
Preface

It is in 1997 that I had the first contact with the Bose-Einstein Condensation
and right away I was crazy for it. It is so cool for me that men can cool atoms
and catch them ! In that period I attained all of Prof. Chu’s speech in Taiwan
though I didn’t catch the English and the physics most of time. I asked for a
poster with the print of the optical molasses and Chu. It’s the first and the
only one poster I have. I went on listening to the talks about ’Laser Cooling
and Trapping’ and expected someday I can see the atom too.

Before the successful cooling and trapping technology, we see the skin of
objects because men can only investigate the surface of a material. Actually it
is impossible for us to precisely understand the mechanism of behaviors of great
amount particles. The manipulation of atoms by light gives us an opportunity
to observe the microscopic dynamics even in femto-second time order.

The most spectacular application of laser trapping and atom trapping was
recognized on the Nobel prize in 2001. The realization of Bose-Einstein con-
densation fulfills a 70-year-old dream since the prediction of Einstein in 1925.
Physicists call BEC ’The Final Grail’ of science development. And the con-
densate is suggested to be the fourth phase of matters. The achievement of
Bose-Einstein condensation is one of the highlight that men can control the po-
sition and the velocity of atoms. We can coherent control the quantum states
of atoms and molecules. We can control spontaneous emission, control cold
collisions, control the many-body macroscopic wavefunctions. It seems that we
are going to be able to unravel all puzzles in the low-energy physics.

The dynamics of the Bose-Einstein condensate can be described through the
giant order parameter. The weakly interaction between atoms gives rise to the
nonlinearity in the system which enriches investigations into the cold world.
With a macroscopic population in the lowest quantum state, cold atoms in
the condensate move collectively and show the coherence and the superfluidity.
These are very important features below the critical temperature. Therefore in
the thesis, we focus on the topics in studying coherent and superfluid behaviors
of the condensate.

In chapter one, I make a brief introduction of the route to Bose-Einstein
condensation. For experimentalists it is a long and difficult way to develop and
improve the cooling and trapping technology. Now, BEC can be reached in few
minutes and moreover, in few seconds with all-optical set-up. So it is necessary
to understand some important steps in the cooling and trapping processes.

In chapter two, I will introduce one of the nature of the condensate: the
coherence, from a theoretical point of view. From the second quantization de-
scriptions, we show the order parameter is a coherent state with a definite phase.
Then, by reviewing the interference experiments we see the evidence of coher-
ence. In addition to photons of lasers and cooper pairs in superconductors,
the manifestation of coherent property in the neutral atomic system provides
more opportunities in further researches. It will be great if we can save and
extract the phase information randomly. Combine with concept of adiabatic
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exciting process, we design a model to measure an accumulated phase in the
time-dependent process. It’s very cute that the additional phase can be directly
read-out from the interference patterns.

In chapter three, we discuss another nature of the condensate: the superfluid.
The historical review of discovery and survey on the superfluid in Helium-4 gives
us a better understanding of Two-fluid model, Landau’s criterion of the critical
velocity, and Bogoliubov’s approach to explain the excitation spectrum. Follow
Landau’s idea, we know an ideal Bose gas is not the superfluid. The weakly
interaction again plays an important role on determination of fundamental prop-
erties of the condensate. By loading the condensate into an optical lattice, we
can investigate the transport property of the condensate. With a little boost,
atoms will collectively flow through the periodic wells. By using the band struc-
ture method, we find while the group velocity of the flow is larger than the
sound velocity, thermal atoms will be created to destroy the superfluid, and the
system enters the Landau instability regime. However, if the effective mass of
the condensate becomes negative, the condensate will become unstable against
the exponential growth of thermal atoms. In this dynamical instability regime,
the superfluid model will totally breakdown. Through the study on instability
occurrence in the quantum transport process of a condensate, we do observe
and prove Landau’s theory in BEC, and find the periodic potential provides the
roughness to destroy the superfluid.
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Chapter 1

Making Atoms a
Bose-Einstein Condensate

The Basic idea of Bose Einstein condensation (BEC) goes back to 1924 when
Bose proposed the concept of statistical description on a new derivation of
Planck’s radiation low to the light quanta. Then Einstein presented in 1925
a similar treatment for the ideal indistinguishable particles. He predicted the
occurrence of a phase transition of noninteracting atoms. The phase transition
associated with the condensation of atoms in the lowest energy state and, ir-
relevant to interactions between atoms, is purely the consequence of quantum
statistical effects. But for a long time there are no practical verifications of
predictions. It’s not until the discovery of superfluidity in liquid helium that
efforts to realize BEC in He4 comes to bloom.

However, the quantum statistical properties in description of route to BEC is
valid only for gases. The first BEC is realized in 1995. Before 2001 there are five
groups that successfully create condensates[1, 2, 3, 4, 5]. And over 150 groups
world-wide are working on BEC in cold atomic gases. Fig. 1.1 shows the evidence
of creation of the condensate for Na. When T << Tc ∼ 2µK where most of
atoms occupy the lowest quantum state and have a very narrow momentum
distribution. We have not only to sit and enjoy the beautiful ’product’ but
attribute great success to the efforts on development of cooling techniques. So
in the next section, we try to simply and briefly introduce the complex cooling
processes. Detailed references are available in Ref. [6].

1.1 Very Cold Indeed

In general there are three ’stops’ in the cooling processes[7]:

• Doppler molasses:
An optical molasses is usually constructed by six intersecting beams tuned
below resonance to reduces velocity of atoms at beam intersection. The
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Figure 1.1: The density distribution of expanded clouds of Na atoms at different
temperatures. When T > Tc the distribution of the cloud in momentum space
represents uniformly thermal expansion. When T << Tc it shows the evidence
of formation of the condensate where a sharp and nonuniform distribution in
momentum space represents a macroscopic occupation of a low quantum state
and manifestation of the uncertainty principle. From web page of W. Ketterle
in MIT group.
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Doppler effect is demonstrated in preference of absorption of the photon
counter-propagating to an atom. As shown in Fig. 1.2, when an atom with
velocity v absorbs a photon with momentum p = h̄k, the atom is slowed
by h̄k/m according to the momentum conservation law. After re-radiation
randomly, on average the atom is slowed down. However, the molasses can
not trap atoms. Even cold atoms are free to wander around out.

• Magneto-optical trap:
In order to confine atoms, we add a magnetic field gradient. As shown in
Fig. 1.3, two coils with currents flowing in opposite directions generate a
linear field gradient to provide a restoring force that pulls atoms back to
the center. A defect at the origin can be made up by adding a rotating
bias field. In this way, atoms are trapped in a time-averaged orbiting
parabolic potential.

The trapping mechanism in the magnetic trap originates in kicking out
hot atoms of high zeeman energies. When Zeeman shifted energy levels
are denoted by

UZ = µ|B|,

where µ is the magnetic dipole moment and for hyperfine level F , sub-level
mF ,

µ = µBmF g

where µB is the Bohr magneton and g is Lande g factor. So Fig. 1.4 shows
for Na, energies of {F = 2,mF = −1, 0, 1, 2} states increase when B field
increases. They are ”week-field seeking” states that can be confined in a
magnetic field minimum.

• Evaporative cooling:
The optical cooling can reduce the temperature to orders about milli-
Kelvin, but it’s not cold enough. By tuning the frequency of the RF
radiation we can make a hole at the side of the trap. Only atoms with
energies less than that of the trap would stay in. The RF radiation can
flip the spin state of an atom from low-field seeking one to the high-field
seeking state, therefore expelling hot atoms from the trap. After the hot
atoms are forced out, the rest re-thermalizes through elastic collisions to
a lower temperature. After this process, the temperature can be lowered
to at least micro-Kelvin, cold enough for creating a condensate.

So what is the temperature of atoms cooled in each steps? According to
the Fig. 1.5 the laser cooling process lowers atoms to about 50 µK, and T goes
down to 500 nK after the evaporative cooling process. Actually the results of
evaporative cooling from the first three groups that achieved BEC are:

• Rice: for Li7, N = 0.1 × 106, T = 0.4 µK.
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Figure 1.2: The optical molasses is constructed by focusing six lasers on atoms.
Due to the motion of atoms, the lase frequency is detuned by the Doppler
effect. When an atom with velocity v absorbs a off-resonance photon with energy
Elaser = Eres − ∆Doppler and momentum p = h̄k, the atom is slowed by h̄k/m
according to the momentum conservation law. After re-radiation randomly, on
average the atom is slowed down.
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Figure 1.3: Two magnetic coils provides a linear field with B = A
√
ρ2 + 4z2.

The presence of the B field causes the zeeman shift of magnetic quantum states
and provides a trapping force to confine atoms. When the atom moves to right,
it prefers to absorbs a photon with σ−. When it falls to the ground state by
spontaneous emission, an atom is effectively driven towards the center. From
R. Roth in GSI group.
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Figure 1.4: The magnetic dipole moment of the atom interacting with the B
field induces a spatial dependent zeeman shift. Through energy levels of Na in
a magnetic trap, we see only {F = 2,mF = −1, 0, 1, 2} states are ”week-field
seeking” states that can be confined in a magnetic field minimum.

