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ABSTRACT 
A numerical method for direct simulations of two-fluid flows is established in this study. 

The motion of the interface is captured by the solution of a transport equation for the volume 

fraction. Some numerical schemes, such as high resolution and compressive schemes are 

discussed in this study. The high resolution schemes preserve the shape of the interface but 

can not reduce the numerical diffusion. The compressive schemes are able to reach less 

numerical diffusion but let the interface deformed. Most composite schemes switch the 

compressive scheme and high resolution scheme with a switching function about the slope of 

the interface in order to overcome the above problem. The aim of this study is to develop a 

composite of the modified MUSCL and modified bounded downwind scheme with a 

switching function. This scheme presents the high accurate results in test cases and can be 

used on the quadrilateral and triangular mesh. 
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國立交通大學機械工程學系 

 

摘要 

在本研究中將建立ㄧ種直接模擬兩相流的數值方法。在此方法中，藉由求解流體體

積分率的傳輸方程式，來抓取兩流體間的介面運動。在本研究中將討論許多數值的離散

法，像是高解析離散法和壓縮式離散法。高解析離散法可以維持兩流體間界面的外形，

卻沒有辦法減少在介面上的數值擴散。而壓縮式離散法可以達到較少的數值擴散，卻會

造成介面形狀的變形。為了處裡上述的問題，大部分混合離散法都是採用一個與介面斜

率相關的轉換函數，在高解析離散法和壓縮式離散法之間做切換。本研究主要的目的是

在於發展一種在 modified MUSCL 和 modified bounded downwind scheme 之間轉換的

混合離散法。此方法在本文中所測試的案例中都有相當高的準確性，而且本方法可以在

三角形和四邊形的網格系統中使用。 
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Chapter1 Introduction 

1.1 Background 
The flow involving two immiscible fluids has been of interest to many investigators 

during the last decades. How to predict the position and the movement of the interfaces in the 

two-fluid flow accurately is very important in many scientific and technical applications. The 

objective of this study is the development of a numerical method which can cope with the 

above problem. In many engineering problems and industrial processes, such as marine 

engineering, biochemical engineering, tube/channel flows, and casting, welding, molding, 

injection or extrusion processes, the simulation of two-phase flow with discrete interface is a 

rather popular issue. This simulation has also played an important part in IC package process 

and the production of LED screen. In marine engineering, some numerical results of free 

surface flow with wave breaking are applied to the motion of sea water. Muzaferija et al. have 

presented the flow around ship hulls or submerged hydrofoils [1]. In biochemical engineering, 

this technique is used to simulate the transportation of biochemical fluids in the capillary 

channels, such as the blood in veins. On the other areas, mold-filling process with heat 

transfer is an important application in casting. K.A. Percleous et al. investigate the collapse of 

a liquid column in a sealed cavity and simulate cooling process of a step-like model which is a 

common test one [2]. In the tube/channel flows area, the numerical results of two-phase flow 

are widely employed. In [3], Yang et al. present the flow boiling of refrigerant R134B in a 

horizontal coiled tube. They predict the temperature profile and the phenomenon of the flow 

boiling in the straight and bending parts of the coiled tube. In [4], the simulation of two-phase 

flow can also be used in the fuel cell. Yun Wang et al. [4] have developed a two-phase model 

for the flow in mini-channels of a proton exchange membrane (PEM) fuel cell. The results of 

their investigations can be applicable to many common two-phase flow behaviors across the 

micro- or mini- channels. Although the application of the two-phase flow is so extensive, the 

representative problems of the flow with two immiscible fluids can be classified into three 
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categories [5]. The first one is dispersed flow that the two fluids in the flow field are 

considered as suspensions without a defined interface. The second is that the two fluids are 

separated by a sharp interface without breaking. The third is the transitional flow that the 

interface of two-phase flow may or may not be broken. In this study, the numerical method 

mainly deals with the last two problems. 

1.2 Related studies 
Several numerical methods of two-fluid flow with a moving interface have been posed. 

The methods which are used to predict the phenomenon of two-phase flow can be divided into 

two main categories: Lagrangian and Eulerian schemes (Fig. 1.1) [6]. 

1.2.1 Lagranian schemes 
The first method can keep free surface sharp between the two fluids and present the 

exact position of the free surface with re-meshing as the calculation proceeds. The mesh of 

this scheme is deformed and changed all the time. The main procedure of this method is that 

the position of the free surface at next time step is calculated by using the velocity field which 

is known. When the new free surface boundary is defined, we can reconstruct grids and 

update new properties for the new flow field [7]. The position of the interface can be 

predicted precisely, because the boundary mesh matches the free surface. Although the 

accurate prediction of the free surface can be carried out by the Lagrangian scheme, this 

method can not be employed to the quite complex flow field. Many deformations and 

stretches which result from the breaking, overturning, or gravity wave may cause numerical 

errors as well as reducing the precision. In [8], there is a Langranian scheme which is 

presented by Peric et al. This scheme can be employed in some simple and no large interface 

deforming cases, but its drawback is that the scheme cannot be used while the interface is 

unfolded. 

1.2.2 Eulerian schemes 
The second method can reduce errors which result from the deforming grids by using 

fixed grids that are generated before calculating the movement of the interface. The main 
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disadvantage of this method is the fact that it is prone to result in numerical diffusion. The 

diffusion will make the interface to spread over several mesh cells and the interface between 

the two immiscible fluids is going to be no longer sharp. In reality, the interface remains sharp 

due to the surface tension and the action of gravity, which separates immiscible fluids of 

different densities [2]. The interface of the two-phase flow must be tracked by employing 

some special treatments because its motion can not match the mesh any more as the 

calculation proceeds. A lot of techniques have been developed to cope with the problems of 

the multi-fluid flow systems in the past decade. These techniques can be classified to three 

main categories: 1. tracking the interface by using a set of mass-less particles; 2. using several 

mass-less maker particles to point out the only one kind of fluids and interface; 3. capturing 

the interface by a indicator function, such as a level set function or a volume fraction function. 

There are several Eulerian schemes will be introduced in the following part. 

(A) Front tracking method   

This front tracking method [9] (Fig. 1.2) is applied to construct the interface between the 

liquid and gas by a simple trajectory technique. A lot of mass-less particles are uniformly 

distributed over the interface in the first instance, but the Navier-Stokes equations are solved 

in a fixed and Eulerian grid system. The numbers of particles on the interface may be 

increased or reduced as the calculation proceeds. The new positions of these particles can be 

obtained by integrating the Eulerian fluid velocity field near the particles for each time step. 

This method has been used to deal with the motion of rising bubble, the breaking of water 

waves, and the collapse of an unsupported water column. This method is quite accurate but 

rather complex. Its first drawback is that the re-meshing of the Lagranian mesh is needed. 

Another difficult is that transforming the mesh data of the Lagranian system into the Eulerian 

is quite complicated. In the three-dimensional problems, the front tracking method has 

another problem because the particles on the interface are not a string one any more. This 

problem will cause the calculational time and the computer storage to increase significantly. 
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(B) Level set method 

A level set method for moving interfaces was proposed in [10]. The interface is identified 

as the zero level set of a smooth distance function from the front of the interface. This method 

not only eliminates the problems of the numerical diffusion which will smear the sharp front, 

but also avoids adding or reducing points to the moving grid. This method presents the 

interface by solving a scalar convection equation of the level set function. This method is easy 

to code due to the use of Eulerian grid and can result in more accurate results when the flow 

motion of the interface coincides with one of the coordinate axis. This method can also be 

easily generalized to three dimensions. However, the main drawback of this method is that 

level set methods loses its accuracy because the mass is not conserved when the interface is 

significantly deformed. Sussman et al. used it to simulate the flows of bubbles and droplets 

[10], and Li presented the results of Rayleigh-Taylor instability [11]. 

(C) Marker and cell method 

Marker and cell method (MAC) (Fig 1.3) was proposed by Harlow and Welch in [12]. 

Several mass-less marker particles are distributed over a space which is filled with one 

particular fluid with a free surface, and these marker particles are used to calculate the motion 

of the flow field including the free surface. This method is quite accurate and can be used 

accurately to deal with many complex problems, such as an interface subjected to shearing 

and vorticity, and wave breaking in two-dimensional system, but it may become expensive of 

operating in three-dimensional one. More marker particles will be added when treating 

problems with interface stretching, shrinking, breaking, or merging in three dimensions. The 

above process results in increase of computational time and computer storage. There have 

been many studies about this method [13, 14]. 

