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Use of high-resolution scheme in volume-of-fluid method for two-fluid flow

Student : Shi-Wen Lin Advisor : Prof. Yeng-Yung Tsui

Institute of Mechanical Engineering
National Chiao Tung University
ABSTRACT
A numerical method for direct simulations of two-fluid flows is established in this study.
The motion of the interface is captured by the solution of a transport equation for the volume
fraction. Some numerical schemes, such as high resolution and compressive schemes are
discussed in this study. The high resolution schemes preserve the shape of the interface but
can not reduce the numerical diffusion. The compressive schemes are able to reach less
numerical diffusion but let the interface deformed. Most composite schemes switch the
compressive scheme and high resolution scheme with a switching function about the slope of
the interface in order to overcome the above problem. The aim of this study is to develop a
composite of the modified MUSCE' and-modified bounded downwind scheme with a
switching function. This scheme presents the high accurate results in test cases and can be

used on the quadrilateral and triangular mesh.
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Chapterl Introduction
1.1 Background

The flow involving two immiscible fluids has been of interest to many investigators
during the last decades. How to predict the position and the movement of the interfaces in the
two-fluid flow accurately is very important in many scientific and technical applications. The
objective of this study is the development of a numerical method which can cope with the
above problem. In many engineering problems and industrial processes, such as marine
engineering, biochemical engineering, tube/channel flows, and casting, welding, molding,
injection or extrusion processes, the simulation of two-phase flow with discrete interface is a
rather popular issue. This simulation has also played an important part in IC package process
and the production of LED screen. In marine engineering, some numerical results of free
surface flow with wave breaking are.applied to the:'motion of sea water. Muzaferija et al. have
presented the flow around ship hulls or submerged hydrofoils [1]. In biochemical engineering,
this technique is used to simulate the- transportation- of biochemical fluids in the capillary
channels, such as the blood in veins;:On the other areas, mold-filling process with heat
transfer is an important application in casting. K.A. Percleous et al. investigate the collapse of
a liquid column in a sealed cavity and simulate cooling process of a step-like model which is a
common test one [2]. In the tube/channel flows area, the numerical results of two-phase flow
are widely employed. In [3], Yang et al. present the flow boiling of refrigerant R134B in a
horizontal coiled tube. They predict the temperature profile and the phenomenon of the flow
boiling in the straight and bending parts of the coiled tube. In [4], the simulation of two-phase
flow can also be used in the fuel cell. Yun Wang et al. [4] have developed a two-phase model
for the flow in mini-channels of a proton exchange membrane (PEM) fuel cell. The results of
their investigations can be applicable to many common two-phase flow behaviors across the
micro- or mini- channels. Although the application of the two-phase flow is so extensive, the
representative problems of the flow with two immiscible fluids can be classified into three
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categories [5]. The first one is dispersed flow that the two fluids in the flow field are
considered as suspensions without a defined interface. The second is that the two fluids are
separated by a sharp interface without breaking. The third is the transitional flow that the
interface of two-phase flow may or may not be broken. In this study, the numerical method

mainly deals with the last two problems.

1.2 Related studies

Several numerical methods of two-fluid flow with a moving interface have been posed.
The methods which are used to predict the phenomenon of two-phase flow can be divided into

two main categories: Lagrangian and Eulerian schemes (Fig. 1.1) [6].

1.2.1 Lagranian schemes

The first method can keep free surface sharp between the two fluids and present the
exact position of the free surface with re-meshing as the calculation proceeds. The mesh of
this scheme is deformed and changed all thestime. The main procedure of this method is that
the position of the free surface at next time step is calculated by using the velocity field which
is known. When the new free surface boundary is- defined, we can reconstruct grids and
update new properties for the new flow field [7]. The position of the interface can be
predicted precisely, because the boundary mesh matches the free surface. Although the
accurate prediction of the free surface can be carried out by the Lagrangian scheme, this
method can not be employed to the quite complex flow field. Many deformations and
stretches which result from the breaking, overturning, or gravity wave may cause numerical
errors as well as reducing the precision. In [8], there is a Langranian scheme which is
presented by Peric et al. This scheme can be employed in some simple and no large interface
deforming cases, but its drawback is that the scheme cannot be used while the interface is

unfolded.
1.2.2 Eulerian schemes

The second method can reduce errors which result from the deforming grids by using
fixed grids that are generated before calculating the movement of the interface. The main
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disadvantage of this method is the fact that it is prone to result in numerical diffusion. The
diffusion will make the interface to spread over several mesh cells and the interface between
the two immiscible fluids is going to be no longer sharp. In reality, the interface remains sharp
due to the surface tension and the action of gravity, which separates immiscible fluids of
different densities [2]. The interface of the two-phase flow must be tracked by employing
some special treatments because its motion can not match the mesh any more as the
calculation proceeds. A lot of techniques have been developed to cope with the problems of
the multi-fluid flow systems in the past decade. These techniques can be classified to three
main categories: 1. tracking the interface by using a set of mass-less particles; 2. using several
mass-less maker particles to point out the only one kind of fluids and interface; 3. capturing
the interface by a indicator function, such as a level set function or a volume fraction function.
There are several Eulerian schemes.will be introduced in the following part.
(A) Front tracking method

This front tracking method [9] (Fig:-1.2).is-applied to construct the interface between the
liquid and gas by a simple trajectory technique. A lot of mass-less particles are uniformly
distributed over the interface in the first instance, but the Navier-Stokes equations are solved
in a fixed and Eulerian grid system. The numbers of particles on the interface may be
increased or reduced as the calculation proceeds. The new positions of these particles can be
obtained by integrating the Eulerian fluid velocity field near the particles for each time step.
This method has been used to deal with the motion of rising bubble, the breaking of water
waves, and the collapse of an unsupported water column. This method is quite accurate but
rather complex. Its first drawback is that the re-meshing of the Lagranian mesh is needed.
Another difficult is that transforming the mesh data of the Lagranian system into the Eulerian
i1s quite complicated. In the three-dimensional problems, the front tracking method has
another problem because the particles on the interface are not a string one any more. This
problem will cause the calculational time and the computer storage to increase significantly.
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(B) Level set method

A level set method for moving interfaces was proposed in [10]. The interface is identified
as the zero level set of a smooth distance function from the front of the interface. This method
not only eliminates the problems of the numerical diffusion which will smear the sharp front,
but also avoids adding or reducing points to the moving grid. This method presents the
interface by solving a scalar convection equation of the level set function. This method is easy
to code due to the use of Eulerian grid and can result in more accurate results when the flow
motion of the interface coincides with one of the coordinate axis. This method can also be
easily generalized to three dimensions. However, the main drawback of this method is that
level set methods loses its accuracy because the mass is not conserved when the interface is
significantly deformed. Sussman et al. used it to simulate the flows of bubbles and droplets
[10], and Li presented the results of Rayleigh-Taylor instability [11].
(C) Marker and cell method

Marker and cell method (MAC)i(Fig-1.3)-was/proposed by Harlow and Welch in [12].
Several mass-less marker particles are distributed over a space which is filled with one
particular fluid with a free surface, and these marker particles are used to calculate the motion
of the flow field including the free surface. This method is quite accurate and can be used
accurately to deal with many complex problems, such as an interface subjected to shearing
and vorticity, and wave breaking in two-dimensional system, but it may become expensive of
operating in three-dimensional one. More marker particles will be added when treating
problems with interface stretching, shrinking, breaking, or merging in three dimensions. The
above process results in increase of computational time and computer storage. There have
been many studies about this method [13, 14].
(D) Volume-of-fluid method

In volume-of-fluid method, the fluids of two-fluid flow are represented by one scalar
indicator function called volume fraction. The value of the volume fraction is bounded
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between zero and unity. The value of unity denotes one of the fluids. The volume of zero
denotes the other fluid. The volume fraction value between zero and unity indicate the
interface. This method is quite popular and easy to code in the finite-volume method. The
scalar indicator function is convected through the computational domain by solving a scalar
convective equation like other transport equations. The scalar indicator function can not
maintain a step function on the interface because most convective schemes result in numerical
diffusion and dispersion. There are three categories of this volume-of-fluid method as follows.
Line techniques

This method has been implemented in two-dimensional problems, but the reconstruction
of the interface in three-dimensional flows is difficult. The methods are used for interface
reconstruction can be classified into three categories as follows.