Figure 1.5: A table of temperatures and phase space densities of cold atoms.
When BEC is reached, almost all atoms populate in the lowest quantum state
and the phase space density goes up to 107. On the other hand, the particle
density is only 1015 cm−3, much less than molecules in the air at room temper-
ature and atmospheric pressure with density of 1019 cm−3, and the density in
liquids or solids of order of 1022 cm−3. BEC is thus a dilute system.
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• MIT: for Na23, N = 0.7 × 106, T = 2 µK.

• JILA: for Rb87, N = 4 × 106, T = 90 µK.

Compared with the temperature of the surface of the sun T = 3000 K, the BEC
temperature in order of nano-Kelvin makes the condensate the coldest matter
in the world!

While the chilly temperature serves as a macroscopic quantity giving the
information of BEC, a very important symbol behind that guides settings of
experimental parameters is the microscopic phase space density ρ. The condition
to BEC requires ρ > 2.612. We will discuss it from the statistical properties
of an ideal Bose gas in the next section. And then we can obtain more precise
understandings of static properties of BEC.

1.2 Properties of an Ideal Bose Gas

It’s convenient to investigate statistical properties for Bose gases from view point
of the grand canonical ensemble theory[16]. With partition function Z we can
evaluate all thermodynamical quantities of the system via the grand potential

Ω = −kBT lnZ. (1.1)

For an ideal Bose gas in the box of volume V the grand canonical potential is

Ω = kBT
∑

k

ln(1 − e(µ−εk)/kBT ), (1.2)

where µ is chemical potential and εk = h̄2k2/2m is the single particle energy
state. By using N = −∂Ω/∂µ, the total number of particles is given by

N =
∑

k

1
exp[(εk − µ)/kBT ] − 1

. (1.3)

In the thermodynamical limit V → ∞, and we rewrite above equation in an
integration form. By calculating number of states in a unit shell of a k-space
sphere, we obtain 4πk2dkV/(2π)3 = V g(ε)dε, where g(ε) = m3/2ε1/2/

√
2π2h̄3 is

the density of state. Then the particle density can be written as

n =
∫
dε

1
eβ(ε−µ) − 1

g(ε), (1.4)

where β = 1/kBT . Set z = eβµ and use the Gamma function the integration
can be analytically calculated. And the particle density is expressed as

n =
mkBT

2πh̄2

3/2

g3/2(z), (1.5)
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where g3/2(z) is defined by

g3/2(z) =
∞∑

p=1

zp

p3/2
.

The series is convergent at z = 1 and g3/2(1) = 2.612 can be calculated from
the Riemann zeta function. By using small z expansion the chemical potential
is approximated to

µ � 3
2
kBT ln(

mkBT

2πh̄2n3/2
). (1.6)

From Eq. 1.3 we know that the phase transition occurs as µ becomes zero, if we
neglect the zero-point energy and set the lowest state energy as zero. Therefore
we define the BEC temperature

Tc =
2πh̄2

kBm
(

n

2.612
)3/2. (1.7)

Figure 1.6: The fraction of particles in the condensate of the function of T:
N0/N = 1 − (T/Tc)3/2. Here we consider the noninteracting gas in the box of
volume V . If atoms are confined in an isotropic harmonic trap, the relation of
the fraction and the temperature becomes N0/N = 1 − (T/Tc)3.

We mentioned that the phase space density must be increased to achieve
BEC. The phase space density is defined as the number of particles contained
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Figure 1.7: Heat capacity of an ideal Bose gas. At Tc the heat capacity has a
cusp, or a discontinuity in the slope. We say that a first-order phase transition
occurs at Tc. At any nonzero temperature below Tc, we have a mixture of the
normal and condensate phases.

within a volume of cubic length of the de Broglie wavelength λdB = (2πh̄2/mkBT )1/2.
So we have

ρ = nλdB
3/2 = 2.612 (1.8)

as the condition for BEC. But what happens if we cool atoms below Tc? Einstein
realized that as long as µ becomes zero, the number of particles in the lowest
quantum state becomes infinite. So we assume a macroscopic number of atoms
N0 occupy the ground state, and we rewrite Eq. 1.3 by

N = N0 +
∑
k �=0

1
eβεk − 1

. (1.9)

Again, replace summation to integration we would obtain the fraction of parti-
cles in the condensate as

N0

N
= 1 − (

T

Tc
)3/2, (1.10)

a remarkable formula of BEC as illustrated in Fig. 1.6.
Another important quantity is the heat capacity. By definition CV = ∂µ/∂T |n.

From the calculation of total internal energy

U = V

∫
dε

ε

eβ(ε−µ) − 1
g(ε)

with µ = U/N , we obtain

CV ∼ 3kBT/2 for T >> Tc

CV =
15
4
g5/2(1)
g3/2(1)

(
T

Tc
)3/2kB for T < Tc. (1.11)
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This is sketched in Fig. 1.7. At Tc the heat capacity has a cusp, or a discontinuity
in the slope. We say that a first-order phase transition occurs at Tc. At any
nonzero temperature below Tc, we have a mixture of the normal and condensate
phases.

1.3 The Gross-Pitaevskii Equation

After the creation of a condensate, next, we will ask: How to describe it the-
oretically? Practically, there are weakly interactions between cold atoms, and
the Hamiltonian of the system can be written as

H =
∑

i

p2
i

2m
+
∑

i

Vext(ri) +
∑
i<j

Vint(ri − rj), (1.12)

where Vext is the confining potential and Vint denotes interactions between
atoms. According to the experimental setup, Vext is the average potential gen-
erated from the time dependent magnetic field and is usually in the parabolic
form[9]. For dilute gases, na3

s << 1, where n is the particle density and as is
the s-wave scattering length. in the case, the probability of three body colli-
sion is too small to be neglected, and interactions can be considered from only
two-body collisions. Atoms can see each other only when they approach closely
enough so Vint can be interpreted in terms of the Dirac-delta function from a
hard-sphere model. The exact potential derived from the classical scattering
theory can be seen in Appendix A.

In order to solve the above equation we set the many-body trial function:

Ψ(r1, r2, . . . rN ) =
N∏
i

ψ(ri), (1.13)

where the total wave function is symmetric against the permutation operator
P , namely,

PΨ(r1, r2, . . . , rj , rk, . . . , rN ) = Ψ(r1, r2, . . . , rk, rj , . . . , rN ). (1.14)

If we assume BEC occurs when all atoms fall into the same single-particle state,
then ψ(ri) = ψ(r) fulfills the symmetry constraint automatically. With the
normalization condition ∫

dr|ψ(r)|2 = 1, (1.15)

the equation of motion of the condensate cane be derived through minimization
of energy functional

E =
∫
dr[

h̄2

2m
|∇ψ(r)|2 + Vext(r) +

4πh̄2as

2m
|ψ(r)|4] (1.16)

, where we have replaced ψ(r) with
√
Nψ(r) such that

∫
dr|ψ(r)|2 = N . There-

fore we have the chemical potential µ as the Lagrange multiplier to ensure the
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conservation of particle number while we minimize the quantity E−µN at fixed
µ. So the zero of the variation E − µN with respect to ψ∗ gives

− h̄2

2m
∇2ψ(r) + Vext(r)ψ(r) +

4πh̄2as

m
|ψ(r)|2ψ(r) = µψ(r). (1.17)

This is the time-independent Gross-Pitaevskii (GP) equation and the mean field
approach gives the self-trapping nonlinear potential.

The sign of the scattering length can be tunned by the magnetic field near
the Feschbach resonant regimes[10]. Determination of scattering length in alkali
atoms are reported in [2, 12, 13, 14, 15]. When as < 0 the interaction is
attractive and it is possible for atomic cloud to be unstable. While aosc =
(h̄/mω)1/2 denotes the characteristic quantum mechanical length scale for the
harmonic oscillator, the critical particle number can be estimated through

Ncas

aosc
� 0.67. (1.18)

We have more interested in the stable regime where as > 0 and the cloud is
extended in function of particle number N by the repulsive interaction. For suf-
ficient large clouds, an accurate description of the GP equation can be obtained
by neglecting the kinetic energy term. From Eq. 1.17 and set U = 4πh̄2as/m
we have

[Vext(r) + U |ψ(r)2|]ψ(r) = µψ(r). (1.19)

There is an analytical solution

ψ(r) =

√
µ− Vext

U
, (1.20)

where µ is obtained through the normalization condition∫
dr|ψ(r)|2 = N. (1.21)

In the following we show the numerical solution of the GP equation by using
Fourier-Grid-Hamiltonian method[20]. In simplification, we show the simulation
for a condensate in the spherical trap for N = 100, 1000, 10000. We consider
the repulsive case only. Also we show the noninteracting wave function in com-
parison.
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Φ

Figure 1.8: Ground state wave function of a condensate in the isotropic magnetic
trap. Consider repulsive interactions between two atoms, we plot N = 100,
1000, and 10000. Also, the profile of a noninteracting particle is shown as a
comparison.
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Figure 1.9: Density profile of a condensate in the axial-symmetric double well.
Here the particle number N = 10000 and the dimensionless barrier height is 8.