(D) Volume-of-fluid method 

In volume-of-fluid method, the fluids of two-fluid flow are represented by one scalar 

indicator function called volume fraction. The value of the volume fraction is bounded 
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between zero and unity. The value of unity denotes one of the fluids. The volume of zero 

denotes the other fluid. The volume fraction value between zero and unity indicate the 

interface. This method is quite popular and easy to code in the finite-volume method. The 

scalar indicator function is convected through the computational domain by solving a scalar 

convective equation like other transport equations. The scalar indicator function can not 

maintain a step function on the interface because most convective schemes result in numerical 

diffusion and dispersion. There are three categories of this volume-of-fluid method as follows. 

Line techniques 

This method has been implemented in two-dimensional problems, but the reconstruction 

of the interface in three-dimensional flows is difficult. The methods are used for interface 

reconstruction can be classified into three categories as follows. 

The first method is SLIC method (Simple Line Interface Calculation) which was 

proposed by Noh and Woodward in 1976 [15]. The interface is approximated by using lines 

parallel to one of the coordinate axes. The volume fractions of the left and right cells of the 

prime cell are used to reconstruct the interface in the prime cell approximately when the 

sweeping direction coincides with the x-axis. On the other hand, the volume fractions in the 

cells above and under the prime cell are used in the y-axial sweeping. The second method is 

the one with improvement on the SLIC method by Chorin [16]. All direct neighbors of the 

prime cell will be used for interface reconstruction in the prime cell. The third method (PLIC 

or Youngs’ VOF) which is posed by Youngs [17] is more accurate than the SLIC method. In 

this method, the interface is approximated by using oblique lines. Unlike the SLIC method, all 

neighboring cells are used to approximate the slope of the interface in Youngs’ VOF. The 

above methods are illustrated in figure 1.4. 

Donor-acceptor techniques 

In this method, the value of the volume fraction transported through a cell face between 

two cells can be approximated by the volume fraction value of the downwind cell (Figure 1.5). 
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This method will cause the volume fraction values unbounded, i.e. the values of the volume 

fraction may become greater than one or less than zero. In order to ensure the boundedness, 

the method which improves the level of volume fraction value on the face by using the value 

of the donor cell is proposed by Ramshaw and Trapp [18] , but it will cause the incorrect 

steeping on the interface due to change any finite gradient into a step. As mention above, the 

volume fraction on the face correlates closely with the flow and interface direction. Another 

method was proposed to cope with the above problem in [19]. Hirt and Nichols calculate the 

volume fraction value on the face by including some information on the slope of the interface 

into fluxing algorithm. 

High-order differencing schemes 

In this method, the convective scalar transport equation is discretised by using a high 

order scheme or a blending scheme to predict the interface of two-fluid system. The main 

errors of this method are numerical diffusion which smears the front of the fluids and 

numerical dispersion which causes non-physical oscillation. The first-order upwind scheme 

has the numerical diffusion. This diffusion becomes significantly strong when the flow 

direction is normal to the interface direction. In order to reduce the numerical diffusion, the 

linear upwind scheme (LUDS) [20] and the quadratic upstream interpolation for convective 

kinematics (QUICK) scheme [21] were proposed. The former is second-order accurate and 

interpolated by the two upwind values. The latter is third-order accurate and interpolated by 

the two upwind and one downwind values. These high order schemes can reduce numerical 

diffusion, but they may cause numerical dispersion, such as oscillations, in the strong gradient 

regions. 

In order to cope with the dispersion problem, the flux-blending and flux-limiter 

technique have been proposed. The former can be classified into two classes. The first class is 

based on adding an anti-diffusion flux to a first order upwind scheme [22] and used to resolve 

sharp gradient without over-/under-shoots. The second method is based on introducing some 
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smoothing diffusive fluxes into an unbounded high-order scheme, and it can prevent 

oscillations. The flux-blending technique will become expansive due to their multi-step nature 

and balancing the two fluxes. In [22], the flux corrected transport (FCT) method has posed. 

FCT schemes are non-diffusive in nature, but create unphysical flotsam and jetsam. 

The flux-limiter technique can remove non-physical oscillations and is based on the 

numerical flux on the interface of a cell which can be adjusted by using the flux-limiter 

function that enforce the boundedness. High resolution schemes (HRs) [23] are the schemes 

which obey the above criterion. The methods, such as Normalized Variable (NV) and 

Normalized Variable Diagram (NVD) [24], can be used to employ the flux-limiter technique. 

The flux limiter function is presented by Van Leer [25]. Sweby developed the Total Variation 

Diminishing (TVD) [26] approach for high resolution schemes. In the past decades, many 

high resolution schemes have been proposed, such as SMART of Gaskell and Lau [27], 

GAMMA of Jasak [28], SUPERBEE of Roe [29], STOIC of Darwish [30], MUSCL and Van 

Leer of Van Leer [31]. 

Numerical diffusion can be classified into two main components, namely cross-stream 

and stream-wise. These two numerical diffusions can be associated with the angle between the 

flow and interface direction. The blending strategy was proposed in order to improve the 

accuracy and less numerical diffusion including cross-stream and stream-wise. The key issue 

in the composite scheme is not just when to switch, but how to switch [32]. Hence, the best 

approach must have a continuous switching function whereby the values of compressive and 

high resolution schemes are blended together with a blending factor. This method has been 

used in utilized in the HRIC of Muzaferija [33], STACS of Darwish [34], CICSAM of Ubbink 

[35] and the composite of MUSCL and SUPERBEE [36]. 

1.3 Outline of this thesis 
In this study, a high resolution scheme with switching function in the volume-of-fluid 

method used to solve the two-fluid flow is employed. This composite scheme can enhance the 
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accuracy of numerical results, preserve the sharpness on the interface and prevent the 

smearing.  

In Chapter 2, the governing equations used to simulate the two-fluid flow, such as the 

continuity, momentum and volume-of-fluid equations will be introduced. The surface tension 

term in the momentum equation and the boundary conditions used in our simulation will be 

addressed. 

In Chapter 3, governing equations will be discretized by using the finite volume method. 

The coupling between the velocity and pressure is treated by the PISO algorithm. The solution 

procedure of our numerical method will be introduced. 

In Chapter 4, the method used to calculate the face value of the volume fraction will be 

introduced, and several schemes will be formulated. The former switching function will be 

introduced and a new composite scheme will be developed. 

In Chapter 5, four cases will be tested. The first two cases, such as uniform density flow 

and shear flow will be used to evaluate the accuracy and availability of our numerical method 

by comparing with the result in the previous papers. The last two cases will be simulated by 

the new composite scheme. The results of them will show the superiority and accuracy of this 

method against the other composite schemes.  

In Chapter 6, the main conclusions and discussion of this thesis are given. 
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Chapter2 Mathematical Model 

2.1 Introduction 
In our calculation, the different fluids can be defined as a single and continuous fluid, 

and the fluid properties have a jump at the interface. The volume fraction is denoted as a step 

function on the interface. This volume fraction will be used to affect the properties of the fluid 

and separate the two immiscible fluids by a well defined interface. The main subject of this 

chapter is the description of the mathematical model which is used to solve the two-fluid 

system. In this study, there are several basic assumptions in our mathematical model. The 

model simulates the unsteady, incompressible, viscous, two-dimensional, and two-fluid 

systems, and the body force term includes both gravity and surface tension force. The surface 

tension term is a rather important effect on the interface in the two-fluid flow. The surface 

tension is modeled by the continuum surface force (CSF) model proposed by Brackbill et al. 

[37]. 

2.2 General transport equation 
The conservation laws for mass, momentum, and energy are used to describe the 

physical behavior of the fluid flow. The general form of the conservation equation for a flow 

property φ in the control volume (C.V.) system shown in figure 2.1, is 

C D S
V S S V S

d F dS F dS Q d Q dS
t
ϕ ∀

∂
∀+ ⋅ = ⋅ + ∀+ ⋅

∂ ∫ ∫ ∫ ∫ ∫
r r r

� � �  (2.1) 

where t is the time, VQ  the internal source, SQ  the source at the boundary, ϕρVFC

r
=  the 

flux over the boundary due to convection, V
r

 the fluid velocity, DF  the flux over the 

boundary due to diffusion, ∀  the control volume and S the control surface. We can use the 

Gauss’s theorem to rewrite equation (2.1): 

C D S
V V V V V

d F d F d Q d Q d
t
ϕ ∀

∂
∀+ ∇⋅ ∀ = ∇⋅ ∀+ ∀+ ∇⋅ ∀

∂ ∫ ∫ ∫ ∫ ∫  (2.2) 

The above equation can be rewritten to the general conservative differential form when 

the control volume is contracted to a single point: 
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SVDC QQFF
t

⋅∇++⋅∇=⋅∇+
∂
∂ϕ  (2.3) 

2.3 Mass and momentum conservation equation 
The conservation equations for mass and momentum can be obtained by substituting φ=ρ 

by neglecting the diffusion term and the source terms, and φ=V
r

 with the assumption of a 

laminar Newtonian working fluid under unsteady and incompressible conditions with body 

force and surface tension force. The mass and momentum conservation equations can be 

written as following:  

0=⋅∇+
∂
∂ V

t
r

ρρ  (2.4) 

( ) ( ) σρμρρ fgVpVV
t
V

++∇⋅∇+−∇=⋅∇+
∂
∂ rrr

r

 (2.5) 

where ρ  is the fluid density, V
r

 the velocity, P  the pressure, μ  the viscosity coefficient, 

g the gravitational acceleration and σf  the surface tension. 