The first method is SLIC method (Simple.Line Interface Calculation) which was
proposed by Noh and Woodward in.1976 [15]: The interface is approximated by using lines
parallel to one of the coordinate-axes; The volume fractions of the left and right cells of the
prime cell are used to reconstruct ‘the-interface in the prime cell approximately when the
sweeping direction coincides with the x-axis. On the other hand, the volume fractions in the
cells above and under the prime cell are used in the y-axial sweeping. The second method is
the one with improvement on the SLIC method by Chorin [16]. All direct neighbors of the
prime cell will be used for interface reconstruction in the prime cell. The third method (PLIC
or Youngs’ VOF) which is posed by Youngs [17] is more accurate than the SLIC method. In
this method, the interface is approximated by using oblique lines. Unlike the SLIC method, all
neighboring cells are used to approximate the slope of the interface in Youngs’ VOF. The
above methods are illustrated in figure 1.4.

Donor-acceptor techniques

In this method, the value of the volume fraction transported through a cell face between

two cells can be approximated by the volume fraction value of the downwind cell (Figure 1.5).
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This method will cause the volume fraction values unbounded, i.e. the values of the volume
fraction may become greater than one or less than zero. In order to ensure the boundedness,
the method which improves the level of volume fraction value on the face by using the value
of the donor cell is proposed by Ramshaw and Trapp [18] , but it will cause the incorrect
steeping on the interface due to change any finite gradient into a step. As mention above, the
volume fraction on the face correlates closely with the flow and interface direction. Another
method was proposed to cope with the above problem in [19]. Hirt and Nichols calculate the
volume fraction value on the face by including some information on the slope of the interface
into fluxing algorithm.

High-order differencing schemes

In this method, the convective scalar transport equation is discretised by using a high
order scheme or a blending scheme to predict the. interface of two-fluid system. The main
errors of this method are numerical diffusion which smears the front of the fluids and
numerical dispersion which causes nen-physical oscillation. The first-order upwind scheme
has the numerical diffusion. This"diffusion becomes significantly strong when the flow
direction is normal to the interface direction. In order to reduce the numerical diffusion, the
linear upwind scheme (LUDS) [20] and the quadratic upstream interpolation for convective
kinematics (QUICK) scheme [21] were proposed. The former is second-order accurate and
interpolated by the two upwind values. The latter is third-order accurate and interpolated by
the two upwind and one downwind values. These high order schemes can reduce numerical
diffusion, but they may cause numerical dispersion, such as oscillations, in the strong gradient
regions.

In order to cope with the dispersion problem, the flux-blending and flux-limiter
technique have been proposed. The former can be classified into two classes. The first class is
based on adding an anti-diffusion flux to a first order upwind scheme [22] and used to resolve
sharp gradient without over-/under-shoots. The second method is based on introducing some
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smoothing diffusive fluxes into an unbounded high-order scheme, and it can prevent
oscillations. The flux-blending technique will become expansive due to their multi-step nature
and balancing the two fluxes. In [22], the flux corrected transport (FCT) method has posed.
FCT schemes are non-diffusive in nature, but create unphysical flotsam and jetsam.

The flux-limiter technique can remove non-physical oscillations and is based on the
numerical flux on the interface of a cell which can be adjusted by using the flux-limiter
function that enforce the boundedness. High resolution schemes (HRs) [23] are the schemes
which obey the above criterion. The methods, such as Normalized Variable (NV) and
Normalized Variable Diagram (NVD) [24], can be used to employ the flux-limiter technique.
The flux limiter function is presented by Van Leer [25]. Sweby developed the Total Variation
Diminishing (TVD) [26] approach for high resolution schemes. In the past decades, many
high resolution schemes have been proposed, such as SMART of Gaskell and Lau [27],
GAMMA of Jasak [28], SUPERBEE of Roe [29],' STOIC of Darwish [30], MUSCL and Van
Leer of Van Leer [31].

Numerical diffusion can be classified into'two main components, namely cross-stream
and stream-wise. These two numerical diffusions can be associated with the angle between the
flow and interface direction. The blending strategy was proposed in order to improve the
accuracy and less numerical diffusion including cross-stream and stream-wise. The key issue
in the composite scheme is not just when to switch, but how to switch [32]. Hence, the best
approach must have a continuous switching function whereby the values of compressive and
high resolution schemes are blended together with a blending factor. This method has been
used in utilized in the HRIC of Muzaferija [33], STACS of Darwish [34], CICSAM of Ubbink

[35] and the composite of MUSCL and SUPERBEE [36].
1.3 Outline of this thesis

In this study, a high resolution scheme with switching function in the volume-of-fluid

method used to solve the two-fluid flow is employed. This composite scheme can enhance the



accuracy of numerical results, preserve the sharpness on the interface and prevent the
smearing.

In Chapter 2, the governing equations used to simulate the two-fluid flow, such as the
continuity, momentum and volume-of-fluid equations will be introduced. The surface tension
term in the momentum equation and the boundary conditions used in our simulation will be
addressed.

In Chapter 3, governing equations will be discretized by using the finite volume method.
The coupling between the velocity and pressure is treated by the PISO algorithm. The solution
procedure of our numerical method will be introduced.

In Chapter 4, the method used to calculate the face value of the volume fraction will be
introduced, and several schemes will be formulated. The former switching function will be
introduced and a new composite scheme will be developed.

In Chapter 5, four cases will be tested. The first two cases, such as uniform density flow
and shear flow will be used to evaluate the.accuracy and availability of our numerical method
by comparing with the result in theprevious papers. The last two cases will be simulated by
the new composite scheme. The results of them will show the superiority and accuracy of this
method against the other composite schemes.

In Chapter 6, the main conclusions and discussion of this thesis are given.



Chapter2 Mathematical Model

2.1 Introduction

In our calculation, the different fluids can be defined as a single and continuous fluid,
and the fluid properties have a jump at the interface. The volume fraction is denoted as a step
function on the interface. This volume fraction will be used to affect the properties of the fluid
and separate the two immiscible fluids by a well defined interface. The main subject of this
chapter is the description of the mathematical model which is used to solve the two-fluid
system. In this study, there are several basic assumptions in our mathematical model. The
model simulates the unsteady, incompressible, viscous, two-dimensional, and two-fluid
systems, and the body force term includes both gravity and surface tension force. The surface
tension term is a rather important effect on the interface in the two-fluid flow. The surface
tension is modeled by the continuum surface force (CSF) model proposed by Brackbill et al.