1.4 Summary

In this chapter we have a brief introduction of the route to BEC. The statistic
property gives the microscopic criterion for BEC and determine the relation
between particle number and the temperature. The phase space density should
be larger than order of one when T ≤ Tc. There are normal particles due to
the presence of thermal fluctuations. However, while we consider a repulsive
interaction between atoms, there are particles out of the condensate even at
T = 0. This is the evidence of the quantum fluctuation. Finally, in the Hartree
approximation, we derive the GP equation for the condensate. The many-body
system can be just regarded as a one-particle system. Since the condensate, by
definition, occupies the lowest quantum state, only the ground state solution
of the GP equation is valid. Due to the presence of the nonlinear potential,
the GP equation must be solved self-consistently. In each step, a constraint of
conservation of particle number should be fulfilled. Start with the GP equation
we can investigate dynamical behaviors of the condensate.
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Chapter 2

The Measurement of the
Phase of Bose-Einstein
Condensates by
Interference of Matter
Waves

One of the fascinating properties of the Bose-Einstein condensation is the nature
of the coherence in a macroscopic quantum state. Right after the experiments
performed to show the coherent evidence[1, 2, 3, 4] there are also many theoret-
ical works on this phenomenon[5, 6, 7, 8, 9, 10]. In this chapter we focus on the
determination of the phase of the condensate through some fundamental con-
cepts and the results in experiments. Extended by controls of time-dependent
processes we design a model for simulations such that the phase difference of
condensates can be directly read out from interference patterns.

2.1 Why Can We Measure the Phase Between
Condensates?

2.1.1 A Definite Phase of the Giant Matter Wave

A gas of bosonic atoms are defined as atoms composed of an even number of
constituents with half-integer spin. As Fig. 2.1 shows: if one cools the gas
below a critical temperature Tc such that atoms exhibit wavelike properties,
they will become densely enough so that the average distance between atoms is
comparable to their ”de Broglie wavelength.” Below Tc individual atoms become
impossible to distinguish. If the atoms are bosons, they fall collectively into the
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Figure 2.1: At high temperatures atoms behave as billiard balls. When the tem-
perature is lowed enough the quantum wave characters reveal. Atoms can be
regarded as wavepackets with an extension λdB , the de Broglie wave length. At
BEC transition temperature, λdB is comparable with distance between atoms.
And when T approaches zero, the thermal cloud disappear leaving a pure con-
densate. From Rev. Mod. Phys. 74, 1131(2002).
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lowest-energy state to form a Bose-Einstein condensate, a weakly interacting
gas. We say that as the system undergoes the phase transition it turns out
to be an ordered quantum state and in real space the many-body system can
be described through a macroscopic order parameter ψ(r). Since it’s the wave
behavior that characterizes the quantum system the complex order parameter
acquires a common phase of all atoms in the condensate indicating the existence
of the phase coherence for a condensate. Namely, we can rewrite

ψ(r) =
√
n(r)eiθ(r), (2.1)

where
√
n(r) = |ψ(r)| is the modulus and θ(r) is its phase. And we say the

coherence length roughly equals to the size of the condensate.
In analogy of the optical field the matter wave behaviors of a condensate

stimulate lots of interests to characterize its coherent behaviors[11, 12]. By
means of the quantum coherent many-particle state, the nature of the non-
vanishing off diagonal long range order parameter associated with the coherence
can be linked.

2.1.2 The Coherent State

It’s well known the system of a quantum harmonic oscillator can be described
in terms of the bosonic ladder operators â and â†[13]. The energy levels can be
written as

En = h̄ω(â†â+
1
2
) = h̄ω(n+

1
2
), (2.2)

and the eigenvectors ψn(x) can be represented as

ψn(x) =
1

(n!)1/2
(â†)nψ0(x), (2.3)

which constitute a complete set. Therefore we can define a coherent state by

|α > = C(ψ0(x) + αψ1(x) +
α2

2!1/2
ψ2(x) +

α3

3!1/2
ψ3(x) + . . .) (2.4)

= e−|α|1/2
(1 + αâ† +

(αâ†)2

2!
+

(αâ†)3

3!
+ . . .)|0 >, (2.5)

where |0 >= ψ0(x) is the ground state and also a coherent state with α = 0.
One important property of the coherent state is that |α > has a definite phase
θ, namely we can write

α = |α|eiθ. (2.6)

Then Eq. 2.4 can be written as

|α >= C(ψ0(x) + eiθ|α|ψ1(x) + e2iθ |α|2
2!1/2

ψ2(x) + . . .). (2.7)

Coherent states were first used in the theory of the laser. The lader operators
are usually written as â†ks and âks to represent the creation and annihilation of

25



a photon with momentum k and polarization s. The many particle system can
be in convenient to be represented in terms of the occupation number

|nk0s0 , nk1s1 , nk2s2 , nk3s3 , . . . >, (2.8)

and obeys

â†ks| . . . nks . . . > =
√
nks + 1| . . . nks + 1 . . . >

âks| . . . nks . . . > =
√
nks| . . . nks . . . > . (2.9)

Of course the lader operators obey the bosonic commutation relations but we
omit to show here. And we can write a general coherent state in the form of

|αk0s0 , αk1s1 , αk2s2 , . . . >= e−
∑

|αks|2/2exp(
∑

αksa
†
ks)|0 > . (2.10)

In practical lasers, there are usually few macroscopically occupied modes
through nonlinear optical pumping processes[14]. Due to the similarities on the
existences of the nonlinear media and the macroscopic wave behaviors, we can
borrow the language in lasers to describe the BEC system. In the following
paragraphs we are going to show how to connect the order parameter with the
coherent state.

2.1.3 Quantum Fields and the Long Range Order Param-
eter

In conventional quantum field language the Hamiltonian can be expressed in
terms of the field operators ψ̂(r) and ψ̂†(r)[15], namely

Ĥ =
∫
drψ̂†(r)[− h̄2

2m
∇2 + Vext(r)]ψ̂(r)

+
1
2

∫
drdr′ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂(r′)ψ̂(r), (2.11)

where the field operators obey

[ψ̂(r), ψ̂†(r′)] = δ(r − r′),

[ψ̂(r), ψ̂(r′)] = 0,

[ψ̂†(r), ψ̂†(r′)] = 0. (2.12)

In simplification, we consider a homogeneous gas and ignore the external po-
tential. Then the field operator can be expanded in basis of the plane wave,
namely,

ψ̂(r) =
1√
V

∑
k

eik·rak,

ψ̂†(r) =
1√
V

∑
k

e−ik·ra†k. (2.13)
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So we have the kinetic energy term in Eq. 2.11 as

T̂ =
∫
drψ̂†(r)[− h̄2

2m
∇2]ψ̂(r)

=
1
V

∑
kk′

∫
dr(a†k′e

−ik′·r h̄
2k2

2m
ake

ik·r)

=
∑
k

a†kak
h̄2k2

2m
. (2.14)

The potential energy term is

V̂ =
1

2V 2

∑
k1k2k3k4

∫
drdr′V (r − r′)a†k1

a†k2
ak3ak4 × ei(−k1·r−k2·r′+k3·r′+k4·r)

=
1

2V 2

∑
k1k2k3k4

a†k1
a†k2

ak3ak4δk1+k2,k3+k4

∫
drV (r)ei(−k1+k4)·r. (2.15)

If we set −k1 + k4 = q, k1 = k and k3 = k′, the Hamiltonian can be rewritten
as

Ĥ =
∑
k

a†kak
h̄2k2

2m
+

1
2

∑
kk′q

Vqa
†
ka

†
k′+qak′ak+q. (2.16)

The coherent property of the condensate atoms can be viewed through the
correlation function between any two particles[16, 17]. In other words we are
going to consider the one-body density matrix of the system,

ρ(r − r′) =< ψ̂†(r)ψ̂(r′) > . (2.17)

Use the Fourier transformations of Eq. 2.13 we have

ρ(r − r′) =
1
V

∑
kk′

ei(k′·r′−k·r) < a†kak′ > . (2.18)

For a translational invariant system the total momentum operator P commutes
with the Hamiltonian such that by using Tr(AB) = Tr(BA) we have

< [P, a†kak′ ] > = h̄(k − k′) < a†kak′ >

= 0, (2.19)

therefore Eq. 2.18 becomes diagonal in k:

ρ(r − r′) =
1
V

∑
k

eik·(r′−r) < a†kak > . (2.20)

If the ensemble average is taken over the coherent state the above equation
is just the Fourier transformation of the occupation of |αk > state. Namely,
according to Eq. 2.10 we have

< a†kak >=< n̂k >= |αk|2, (2.21)
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Figure 2.2: One particle density matrix ρ(r − r′). For the ideal Bose gas at
T = 0 it is the total density n. For the interacting Bose gas at T < Tc,
ρ(r− r′) approaches an appreciable large value n0 for atoms separating at long
distances. However if T ≥ Tc, the condensate density n0 is zero; there is no long
range correlation between atoms. The experimental data of spatial correlation
is measured by Bloch et al., published on Nature 403, 166(2000). While Tc is
430nK the dark mark data are correlations of condensed atoms and the hollow
mark data are correlations of thermal atoms. Obviously, spatial correlation of
a condensate is much larger than the thermal atoms and is almost equal to the
size of the condensate.

then

n ≡ ρ(r − r′) =
1
V

∑
k

eik·(r′−r)|αk|2

� n0 +
2

(2π)3

∫
dkeik·(r′−r)f(k). (2.22)

The expression in Eq. 2.22 means that we have a macroscopic occupied state
with k = k0 giving the density of n0 and all other states |αki

| are small and
would vanish as |r − r′| → ∞. Therefore

< ψ̂†(r)ψ̂(r′) >→ n0 (2.23)

as |r − r′| → ∞. As shown in Fig. 2.2 for T ≥ Tc, there is no long range
coherence for thermal atoms. But for T < Tc atoms in the condensate located
at r and r′ are correlated even when they are separated apart. In random
phase approximation, we can write the correlation function as the product of
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two individual ensemble averaged mean field, namely, by writing

< ψ̂†(r)ψ̂(r′) >→< ψ̂†(r) >< ψ̂(r′) > . (2.24)

So, by choosing a basis of coherent states, we will obtain a nonzero expectation
of the field operator ψ(r) =< ψ̂†(r) >, which just can be written in the form
of

√
n0e

iθ. Therefore cold atoms are coherent and can be described via a long
range order parameter.