The density and viscosity of the effective fluid in the equation (2.4) and (2.5) can be 

calculated by the volume fraction, as 

)1(21 αραρρ −+=  (2.6) 

)1(21 αμαμμ −+=  (2.7) 

where the subscripts 1 and 2 denote the two fluids, α  is the volume fraction. The density 

and viscosity of the different fluids are considered as variables through the full domain but 

constants in each kind of fluids. As mentioned above, all properties are piecewise continuous 

due to the volume fraction. 

2.4 VOF equation 
In the following, we will define different fluids by using the volume fraction in the 

volume-of-fluid (VOF) method on the Eulerian grid system (see figure 2.2). The value of 

volume fraction can be defined as 

VolumeContralofVolumeTotal
fluidofVolume

　　　　

　　　　 1
=α  (2.8) 

Therefore, the fluids through the entire computational domain can be divided into three 
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categories by the volume fraction as 

⎪
⎩

⎪
⎨

⎧

<<
=

regionaltransitiontheinsidespothefor
fluidtheinsidespothefor

fluidtheinsidespothefor

　　　　　　　

　　　　　　０　

　　　　　　　

int10
2 int

1 int1

α
α  (2.9) 

The two-fluid system is propagated as the Lagrangian invariant and thus has a zero 

material derivative [19]: 

0=∇⋅+
∂
∂

= ααα V
tDt

D r
 (2.10)

The above equations (2.4) to (2.10) can describe the fluid flow of the two-fluid system. 

However, the form of the volume fraction, shown as (2.10), is not a conservative one and is 

not suitable for numerical solution. Because of the reason, it must to be reformulated [33]. 

The mass conservation equation (2.4) is a conservation form. It can be rewritten as 

0

1 1 (ln )

V V
t

D DV V
t Dt Dt

ρ ρ ρ

ρ ρ ρρ
ρ ρ

∂
+ ⋅∇ + ∇ ⋅ =

∂
− ∂ −⎛ ⎞ ⎛ ⎞⇒∇⋅ = + ⋅∇ = = −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

r r

r r  (2.11)

This non-conservation form of the mass conservation equation is much suitable for the 

two-fluid system with high density ratio, because the V
r

 on the interface is defined as 

continuous. Figure 2.3 shows the densities at the inlet and outlet are not the same in the closed 

domain. The velocity V
r

 of the fluid of entering and leaving the domain is the same, but the 

momentum V
r

ρ  of the fluid entering and leaving the domain is different. In addition, the 

fluids of this study are the assumption that they are incompressible. By substituting equation 

(2.6) into equation (2.11) the non-conservative equation becomes  

( )1 2 2

2 1

1=

=

        = 0

DV
Dt

D
Dt

α ρ ρ ρ
ρ
ρ ρ α
ρ

−
∇⋅ − +⎡ ⎤⎣ ⎦

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

r

        
(2.12)

The equation (2.10) can be rearranged into a conservation form with the incompressible 
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condition by recognizing that ααα ∇⋅+∇⋅=⋅∇ VVV
rrr

 as: 

0=⋅∇+
∂
∂ V

t
r

αα  (2.13)

In the present study, the continuity equation (2.12), the momentum equation (2.5) and the 

VOF equation (2.13) together with the equation (2.6) and (2.7) will be employed to model the 

two-fluid flow. 

2.5 Surface tension 
As mentioned above, the surface tension will be modeled by the continuum surface force 

(CSF) model [37]. Surface tension creates a pressure jump which supplies the mean interface 

curvature with its necessary work on the interface. The surface tension coefficient σ exists for 

any pair of fluids and its magnitude is determined by the nature of the fluids. The value of σ is 

always positive for immiscible fluids and negative for miscible fluids [38]. The pressure jump 

is a function of the mean interface curvature, and it can be shown as [39]: 

1 2

1 1
i oP P P

R R
σ σκ
⎛ ⎞

Δ = − = + =⎜ ⎟
⎝ ⎠

 (2.14)

where 1R  and 2R  are the principal radii of curvature of the surface, iP  is the pressure on 

the concave side of the curved surface, oP  the pressure on the convex side, σ  is the surface 

tension coefficient and κ  is the mean interface curvature. For κ >0 fluid 1 lies on the 

concave side of the interface and for κ <0 fluid 2 lies on the concave side (figure 2.4). The 

gradient of α which is zero everywhere except at transient region, gives the normal vector, 

which always point from fluid 2 toward fluid 1 (figure 2.4): 

α∇=nr  (2.15)

Thus, the mean interface curvature κ can be rewritten in terms of divergence of the unit 

normal vector as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

⋅−∇=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−∇=

α
ακ

n
n
r

r

 (2.16)

By substituting equation (2.16) into equation (2.14), the surface tension term in the 
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momentum equation can be expressed as 

α
α
ασασκσ ∇⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

⋅∇−=∇=Δ=∇= nPPf r  (2.17)

2.6 Boundary conditions 
Inlet: A velocity distribution is specified at the inlet. 

Outlet: The outlet boundary condition uses the fixed pressure boundary condition. The 

boundary values are obtained from convective boundary condition [40] 

0=∇⋅+
∂
∂ φφ

cV
t

v
 (2.18)

where φ  represent the transported property and cV
v

 is the convective velocity. 

Rigid boundary (walls): A rigid boundary is generally defined as a non-slip boundary 

condition (u=0, v=0). 
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Chapter3 Numerical Method 

3.1 Introduction 
In the chapter 2, the mathematical model of the two-fluid flow has been described in 

detail. It is a necessary to choose a suitable discretization method, such as the finite difference 

(FD), finite volume (FV) or the finite element (FE) methods. These methods approximate the 

differential equations by a system of algebraic equations. Finite volume method is the method 

which uses integral form of conservation equations. The calculated domain can be divided 

into many several control volumes. In our computation, the VOF equation and the momentum 

will be discretized by using the finite volume method. The coupling between pressure and 

velocity will be treated by the PISO algorithm [41].   

3.2 Discretization of the VOF equation 
The finite volume method for the VOF equation of equation (2.13) is first integrated over 

a control volume, and then can be transformed by the Gauss divergence theory as: 

0
V V

d Vd
t
α α∂

∀+ ∇⋅ ∀ =
∂∫ ∫

r
 (3.1) 

0
C S

d V dS
t
α α∂

∀+ ⋅ =
∂∫ ∫

rr
�  (3.2) 

The unsteady term can be discretized as: 

( )n o
D D

V

d
t t
α α α∂ Δ∀

∀ ≈ −
∂ Δ∫  (3.3) 

where Δ∀  is the volume of the cell, the superscripts n and o denote respectively the new and 

old time steps, D is the donor cell. 

The second term can be discretized as: 

*( ) ( ) f f
fS

V dS V Sα α⋅ ≈ ⋅∑∫
v vv v

�  (3.4) 

where 

( )* 1
2

n o
f f fα α α= +  (3.5) 

where the subscript f denotes the properties on the surface of a control volume. 
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In the above equation, the value of *
fα  is obtained by using the second-order Crank-Nicolson 

scheme. 

The volume fraction on the considering face can be determined by a function of neighbor cells 

and a flux limiter function ( )rγ , which will be introduced in next chapter, shown as: 

( )
2

A D
f D r α αα α γ −⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (3.6) 

Substituting the above equations into equation (3.1) yields 

∑ +=
nb

n
nbnb

n
PP SAA ααα  (3.7) 

t
AA

nb
nbP Δ

∀Δ
+=∑  (3.8) 

)0,max(
2
1

vnb FA &−=  (3.9) 

( ) ( )1 max( ,0)( )
2 2

o o o
V nb P A D V P

nb

r
S F F

tα

γ
α α φ φ α

⎡ ⎤ Δ∀
= − − − − +⎢ ⎥ Δ⎣ ⎦
∑ & &  (3.10)

where V f fF V S= ⋅
uuv uuv

&  is the volume flux, the subscript P  denotes the primary node and nb 

denotes the neighbor node. 