[37].
2.2 General transport equation

The conservation laws for mass, momentum, and energy are used to describe the
physical behavior of the fluid flow. The general form of the conservation equation for a flow

property ¢ in the control volume (C.V.) system shown in figure 2.1, is
2 [gav+[]IF. -aS = [ Fy 05 + [ Q,dv +[[1Q, -S o0
at \ S S \ S

where t is the time, Q, the internal source, Qg the source at the boundary, F. = No the

flux over the boundary due to convection, V the fluid velocity, F, the flux over the

boundary due to diffusion, V the control volume and S the control surface. We can use the

Gauss’s theorem to rewrite equation (2.1):
%IgodV+IV-FCdV:J.V-FDdV+ijdV+IV-QSdV 2.2)
\ \Y \ \% \Y

The above equation can be rewritten to the general conservative differential form when
the control volume is contracted to a single point:
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aat—(p+V-Fc:V-FD+Q\,+V-QS (2.3)

2.3 Mass and momentum conservation equation

The conservation equations for mass and momentum can be obtained by substituting ¢=p
by neglecting the diffusion term and the source terms, and ¢=V with the assumption of a
laminar Newtonian working fluid under unsteady and incompressible conditions with body
force and surface tension force. The mass and momentum conservation equations can be

written as following:

op =

LZ4V-pV =0 2.4
p P (2.4)
8’:%+V~(p\7\7)=—Vp+V~(yV\7)+pg+fo, (2.5)

where p is the fluid density, V the velocity, P the pressure, u the viscosity coefficient,

g the gravitational acceleration and «f_ the surface tension.

The density and viscosity of the effective fluid-in the equation (2.4) and (2.5) can be
calculated by the volume fraction, as

p=pa+p,(1-a) (2.6)

u=pa+u,(1-a) (2.7)
where the subscripts 1 and 2 denote the two fluids, « is the volume fraction. The density
and viscosity of the different fluids are considered as variables through the full domain but
constants in each kind of fluids. As mentioned above, all properties are piecewise continuous

due to the volume fraction.

2.4 VOF equation

In the following, we will define different fluids by using the volume fraction in the
volume-of-fluid (VOF) method on the Eulerian grid system (see figure 2.2). The value of

volume fraction can be defined as

o Volume of fluid 1
Total Volume of Contral Volume

(2.8)

Therefore, the fluids through the entire computational domain can be divided into three
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categories by the volume fraction as

1 for the points inside the fluid 1
a=410 for the points inside the fluid 2 (2.9)
O<a<1 for the points inside the transitional region

The two-fluid system is propagated as the Lagrangian invariant and thus has a zero

material derivative [19]:

Da oJa -
——=""4+V -Va=0 2.1
Dt ot “ 2.10)

The above equations (2.4) to (2.10) can describe the fluid flow of the two-fluid system.
However, the form of the volume fraction, shown as (2.10), is not a conservative one and is
not suitable for numerical solution. Because of the reason, it must to be reformulated [33].

The mass conservation equation (2.4) is a conservation form. It can be rewritten as

68—'[;+\7-Vp+pv-\7:0

- . i @.11)
= V.V :_1[8_'0+V .vpjz_l( Dpj:_ Dnp)

p ot p \ Dt Dt

This non-conservation form o6f the¢ mass conservation equation is much suitable for the

two-fluid system with high density ratio, because the V on the interface is defined as

continuous. Figure 2.3 shows the densities at the inlet and outlet are not the same in the closed

domain. The velocity V of the fluid of entering and leaving the domain is the same, but the
momentum pV of the fluid entering and leaving the domain is different. In addition, the

fluids of this study are the assumption that they are incompressible. By substituting equation

(2.6) into equation (2.11) the non-conservative equation becomes

. 1D
V'V:;a[a(pl—pz)wz]
pz—pl(Da] 2.12)

p Dt
=0

The equation (2.10) can be rearranged into a conservation form with the incompressible

11



condition by recognizing that V-aV =a-VV +V -Va as:
oa 7
Z4iv-aVN =0 2.13
ot (2.13)

In the present study, the continuity equation (2.12), the momentum equation (2.5) and the
VOF equation (2.13) together with the equation (2.6) and (2.7) will be employed to model the

two-fluid flow.
2.5 Surface tension

As mentioned above, the surface tension will be modeled by the continuum surface force
(CSF) model [37]. Surface tension creates a pressure jump which supplies the mean interface
curvature with its necessary work on the interface. The surface tension coefficient ¢ exists for
any pair of fluids and its magnitude is determined by the nature of the fluids. The value of ¢ is
always positive for immiscible fluids and negative for miscible fluids [38]. The pressure jump

is a function of the mean interface curvature, and it'can be shown as [39]:

1 1
(Rl sz (2.14)

where R, and R, are the principal radii of curvature of the surface, P is the pressure on
the concave side of the curved surface, P, the pressure on the convex side, o is the surface
tension coefficient and x is the mean interface curvature. For x>0 fluid 1 lies on the
concave side of the interface and for & <0 fluid 2 lies on the concave side (figure 2.4). The
gradient of a which is zero everywhere except at transient region, gives the normal vector,
which always point from fluid 2 toward fluid 1 (figure 2.4):
n=Va (2.15)

Thus, the mean interface curvature k can be rewritten in terms of divergence of the unit

normal vector as:

n Va
’“‘V'[ﬁ]“v'(w] (216

By substituting equation (2.16) into equation (2.14), the surface tension term in the
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momentum equation can be expressed as

_ v
f =VP=APfi=oVa = —av-(ﬁ]w 2.17)
(04

2.6 Boundary conditions

Inlet: A velocity distribution is specified at the inlet.
Outlet: The outlet boundary condition uses the fixed pressure boundary condition. The

boundary values are obtained from convective boundary condition [40]

ob -
_¢+Vc.v¢:o (2.18)
ot

where ¢ represent the transported property and V,_ is the convective velocity.

Rigid boundary (walls): A rigid boundary is generally defined as a non-slip boundary

condition (u=0, v=0).
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Chapter3 Numerical Method

3.1 Introduction

In the chapter 2, the mathematical model of the two-fluid flow has been described in
detail. It is a necessary to choose a suitable discretization method, such as the finite difference
(FD), finite volume (FV) or the finite element (FE) methods. These methods approximate the
differential equations by a system of algebraic equations. Finite volume method is the method
which uses integral form of conservation equations. The calculated domain can be divided
into many several control volumes. In our computation, the VOF equation and the momentum
will be discretized by using the finite volume method. The coupling between pressure and

velocity will be treated by the PISO algorithm [41].
3.2 Discretization of the VOF equation

The finite volume method for the, VOE equation of equation (2.13) is first integrated over

a control volume, and then can be-transformed by:the Gauss divergence theory as:

oo -
JEdV+\J;V-anV=O (3.1)
oo = &
—dV+[[jaV-dS =0
,C[ at Eﬂ (3.2)
The unsteady term can be discretized as:
oa AY [, . o
Jgdvzﬂ(%—%) (3.3)

\Y

where AV is the volume of the cell, the superscripts n and o denote respectively the new and
old time steps, D is the donor cell.

The second term can be discretized as:

JVa)-dS~ 3 (Va'), -S, (3.4)
s f

where
a; =%(a? +a‘f’) (3.5)

where the subscript f denotes the properties on the surface of a control volume.
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In the above equation, the value of «; is obtained by using the second-order Crank-Nicolson

scheme.

The volume fraction on the considering face can be determined by a function of neighbor cells

and a flux limiter function 7( r) , which will be introduced in next chapter, shown as:

a :aD+7/(r)(%j (3.6)

Substituting the above equations into equation (3.1) yields

Asatp :zAnba:b +3, (3.7)
nb
AV
A= Ay vy (3.3)
nb
1 .
Ay = EmaX(—Fv ,0) (3.9)
0 }/(r) . AV 0
=D max( R .00 ag=a =t (dh—ds )R |+ af (3.10)
p 2 At
where F V— S— is the volume flux, the subscript P denotes the primary node and nb
denotes the neighbor node.
3.3 Discretization of the momentum equation
The momentum equations can be expressed by
0 -
%+v-(pv¢)=v-(yv¢)+Q¢ (3.11)

where Q, is the source term of momentum equation, and ¢ represents the velocity

components. Then, take a volume integral of the above equation and make use of Gauss

theorem to yield:
Jp%dv+gﬂ(p\7¢) ds [éﬂyV;zﬁ dS+jQ¢dv (3.12)

3.3.1 Unsteady term

The volume integral of the unsteady term can be discretized as
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PP o PRAY (1 o
Jat dv =2 =(¢ - 4) (3.13)

3.3.2 Convection term

The surface integral for the convection term can be approximated by

Uj(p\7¢)-d§=2(pv¢)f-§f =ZFf°=me¢f (3.14)

S

where m; 1s the mass flux through the considering face.