2.2 Evidence of Coherence - Manifestation by
Interference Patterns

In order to demonstrate the coherent property we have to probe the condensate
to get the phase information. However, the phase of the condensate is the
argument of the complex wave function and is not an observable. Only the
relative phase of condensates can be measured. Through famous experiments
in MPQ[18] and MIT[1] the observation of interference patterns manifest the
evidence of the spatial coherence for condensates. Analogous to Young’s double
slit experiment, Bloch et al. in MPQ created a double slit for BEC by using a
radio wave with two different frequencies. The measured interference patterns
show spatial correlation between two condensates for T < Tc even when the
separation of two slits is in order of the size of the condensate. The experiment
then give the evidence of so called spontaneous broken symmetry and validity
in description of the condensate by a giant order parameter.

The spatial coherence between two condensates is verified by Andrews et al..
Fig. 2.3 shows clear interference fringes for different laser powers. When cold
atoms are transformed into a double well above Tc, two condensates are formed
after evaporation cooling. Depends on the laser power, two condensates can be
divided into weakly linking or isolated clouds. For the former, the interference
patterns directly imply dc Josephson effect for atoms. By setting condensates
with wave functions of ψ1e

iφ1 and ψ2e
iφ2 , the overlap of two clouds can be

calculated from the density correlation by setting wave packets located at x =
±d/2:

ψ̂(x) = ψ̂(−d/2)eikx + ψ̂(d/2)eik′x. (2.25)

The average spatial density is then

< ψ̂†(x)ψ̂(x) > = < ψ̂†(−d/2)ψ̂(−d/2) > + < ψ̂†(d/2)ψ̂(d/2) >

+ < ψ̂†(−d/2)ψ̂(d/2) > ei(k−k′)x + c.c. (2.26)

The coherence function < ψ̂†(−d/2)ψ̂(d/2) > gives the interference fringes.
Contradictory to an naive image, two independent condensates also show in-
terference patterns. The interference fringes show strong correlations between
two condensates whether they are initially prepared within relative coherence or
not. But rather than the robust phase obtained from two condensates in initial
coherent state, the phase measured from two independent condensates changes
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in each repetition of experiments. Therefore, in average, we have an incoherent
pattern. In order to explain the observation, we have to compute a second-order
correlation function.

Figure 2.3: Interference patterns of two expanding condensates for different
laser powers. In the weakly linked condition, the experiment demonstrates dc
Josephson effect, and the induced Josephson frequency can be derived from
overlapping of two Gaussian wave packets. And the fringe period is just the de
Broglie wavelength associated with a free particle travelling between to central
peaks within time t. From Science 275, 637(1997).

Soon after MIT’s work, Anderson and Kasevich realized macroscopic inter-
ference from atomic tunnel arrays. As shown in the top of Fig. 2.4, tunneling
was induced by acceleration due to gravity. If the wells are populated with
identical relative phase, the continuous emission of atomic waves interfere con-
structive to form a pulse that was shown in the lower part of the figure. The
pulse frequency ω = mgλ/2h̄ can be determined by the gravitational energy
difference between adjacent wells. Nearly constant time interval of successive
pulses in the experiment directly shows the evidence of a definite relative phase
of each pulse. The effect is closely to ac Josephson effect in superconductors.
While Josephson effect play an important role to determine the flux Φ = 2e/h.
It is the gravitation constant g in Anderson’s experiment to be determined. And
this can be achieved by carefully measurement of pulse timing.

So through many interference experiments we learn that:

1. The intrinsic coherent property of the condensate stimulates lots of inter-
esting researches on its phase. In order to extract the phase information,
interference experiments must be performed. All of them show a large
coherence length of the condensate. But the relative coherence can not
be determined from one-to-shot experiment. Repetition of experiments
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Figure 2.4: Up: The effective optical-pulse-gravitational potential U/ER, where
ER is photon recoil energy. The oscillation curves indicate the de Broglie waves
tunneling out from each wells. In region A, pulses interfere constructively to
form pulses. Down: (A) Absorption images of a BEC in the TOP trap. From (B)
to (E): absorption images after fixed holding times in the optical lattice showing
the time development of pulse trains. (F) The integrated absorption profile for
(E), obtained from summing over horizontal cross sections. The solid curve
shows a nonlinear least square fits to a series of Gaussian pulses constrained to
be separated by a fixed time interval. From Science 282, 1686(1998).

will tell the truth. In order to analyze the interference effects, we have to
compute high-order correlation functions.

2. While the Josephson effect in superconductors is molded as the paradigm
of phase coherence manifestation in a macroscopic quantum system, it is
important that in neutral atomic system the spatial coherent property can
be observed through interference experiments of condensates.

3. Practically, it’s meaningful to design these experiments. The application
of the emission of coherent matter waves is realized in atomic lasers. Both
the successful of BEC on a microelectronic chip[19] indicate that manipu-
lation of atomic waves with such an atom-optical integrated system can be
applied to such as interferometry, holography, microscopy, atomic lithog-
raphy, quantum information processing, and so on.
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2.3 The Read-Out Phase Measurement by Sim-
ulation of Interference of Two Condensates

With inspiration from MIT’s experiment, We present in this section a way to
produce an additional phase to the matter wave by adding a loop change of an
additional optical dipole potential to the double-well trap. The value of phase
difference of a double-well BEC can be found through the interference pattern.
Different from MIT’s experiment, the relative phase in our work is robust de-
fined by adiabatically producing two identical condensates. Experimentally, the
comparison of free expansion density patterns with and without the optical po-
tential will provide the information for the phase of matter wave. This is one
of the realistic cases that the quantum mechanical phase can be studied in a
quantum system.

2.3.1 The Model

First, consider N cold atoms in a magnetic harmonic trap. The Bose-Einstein
condensate (BEC) can be described by the mean-field Gross-Pitaevskii equation
(GPE):

(
− h̄2

2m
∇2 +

1
2
m(ω2

⊥x
2 + ω2

⊥y
2 + ω2z2) +

4πh̄2Nas

m
|Ψ|2

)
Ψ(x, y, z)

= µΨ(x, y, z), (2.27)

where as is the s-wave scattering length. For the cigar-shaped trap, ω⊥ >>
ω. The transverse motion can be approximated as frozen in the ground state
of the 2-dimensional simple harmonic oscillator. Define the transverse length
scale L⊥ =

√
h̄/mω⊥, and integrate out the transverse part, the system is

approximated by a one-dimensional nonlinear equation. Further use the energy
unit h̄ω, length unit L =

√
h̄/Mω, and time unit τ = 2π/ω, and denote g =

8N(as/L)(L/L⊥)2, the GPE becomes :(
−1

2
d2

dz2
+

1
2
z2 + g|Ψ(z)|2

)
Ψ(z) = µΨ(z). (2.28)

Now µ is the chemical potential in unit of h̄ω and is related to the number of
atoms in the condensate. The normalization is

N

∫ ∞

−∞
|Ψ(z)|2dz =

∫ ∞

−∞
ρ(z)dz = N. (2.29)

In the following numerical calculations, we use 104 sodium atoms in the trap
of ω⊥ = 2π×250Hz, ω = 2π×20Hz, and as = 3nm. To solve the ground state
of the nonlinear equation, we employ the Fourier-Grid-Hamiltonian method[20]
iteratively until accuracy criterion is satisfied. The coordinates range from -12
to 12 is set to evenly spaced 401 grid points. The calculated chemical potential
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Figure 2.5: Potential V (z) (solid line) and density profile ρ(z) (dotted line)
of 104 sodium atoms in a cigar-shaped harmonic trap of frequency ω = 2π ×
20Hz.(a) The condensate; (b) the condensate with a central barrier in the form
of Eq. 2.30 at maxima barrier height of 30.
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is µ = 20.78 for the condensate with described parameters. The density decays
to 10−6 at distance 8.6 from the trap center as shown in Fig. 2.5a.