3.3 Discretization of the momentum equation 
The momentum equations can be expressed by 

( ) ( )V Q
t φ
ρφ ρ φ μ φ∂

+∇⋅ = ∇⋅ ∇ +
∂

r
 (3.11)

where Qφ  is the source term of momentum equation, and φ  represents the velocity 

components. Then, take a volume integral of the above equation and make use of Gauss 

theorem to yield: 

( ) ( )
V S S V

d V d S d S Q d
t φ
φρ ρ φ μ φ∂

∀+ ⋅ = ∇ ⋅ + ∀
∂∫ ∫ ∫ ∫

r uv uv
� �  (3.12)

3.3.1 Unsteady term 
The volume integral of the unsteady term can be discretized as  
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( )
o

n oP
P P

V

d
t t

ρρφ φ φΔ∀∂
∀ ≈ −

∂ Δ∫  (3.13)

3.3.2 Convection term 
The surface integral for the convection term can be approximated by 

( ) ( ) C
f f f f f

f f fS

V d S S F mρ φ ρ φ φ⋅ ≈ ∇ ⋅ = =∑ ∑ ∑∫
r uv v

&�  (3.14)

where fm&  is the mass flux through the considering face. 

The convective flux on the considering face can be estimated as a function of neighbor 

cells by a flux limiter function ( )rγ , which will be introduced in the next Chapter. 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

2
DA

Df r
φφ

γφφ  (3.15)

where the subscript D denotes the donor node and A the acceptor node. In our calculation, the 

Van Leer scheme will be employed in the momentum equations. 

The form of flux limiter function of Van Leer will be described in Chapter 4. The 

convetive fluxes at donor node and acceptor node can be calculated as: 

⎪⎩

⎪
⎨
⎧

<==

>==

0,

0,

fPAnbD

fnbAPD

mfor

mfor

&

&

　　　

　　　

φφφφ

φφφφ
 (3.16)

where the subsript P denotes the primary node and nb stands for the neighboring node (see 

Figure 3.1). 

3.3.3 Diffusion term 
The surface integral of the diffusion term is approximated by 

( ) ( )o D
f f f

f fS

d S S Fμ φ μ φ∇ ⋅ ≈ ∇ ⋅ =∑ ∑∫
uv v

�  (3.17)

Let,  

( )dSdS ff

rrrr
−+=  (3.18)

where d
r

 is a vector pointing in the direction from the primary volume center to the 
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neighboring volume center (Figure 3.1). The length d
r

 was considered to be the factor 

affecting the diffusion dominancy and numerical stability. Hence, the over-relaxed approach 

for d
r

 was introduced 

2

f
d

d f

S
d

S
δ

δ
=

⋅

r
r r

r r  (3.19)

The diffusion flux can then be expressed as: 

( ) ( )dS
S

S
F f

o
f

o
f

n
P

n
nb

fd

f
o
fD

f

rr
rr

r

−⋅∇+−
⋅

= φμφφ
δ

μ
2

 (3.20)

3.3.4 Source term 
The volume integral of the diffusion term is approximated by 

( )P
V

Q d qφ φ∀ ≈ Δ∀∫  (3.21)

The source terms in the momentum equation are pressure, gravitational acceleration and 

surface tension terms. In the following, each term will be introduced. 

Pressure term 

The surface integral of the pressure term is approximated as 

o o
f f

fS

Pd S P S P= = ∇ Δ∀∑∫
ruv

�  (3.22)

Gravitational acceleration term 

The gravitational acceleration term can be approximated as 

o

V

gd gρ ρ∀ = Δ∀∫
v v  (3.23)

Surface tension term 

The volume integral of the surface term can be obtained from the approximation  

( ) ∑∀Δ
=∇

f
ffP S αα

v1 , where fα  is the face value obtained by the interpolation from the 

two neighboring nodes. Thus, 
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( )

( )

1
P f fP

fV P

f
f f f

f ff

d S

S S

ασκ α σκ α σ α
α

ασ α
α

⎡ ⎤⎛ ⎞∇
∇ ∀ = ∇ Δ∀ = − ∇⋅ Δ∀⎢ ⎥⎜ ⎟⎜ ⎟∇ Δ∀⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤∇−
= ⋅ ⎢ ⎥
Δ∀ ∇⎢ ⎥⎣ ⎦

∑∫

∑ ∑

v

v v
 (3.24)

3.3.5 Arrangement of the difference transport equation 
The discretized form of the momentum equation is approximated by the following form. 

n n o
P P nb nb

nb
A A Q Pφφ φ= + −∇ Δ∀∑  (3.25)

where 

∑ Δ
∀Δ

+=
nb

PnbP t
AA ρ  

( )0,max

2

f
fd

f
o
f

nb m
S

S
A &rr

r

−+
⋅

=
δ

μ
 

( ) ( ) ( )

( )
2

o o
f A D f f f

f

o o o o
P P P

r
Q m S d

g
t

φ

γ
φ φ μ φ

ρ φ ρ σκ α

⎧ ⎫
= − − + ∇ −⎨ ⎬

⎩ ⎭
Δ∀

+ + Δ∀+ ∇ Δ∀
Δ

∑
rr

&

v
　　

 

(3.26)

3.4 Pressure-velocity coupling of the PISO algorithm 
The method of Pressure-Implicit with Splitting of Operators, which is proposed by Issa 

[41], is called PISO algorithm. In this study, the PISO algorithm will be used to deal with the 

unsteady problems. In the following, the procedure of PISO algorithm is addressed. 

Predictor step 

The predictor step is to solve the momentum equation using the prevailing pressure field. 

( )* * o
P P nb nb P

nb
A V A V S P= + −∇ Δ∀∑
r r

 (3.27) 

The above equation solves the velocity field but the mass conservation law has not been 

satisfied yet. Dividing the above equation by PA  yields 

*

*
nb nb

onb
P P

P P P P

A V
SV P

A A A
⎛ ⎞Δ∀

= + − ∇⎜ ⎟
⎝ ⎠

∑
r

r
 (3.28) 

Let  
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P

nb
nbnb

P
A

SVA
H

+
=
∑ *

*

r

 (3.29) 

Then, *
PV
r

 is written as 

** o
PP P

P P

V H P
A

⎛ ⎞Δ∀
= − ∇⎜ ⎟

⎝ ⎠

r
 (3.30) 

In the equation (3.29), the superscript “─” stands for the value interpolated from the primary 

cell P and the neighbor cell C with a weighting factor fw . 

First corrector step 

The corrector steps are taking care of the mass conservation law of the flow field by 

updating the corresponding pressure. The new velocities and the corresponding new pressure 

assumed to be obtained from the first corrector step are denoted with superscript ** and *. 

( )** * *
P P nb nb P

nb
A V A V S P= + −∇ Δ∀∑
r r

 (3.31) 

Dividing the above equation by PA  and using the definition of (3.29) 

*

*** * *
nb nb

nb
PP P P

P P P PP P

A V
SV P H P

A A A A
⎛ ⎞ ⎛ ⎞Δ∀ Δ∀

= + − ∇ = − ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
r

r
 (3.32) 

The first velocity correction equation ( PV ′
v

) is obtained by *** VVV −≡′ , oPPP −≡′ * , and 

shown as 

P
PP

P P
A

V ′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−=′

v
 (3.33) 

At the cell face, the velocity correction equation can be obtained in a similar manner. 

f

fp
f P

A
V ′∇⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∀Δ
−=′

r
 (3.34) 

Therefore, the volume flux correction equation is obtained as 



 20

ff
fP

fff SP
A

SV
rrr

& ⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−=⋅′=∀′  (3.35) 

Over-relaxed approach is employed to let ( )f fS d S d= + −
v vv v

for better numerical diffusion 

control. 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⋅′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
+⋅′∇

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−=∀′ dSP

A
P

S

S

A ff
fP

Pnbf
fPnb

f

fP
f

rr
rr

r

& δ
δ

2

 (3.36) 

where nb
fnb

f

S

S
d δ

δ

v
vv

v
v

⋅
=

2

 

Then, replacing the term PnbfP δ
r

⋅′∇  by Pnb PP ′−′  yields 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⋅′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
+′−′

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−=∀′ dSP

A
PP

S

S

A ff
fP

Pnb
fPnb

f

fP
f

r
rr

r

&
δ

2

 (3.37) 

The first volume flux correction equation can be presented as 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⋅′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
+′−′

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−∀=∀ dSP

A
PP

S

S

A ff
fP

Pnb
fPnb

f

fP
ff

r
rr

r

&&
δ

2

***  (3.38) 

The volume flux at the face ( *
f∀& ) of the above equation can be obtained by the following. 