The convective flux on the considering face can be estimated as a function of neighbor

cells by a flux limiter function y ( r) , which will be introduced in the next Chapter.

b = o + V(F)[@] (3.15)

where the subscript D denotes the donor node and A the acceptor node. In our calculation, the
Van Leer scheme will be employed in'the momentum equations.
The form of flux limiter function of Van Leer will be described in Chapter 4. The

convetive fluxes at donor node and.acceptor node ¢an be calculated as:

(3.16)

Po =0, Pn =0 for m; >0
¢D:¢nb9 ¢A:¢P for mf<0

where the subsript P denotes the primary node and nb stands for the neighboring node (see

Figure 3.1).
3.3.3 Diffusion term

The surface integral of the diffusion term is approximated by
D](ﬂV¢)-d§~Zf:(ﬂ°V¢)f S, =ZFP (3.17)
s

Let,
S, =d+(S, -d) (3.18)

where d is a vector pointing in the direction from the primary volume center to the
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neighboring volume center (Figure 3.1). The length ‘a ‘ was considered to be the factor

affecting the diffusion dominancy and numerical stability. Hence, the over-relaxed approach

for d was introduced

[
d==—-=-9, (3.19)
d Sy
The diffusion flux can then be expressed as:
19|S \2
fI=f n n 0 o (& il
FfD= = = (¢nb_¢P)+/ufv¢f'(Sf_d) (3.20)
045
3.3.4 Source term
The volume integral of the diffusion term is approximated by
[Qdv =~ (q,av), (3.21)
\Y

The source terms in the momentum equation:are’pressure, gravitational acceleration and
surface tension terms. In the following, each term will be introduced.
Pressure term

The surface integral of the pressure term is approximated as

fiPdS =3"Prs, =vPav (3.22)

S f '
Gravitational acceleration term

The gravitational acceleration term can be approximated as

J pgdv =gp°Av (3.23)

Surface tension term

The volume integral of the surface term can be obtained from the approximation

1 = . . . .
(Va), =E28f0{f , where «, is the face value obtained by the interpolation from the
f

two neighboring nodes. Thus,
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Va 1 =
\J;GKVadV = oK, (Va), AV = —a{v-[wﬂp EZsfafAv

(3.24)
_—0 S (va)f S
_EZ‘Sf .!W]Zflsfaf

3.3.5 Arrangement of the difference transport equation

The discretized form of the momentum equation is approximated by the following form.

Ady = Zb‘, At +Q, —VPAY (3.25)
where
AV
A = + pp —
P %Anb Pp At
17|S \2
A, = i Si +max(—mf,0)
d Of (3.26)

(o] Av (o} ~ ~0 [0]
+ 0 E¢ +JppAVY + ok (Vg ) AY
3.4 Pressure-velocity coupling of the-P1SO-algorithm
The method of Pressure-Implicit with Splitting of Operators, which is proposed by Issa
[41], is called PISO algorithm. In this study, the PISO algorithm will be used to deal with the
unsteady problems. In the following, the procedure of PISO algorithm is addressed.
Predictor step

The predictor step is to solve the momentum equation using the prevailing pressure field.
AP\7P: :ZAwanT) +(S —VPPOAV) (327)
nb

The above equation solves the velocity field but the mass conservation law has not been

satisfied yet. Dividing the above equation by A, yields

2 Ay
\7;=nb_bb+i_(ﬂ] vP? (3.28)
A A A,

Let
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o z Anb\7n*b + S
Ho . m (3.29)
AP

Then, V. is written as

e e AV 0
Ve, =He _(Kl VP, (3.30)

(13 29

In the equation (3.29), the superscript stands for the value interpolated from the primary

cell P and the neighbor cell C with a weighting factor w; .
First corrector step
The corrector steps are taking care of the mass conservation law of the flow field by

updating the corresponding pressure. The new velocities and the corresponding new pressure

assumed to be obtained from the first cotrector’step are denoted with superscript ** and *.
AN, = AN, +(S - VRAY) (331
nb

Dividing the above equation by “A, andusing the definition of (3.29)

Z A]bvnz =4
v :nb_+i_{A_V] v = HP_(ﬂj VP (3.32)
As A\ A ), A Jo
The first velocity correction equation (V;) is obtained by V'=V"™ -V", P'=P"~P°, and
shown as
Vi AV '
Vp = —(—j VP, (3.33)
A ),

At the cell face, the velocity correction equation can be obtained in a similar manner.

T AV '
Vf = —(A—Jf VPf (334)

p

Therefore, the volume flux correction equation is obtained as
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~ AY g
S —{(A—ijVPf] S; (3.35)

Over-relaxed approach is employed to let S, = d +(§ ; —d )for better numerical diffusion

control.
- 12
: S - .
V= [%jf 5lnbf-‘§f (v -%J{%lwf’ (s, -4d) (3.36)
.
where d =—=———-9,
O - S

Then, replacing the term VP, -5, by P, —P! yields

n

- 12
., |(av \Sf\ , o), [AY (s T
Vi =- [A_pl m(ﬁb _PP)+(A_PJfVPf (8, -d) (3.37)

The first volume flux correction equation ¢an-be presented as

= 12
e e |[AV ‘Sf‘ I\ (e T
vi=vi-| (5] 5 s Jre 6. -d) 338)

The volume flux at the face (V) of the above equation can be obtained by the following.

The relationship between velocity and the pressure at the face can be written as the form of

(3.30) similarly.

e —* AV 0
V,=H 1 _[A_) VP (3.39)
P/t
where
—* :* AV o
-V, +(_J VP, (3.40)
A .

V" and VP? are written by a weighting factor w, and shown as

VP? =w,VP? +(1-w, )VP? (3.41)
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re

Vi = Wf\7n1 +(1—w, )\7_:

Substituting equation (3.40) into equation (3.39) to obtain:
Vi -| v [A_VJ v, (ﬂj vP;
A ). A ).

where [ﬂ] is an average value of primary cell and neighbor cell.
f

BEGEER

Then, the volume flux at the face (V*f ) can be obtained.

e ~ — ~ AV * 0 ~
V- -S; =V, S, _[A_] (VP =VP?)-S;
f

P

v

Q

\Z* '§f _K%j (fo* _foo)'a
f

P

The continuity equation is discretized as

SV =SV 3 =0
f f f

The pressure correction equation is obtained by substituting (3.38) into (3.46).

AF'?PF: = ZA:an,b _Z\Vﬁf +Sp + Sp,
f f

where
AE = ZAnPb
f
— 2
AnP _(ﬂj ‘Sf‘
b A f O~ Sy

SPlz_zv*f
f
AV e -
sPZ:Z[A—j vP; (S, -d)
P /¢

f
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Second corrector step
To enhance the SIMPLE procedure PISO performs a second corrector step. Similarly,

the momentum equation is taken as
nb

where the new velocities and the corresponding new pressure are denoted with superscript
skskk and **.

Similarly, the second velocity corrector can be deduced as

V!
e o ZA (ﬂ] vpr "
" A, A ) (3:49)
f
where V"=V -V V'=V" -V P"'=P" - P’
Again, the volume flow rate corrector s
V)
V" = Zf:Anb b [AVJ VP! |<S (3.50)
t =1 | | A " :
A, A
f
The second corrector step is
AcPl => ALPL +S; +Sp, (3.51)
f
where
APP :ZAnPb
f
- 12
b _— — —
A ¢ Opny S
> AV (3.52)
Sy = —| S
PI A f

22



Although more corrector steps are needed completed satisfy for the conservation law,
two corrector steps are sufficient to have the accuracy of solution within temporal truncation

€1Tor.
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Solution procedure of PISO

Step 1. read the velocities and pressure of the flow field from the old time level.