According to the experimental setup[1] the double well trap can be created
by focusing blue-detuned far-off-resonant laser light into the magnetic trap,
generating a repulsive optical dipole potential on the long axis of the condensate.
We thus simulate the potential within the Gaussian profile:

V (z) = V0 exp[− z2

2σ2
]. (2.30)

Moreover, we simulate a time dependent process to create the potential. In
dimensionless calculations we replace V (z) with

V (t) = Vg × t/Te exp[− z2

2σ2
], (2.31)

where Te is characteristic time of the external filed and Vg is the strength pa-
rameter tunable by the laser field. In this work, the external field strength is
designed to increase linearly in time. The barrier height V (t) ranges from 0 to
30 and is turned-on and -off linearly with time. The height is much smaller than
trap barrier but large enough to affect the condensate behavior. In Fig. 2.5b,
we plot the condensate density profile for the double-well at V (t) = 30. At the
maximum height of perturbing potential, the density at central barrier position
is about one half of the peak density so that the two separated condensates are
correlated with each other.

2.3.2 Generation of an Additional Phase

A. The Adiabatic and Nonadiabatic Processes[21]

Consider a system, for example, a perfect pendulum oscillating back and forth
in a vertical plane. Its period Tz would be the characteristic time of the system.
Now we have some actions on the holder. If we shake the holder with heavy force,
the motion of the pendulum may have possible to react chaotically. However,
if we shake it tenderly, the pendulum will continuous swing smoothly with the
same amplitude. So we can define the characteristic time of the external force
Te, over which some correspondent quantities of the system change appreciably.
We say when Tz 
 Te it satisfies the adiabatic condition, and when Tz � Te,
the system undergoes a fast modulation by the field. If Tz is comparable with
Te, we call it the nonadiabatic process.

We take another example from view points of quantum mechanics as shown
in Fig. 2.6. The ground state wave function of a particle in the box of dimension
a is plotted at the top of the figure. When we pull the wall of the box smoothly,
the eigenstates will follow the step of the moving. It will become the ground
state of the new box of dimension 2a. However, if we pull the box too fast to be
detected by the particle, it will keep its own look but turn out to be the excited
state in the new box.
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Figure 2.6: Top: The ground state wave function of a particle in a box of
dimension a. Middle: If we adiabatically pull the wall of the box the particle
will follow the expansion step and the wave function will stay in the ground
state of the new system. Bottom: If the wall is pulled too fast to be detected by
the particle, the original wave function would be kept but becomes the excited
state wave function in the new box.
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Now, we will describe the adiabatic process more precisely. Consider a gen-
eral eigenvalue equation

Hψn(x) = Enψn(x), (2.32)

the time evolution of the stationary state follows

Ψn(x, t) = ψn(x)e−iEnt/h̄. (2.33)

If the Hamiltonian changes gradually in the presence of an external field, the
Schrödinger equation can be written as

H(t)ψn(x, t) = En(t)ψn(x, t), (2.34)

and
Ψn(x, t) = ψn(x, t)e−i/h̄

∫ t

0
En(t′)dt′

eiγn(t). (2.35)

in addition to the dynamical phase

θn(t) = −1/h̄
∫ t

0

En(t′)dt′, (2.36)

there would be an extra geometrical phase γn(t). Since Eq. 2.35 satisfies ih̄∂Ψ/∂t =
HΨ, we have

ih̄[
∂ψn

∂t
eiθeiγn − i

h̄
En(t)ψne

iθeiγn + i
dγn

dt
ψne

iθeiγn ]

= Enψne
iθeiγn . (2.37)

Eq. 2.37 implies that
∂ψn

∂t
+ i

dγn

dt
ψn = 0, (2.38)

and therefore

γn(t) =
∫ t

0

i < ψn|∂ψn

∂t′
> dt′. (2.39)

From the general treatment in quantum mechanics, we know the eigen wave
function would accumulate time dependent dynamical and geometrical phases
through the adiabatic dynamical processes. While on the other hand, the nona-
diabatical evolution would generate both time dependent and spatial dependent
phase.

B. Global Phase and Local Phase

We apply the above concept to our BEC system. While Tz = 2π/ω = 50ms, we
set Te = 39.5 s, 50ms and 0.5ms for adiabatic, nonadiabatic and fast processes,
over which the barrier constructed by laser sheet grows appreciably. Next, we
will justify that the adiabatic condition can be reached by the way of turning on
the optical potential slowly enough. To speed up the calculations we raise the
intensity of Vg such that the barrier will spend time less than Te to reach the
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peak value. At the same time, Vg is tuned such that the growth of the barrier
in each time step is slow enough to guarantee the adiabatic process. We turn
on and off the optical dipole barrier within a time interval of 60 s at time step
50µs. The turned-on and -off time interval for the fast process is reduced to
0.5ms and at time step 5µs. For a given initial BEC in a cigar-shaped trap, the
condensate is subject to evolve under the trap and the added optical potential
at the designed switching ways.

The initial value problem of time-dependent Gross-Pitaevskii equation

i
∂Ψ(z, t)
∂t

=
∫
dz′ < z| p̂

2

2
|z′ > Ψ(z′, t) + {z

2

2
+ Vb(z, t) + g|Ψ|2}Ψ(z, t) (2.40)

is again discretized by the Fourier-Grid-Hamiltonian method and then inte-
grated by error controlled routine[22]. In Fig. 2.7 we plot the density profiles
of the adiabatic process at the initial time, the moment of maximum barrier
height and the final time. The density profile at the moment of maximum bar-
rier height is identical to that of Fig. 2.5b. At the other time, we double checked
and found that the density calculated by solving the stationary Gross-Pitaevskii
equation with additional optical potential, and calculated by the correspond-
ing time-evolving Eq. 2.40 are identical with each other. It shows the system
changes adiabatically and always stays at the new ground state from time to
time. On the other hand, if the external field changes too fast to be detected
by the atoms, the condensate would be left in its initial state and therefore the
density profile of the fast process is always identical with the initial one. The
results imply that the modelled adiabatic and fast conditions are satisfactory
respectively.

During the time-dependent process, if the adiabatic condition is satisfied,
or the process is fast, the accumulated phase will be global after a cycle of pa-
rameter change. Otherwise, it will produce a position dependent phase function
(that is, a local phase). In Fig. 2.8, we plot the phase with respect to the ini-
tial state for the adiabatic, and the nonadiabatic processes at the moment of
optical barrier vanishes. The switching ways of the adiabatic and fast cases are
described above. For the nonadiabatic case, the turned-on and -off time interval
is changed to 50ms. Thus, the pulse duration ratio of adiabatic, nonadiabatic
and the fast case is 1.2 × 105 : 100 : 1. We see that well-defined global phases
are shown for the adiabatic cases, while the phase function for the nonadiabatic
case is local. Furthermore, in the adiabatic process, the additional global phase
to the matter wave is equal to the difference of the total phase and the dynamic
phase

∫
µ(t)dt over the loop. Also shown in Fig. 2.8 is the additional phase for

the adiabatic process with perturbing potential with the form of Eq. 2.31.

2.3.3 The Method to Produce a Relative Phase Between
Condensates

In the above calculation, we have settled down numerically the condition of
the adiabatic process and obtained the global phase. However, the so obtained
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phase is unmeasurable. We propose in the following a mechanism to produce a
measurable phase for verification.

First we start with a double-well condensate which is built by adding a sta-
tionary optical barrier to the central region of a cigar-shaped trap as described
above. Here we model the central barrier as

Vb = V0e
− 1

2 ( z
σ )2 , (2.41)

with V0 = 50, σ = 18. The higher barrier is to reduce the effect of the up-
coming perturbation in the left well on the right- hand side condensate, so that
an additional phase will appear in the left well condensate only when we add
a perturbing optical potential to the left well. The exact values of related pa-
rameters are not critical actually. In the next step, we add a time-dependent
smaller Gaussian potential barrier only to the left well. The form is just like
Vb above but with potential maximum equal to 4, σ = 0.5, and duration 8.04 s.
After the adiabatic evolution of the system, the calculated additional phase is
0.763 rad. as shown in Fig. 2.9. Since the central barrier is much higher than
the barrier added to the left well, the additional phase will appear only in the
order parameter of the left side condensate of the double well.

Next, to measure this additional phase, we remove all the trap potential and
barrier potential after the disturbance to the left well. The condensates start to
expand freely. Before the time of overlap, two individual condensates are shown
in Fig. 2.10. When the two condensates overlap with each other, the interference
pattern of matter waves shows up. It was discussed that the interference fringe
period is the de Broglie wavelength and is proportional to the temporal distance
from the moment of potential relaxation[8]. This is a common phenomenon for
waves and was reported for double-well condensates[1]. Specially in the case
that there is a further difference of the additional phase in the right and left
condensates, the pattern is different from that of purely double-well BEC free
expansion. In Fig. 2.10 we depict the free expansion interference patterns of
pure double-well BEC and those with an additional phase. At t = 30.2ms,
two separate condensates are shown in both cases. At t = 65.3ms, both cases
show interferences pattern but they are displaced from each other due to the
additional phase. At later time, t = 80.4ms, the fringe period is larger than
that of t = 65.3ms.

Since the interference pattern of the pure double-well condensates was known[1],
the measurement of similar interference of double-well condensates with an ad-
ditional phase would be feasible. Comparison of the two interference patterns
will provide an experimental result of the additional quantum phase.