The relationship between velocity and the pressure at the face can be written as the form of 

(3.30) similarly. 
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 and o
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Substituting equation (3.40) into equation (3.39) to obtain: 
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Then, the volume flux at the face ( *
f∀& ) can be obtained. 

The continuity equation is discretized as  

The pressure correction equation is obtained by substituting (3.38) into (3.46). 
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dPP
A

SV

SPP
A

SVSV

o
ff

fP
ff

f
o
ff

fP
fffff

⋅∇−∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−⋅≈

⋅∇−∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−⋅=⋅=∀

)(      

)(

**

****

rr

rrrrr
&

 (3.45) 

0*** =∀′+∀=∀ ∑∑∑
f

f
f

f
f

f
&&&  (3.46) 

21
*

PP
f

f
f

nb
P
nbP

P
P SSPAPA ++∀−′=′ ∑∑ &  (3.47) 

( )∑

∑

∑

−⋅′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
=

∀−=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
=

=

f
ff

fP
P

f
fP

fnb

f

fP

P
nb

f

P
nb

P
P

dSP
A

S

S

S

S

A
A

AA

vv

&

vv

v

2

*
1

2

δ
  



 22

Second corrector step 

To enhance the SIMPLE procedure PISO performs a second corrector step.  Similarly, 

the momentum equation is taken as 

( )∑ ∀Δ∇−+=
nb

PnbnbPP PSVAVA *******
rr

 (3.48) 

where the new velocities and the corresponding new pressure are denoted with superscript 

*** and **. 

Similarly, the second velocity corrector can be deduced as 
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The second corrector step is 
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Although more corrector steps are needed completed satisfy for the conservation law, 

two corrector steps are sufficient to have the accuracy of solution within temporal truncation 

error. 
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Solution procedure of PISO 

Step 1. read the velocities and pressure of the flow field from the old time level. 

Step 2. solve the momentum equation (3.27) to get *V  

Step 3. compute P′  by solving the first pressure correction equation (3.47) to update 

velocities and pressure to get **V  and *P . 

Step 4. compute P ′′  by solving the second pressure correction equation (3.51) to further 

update velocities and pressure to get ***V  and **P . 

Step 5. if the required time step is achieved, then stop the calculation and output the data 

otherwise proceed to the next time step and repeat all over the way from step 1 to step 4. 

3.5 Solution procedure 
The VOF equation and momentum equation have been discretized. In this section, the 

solution procedure of two-fluid flow system will be described.   

1. Initialize all variables at initial time 0t  

2. Solve the VOF equation for volume fraction α by using the old time volumetric fluxes. 

3. Update the coefficients of the momentum equations. Use the new α values to obtain an 

estimate for new viscosity and density. 

4. Solve the momentum equation and continue with PISO algorithm. 

5. If the final time step has not been reached, advance to the next time step and return to step 

2. 
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Chapter4 High Resolution Differencing Schemes 

4.1 Introduction 
As mentioned above, an effective scheme adopted to solve the two-phase flow must have 

some features, such as small diffusion, boundedness, and maintenance of sharp interface. The 

schemes which are introduced in the first chapter can not include above features at the same 

time. For example, the first-order upwind difference scheme is bounded but too diffusive. The 

problem which results from numerical diffusion is very important in the two-fluid system with 

the interface between two fluids. The strong numerical diffusion will smear the characteristic 

of the step function on the interface. In this chapter, the linear and non-linear scheme will be 

presented, and a composite scheme with switching function which can maintain the sharpness 

and shape of the interface will be proposed. 

4.2 Convective flux of volume fraction 
As mentioned above, the discretization of the VOF equation has been established. In the 

calculation process, the value on the considering face of a cell must be approximated. The 

approximation of the face value is necessary to ensure the accuracy and stable. The face value 

fα  can be estimation about a function of neighbor cells. Only two neighbor cells should be 

considered in the unstructured grid system. Figure 4.1 shows a control volume and its 

neighbor cells including the upwind and accepter. The subscript U, D and A denote upwind 

cell, donor cell and accepter cell. 

In general, the methods, such as the upwind difference scheme (4.1) and the central 

difference scheme (4.2), are adopted to approximate this value. 

f Dα α=  (4.1) 

1 ( )
2f A Dα α α= +  (4.2) 

where fα  is the value of volume fraction on the face, Dα  the value of volume fraction of 

the donor cell, and Aα  the value of volume fraction of the accepter cell. 
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These two schemes can be associated by the variable of γ  shown as:  

( )
2f D A D
γα α α α= + −  (4.3) 

The term which has γ  in the equation (4.3) is called the anti-diffusion correction to the 

upwind differencing. When =1γ , the equation (4.3) becomes central difference scheme. Then, 

this approximation will result in oscillations in the regions where the gradients are large. 

Because of the above, the variable γ  must be limited. The schemes with limitation will 

present high accuracy and resolution results which guarantee boundedness. The schemes with 

total variation diminishing (TVD) flux limiters were proposed in [23] in order to ensure the 

bounded solution. These schemes are implemented in the context of the normalized variables 

formulation (NVF) [24] for the development of normalized variables diagram (NVD) schemes 

originally. The limiter γ  is defined as a function of the gradient r  [26], shown as: 

D U

A D

r α α
α α

−
=

−
 (4.4) 

where Uα  is the value of volume fraction of the upwind cell. 

The value of α  can be normalized as [24]: 
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with the normalization, we can get following equations: 
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 (4.6) 

Introduce this normalized variable into equation (4.3), and it can be rewritten as following 

equation, and fα~  is just the function of Dα~ . 



 27

1( )( )           
2

  where 
1

D
f D

D

D

r

r

αα α γ

α
α

−
= +

=
−

%
% %

%

%

 (4.7) 

4.3 CBC and TVD constraints 
In order to ensure a bounded value, the high resolution schemes (HRs) [23] must satisfy 

the Convective Boundedness Criterion (CBC) or total variation diminishing (TVD) condition. 

The high resolution schemes will prevent the oscillation or wiggles and get more accurate 

results around shocks and discontinuities in the two-fluid flow simulation. The Convective 

Boundedness Criterion (CBC) which was proposed by Gaskell and Lau [27] can be shown in 

the NVD (Fig 4.2): 

0 1

1 0 1
f D D D

D f D

for or

for
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 (4.8) 

Sweby [26] has proposed another constraint which makes the scheme satisfy the TVD 

condition and it can be shown as: 

( )
0 ( , ( )) 2f

f

r
r

r
γ

γ≤ ≤  (4.9) 

The above constraints can be illustrated from Fig. 4.2 to Fig. 4.4. Fig. 4.2 and Fig 4.3 

present the comparison with TVD constraint and the CBC constraint in the NVD. TVD 

constraint in the TVD diagram is showed in Fig. 4.4, and the hatched region is known as the 

second-order regime. 

4.4 Linear and non-linear schemes 
In this section, several high order schemes will be introduced. Generally speaking, these 

schemes can be divided into linear and non-linear schemes. First, linear schemes are built and 

can be explained by using of the combination of UDS and an anti-diffusion term or by the 

flux limiter function ( )rγ . The normalized variable and the flux limiter function of the linear 

schemes can be found in table 4.1. Furthermore, these schemes will be plotted in the 

normalized variables diagram (NVD) and total variation diminishing (TVD) diagram (see Fig. 
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4.5 and 4.6). 

UDS and DDS are both the first-order schemes. UDS (Upwind Difference Scheme) is an 

unconditional stable scheme and provides a stable solution at any time. However, this scheme 

always causes too much numerical diffusion which decreases the accuracy of the simulation. 

DDS (Downwind Difference Scheme) results in less numerical diffusion result but unbounded. 

The other schemes, such as CDS (Central Difference Scheme), LUS (Linear Upwind Scheme) 

and Fromm scheme, are two-order accuracy schemes. The schemes, including QUICK 

(Quadratic Upwind Interpolation for Convective Kinematics) and CUS (Cubic Upwind 

Scheme), have higher-order accuracy than above schemes. In the figure 4.5 and 4.6, the lines 

of second- and third- order schemes pass by the point (0.5, 0.75) in the NVD and the point (1, 

1) in the TVD diagram. These linear schemes except the upwind difference scheme are not 

satisfied Convective Boundedness Criterion (CBC). High resolution schemes are developed 

by changing the high-order schemes into a non-linear one which satisfy the CBC. These 

non-linear schemes can be divided two categories. SMART and STOIC schemes are referred 

to NVD scheme, and MUSCL, SUPERBEE, OSHER and Van Leer schemes can be referred 

to TVD scheme. In present paper, two modified NVD schemes called M-MUSCL (Modified 

MUSCL) and M-BDS (Modified Bounded Downwind Scheme) will be developed to simulate 

the indicator function of the volume fraction. The normalized variable and the flux limiter 

function of these non-linear schemes can be summarized in table 4.1, and Fig. 4.7 to 4.16 

show the NVD and TVD diagrams of these non-linear schemes. 