Step 2.  solve the momentum equation (3.27) to get V"~

Step 3. compute P’ by solving the first pressure correction equation (3.47) to update
velocities and pressure to get V" and P’.

Step4. compute P”" by solving the second pressure correction equation (3.51) to further
update velocities and pressure to get V' and P .

Step 5. if the required time step is achieved, then stop the calculation and output the data

otherwise proceed to the next time step and repeat all over the way from step 1 to step 4.

3.5 Solution procedure

The VOF equation and momentum equation have been discretized. In this section, the
solution procedure of two-fluid flow system will be described.
1. Initialize all variables at initial time t;
2. Solve the VOF equation for volume fraction o by using the old time volumetric fluxes.
3. Update the coefficients of the‘momentum equations. Use the new o values to obtain an
estimate for new viscosity and density.
4. Solve the momentum equation and continue with PISO algorithm.

5. [If the final time step has not been reached, advance to the next time step and return to step

2.
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Chapter4 High Resolution Differencing Schemes

4.1 Introduction

As mentioned above, an effective scheme adopted to solve the two-phase flow must have
some features, such as small diffusion, boundedness, and maintenance of sharp interface. The
schemes which are introduced in the first chapter can not include above features at the same
time. For example, the first-order upwind difference scheme is bounded but too diffusive. The
problem which results from numerical diffusion is very important in the two-fluid system with
the interface between two fluids. The strong numerical diffusion will smear the characteristic
of the step function on the interface. In this chapter, the linear and non-linear scheme will be
presented, and a composite scheme with switching function which can maintain the sharpness

and shape of the interface will be proposed.

4.2 Convective flux of volume fraction

As mentioned above, the digeretization of the VOF equation has been established. In the
calculation process, the value on the considering face of a cell must be approximated. The

approximation of the face value is‘necessary to ensure the accuracy and stable. The face value
o, can be estimation about a function of neighbor cells. Only two neighbor cells should be
considered in the unstructured grid system. Figure 4.1 shows a control volume and its
neighbor cells including the upwind and accepter. The subscript U, D and A denote upwind
cell, donor cell and accepter cell.

In general, the methods, such as the upwind difference scheme (4.1) and the central

difference scheme (4.2), are adopted to approximate this value.
o =ay (4.1)
1
o =5(aA +ap) 4.2)
where o, is the value of volume fraction on the face, « the value of volume fraction of

the donor cell, and «, the value of volume fraction of the accepter cell.
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These two schemes can be associated by the variable of y shown as:

a; =a, +§(aA —ap) 4.3)
The term which has » in the equation (4.3) is called the anti-diffusion correction to the
upwind differencing. When y=1, the equation (4.3) becomes central difference scheme. Then,
this approximation will result in oscillations in the regions where the gradients are large.
Because of the above, the variable y must be limited. The schemes with limitation will
present high accuracy and resolution results which guarantee boundedness. The schemes with
total variation diminishing (TVD) flux limiters were proposed in [23] in order to ensure the
bounded solution. These schemes are implemented in the context of the normalized variables

formulation (NVF) [24] for the development of normalized variables diagram (NVD) schemes

originally. The limiter y 1s defined as a function of the gradient r [26], shown as:

Qp — Oy
r=-b_2u
an—a, (4.4)

where ¢, is the value of volume fraction-of the upwind cell.

The value of « can be normalized as [24]:

g=2"% (4.5)
Op—0y

with the normalization, we can get following equations:

~ _aD—aU

,=——2—4
ap— 0y
a. —Q,

~ f U

af = (4.6)
ap—0y

a, =0

a, =1

Introduce this normalized variable into equation (4.3), and it can be rewritten as following

equation, and ¢, is just the function of o .
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l-a,

a;=ap+y(r) )
&, 4.7)
l-ag,

4.3 CBC and TVD constraints

In order to ensure a bounded value, the high resolution schemes (HRs) [23] must satisfy

where r =

the Convective Boundedness Criterion (CBC) or total variation diminishing (TVD) condition.
The high resolution schemes will prevent the oscillation or wiggles and get more accurate
results around shocks and discontinuities in the two-fluid flow simulation. The Convective
Boundedness Criterion (CBC) which was proposed by Gaskell and Lau [27] can be shown in
the NVD (Fig 4.2):

{df:dD for a,<0 or a,>1 “s)

op<a, <1 for 0<a,<1
Sweby [26] has proposed another constraint which makes the scheme satisfy the TVD

condition and it can be shown as:

7¢(r)
r

0<(

/(1) <2 (4.9)

The above constraints can be illustrated from Fig. 4.2 to Fig. 4.4. Fig. 4.2 and Fig 4.3
present the comparison with TVD constraint and the CBC constraint in the NVD. TVD
constraint in the TVD diagram is showed in Fig. 4.4, and the hatched region is known as the

second-order regime.
4.4 Linear and non-linear schemes

In this section, several high order schemes will be introduced. Generally speaking, these
schemes can be divided into linear and non-linear schemes. First, linear schemes are built and
can be explained by using of the combination of UDS and an anti-diffusion term or by the
flux limiter function y(r). The normalized variable and the flux limiter function of the linear
schemes can be found in table 4.1. Furthermore, these schemes will be plotted in the

normalized variables diagram (NVD) and total variation diminishing (TVD) diagram (see Fig.
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4.5 and 4.6).

UDS and DDS are both the first-order schemes. UDS (Upwind Difference Scheme) is an
unconditional stable scheme and provides a stable solution at any time. However, this scheme
always causes too much numerical diffusion which decreases the accuracy of the simulation.
DDS (Downwind Difference Scheme) results in less numerical diffusion result but unbounded.
The other schemes, such as CDS (Central Difference Scheme), LUS (Linear Upwind Scheme)
and Fromm scheme, are two-order accuracy schemes. The schemes, including QUICK
(Quadratic Upwind Interpolation for Convective Kinematics) and CUS (Cubic Upwind
Scheme), have higher-order accuracy than above schemes. In the figure 4.5 and 4.6, the lines
of second- and third- order schemes pass by the point (0.5, 0.75) in the NVD and the point (1,
1) in the TVD diagram. These linear schemes except the upwind difference scheme are not
satisfied Convective Boundedness ,Criterion (CBC). High resolution schemes are developed
by changing the high-order schemes into'a non-linear one which satisfy the CBC. These
non-linear schemes can be divided tweo-categories. SMART and STOIC schemes are referred
to NVD scheme, and MUSCL, SUPERBEE, OSHER and Van Leer schemes can be referred
to TVD scheme. In present paper, two modified NVD schemes called M-MUSCL (Moditied
MUSCL) and M-BDS (Modified Bounded Downwind Scheme) will be developed to simulate
the indicator function of the volume fraction. The normalized variable and the flux limiter
function of these non-linear schemes can be summarized in table 4.1, and Fig. 4.7 to 4.16

show the NVD and TVD diagrams of these non-linear schemes.

4.5 Composite scheme with switching function

Solving the face value of the volume fraction by using only one high resolution scheme
can not give consideration to both less numerical diffusion and non-deformed interface. The
high resolution schemes preserve the shape of the interface but can not reduce the numerical
diffusion. The compressive schemes are able to reach less numerical diffusion but let the

interface deformed. Most composite schemes switch the compressive scheme and high
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resolution scheme with a switching function about the slope of the interface in order to
overcome the above problem. The method about composite scheme has been used in the
former investigations. The key issue is how to switch schemes not when. The switching
function has the basic on the angle between interface and direction of motion. It will decide
which kind of the scheme to calculate the normalized face value of the volume fraction. If the
interface is perpendicular to the cell face, a high resolution scheme would be appropriate. If
the interface is parallel to the cell face, a compressive scheme would be appropriate. In
general, the angle between the interface and control volume face is between these two cases.