Through the time-dependent integration of the nonlinear GPE, we inves-
tigate the adiabatic condition to obtain the global additional quantum phase
for matter waves in a double-well condensate under a cycle of perturbed opti-
cal potential. We then propose a way to measure it. Next, our result of the
obtained quantum phase can be estimated below. Consider the simple case of
two colliding sinusoidal waves with and without a relative phase difference φ,
the two interference patterns will show displaced patterns and the phase φ can
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Figure 2.7: Density profiles at the initial time (dotted line), the moment of
maximum barrier height (solid line), and at the final moment of the perturbing
potential (squared curve).

be read out by the interference pattern. The method was used to show that
the coherence of two condensates extend in the double-well trap [1]. Similarly,
from the displacement of interference patterns described in Fig. 2.10, we can
estimate their phase difference through φ = 2π∆z/λ, where ∆z is the displace-
ment of corresponding interference peaks in pure double-well condensate and
BEC with the additional quantum phase, and λ is the wavelength of interfer-
ence pattern. The estimated value is about 0.78 rad. The estimation fits quite
well to the calculated additional phase obtained from the numerical integration
of the time-dependent GPE. Finally, the parameters we used in our modelling
is not critical, with some changes to fit the experimental environments will give
the same qualitative conclusion. The proposed way would provide a method to
measure the phase in quantum mechanics.
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Figure 2.8: The additional phase of the condensate accumulated after a loop
of perturbation for adiabatic (dashed line), nonadiabatic (dotted line) cases
respectively, also shown is the additional phase (solid line) of the adiabatic
process.
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Figure 2.9: The phase functions at the end of adiabatically added perturbing
potential to the left well. Since the central barrier of the double-well trap is much
higher than the left-well perturbation, the additional phase (solid line) appears
only in the left-well order parameter. The dashed line is the corresponding total
phase
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Figure 2.10: Free expansion interference patterns for the pure double-well BEC
(dotted line) and the two condensates with a difference of the additional phase
(solid line).
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2.4 Summary

In this chapter we introduce the nature of the condensate, coherence, through
theoretical descriptions and experimental verifications. We use many-body for-
mulations to show the long-range order parameter of the condensate is a coher-
ent sate with a definite phase. To extract the phase information, interference
experiments are performed. Through the double-slit experiment we observe the
long-range spatial correlation between condensates. Moreover, if there is a def-
inite relative phase between condensates in an optical lattice, an atomic laser
can be created. By changing the lattice height, cold atoms can be manipulated
through superfluid to insulator states and the system can be modelled to be a
memory chip.

Inspired by MIT’s experiment, we design an interesting model to measure an
additional phase of the condensate imprinted by the adiabatically switched-on
loop field. Verification of adiabatical degree is examined numerically through
the generation of the global phase in the time-dependent process. After that,
we compare interference patterns with and without adding the external field.
The value of the read-out phase matches quite well with calculations of two
sinusoidal waves. Basically, we design an available experiment to be easily
carried out. Up to now, we don’t include the noise effect in the experiment
which, in fact, varies in every repetitions and would destroy the robustness of
the measurements. Actually, the set-up should be modified such that we can
measure two sets of data in one shot[23]. By imposing a standing wave upon
a double-well, experimentalists can create a four-pieces condensate with same
atom numbers. Again, we add a small loop field in one of the well. Then
the measurement of interference patterns between two groups will give us the
precise accumulated phase. It’s interesting that the set-up can be designed to
be a photon capacitance which plays an important role in creation of a super
computer.
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Chapter 3

Instabilities of a
Bose-Einstein Condensate
in an Optical Lattice

3.1 Introduction

The realization of BEC provides noiseless and coherence atomic sources to inves-
tigate some fundamental phenomena. Exchange the probing role with photons,
cold atoms in an optical lattice demonstrate phenomena of solid state physics
such like band structures[1], Bloch oscillations[2], Wannier-Stark ladder[3] and
Josephson effect[4]. For deeper lattice wells the creation of squeezed states[5]
and the superfluid-to-Mott insulator phase transition are also observed[6]. For
shallow wells, studies on tunneling of BEC out of the traps in the presence of
gravity[7], and the seperfluid[8] phenomena have open another window in the
field. By using Bragg scattering[9], a sensitive probe for atomic localization,
the coherent and incoherent wave dynamics can be measured. BEC in an opti-
cal lattice offers great opportunities for quantum information processing, and a
dream to realize an atomic chip.

Superfluid phenomenon is an another manifestation of phase coherence of
BEC. This can be observed through experiments in shallow optical lattices as
atoms move freely from one site to another by quantum tunneling. Practically,
it is easily to induce instabilities to observe dissipation behaviors[8]. In this
chapter we are going to simulate dynamics of the condensate in an optical
lattice to investigate the mechanism of instabilities. Based on the GP equation,
we can further calculate the linear response of the external perturbation. Then
from collective excitation spectra we found the presence of quasiparticles would
destroy the superfluid. We prove Landau’s idea about the existence of the
critical velocity[10]. Beyond the critical velocity, phonons can be generated and
the system goes into the Landau instability regime. Moreover, the presence of an

47



optical lattice serves as a viscous medium to destroy the superfluid. Whenever
the group velocity of the flow increases to a critical value beyond that the
correspondent effective mass of the condensate becomes negative, it costs no
pay to induce quasiparticles and the model of superfluid would breakdown.

In this chapter we give a brief introduction of how a condensate moves in
an optical lattice. First, we have to know how to construct an optical lattice
and why the condensate would stay there. This is the question about cooling
and trapping. Next, we review the history about the discovery of the superfluid.
Then we will ask what’s the nature of the BEC for itself to perform the superfluid
behavior. And finally we come into the topic of how is the superfluid destroyed
in the presence of quantum fluctuations and thermal atoms.

3.2 How Does an Optical Lattice Work?

The idea to confine atoms in the wavelength size of a standing wave was first
suggested by V. S. Letokhov in 1968[11] and was first realized in 1987 in one
dimension with atomic channelling by standing waves[12]. By superposition
of electric fields of a pair of counterpropagating beams, an optical lattice is
constructed effectively in the form of an array of light-shifted potential wells[13],
as shown in Fig. 3.1. With more laser beams an egg-crate potential of a 2D
optical lattice can be constructed as shown in Fig. 3.2. And the crate provides
a good arrangement for Greiner’s group to carry out the superfluid to Mott-
insulator phase transition in cold atoms. A good optical lattice can cool and
trap atoms in low-lying quantum states with center-of-mass motion in individual
wells. The mechanism is just like what atoms being in the Sisyphus cooling
processes[14]. In the optical lattice atoms would experience spatial dependent
dipole force exerted on them due to coherent redistribution of photons after
the encounters with laser beams. By definition, the force proportional to the
gradient of the light shift is associated with the Rabi frequency Ω and the
detuning δ. By solving optical Bloch equations for a two-level atom[15], the
dipole force in a standing wave propagating along z− axis can be approximately
written as

Fdip ∝ A

δ
sin 2kz. (3.1)

For δ < 0 the force drives atoms to positions with maxima intensity, whereas
for δ > 0, atoms are attracted to the intensity minima. Therefore atoms in
any case can be confined in antinodes or nodes of standing waves. Better than
the conventional focusing[16, 17], the confinement by standing waves would be
more focused to the order of a half wavelength. Therefore we need only lasers
in weaker power to achieve the trapping.
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Figure 3.1: An 1D optical lattice can be constructed via superposition of two
counter-propagating laser beams with same frequency and different polarization.
The periodic potential seen by an atom is resulted from light shift of the ground
state. Depends on the detuning of the laser atoms can be trapped at the nodes
or antinodes of the standing wave.

3.3 Superfluidity and Dissipations of the BEC

3.3.1 Historical Review of Superfluidity: From He4 to BEC

Although the successful of realization of creating a BEC in dilute gases in 1995
being 70 years late after the prediction of Bose and Einstein, the progress was
proceeding and motivated by the study of He4[18, 19, 20].

Under atmospheric pressure, gases He4 forms a liquid when the temperature
is reduced below to 4.2K. At this stage the liquid and the residual vapor coexist.
Maintain the coexistence phase but slowly reduce the temperature, in the 1920s
Keesom[21] and his co-workers obtained an exciting result on measurement of
heat capacity Cv as the function of temperature T . As Fig. 3.3 shows that at
T = 2.17 K there is a sharp variation and discontinuity of Cv. Below 2.17 K,
the liquid can flow without viscosity and becomes a superfluid.

In 1938, London[22] suggested that the λ transition in liquid He4 may be
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Figure 3.2: An egg-crate potential of a two dimensional optical lattice is shown.
The potential wells are separated by half wave length λ/2. By changing the
lattice height, experimentalists can control the flow of atoms from a superfluid
to an insulator phase. From Nature 415, 39(2002).

a manifestation of BEC. Since at λ point the experimental mass density of the
liquid helium is

mN

V
= 0.146 × 103 kg/m3, (3.2)

one needs to do is to compute the Bose temperature TB of an ideal Bose gas
at the same number density N/V . According to the formula that BEC occurs
when

kTB =
1

π(2.612)2/3

h2

2m
(N/V )2/3, (3.3)

we obtain TB ∼ 3.15 K . This result seems to fit quite good with Tλ and makes
London’s theory in a plausible success. Shortly after, Tisza used the notation of
BEC in his two-fluid model[23] describing the co-existence of the thermal and
the condensed phase in the fluid. He considered that ”the atoms belonging to the
lowest energy state do not take part in the dissipation. Thus the viscosity comes
entirely from atoms in excited states”. His model qualitatively explained the
fountain effect that the superfluid component moves in the direction of the hot
side where the pressure increases and predicts the existence of the second sound,
the temperature waves, when the superfluid and normal components move out
of phase. Nearly all the predictions by Tisza were proved correct in experiments.
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Figure 3.3: Heat capacity of He4. At T = 2.17 K there is a sharp variation and
discontinuity of Cv. Below 2.17 K, the liquid can flow without viscosity and
becomes a superfluid. From file of R. Roth, GSI theory group.