4.5 Composite scheme with switching function 
Solving the face value of the volume fraction by using only one high resolution scheme 

can not give consideration to both less numerical diffusion and non-deformed interface. The 

high resolution schemes preserve the shape of the interface but can not reduce the numerical 

diffusion. The compressive schemes are able to reach less numerical diffusion but let the 

interface deformed. Most composite schemes switch the compressive scheme and high 
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resolution scheme with a switching function about the slope of the interface in order to 

overcome the above problem. The method about composite scheme has been used in the 

former investigations. The key issue is how to switch schemes not when. The switching 

function has the basic on the angle between interface and direction of motion. It will decide 

which kind of the scheme to calculate the normalized face value of the volume fraction. If the 

interface is perpendicular to the cell face, a high resolution scheme would be appropriate. If 

the interface is parallel to the cell face, a compressive scheme would be appropriate. In 

general, the angle between the interface and control volume face is between these two cases. 

The normalized face value can be written as: 

( ) ( )( )( ) ( ) 1f f compressive f f HR fα α ψ θ α ψ θ= + −% % %  (4.10)

where ( )fψ θ  is the switching function between zero and unity, and 
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The well known composite schemes, such as HRIC of Muzaferija [33] and CICSAM of 

Ubbink [35] will be introduced. The composite of modified MUSCL and modified BDS will 

be also developed in this section. 

CICSAM 

In order to reduce the numerical diffusion and keep the sharpness of the interface, the 

compressive scheme called Hyper-C has been proposed by Leonard [42]. In general, the most 

compressive scheme is very suitable to the two-fluid flow with moving interface, but the 

Hyper-C may sometimes make the interface deformed or wrinkled. Therefore, Ubbink uses 

the ULTIMATE-QUICKEST (UQ) scheme to preserve the shape of the interface. The UQ 

(4.12) and Hyper-C (4.13) scheme (Fig. 4.17) can be shown as: 
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The Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) scheme 

is developed by using the composite of the Hyper-C and UQ scheme with switching function 

( )fψ θ  (Fig. 4.18) given as: 

Then, the CICSAM scheme can be written as: 

( ) ( ) ( )( )fUQffCHYPERfCICSAMf θψαθψαα −+= − 1~~~
)()(  (4.15)

where the switching function ( )ff θ  is shown as (4.14). 

HRIC 

 This composite scheme, like the above method, switches the upwind difference scheme 

and bounded downwind scheme with the switching function (Fig. 4.19) shown as  

Then, the HRIC scheme can be shown as: 
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Composite of modified MUSCL and modified BDS 
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In present paper, the development of a new composite scheme switches the modified 

MUSCL and modified BDS scheme posed in the above chapter with the switching function 

(Fig. 4.20) given as: 

( ) [ ])(cos4
fff θθ =  (4.18)

This switching function has been proposed in [34], and this method can be formulated as: 

( ) ( )( )fMUSCLMffBDSMff θψαθψαα −+= −− 1~~~
)()(  (4.19)

The composite scheme of modified MUSCL and modified BDS will be used to simulate cases 

in our investigation. 
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Chapter5 Results and Discussion 

5.1 Introduction 
The method of high resolution schemes in volume-of-fluid method for two-fluid flow has 

been developed in the previous chapter. In this chapter, four cases will be tested, and the 

accuracy of this method will be presented by the comparison between the numerical and 

theoretical solutions. 

5.2 Uniform density flow 
In this section, the test case focuses on the advection of interfaces of different shapes. We 

will demonstrate the accuracy of high resolution schemes in the volume-of-fluid method by 

placing two different hollow scalar fields in a uniform and oblique velocity field. The initial 

distributions of the two scalar fields are a hollow square, which coincides with the coordinate 

axes, and a hollow circle. The side lengths of outer and inner interfaces of the hollow square 

are 0.8 and 0.4. The maximum and minimum diameters of the hollow circle are 0.8 and 0.4. 

The velocity field (u,v)=(2,1) (Fig. 5.1) is constant in the full computation domain which is a 

44×  square. The centers of these two scalar fields are at )8.0,8.0(  initially and they 

propagate to )8.1,8.2(  after one second. The uniform and quadrilateral mesh with 100100×  

grids and triangular mesh with 22478 cells (Fig. 5.2) will be used in the calculation process. 

The time step is chosen to maintain a maximum mesh Courant number of 0.25 and 0.75.  

For the purpose of comparison the solution error between the exact and numerical 

solution can be given as [32]: 
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where nα  is the calculated solution after n time steps, aα  the exact solution, and oα  the 

initial condition. The exact solution of this case should be advected with no changing of the 

shape and it shown in figure 5.3. 

From the figure 5.4 to 5.7, the final shapes of these two hollow scalar fields by 
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calculating the indicator function with different high resolution schemes are presented. 

Contours display the distribution of the value of volume fraction from 0.05 to 0.95 with 10 

levels. The errors are summarized from table 5.1 to 5.4. 

The results of 0.75Co =  is more diffusive than 0.25Co = , and the numerical diffusion 

causes the interface of hollow shapes smearing. The upwind difference scheme can not be 

used to simulate because it is too diffusive. Although bounded downwind and downwind 

difference schemes can get higher compressive results, the interface is broken in high Courant 

number. The modified bounded downwind scheme which is a high compressive scheme can 

maintain the sharpness of the interface and the error is less than other schemes. It will be an 

efficient scheme to simulate two-fluid flow in the low Courant number, but the interface may 

be deformed in the high Courant number. The composite scheme with switching function will 

be adopted to solve the above problem.  

The results of composite schemes used to solve this case will be presented from Fig 5.8 

to 5.11. The errors are shown from table 5.5 to 5.8. The CICSAM scheme can retain the sharp 

interface with less numerical diffusion in low Courant, but the result in high Courant number 

losses the accuracy due to the numerical diffusion. The HRIC scheme may reach the small 

error, but the shape of interface will be deformed. The composite of MUSCL and SUPERBEE 

get the nice shape of the interface in any Courant number, but the interface can not maintain 

its sharpness. Therefore, the composite of modified BDS and modified MUSCL will be 

adopted in our simulation. This scheme can get the smallest error, maintain the sharpness of 

interface and keep the shape of the interface. 
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5.3 Shear flow 
The problem about maintaining the initial shape in the two-fluid flow will become rather 

complex when the deformation of the interface is considered. There is a shear velocity field in 

the real two-fluid flow. Therefore, we must test our numerical method in the shear flow. In 

this section, a velocity field shown as (5.2) will be used to simulate this situation in a π π×  

computational domain [32]. Two different meshes will be employed in calculations. One is 

the uniform and quadrilateral mesh with 100100×  grids. The other is the triangular mesh 

with 22494 cells (Fig. 5.13). 

sin cos cos sinV x yi x y j= +
uv v v

 (5.2) 

Fig 5.12 shows that a shear velocity is enforced on a circle distribution of volume 

fraction. The initial position of the circle is (0.5 ,0.2(1 ))π π+  with a radius of 0.2π . The 

circular scalar field will be convected by the above velocity field for 2, 4, 8 and 16 seconds, 

and then the velocity field is reversed for the same time. Theoretically, the circular volume 

fraction distribution will not be deformed in the above calculation process. Errors of the 

solution can be defined as (5.1) and are discussed in the situation that Courant number equals 

0.25 and 0.75. The results, which solve the VOF equation with HRIC, CICSAM, the 

composite of MUSCL and SUPERBEE, and the composite of modified BDS and modified 

MUSCL schemes, before reversing and at the end of calculation show in Fig 5.14 to 5.29. 

Solution errors of above schemes together with results from [43] are presented in Fig. 5.30 to 

5.33.  

