Pharaoh, "On the permeability of gas diffusion media used in PEM fuel cells", J. Power Sources 144, 77–82, 2005.
- 13. J. M. Song, S. Y. Cha, W. M. Lee, "Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method", Journal of Power Sources, Vol. 94, pp. 78-84, 2001.
- 14. 蔡坤憲," 氣體擴散層與微孔層對於燃料電池之影響與分析", 中央大學機械工程研究所碩士論文,(2003)。

材料性質	GDL10BA	GDL10BB	GDL10BC
厚度(mm)	0.40	0.42	0.42
單位面積重量(g/m ²)	85 E S	125	135
孔隙度(%)	88 1890	84	82
空氣滲透度(cm ³ /cm ² s)	85	3	1.45
電阻值(mΩcm ²)	<12	<15	<16

表1 不同GDL之型號、規格

作者	GDL 種類	修飾 方式	鍍覆濃 度 Wt%	熱處 理 溫度	孔徑尺寸 或薄膜厚度	重要結論 /研究方向
Bevers [2]	碳紙型號 Sigri PE704	PTFE	0~200 %	360 ~ 420°C	none	探討碳紙 疏水性、導 電性氣體 擴散性
Lufrano [3]	碳紙	PTFE	10 ~ 60 %	none	none	20Wt %為 最佳鍍覆 濃度
Wilde [4]	SGL GDL10、 20、30、31	PTFE / MPL	規格品 型號 AA-no PTFE BA-5% PTFE BB、BC- MPL、 PTFE 混 合	350 °C	最大孔洞(直徑) 10AA-90~104 µm 10BA-66~114.7 µm 10BB-28~34.2 µm 30AA-82.3~145 µm	討薄變 的下滲大論 膜壓條其度孔變的,透孔變化了在 缩件 氟、%
Woo-kum [5]	碳紙廠牌 TORAY、 ELAT、 CARBEL- Series 100	規格品	規格品	none	TORAY厚度 0.203×10 ⁻³ m ELAT厚度 0.508×10 ⁻³ m CARBEL厚度 0.279×10 ⁻³ m	使用不同 壓縮力進 行 I-V 效 能測試
Feser [6]	碳紙廠牌 TORAY、 ELAT、 CARBEL- Series 100	規格品	規格品	none	Avcarb 厚度 335µm SGL 厚度 318µm TGP 厚度 192 µm	用縮料測下透 熱變 度 能 體 代 慶 度

表2 參考文獻之薄膜規格和貢獻

Park [8]	碳紙型號 TGP-H-060	PTFE	5 ~ 45 %	350 °C	none	量測各薄膜孔隙度和 I-V 效能測試
Kong [9]	碳紙型號 Nafion 115	PTFE	5 ~140 %	350 °C	孔洞直徑 大孔:5 ~20 μm 次大孔: 0.06~5 μm 小孔:0.03 ~0.06 μm	量測薄膜修飾後的孔 徑分布和孔隙度,與 I-V 效能測試
Prasanna [10]	碳紙型號 Nafion 115	PTFE	10~ 40 %	1896 none	主要孔洞 直徑 25~40 μm	薄膜修飾 20 wt % 時,電池有最佳效能
Benziger [11]	碳紙型號 TGPH-120 與碳布	PTFE	0 ~ 60 %	none	最大孔洞 直徑 碳紙約40 μm 碳布約 250μm	探討不同薄膜之最大 孔洞,其孔徑、孔洞 數目和滲透度

表 2(續)

表3 水珠在鍍覆不同濃度鐵氟龍之GDL上的接觸角角度

	ANILLIAN.	
No.	Wt%	*Contact Angles
1	5 0% SN	130.0 / 129.3
2	25%	139.1 / 139.0
3	53%396	141.3 / 141.2
4	132%	142.8 / 142.9
	AND	

*雨個值代表水珠兩邊的接觸角角度

No.	Wt%	孔洞總體積(ml/g)
1	5 0% s N	3.8469
2	25%	3.0851
3	53%	2.6173
4	132%	1.4748
	AUTO DE LA COMPANY	

表4 不同鍍覆量下,薄膜每一g的孔洞總體積

製程	350 度持温	450 度持温	450 度持溫	450 度
試片	30 分	30 分	持溫2小時	持溫4小時
試片1	Wt =9.8 %	none	none	Wt =4.63 %
試片 2	Wt =23.2%	Wt =29.4 %	Wt =23.9 %	Wt =19.2 %
試片 3	Wt =58.8%	Wt =47.7 %	Wt =40.3 %	Wt =37.4 %
試片 4	Wt =79.4%	Wt =68.6 %	Wt =57.8 %	Wt =48.4 %
試片 5	Wt =112.8%	Wt =94.2 %	Wt =71.1 %	Wt =67.8 %
試片 6	Wt =203.5%	none	none	none

表5 在相同鍍覆條件下,不同熱處理溫度之差異

圖1 燃料電池基本構造[1]

圖 2 Darcy's law 流通多孔性薄膜之示意圖

圖 3 流體傳輸路徑圖[11]

時間 t (s)

圖 4 理論模型示意圖

圖 5 接觸角量測儀

圖 7 光學顯微鏡

圖 8 熱處理設備

- a 水槽 e 燒杯
- b 蠕動幫浦 f 電子天平
- c 壓克力管 g 三腳架
- d 測試段 h 電腦

圖9 透水系統(一)

圖 10 透水系統(一)之測試段

圖 11 透水系統(二)

(b)

圖 12 擴散層經鍍覆之 SEM(a)無鍍覆(b)有鍍覆鐵氟龍(無熱處理)

(b)

圖 13 薄膜經鍍覆後(a)增加之重量百分比(b)單位面積增加之重量

圖 14 薄膜經鍍覆且熱處理之 SEM(a)Wt=0%(b)25%(c)53 %(d)132%

(c) (d) 圖 15 透光性 Wt=(a)0 %(b)25 %(c)53 % (d)132 %

圖 16 接觸角 Wt=(a)0 % (b)25 % (c)53 % (d)132 %

圖 17 薄膜經鐵氟龍修飾後之小孔孔徑分布

圖 18 薄膜經鐵氟龍修飾後之大孔孔徑分布

圖 19 不同鍍覆量之孔隙度與平均孔徑

圖 20 在不同鍍覆量下,流體通過薄膜所需之Pmin和rmax

(b)

圖 21 不同水柱高度之 m-t 圖 Wt=(a)0 %(b)25 %(c)53 %(d)132 %

圖 22 不同鍍覆量,其不同孔徑大小所提供的滲透度

圖 24 不同鍍覆量,各孔洞之K與其r²關係圖

圖 25 不同鍍覆量,K與r⁴之關係圖

圖 26 不同鍍覆量,各孔徑之孔洞個數

圖 27 不同熱處理製程之K與r²比較