However in 1941, Landau[10] introduced a phenomenological point of view
and stated that the superfluid is a weakly interacting mixture of excitations
such as phonons and rotons. He rejected London’s and Tisza’s theories based
on the argument that in the highly interacting system like liquid helium the use
of description of the ideal gas is inadequate. He considered energy states of the
liquid instead of individual atoms. After years the measurement of the excitation
spectrum did show the disagreeable result with the parabolic spectrum in Tisza’s
theory. London’s theory turns out to be correct.

While the superfluid is the collective motion of the condensed atoms Landau
assumed the properties of the normal component is related to the elementary
excitations of the superfluid. Fig. 3.4 shows that for small momenta the excita-
tions in liquid helium are sound waves like phonons. The dispersion relation is
linear and the energy can be written as

ε = vsp, (3.4)

where vs is velocity of sound. On the other hand, for larger momenta the disper-
sion relation shows an upward curvature and passes a point of local maximum
and before it raises again there forms a point of local minimum at p = p0.
Therefore in the vicinity of p0 the dispersion relation can be approximated by

ε(p) = ε(p0) + (p− p0)2/2m∗, (3.5)

where m∗ is a fitting parameter in dimension of mass. Excitations with p closed
to p0 are called rotons. So, there are no excitations with phase velocities less
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Figure 3.4: Dispersion relation of He4. At small momenta the dispersion is
linear indicating the creation of phonons. At p = p0 there is a energy minima
of roton. The parabolic dashed-line is the dispersion of the ideal Bose gas.

than a critical velocity vc = min(ε/p), and in the absence of rotons vc is the
sound velocity vs. Namely, the motion of the superfluid can not slow down by
exciting collective modes if v < vc.

To understand Landau’s excitation spectrum, in 1947 Bogoliubov[24] used
the field theory method to present a basis in which the Hamiltonian of a weakly
interacting Bose system can be diagonalized. His basis describes excitations
that exhibit a phonon like, linear dispersion in low momentum regime, which is
consistent with Landau’s theory. From his theory the dispersion relation of a
uniform gas can be written as

ε(p) =
√

2nU0ε0p + (ε0p)2 (3.6)

, where U0 is the short range interaction potential, n is atomic density, and ε0p
is the free particle energy. Then ε(p) ∼ vsh̄p for small p, and the spectrum
is sound-like. There is non-zero velocity vs due to the collective motion from
atoms in excited states, which is

vs =
√
nU0/m. (3.7)

This agrees with the expression of the sound velocity from the hydrodynamic
result. Therefore Bogoliubov gave a theoretic support that the excitation spec-
trum in long wave length regime provides the key to superfluid behavior.

Despite the fact that the theory is valid only for weakly interacting systems,
Bogoliubov’s theory did explain qualitatively the features of superfluid He4

with strong interactions among atoms. But the experimental verification of
these theories were not available until the realization of BEC.

The collective excitations in the inhomogeneous dilute gases are well stud-
ied by several groups[25, 26] soon after the successful creation of the BEC in
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Figure 3.5: Left : A weak driving of m = 0 collective excitations. The freely
evolving response of the condensate shows the radial oscillation. The response of
the axial width shows 180◦ out of phase. The excitation frequency is determined
from a sine wave fit to the freely oscillation cloud’s width. Right : Frequency
of m = 0(triangles) and m = 2(circles) excitation modes as a function of in-
teraction strength. Solid lines are mean-field calculations by Edwards group[1].
Dashed lines are predictions in Thomas-Fermi regime by Stringari[28]. From
Phys. Rev. Lett. 77, 420(1996) and Phys. Rev. Lett. 77, 420(1996)

1995. By applying a small sinusoidal current to the coils responsible for the
rotating field of the TOP trap, and by appropriately setting the phase of the
current, the experimentalists can excite the condensate in different symmetries.
The measurement of the absorption images of the expanded cloud’s center-of-
mass positions and widths in function of evolution time as shown in will return
the oscillation frequency of certain modes. The peculiar nonlinear features of
the system can also be detected through the excitation spectra by varying the
trapping frequency or the number of atoms. Fig. 3.5 is one of the examples
that shows compatible results of both the measurements and the theoretical
calculations.

The studies of the development of the superfluid behavior from He4 to BEC
as yet do give us evidences that the collective excitation spectrum plays an
important role in understanding fundamental properties of Bose systems.
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3.3.2 Bose-Einstein Condensation and Superfluidity

It’s well known the wave function of the condensate acquires a definite phase.
But what is the significance of the phase θ? How can it relate with the superfluid
velocity? From quantum mechanics we know the velocity v of the particle flow
can be derived from the continuity equation of the particle density. Consider a
time dependent Schrödinger equation

ih̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t), (3.8)

and its conjugate equation for ψ∗. By using ∂|ψ|2/∂t = ψ∗∂ψ/∂t+ψ∂ψ∗/∂t we
obtain

ih̄(ψ∗ ∂ψ
∂t

+ ψ
∂ψ∗

∂t
) = − h̄2

2m
(ψ∗∇2ψ − ψ∇2ψ∗). (3.9)

The Eq. 3.9 can be rewritten as

∂|ψ|2
∂t

+ ∇ · [ h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)] = 0. (3.10)

Obviously Eq. 3.10 is similar to the continuity equation

∂n

∂t
+ ∇ · (nv) = 0. (3.11)

Therefore we have the current density J = nv and

v =
h̄

2mi
ψ∗∇ψ − ψ∇ψ∗

|ψ|2 . (3.12)

The formulations above are also valid for the condensate even though there is
a nonlinear potential in the Schrödinger equation. Since the wave function for
a condensate can be written as ψ(r, t) =

√
nc(r, t)eiθ(r,t), we have the velocity

of the flow

v =
h̄

2mi
(−2inc(r, t))∇θ(r)/nc(r, t) =

h̄

m
∇θ(r, t) (3.13)

proportional to the gradient of the phase.
We can demonstrate the relation between the phase and velocity of the flow

more clearly if we observe the motion of the condensate at side. If we define
the condensate in a frame F moving with the velocity -v relative to another
frame F′ where we stand in. We want to know how the physical quantities
related to what we are measured in the rest frame of the condensate. So we can
ask the question that what is the property of the wave function under Galilean
transformation? We then find that the wave function in the F′ frame moving
with v satisfies Eq. 3.8 can be written as

ψ′(r, t) = ψ(r − vt, t)exp[
i

h̄
(mv · r − 1

2
mv2t)]. (3.14)
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While in stationary state the condensate wave function can be written as ψ(r, t) =√
n0(r)e−iµt, now the phase of the condensate becomes

θ(r, t) =
1
h̄

[mv · r − (
1
2
mv2 + µ)t]. (3.15)

Using the vector formula

∇(a · b) = (a · ∇)b + (b · ∇)a + (a ×∇)b + (b ×∇)a, (3.16)

we would obtain the gradient of the phase

∇θ(r, t) =
m

h̄
v, (3.17)

that links with velocity of the motion of the condensate.
The additional phase in Eq. 3.14 implies the condensate as a whole moves at

the velocity v. We can understand it via a point of the view that at extremely
low temperatures there are small perturbations in momentum h̄k = mv giving
every particle of the condensate a small boost, and the whole quantum state
moves rigidly with a constant velocity. Therefore we define the superfluid ve-
locity v of a macroscopic system as

v =
h̄k
m
. (3.18)

Landau’s Fluid Model and the Excitation Spectrum

After we know the superfluid velocity of the condensate is associated with its
phase, next, we have to know the velocity of flow should be limited otherwise
the superfluid model would breakdown. From Landau’s Bose fluid model, we
can obtain the simple picture of the excitation spectrum and we can path the
scattering processes to know why the existence of the phonos would induce
viscosity to dissipate the superfluid phenomenon. We can explicitly determine
the criterion for the velocity of the superfluid and show that the ideal Bose gas
is not a superfluid.