In the shear flow, CICSAM scheme is a more accurate one on the quadrilateral mesh 

when the Courant number equals to 0.25, but it can not be simulated in high Courant number 

due to large errors. HRIC scheme maintains the sharpness of the interfaces by the high 

compression. This will cause the shape of interface deformed significantly. The composite of 

MUSCL and SUPERBEE scheme results in too much numerical diffusion which smears the 

interface and can not present a sharp interface. Therefore, the composite of modified MUSCL 
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and modified MUCSL can present the best results of these methods, even on triangular 

meshes. It can be used in high and low Courant number and reach less errors. In following 

cases, we will use this scheme to simulate the broken dame and filling process in an open tank 

and compare with other schemes. 
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5.4 Broken dam 
The broken dam case is usually used to demonstrate the accuracy of the numerical model 

in the two-fluid flow because the initial flow distribution is very simple. In our thesis, this 

case will be used to test our numerical model and the composite scheme called the composite 

of modified MUSCL and modified BDS scheme. Many numerical models about broken dam 

have been proposed in many literatures. Some experiment data of the broken dam have been 

presented by Martin and Moyce [44]. In order to measure the speed of the leading edge and 

the reduction of the column height, one accurate experiment has been posed by Koshizuka 

[45]. In the experiment, the tank is a space with a base length of 0.584m. The water column 

with the height of 0.292m and the base length of 0.146m is confined between a vertical wall 

and the gate (shown in Fig. 34). The gate is suddenly remove at t=0. The water column starts 

to collapse and moves to the right wall. When the leading edge hits the right wall, the flow 

starts to fall back due to the gravity. The experimental result of [45] is shown in Fig. 5.18.  

Our computational domain is a rectangle with a base length of 0.584m and a height of 

0.340m. Three kinds of meshes are employed in our calculation. The first is the uniform and 

quadrilateral mesh with 48 28×  and 120 70×  grids. The second is the non-uniform and 

quadrilateral mesh with 56 36×  grids (Fig. 36). The third is the triangular mesh with 4506 

and 12354 cells (Fig. 37 and Fig. 38). Non-slip boundary conditions are applied to the bottom 

and sides of the tank. The top boundary is set as a fixed pressure outlet. For the fluid 1, the 

density is 1000 and the viscosity is 0.001. For the fluid 2, the density is 1 and the viscosity is 

0.00001. The two-dimensional section with interface profile, the volume fraction contour and 

the velocity field is shown in Fig. 5.39 to 5.43. The dimensionless positions of leading edge 

and reduction of column height are plotted as functions of the dimensionless times in Fig. 

5.44 and Fig. 5.45, and compared with the experiment. The numerical diffusion will occur 

when the flow returns. The numerical diffusion causes the front of wave smearing. The 

phenomena of 48 28×  mesh is more serious than 120 70×  mesh. In general, the broken 
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case solved by our scheme on the quadrilateral or triangular mesh can present a result which 

maintains the sharp interface. In the Fig. 5.44, the speed of the leading edge in fine mesh is 

faster than coarse mesh. However, the situation is not very obvious. In Fig. 5.45, the results 

are quite close to the experiment data and the simulation of CICSAM of Ubbink. 
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5.5 Filling process in an open tank 
A filling process in an open tank will be simulated by the composite of modified 

MUSCL and modified BDS scheme in this section. The tank is a square and vertical plate 

with a gate at the bottom. Initially, the tank is filled with air (Fig. 46). The water enters the 

tank through the gate and fills the tank as the time pass by. 

The computational domain of the tank in our simulation is a square space with side 

length of 0.152m. The height of the gate is 0.038m. The flow is considered to be 

two-dimensional with the assumption of a laminar and incompressible flow under the body 

and surface tension force. The properties of the fluids are shown as: 

3 3

-3 -5

2

 998 /      1.205 /

 0.99 10  /      1.81 10  /
0.072 /    
9.808 /   

w a

w a

kg m kg m

kg ms kg ms
nt m

g m s

ρ ρ

μ μ
σ

= =

= × = ×
=

=

 (5.3) 

The inlet velocity of the gate is given by some approximation from [46]. The volume of 

the water inside the tank can be evaluated from the photographs by using the curve fitting 

method. The volume inside the tank can be written as a function depended on time, shown as: 

2

2 3

( )
     a 3.207 10 ,  b 6.678 10

Q t at bt
where − −

= +

= × = − ×
 (5.4) 

which implies: 

( ) ( )in
dQ t U t A

dt
= ×  (5.5) 

and 

( )=0.844-0.351tinU t  (5.6) 

where A can be considered as the height of the gate in two-dimension, Q is the volume inside 

the tank, t is the calculational time, and inU  is the inlet velocity depended on t.  

The boundary conditions of walls are treated as non-slip condition and the top of the tank 

is a pressure fixed outlet. The meshes used in the calculation involve the uniform and 
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quadrilateral mesh with 28 28× , 40 40×  and 80 80×  grids and the triangular mesh with  

902, 2024 and 3584 cells (Fig. 47, Fig. 48 and Fig. 49). 

Fig 5.50 to 5.55 shows the volume fraction distribution with time evolution. The counter 

is 0.05 to 0.95 with 10 levels. The results show that the flow with the particular velocity 

enters the tank as a wall jet along the bottom. When the front of the flow touches the right 

wall, the high pressure gradient will be introduced into the vicinity of stagnation point. This 

effect will make the flow jump along the vertical wall. To continue, the flow falls back and 

forms a gravity wave in the x-direction. The front of flow goes to the left wall along the x-axis 

and jumps again when the front touches the vertical wall. The tank will be filled by degrees. 

The volume fraction distribution in the 28 28×  and 40 40×  mesh produces more numerical 

diffusions on the interface. The interface in the 80 80×  mesh is sharper than them. It shows 

that the finer mesh can present well results for the filling process of two-fluid flow. The 

results also show that our code can do well on the triangular mesh. The position of the leading 

edge at the bottom on the quadrilateral and triangular mesh is plotted in Fig 56. 

Then, the figure 5.57 shows the water volume inside the tank. It presents the data in 

quadrilateral and triangular meshes from our simulation and the data from the inlet condition 

which is mentioned in (5.6). This figure can demonstrate the accuracy of our numerical 

method which is applied in the filling process in an open tank and show that our numerical 

result is very close to the data in [46]. 
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Chapter6 Conclusion and Future Work 

A method for capturing the interface of two-fluid flow has been present. The interface 

movement is solved by an indicator function of the volume fraction. The composite scheme is 

used to solve the advection equation of the volume fraction. The aim of this study is to 

develop a composite scheme with switching function in volume-of-fluid method for two-fluid 

flow. The scheme switches smoothly between the modified MUSCL and modified bounded 

downwind scheme. Its results of test cases have compared with the results of other schemes.  

It can not only maintain the sharpness at the interface but also enhances the accuracy, even on 

the triangular mesh. In the future work, there are two missions in order to improve our 

numerical method. First, the volume-of-fluid method is usually used in three-dimension 

system because many actual applications, such as casting process, are applied in 

three-dimensions. Second, there are a lot of problems about the heat transfer in the two-fluid 

flow. How to remain the sharpness at the interface is a quite significant problem. 
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Table 4.1 The NVD equation and flux limiter function of linear and non-linear difference 

schemes
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Scheme Hollow circle Hollow square 
UDS 1.2274 1.2568 
CUS 0.4223 0.5156 
DDS 0.3245 0.2074 
BDS 0.2362 0.3399 
CDS 0.6027 0.6933 

MUSCL 0.4943 0.5802 
SUPERBEE 0.3123 0.4271 
M-MUSCL 0.4623 0.5520 

M-BDS 0.1283 0.1544 
Table 5.1 Errors of different schemes in 0.25Co =  (quadrilateral mesh) 

Scheme Hollow circle Hollow square 
UDS 1.2281 1.2566 
CUS 0.5392 0.5971 
DDS 0.7116 0.6572 
BDS 0.2258 0.3523 
CDS 0.7011 0.7599 

MUSCL 0.5190 0.5935 
SUPERBEE 0.3171 0.4476 
M-MUSCL 0.4957 0.5639 

M-BDS 0.2818 0.2408 
Table 5.2 Errors of different schemes in 0.75Co =  (quadrilateral mesh) 

Scheme Hollow circle Hollow square 
UDS 1.0846 1.0418 
CUS 0.3469 0.3402 
DDS 0.2587 0.2415 
BDS 0.1797 0.1806 
CDS 0.4305 0.4169 

MUSCL 0.3460 0.3388 
SUPERBEE 0.2282 0.2246 
M-MUSCL 0.3419 0.3349 

M-BDS 0.1745 0.1635 
Table 5.3 Errors of different schemes in 0.25Co =  (triangular mesh) 
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Scheme Hollow circle Hollow square 

UDS 1.0846 1.0417 
CUS 0.3809 0.3732 
DDS 0.5324 0.5618 
BDS 0.1787 0.1828 
CDS 0.4653 0.4472 

MUSCL 0.3638 0.3565 
SUPERBEE 0.2378 0.2342 
M-MUSCL 0.3596 0.3528 

M-BDS 0.1819 0.1684 
Table 5.4 Errors of different schemes in 0.75Co =  (triangular mesh) 