The normalized face value can be written as:

oy = df (compressive)l// (Hf ) + df (HR) (1 4 (9f )) (4 10)
where (t9f ) is the switching function,between zero and unity, and

o, - 5 Vafﬂ

= cos W, 0° <0, <180° (4.11)

The well known composite schemes, such as HRIC of Muzaferija [33] and CICSAM of
Ubbink [35] will be introduced. The composite of modified MUSCL and modified BDS will
be also developed in this section.

CICSAM

In order to reduce the numerical diffusion and keep the sharpness of the interface, the
compressive scheme called Hyper-C has been proposed by Leonard [42]. In general, the most
compressive scheme is very suitable to the two-fluid flow with moving interface, but the
Hyper-C may sometimes make the interface deformed or wrinkled. Therefore, Ubbink uses
the ULTIMATE-QUICKEST (UQ) scheme to preserve the shape of the interface. The UQ

(4.12) and Hyper-C (4.13) scheme (Fig. 4.17) can be shown as:
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ap, a,>lora, <0

a. = 8Coa, +{1-Co |6, +3 o )
f min{ P ( X P ),min{l, %o }}, 1>a, >0 (4.12)

8 Co
apy, ap=2lora, <0
a; = o
f min(l,gD} 0<d, <1 (4.13)
0]

The Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) scheme

is developed by using the composite of the Hyper-C and UQ scheme with switching function

y/(&f ) (Fig. 4.18) given as:

.| cos(26;)+1
w(6;)=min BT — 1 (4.14)
Then, the CICSAM scheme can be written as:
&f(CICSAM) = 5f(HYPER—C)‘//(0f )"' &f(UQ) (1 - V/(ef )) (4.15)

where the switching function f (Qf ) is.shownas (4.14).

HRIC

This composite scheme, like the above method, switches the upwind difference scheme

and bounded downwind scheme with the switching function (Fig. 4.19) shown as

w(6,)=|cos(8))| (4.16)
Then, the HRIC scheme can be shown as:

(BDS)W(Hf )+ &f(UDS)(l - l/l(ef )), Co<03
f(BDS)l//('gf )+ o (UDS) (1 - l//(ef ))+

B

At (HRriC)

l
f—_/;_\
N

]()_7 —Co»03<Co0<0.7 (4.17)

ay (BDS)W(ef )+ & { ups) (1 - ‘/’(ef ))_ &5 uos) 0.7-03

Co>0.7

Rl

f(UDS) >

Composite of modified MUSCL and modified BDS
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In present paper, the development of a new composite scheme switches the modified
MUSCL and modified BDS scheme posed in the above chapter with the switching function

(Fig. 4.20) given as:

£(0, )=|cos* (0,)] (4.18)
This switching function has been proposed in [34], and this method can be formulated as:

ap = &f(M—BDS)V/(Hf )+ O ¢ (-muscL) (1 - V/(Hf )) (4.19)

The composite scheme of modified MUSCL and modified BDS will be used to simulate cases

in our investigation.
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Chapter5 Results and Discussion

5.1 Introduction

The method of high resolution schemes in volume-of-fluid method for two-fluid flow has
been developed in the previous chapter. In this chapter, four cases will be tested, and the
accuracy of this method will be presented by the comparison between the numerical and

theoretical solutions.

5.2 Uniform density flow

In this section, the test case focuses on the advection of interfaces of different shapes. We
will demonstrate the accuracy of high resolution schemes in the volume-of-fluid method by
placing two different hollow scalar fields in a uniform and oblique velocity field. The initial
distributions of the two scalar fields are a hollow square, which coincides with the coordinate
axes, and a hollow circle. The side lengths‘of ©uter and inner interfaces of the hollow square
are 0.8 and 0.4. The maximum and minimum diameters of the hollow circle are 0.8 and 0.4.
The velocity field (u,v)=(2,1) (F1g. 5.1) is-€onstant in the full computation domain which is a
4x4 square. The centers of these two scalar fields are at (0.8,0.8) initially and they
propagate to (2.8,1.8) after one second. The uniform and quadrilateral mesh with 100x100
grids and triangular mesh with 22478 cells (Fig. 5.2) will be used in the calculation process.
The time step is chosen to maintain a maximum mesh Courant number of 0.25 and 0.75.

For the purpose of comparison the solution error between the exact and numerical

solution can be given as [32]:
> el av, o Av,|
zia=ll1 cell OZiOAVu

where " is the calculated solution after n time steps, «

E - (5.1)

% the exact solution, and «° the

initial condition. The exact solution of this case should be advected with no changing of the
shape and it shown in figure 5.3.
From the figure 5.4 to 5.7, the final shapes of these two hollow scalar fields by

32



calculating the indicator function with different high resolution schemes are presented.
Contours display the distribution of the value of volume fraction from 0.05 to 0.95 with 10
levels. The errors are summarized from table 5.1 to 5.4.

The results of Co=0.75 is more diffusive than Co =0.25, and the numerical diffusion
causes the interface of hollow shapes smearing. The upwind difference scheme can not be
used to simulate because it is too diffusive. Although bounded downwind and downwind
difference schemes can get higher compressive results, the interface is broken in high Courant
number. The modified bounded downwind scheme which is a high compressive scheme can
maintain the sharpness of the interface and the error is less than other schemes. It will be an
efficient scheme to simulate two-fluid flow in the low Courant number, but the interface may
be deformed in the high Courant number. The composite scheme with switching function will
be adopted to solve the above problem.

The results of composite schemes used to-solve this case will be presented from Fig 5.8
to 5.11. The errors are shown from table’5.5.10.5.8. The CICSAM scheme can retain the sharp
interface with less numerical diffusion in low Courant, but the result in high Courant number
losses the accuracy due to the numerical diffusion. The HRIC scheme may reach the small
error, but the shape of interface will be deformed. The composite of MUSCL and SUPERBEE
get the nice shape of the interface in any Courant number, but the interface can not maintain
its sharpness. Therefore, the composite of modified BDS and modified MUSCL will be
adopted in our simulation. This scheme can get the smallest error, maintain the sharpness of

interface and keep the shape of the interface.
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5.3 Shear flow

The problem about maintaining the initial shape in the two-fluid flow will become rather
complex when the deformation of the interface is considered. There is a shear velocity field in
the real two-fluid flow. Therefore, we must test our numerical method in the shear flow. In
this section, a velocity field shown as (5.2) will be used to simulate this situation ina 7 x7z
computational domain [32]. Two different meshes will be employed in calculations. One is
the uniform and quadrilateral mesh with 100x100 grids. The other is the triangular mesh

with 22494 cells (Fig. 5.13).

V =sin Xcos yi+cosXsiny | (5.2)

Fig 5.12 shows that a shear velocity is enforced on a circle distribution of volume
fraction. The initial position of the circle is (0.57,0.2(1+ 7)) with a radius of 0.27. The
circular scalar field will be convected by the above. velocity field for 2, 4, 8 and 16 seconds,
and then the velocity field is reversed for the.same time. Theoretically, the circular volume
fraction distribution will not be-deformed.in_the above calculation process. Errors of the
solution can be defined as (5.1) and‘are.discussed in the situation that Courant number equals
0.25 and 0.75. The results, which solve the VOF equation with HRIC, CICSAM, the
composite of MUSCL and SUPERBEE, and the composite of modified BDS and modified
MUSCL schemes, before reversing and at the end of calculation show in Fig 5.14 to 5.29.
Solution errors of above schemes together with results from [43] are presented in Fig. 5.30 to
5.33.

In the shear flow, CICSAM scheme is a more accurate one on the quadrilateral mesh
when the Courant number equals to 0.25, but it can not be simulated in high Courant number
due to large errors. HRIC scheme maintains the sharpness of the interfaces by the high
compression. This will cause the shape of interface deformed significantly. The composite of
MUSCL and SUPERBEE scheme results in too much numerical diffusion which smears the
interface and can not present a sharp interface. Therefore, the composite of modified MUSCL
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and modified MUCSL can present the best results of these methods, even on triangular
meshes. It can be used in high and low Courant number and reach less errors. In following
cases, we will use this scheme to simulate the broken dame and filling process in an open tank

and compare with other schemes.
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5.4 Broken dam

The broken dam case is usually used to demonstrate the accuracy of the numerical model
in the two-fluid flow because the initial flow distribution is very simple. In our thesis, this
case will be used to test our numerical model and the composite scheme called the composite
of modified MUSCL and modified BDS scheme. Many numerical models about broken dam
have been proposed in many literatures. Some experiment data of the broken dam have been
presented by Martin and Moyce [44]. In order to measure the speed of the leading edge and
the reduction of the column height, one accurate experiment has been posed by Koshizuka
[45]. In the experiment, the tank is a space with a base length of 0.584m. The water column
with the height of 0.292m and the base length of 0.146m is confined between a vertical wall
and the gate (shown in Fig. 34). The gate is suddenly remove at t=0. The water column starts
to collapse and moves to the right wall:-When the leading edge hits the right wall, the flow
starts to fall back due to the gravity. The experimental-result of [45] is shown in Fig. 5.18.

Our computational domain-is a rectangle with a-base length of 0.584m and a height of
0.340m. Three kinds of meshes aré employed in our calculation. The first is the uniform and
quadrilateral mesh with 48x28 and 120x70 grids. The second is the non-uniform and
quadrilateral mesh with 56x36 grids (Fig. 36). The third is the triangular mesh with 4506
and 12354 cells (Fig. 37 and Fig. 38). Non-slip boundary conditions are applied to the bottom
and sides of the tank. The top boundary is set as a fixed pressure outlet. For the fluid 1, the
density is 1000 and the viscosity is 0.001. For the fluid 2, the density is 1 and the viscosity is
0.00001. The two-dimensional section with interface profile, the volume fraction contour and
the velocity field is shown in Fig. 5.39 to 5.43. The dimensionless positions of leading edge
and reduction of column height are plotted as functions of the dimensionless times in Fig.
5.44 and Fig. 5.45, and compared with the experiment. The numerical diffusion will occur
when the flow returns. The numerical diffusion causes the front of wave smearing. The

phenomena of 48x28 mesh is more serious than 120x70 mesh. In general, the broken
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case solved by our scheme on the quadrilateral or triangular mesh can present a result which
maintains the sharp interface. In the Fig. 5.44, the speed of the leading edge in fine mesh is
faster than coarse mesh. However, the situation is not very obvious. In Fig. 5.45, the results

are quite close to the experiment data and the simulation of CICSAM of Ubbink.
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5.5 Filling process in an open tank

A filling process in an open tank will be simulated by the composite of modified
MUSCL and modified BDS scheme in this section. The tank is a square and vertical plate
with a gate at the bottom. Initially, the tank is filled with air (Fig. 46). The water enters the
tank through the gate and fills the tank as the time pass by.

The computational domain of the tank in our simulation is a square space with side
length of 0.152m. The height of the gate is 0.038m. The flow is considered to be
two-dimensional with the assumption of a laminar and incompressible flow under the body

and surface tension force. The properties of the fluids are shown as:

Pu= 998kg/m’ p, = 1.205kg/m’

t, = 0.99x10° kg/ms g, = 1.81x10° kg /ms 53)
o =0.072nt/m

g =9.808m/s’

The inlet velocity of the gate is given by some approximation from [46]. The volume of
the water inside the tank can bé evaluated from the-photographs by using the curve fitting

method. The volume inside the tank‘can:be written-as a function depended on time, shown as:

Q(t) = at +bt?

R 5 (5.4)
where a=3.207x10", b=-6.678x10"
which implies:
dQ(t
RO _y, A (5.5)
dt
and
U, (1)=0.844-0.351t (5.6)

where A can be considered as the height of the gate in two-dimension, Q is the volume inside

the tank, t is the calculational time, and U, 1is the inlet velocity depended on t.

The boundary conditions of walls are treated as non-slip condition and the top of the tank

is a pressure fixed outlet. The meshes used in the calculation involve the uniform and
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quadrilateral mesh with 28x28, 40x40 and 80x80 grids and the triangular mesh with
902, 2024 and 3584 cells (Fig. 47, Fig. 48 and Fig. 49).

Fig 5.50 to 5.55 shows the volume fraction distribution with time evolution. The counter
is 0.05 to 0.95 with 10 levels. The results show that the flow with the particular velocity
enters the tank as a wall jet along the bottom. When the front of the flow touches the right
wall, the high pressure gradient will be introduced into the vicinity of stagnation point. This
effect will make the flow jump along the vertical wall. To continue, the flow falls back and
forms a gravity wave in the x-direction. The front of flow goes to the left wall along the x-axis
and jumps again when the front touches the vertical wall. The tank will be filled by degrees.
The volume fraction distribution in the 28x28 and 40x40 mesh produces more numerical
diffusions on the interface. The interface in the 80x80 mesh is sharper than them. It shows
that the finer mesh can present well results for the filling process of two-fluid flow. The
results also show that our code can do well on the triangular mesh. The position of the leading
edge at the bottom on the quadrilateral.and triangular mesh is plotted in Fig 56.

Then, the figure 5.57 shows the water volume inside the tank. It presents the data in
quadrilateral and triangular meshes from our simulation and the data from the inlet condition
which is mentioned in (5.6). This figure can demonstrate the accuracy of our numerical
method which is applied in the filling process in an open tank and show that our numerical

result is very close to the data in [46].
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Chapter6 Conclusion and Future Work

A method for capturing the interface of two-fluid flow has been present. The interface
movement is solved by an indicator function of the volume fraction. The composite scheme is
used to solve the advection equation of the volume fraction. The aim of this study is to
develop a composite scheme with switching function in volume-of-fluid method for two-fluid
flow. The scheme switches smoothly between the modified MUSCL and modified bounded
downwind scheme. Its results of test cases have compared with the results of other schemes.
It can not only maintain the sharpness at the interface but also enhances the accuracy, even on
the triangular mesh. In the future work, there are two missions in order to improve our
numerical method. First, the volume-of-fluid method is usually used in three-dimension
system because many actual applications, such as casting process, are applied in
three-dimensions. Second, there are a lot of problems about the heat transfer in the two-fluid

flow. How to remain the sharpness at the interface is a quite significant problem.
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ap 2lora, <0,a, =a,
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Table 4.1 The NVD equation and flux limiter function of linear and non-linear difference

schemes
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Scheme

Hollow circle

Hollow square

UDS 1.2274 1.2568
CUS 0.4223 0.5156
DDS 0.3245 0.2074
BDS 0.2362 0.3399
CDS 0.6027 0.6933
MUSCL 0.4943 0.5802
SUPERBEE 0.3123 0.4271
M-MUSCL 0.4623 0.5520
M-BDS 0.1283 0.1544

Table 5.1 Errors of different schemes in Co=0.25

(quadrilateral mesh)

Scheme Hollow circle Hollow square
UDS 1.2281 1.2566
CusS 0.5392 0.5971
DDS 0.7116 0.6572
BDS 0.2258 0.3523
CDS 0.7011 0.7599

MUSCL 0.5190 0.5935

SUPERBEE 0.3171 0.4476
M-MUSCL 0.4957 0.5639
M-BDS 0.2818 0.2408

Table 5.2 Errors of different schemes in “Co =0.75

(quadrilateral mesh)