Scheme Hollow circle Hollow square 
CICSAM 0.1267 0.1280 

HRIC 0.3259 0.3714 
SUPERBEE+MUSCL 0.3812 0.4429 
M-BDS+M-MUSCL 0.1173 0.1666 

Table 5.5Errors of different composite schemes in 0.25Co =  (quadrilateral mesh) 
Scheme Hollow circle Hollow square 

CICSAM 1.0000 1.0041 
HRIC 0.2276 0.2438 

SUPERBEE+MUSCL 0.4031 0.4612 
M-BDS+M-MUSCL 0.1889 0.2521 

Table 5.6Errors of different composite schemes in 0.75Co =  (quadrilateral mesh) 
Scheme Hollow circle Hollow square 

CICSAM 0.1556 0.1514 
HRIC 0.1813 0.1869 

SUPERBEE+MUSCL 0.2697 0.2660 
M-BDS+M-MUSCL 0.1652 0.1641 
Table 5.7Errors of different composite schemes in 0.25Co =  (triangular mesh) 

Scheme Hollow circle Hollow square 
CICSAM 0.2090 0.2055 

HRIC 0.2111 0.1793 
SUPERBEE+MUSCL 0.2841 0.2824 
M-BDS+M-MUSCL 0.1920 0.1734 
Table 5.8Errors of different composite schemes in 0.75Co =  (triangular mesh) 
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(a) 

 
(b) 

Figure 1.1 The method of two-fluid flow (a) Lagrangian (b) Eulerian scheme 
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Figure 1.2 Front tracking method 

 

Figure 1.3 Maker and cell method 
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(a) original distribution (b) Young’ VOF 

  

(c) SLIC with x-sweep (d) SLIC with y-sweep 

  

(e) Chorin with x-sweep (f) Chorin SLIC with x-sweep 

Figure 1.4 Line techniques 
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Figure 1.5 Donor and accepter cell configuration 
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Figure 2.1General form of the conservation law 

 

 
Figure 2.2 VOF method on the Eulerian grids 
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Figure 2.3 Continuity of the velocity and discontinuity of the momentum 
 

 

Figure 2.4 Fluid arrangements and the sign of the curvature 
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Figure 3.1 Illustration of the primary cell P and the neighbor cell nb with a considering face 
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Figure 4.1 The relationship of a control volume and its neighbor cells 

 
Figure 4.2 The CBC constraint in NVD 
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Figure 4.3 The CBC constraint in NVD 

 

 
Figure 4.4 The TVD condition in TVD diagram 
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Figure4.5 Linear schemes in Normalized Variable Diagram 

 

 
Figure4.6 Linear schemes in TVD Diagram 
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Figure 4.7 SMART 

 

Figure 4.8 MUSCL 

 

Figure 4.9 SUPERBEE 



 61

 

Figure 4.10 STOIC 

 

Figure 4.11 OSHER 

 

Figure 4.12 BDS 
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Figure 4.13 Van Leer 

 

Figure 4.14 CHARM 

 

Figure 4.15 Modified BDS 



 63

 
Figure 4.16 Modified MUSCL 

 

(a)         (b) 
Figure 4.17 The NVD of (a) HYPER-C and (b) UQ (Co = 0.5) 
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Figure 4.18 The switching function of CICSAM scheme 

 

Figure 4.19 The switching function of HRIC scheme 

 

Figure 4.20 The switching function of the composite of M-MUSCL and M-BDS 
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Figure 5.1 (a) The constant velocity field and initial position of hollow circle 

 
Figure 5.1 (b) The constant velocity field and initial position of hollow square 

(2,1)V =
uv

(2,1)V =
uv
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Figure 5.2 Triangular computational mesh in uniform density flow (22478 cells) 
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Figure 5.3 (a) The exact distribution of the hollow circle 

 

Figure 5.3 (b) The exact distribution of the hollow square 
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Co=0.25

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Co=0.75

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Figure 5.4 The final shape of hollow circle from different schemes in quadrilateral mesh 
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Co=0.25

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Co=0.75

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Figure 5.5 The final shape of hollow square from different schemes in quadrilateral mesh 
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Co=0.25

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Co=0.75

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Figure 5.6 The final shape of hollow circle from different schemes in triangular mesh 
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Co=0.25

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Co=0.75

   
Upwind Difference Scheme Cubic Upwind Scheme Downwind Difference Scheme

   
Bounded Downwind Scheme Central Difference Scheme MUSCL 

   
SUPERBEE Modified MUSCL Modified BDS

Figure 5.7 The final shape of hollow square from different schemes in triangular mesh 
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Co=0.25 Co=0.75 

  
CICSAM

  
HRIC

  
SUPERBEE+MUSCL

  
Modified BDS+Modified MUCSL

Figure 5.8 The final shape of hollow circle from different composite schemes in quadrilateral 
mesh



 73

Co=0.25 Co=0.75 

  
CICSAM

  
HRIC

  
SUPERBEE+MUSCL

  
Modified BDS+Modified MUCSL

Figure 5.9 The final shape of hollow square from different composite scheme in quadrilateral 
mesh 
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Co=0.25 Co=0.75 

  
CICSAM

  
HRIC

  
SUPERBEE+MUSCL

  
Modified BDS+Modified MUCSL

Figure 5.10 The final shape of hollow circle from different composite scheme in triangular 
mesh 
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Co=0.25 Co=0.75 

  
CICSAM

  
HRIC

  
SUPERBEE+MUSCL

  
Modified BDS+Modified MUCSL

Figure 5.11 The final shape of hollow square from different composite scheme in triangular 
mesh 
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Figure 5.12 The volume fraction distribution in a shear flow field 

 

Figure 5.13 Triangular mesh in uniform density flow (22494 cells) 
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Figure 5.14 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.15 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.16 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.17 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh) 
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Figure 5.18 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.19 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.20 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.21 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh) 
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Figure 5.22 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh) 
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Figure 5.23 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh) 
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Figure 5.24 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh) 
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Figure 5.25 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh) 
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Figure 5.26 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh) 
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Figure 5.27 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh) 
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Figure 5.28 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh) 
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Figure 5.29 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh) 
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Figure 5.30 Comparison of errors in the shear flow with Co=0.25 (quadrilateral mesh) 

 

Figure 5.31 Comparison of errors in the shear flow with Co=0.75 (quadrilateral mesh) 
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Figure 5.32 Comparison of errors in the shear flow with Co=0.25 (triangular mesh) 

 

Figure 5.33 Comparison of errors in the shear flow with Co=0.75 (triangular mesh) 
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Figure 5.34 Schematic of the broken dam 
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Figure 5.35 Experimental results of a collapsing water column by Koshizuka 



 97

 
Figure 5.36 Schematic representation of the non-uniform and quadrilateral mesh with 56 36×  

grids in broken dam 

 
Figure 5.37 Schematic representation of the triangular mesh with 4506 cells in broken dam 

 
Figure 5.38 Schematic representation of the triangular mesh with 12354 cells in broken dam 
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Figure 5.39 Numerical results of the broken dam on the uniform and quadrilateral mesh with  
48 28×  grids 
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Figure 5.40 Numerical results of the broken dam on the uniform and quadrilateral mesh with  
120 70×  grids  
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Figure 5.41 Numerical results of the broken dam on the non-uniform and quadrilateral mesh 
with 56 36×  grids  
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Figure 5.42 Numerical results of the broken dam on the triangular mesh with 4506 cells 
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Figure 5.43 Numerical results of the broken dam on the triangular mesh with 12354 cells 
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Figure 5.44 The position of the leading edge in broken dam 
 

 

Figure 5.45 The height of the collapsing water in broken dam 
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Figure 5.46 Schematic representation of the filling process in an open tank 

 

Figure 5.47 Schematic representation of the triangular mesh with 902 cells in filling process 
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Figure 5.48 Schematic representation of the triangular mesh with 2024 cells in filling process 

 

Figure 5.49 Schematic representation of the triangular mesh with 3584 cells in filling process 



 106

Figure 5.50 The volume fraction distribution and velocity field of the filling process on the 
uniform and quadrilateral mesh with 28 28×  



 107

 
Figure 5.51 The volume fraction distribution and velocity field of the filling process on the 

uniform and quadrilateral mesh with 40 40×  grids
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Figure 5.52 The volume fraction distribution and velocity field of the filling process on the 

uniform and quadrilateral mesh with 80 80×  grids 
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Figure 5.53 The volume fraction distribution and velocity field of the filling process on the 

triangular mesh with 902 cells 
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Figure 5.54 The volume fraction distribution and velocity field of the filling process on the 

triangular mesh with 2024 cells 
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Figure 5.55 The volume fraction distribution and velocity field of the filling process on the 

triangular mesh with 3584 cells 
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Figure 5.56 The position of leading of the filling process in the open tank 

 

Figure 5.57 The water volume inside the tank  