Scheme Hollow circle Hollow square
UDS 1.0846 1.0418
CUS 0.3469 0.3402
DDS 0.2587 0.2415
BDS 0.1797 0.1806
CDS 0.4305 0.4169

MUSCL 0.3460 0.3388

SUPERBEE 0.2282 0.2246
M-MUSCL 0.3419 0.3349
M-BDS 0.1745 0.1635

Table 5.3 Errors of different schemes in Co =0.25 (triangular mesh)
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Scheme Hollow circle Hollow square
UDS 1.0846 1.0417
CUS 0.3809 0.3732
DDS 0.5324 0.5618
BDS 0.1787 0.1828
CDS 0.4653 0.4472

MUSCL 0.3638 0.3565

SUPERBEE 0.2378 0.2342
M-MUSCL 0.3596 0.3528
M-BDS 0.1819 0.1684

Table 5.4 Errors of different schemes in Co=0.75 (triangular mesh)

Scheme Hollow circle Hollow square
CICSAM 0.1267 0.1280
HRIC 0.3259 0.3714
SUPERBEE+MUSCL 0.3812 0.4429
M-BDS+M-MUSCL 0.1173 0.1666

Table 5.5Errors of different

compositejschemes in*Co =

0.25 (quadrilateral mesh)

Scheme Hollow circle Hollow square
CICSAM 1.0000 1.0041
HRIC 0.2276 0.2438
SUPERBEE+MUSCL 0:4031 0.4612
M-BDS+M-MUSCL 0.1889 0.2521

Table 5.6Errors of different

composite schemes in Co =

0.75 (quadrilateral mesh)

Scheme Hollow circle Hollow square
CICSAM 0.1556 0.1514
HRIC 0.1813 0.1869
SUPERBEE+MUSCL 0.2697 0.2660
M-BDS+M-MUSCL 0.1652 0.1641

Table 5.7Errors of different composite schemes in Co=0.25 (triangular mesh)

Scheme Hollow circle Hollow square
CICSAM 0.2090 0.2055
HRIC 0.2111 0.1793
SUPERBEE+MUSCL 0.2841 0.2824
M-BDS+M-MUSCL 0.1920 0.1734

Table 5.8Errors of different composite schemes in Co =0.75 (triangular mesh)
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Figure 1.1 The method of two-fluid flow (a) Lagrangian (b) Eulerian scheme
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Figure 1.3 Maker and cell method
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Figure 1.4 Line techniques
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Figure 1.5 Donor and accepter.cell configuration
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Figure 2.1General form of the conservation law
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Figure 2.2 VOF method on the Eulerian grids
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Figure 2.4 Fluid arrangements and the sign of the curvature
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Figure 3.1 Illustration of the primary cell P and the neighbor cell nb with a considering face
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Figure 4.2 The CBC constraint in NVD
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Figure 4.4 The TVD condition in TVD diagram

58



DDS: Downwind Difference Scheme

CDS: Central Differnce Scheme

QUICK: Quadratic Upwind Interpolation for
Convective Kinematics
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CUS: Cubicupwind difference scheme
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Figure4.6 Linear schemes in TVD Diagram
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Figure 4.15 Modified BDS
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Figure 4.17 The NVD of (a) HYPER-C and (b) UQ (Co=0.5)
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Figure 4.18 The switching function of CICSAM scheme
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Figure 4.19 The switching function of HRIC scheme
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Figure 4.20 The switching function of the composite of M-MUSCL and M-BDS
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Figure 5.1 (a) The constant velocity ficld and-initial position of hollow circle
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Figure 5.1 (b) The constant velocity field and initial position of hollow square
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Figure 5.2 Triangular computational mesh in uniform density flow (22478 cells)
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Figure 5.3 (a)The exact distribution of the hollow circle

Figure 5.3 (b) The exact distribution of the hollow square
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Figure 5.4 The final shape of hollow circle from different schemes in quadrilateral mesh
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Figure 5.5 The final shape of hollow square from different schemes in quadrilateral mesh
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Figure 5.6 The final shape of hollow circle from different schemes in triangular mesh
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Figure 5.7 The final shape of hollow square from different schemes in triangular mesh
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Figure 5.8 The final shape of hollow circle from different composite schemes in quadrilateral

mesh
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Figure 5.9 The final shape of hollow square from different composite scheme in quadrilateral

mesh
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Figure 5.10 The final shape of hollow circle from different composite scheme in triangular

mesh
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Figure 5.11 The final shape of hollow square from different composite scheme in triangular

mesh
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Figure 5.14 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.15 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.16 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.17 The volume fraction distribution in shear flow with Co=0.25 (quadrilateral mesh)
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Figure 5.18 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.19 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.20 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.21 The volume fraction distribution in shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.22 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh)
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Figure 5.23 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh)
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Figure 5.24 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh)
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Figure 5.25 The volume fraction distribution in shear flow with Co=0.25 (triangular mesh)
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Figure 5.26 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh)
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Figure 5.27 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh)
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Figure 5.28 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh)
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Figure 5.29 The volume fraction distribution in shear flow with Co=0.75 (triangular mesh)
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Figure 5.31 Comparison of errors in the shear flow with Co=0.75 (quadrilateral mesh)
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Figure 5.32 Comparison of'errors in the shear flow with Co=0.25 (triangular mesh)
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Figure 5.33 Comparison of errors in the shear flow with Co=0.75 (triangular mesh)
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Figure 5.34 Schematic of the broken dam
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Figure 5.35 Experimental results of a collapsing water column by Koshizuka
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Figure 5.36 Schematic representation of the non-uniform and quadrilateral mesh with 56x36

grids in broken dam
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Figure 5.37 Schematic representation of the triangular mesh with 4506 cells in broken dam

Figure 5.38 Schematic representation of the triangular mesh with 12354 cells in broken dam
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Figure 5.39 Numerical results of the broken dam on the uniform and quadrilateral mesh with

48x28 grids

98



t=0.2s

t=0.1s

t=0.6s

t=0.4s

Os

t=1.

8s

t=0

1 results of the broken dam on the uniform and quadrilateral mesh with

1Ca

5.40 Numer

igure

F

120x70 grids

99



t=0.2s

t=0.1s

LY

N Y
NN i

t=0.6s

t=0.4s

t=1.0s

t=0.8s

Voo

S I A

R
Lo - o - - - & &

1

- --CTT

Lo - - - - -
oo -co:o:

Figure 5.41 Numerical results of the broken dam on the non-uniform and quadrilateral mesh
with 56x36 grids
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Figure 5.42 Numerical results of the broken dam on the triangular mesh with 4506 cells
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Figure 5.43 Numerical results of the broken dam on the triangular mesh with 12354 cells
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Figure 5.44 The position of the leading edge in broken dam
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Figure 5.45 The height of the collapsing water in broken dam
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Figure 5.46 Schematic representation,of the filling process in an open tank
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Figure 5.47 Schematic representation of the triangular mesh with 902 cells in filling process
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Figure 5.48 Schematic representation of the triangular mesh with 2024 cells in filling process
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Figure 5.49 Schematic representation of the triangular mesh with 3584 cells in filling process
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Figure 5.52 The volume fraction distribution and velocity field of the filling process on the

uniform and quadrilateral mesh with 80x80 grids
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Figure 5.53 The volume fraction distribution and velocity field of the filling process on the

triangular mesh with 902 cells
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Figure 5.54 The volume fraction distribution and velocity field of the filling process on the

triangular mesh with 2024 cells
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Figure 5.55 The volume fraction distribution and velocity field of the filling process on the

triangular mesh with 3584 cells
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Figure 5.56 The position of leading of the filling process in the open tank
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Figure 5.57 The water volume inside the tank
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