Consider a fluid flowing in a pipe. Let the fluid at a velocity -v relative to
the pipe. In the rest frame F in which the fluid is stationary and in its ground
state, the fluid feels the pipe moving at v. If there are N bosons then in the F ′

frame the momentum is
P′ = P −Nmv, (3.19)

and the total energy in the absence of the external potential is

E′ =
N∑
i

(pi −mv)2

2m
+
∑
i�=j

V (ri − rj) = E − P · v +
1
2
Nmv2. (3.20)

In the previous section we mentioned the excitation spectrum is close related
to the superfluid behavior. To describe it more clearly we set the energy of an
excited state with momentum q in the F frame is

Eq = E0 + ∆Eq, (3.21)

55



Figure 3.6: Galilean transformation for the excitation spectrum. Superfluid
requires ground state of the fluid at rest remains the ground state in the moving
frame.

then in the F ′ frame it is

E′
q = Eq − v · q

∆E′
q = E′

q − E0 = ∆Eq − v · q. (3.22)

If the pipe wall is not smooth enough it will always exerts forces on the moving
particles and the viscosity is induced in the scattering processes. For elastic
scattering, the wall can scatter the particle into any final state without any cost
of energies. For inelastic scattering, however, the particle can be scattered into
a lower energy state. As shown in Fig. 3.6a, for an ideal Bose gas, a simple way
to create excitations is to take off a particle out of the condensate and put it in
a state with momentum q, so in the rest frame ∆Eq = q2/2m. Therefore, in
the pipe frame we have

∆E′ = q2/2m− v · q < 0. (3.23)

So from here we obtain Landau’s critical velocity vc = min(∆Eq/q). And we
come to the conclusion that the ground state of the ideal Bose gas is unstable
against the excitation of particles since the critical velocity is zero! The flow
can be dragged by the wall and the wall can impart momentum into the flow
leading to viscous friction.

On the other hand, a superfluid requires the ground state of the fluid in the
rest frame remains the lowest energy state in the moving frame. So we require
that

∆E′ = q2/2m− v · q > 0 (3.24)
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for all excitations. Therefore the excitation spectrum can’t be as the ideal Bose
case and we show in Fig. 3.6b a post-sight sketch from Landau’s intuitive theory.
The ingenious idea of implying the spectrum as the quantized collective modes
instead of a single particle excitation was verified by the experiments. At small
momenta, the excitation energy is linear in q, and the critical velocity is just
the sound velocity. When the velocity of the flow v is smaller than vs, it’s
impossible to create quasiparticles and the flow would be the superfluid.

3.3.3 Summary

Figure 3.7: Evidence for a critical velocity in BEC. Up: Stirring the condensate
with a blue detuned laser beam. (A) Atoms are repelled from the region where
laser passes through. (B) The absorption image of a condensate with a scanning
hole. Down: At v > 1.6 mm/s the thermal fraction increases obviously. The
right axis indicate the temperature T = (1 − N0/N)1/3Tc. From Phys. Rev.
Lett. 83, 2502(1999).

In the above paragraphs we describe the history of researches on superfluids.
Calculations on collective excitation spectra based on Bogoliubov’s approach
do explain the experimental data and verify Landau’s prediction. From the
spectrum, he also derived the critical velocity which denoted as the velocity of
sound, the criterion to excite quasiparticles. Therefore we know as the flow of a
condensate is slower than the sound, it will remain the superfluid. Experimen-
tally we do observe the the evidence of the critical velocity in BEC[29]. MIT
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group studied dissipation when an object is moved through the fluid. They
used a blue-detunned laser beam to repel atoms from its focus to create mov-
ing boundaries. As shown in Fig. 3.7, there are no atoms in the region that
laser passes through. And atoms nearby the hole out-move at the velocity v.
The scanning velocity v = 2df is controlled by varying the scanning frequency
f and the range d. Different from the criterion to generate phonons, the stir
of the cloud generates vortex lines. Fig. 3.7 shows that when v > 1.6 mm/s,
the thermal fractional atoms increase abruptly, and the superfluid flow becomes
unstable against the formation of quantized vortex lines that signals the onset
of the dissipation region.

The authors also do simulations by solving the nonlinear Schrödinger equa-
tion. Theoretical calculations matches very well with experimental observa-
tions. This indicate Bogoliubov’s approach does work in calculation of thermal
excitations. And in the next section we can apply the recipe in simulation of
dissipation processed for a condensate in an optical lattice.
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3.4 Landau and Dynamical Instability of
a Bose-Einstein Condensate
in an Optical Lattice

3.4.1 Motivation

Figure 3.8: Ratio of the first peak amplitude of the oscillation to the free oscil-
lation amplitude as a function of displacement. The inset shows the oscillation
with(stars) and without(squares) the lattice.

In 2001 Burger, Cataliotti and their co-workers[8] created the BEC of Rb87

in a static magnetic trap with a superimposed blue-detunned 1D optical lattice.
The main purpose of their work is to investigate the superfluid phenomenon of
a condensate by studying its center-of-mass oscillations. Experimentally, they
identify different dynamical regimes by varying the initial displacement of the
BEC from the bottom of the trap. In the absence of an optical lattice, the
condensate oscillates in frequency of the magnetic trap. While the lattice is
switched on and in small displacement conditions the condensate oscillates un-
damped but the frequency shifts due to the renormalization of atomic mass in
the band states. However the condensate enters the dissipative regime by in-
creasing the initial displacement and hence the velocity of the condensate as
shown in Fig. 3.8. Superfluidity can be expected to disappear when the velocity
is sufficient for the spontaneous emission of elementary excitations. They mea-
sured the fraction of atoms in the condensate as a function of the velocity. In
Fig. 3.9 we see that for v ≥ 4.1 mm/s the condensate disperses indicating the
superfluid vanishes. And the critical velocity is just the sound velocity theo-
retically defined in an inhomogeneous system by vs =

√
(n(r)/m)(δµ/δn)[30].

Experiments so claimed to observe Landau instability and they observed the
dissipation occurs at higher velocities for decreasing lattice height V0 and the
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Figure 3.9: The fraction of atoms remains in the condensate as the function
of velocity reached during the evolution in the optical lattice. At about v =
2.5 mm/s there is a suddenly decrease of N0. In the inset in the case of v =
4 mm/s, the density distribution obtained from absorption images shows only
central part of the fluid is moving without retardation.

condensate propagates without dissipation in a regime with very few particles.
However Wu and Niu[31] claimed that the observation should be the dynami-

cal instability rather than Landau instability since the dissipation would become
more severe with low densities of BEC. They also claimed GP equation can only
simulates the dynamical instability, while the description of energy dissipation
due to emission of phonons in the Landau instabilities can’t be accounted by
the GP equation.

In order to simulate these phenomena and to investigate the underlying
mechanisms we start our work by solving an effective 1D GP equation and
then we calculate the collective excitation spectra based on the Bogoliubov’s
approach. Meanwhile, the k ·p method is applied to demonstrate the superfluid
property in the shallow potential wells. We found that:

1. When the group velocity of the condensate is larger than the sound velocity
the excitation of quasiparticles is initiated, and the flow enters the Landau
instability regime.

2. When the group velocity goes on increasing to a certain value where the
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corresponding effective mass becomes negative, indicating the presence
of nonreal excitation energy, the model of superfluid breakdowns in this
dynamical instability regime due to the exponential growth of the number
of quasiparticles.

3.4.2 The Effective 1D Gross-Pitaevskii Equation

The evolution of a Bose condensate in an optical lattice obeys the Gross-
Pitaevskii (GP) equation. In the mean-field approximation it is

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + V (r)Ψ + g|Ψ|2Ψ, (3.25)

where g = 4πh̄2as/m, and as is s-wave scattering length. In Eq. 3.25,

V (r) = E0 sin2(
πX

L
) +

1
2
m[ω2

XX
2 + ω2

⊥(Y 2 + Z2)] (3.26)

describes the optical lattice potential of period L and the parabolic magnetic
trapping well. If the trap is tuned such that ω2

⊥ � ω2
X the wave function

can be expressed as Ψ(X,Y,Z, T ) = U(Y,Z)X (X,T ), and the potential can
be decomposed as V(X,Y,Z)=VX(X)+V⊥(Y,Z). Then we will approximately
obtain the analytical solutions in Y-Z plane

U =
√
mω⊥
πh̄

exp[−mω⊥
2h̄

(Y 2 + Z2)]. (3.27)

Therefore by integrating Eq. 3.27 into Eq. 3.25 and setting ωX � 2π/L, we
have

ih̄
∂X
∂T

= − h̄2

2m
∇2

XX + E0sin
2(
πX

L
)X + 2h̄ω⊥as|X |2X . (3.28)

By setting

t = T/T0

x = X/(L/2)

X = ψ/L
1/2
1

V0 = E0/Er,

where

T0 =
mL2

4h̄
L1 = ω⊥|as|mL2/2h̄
Er = 4h̄2/mL2,

the dimensionless GP equation becomes

i
∂ψ

∂t
= −1

2
∂2ψ

∂x2
+ V0 sin2(

π

2
x)ψ + σ|ψ|2ψ, (3.29)
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where σ = sign(as). In the absence of an external force the evolution of the
condensate wave function follows its ground state energy µ and can be written
as ϕ(x, t) = ϕ(x)e−iµt. So Eq. 3.29 becomes

µϕ(x) = −1
2
∂2ϕ

∂x2
+ V0 sin2(

π

2
x)ϕ(x) + σ|ϕ(x)|2ϕ(x). (3.30)

3.4.3 k·p Method and 1-band Approximation

Figure 3.10: Periodic potential and lowest two band structures of V =
0.7 sin2(πx/2).

While we set σ = 0, Eq. 3.30 reduces to a general, widely studied eigenvalue
problem in the solid state physics. By using plane wave method the Bloch wave
functions and the band structures can be expressed in an analytic manner [see
Appendix B]. And the complete Bloch states turn out to be the good basis
in solving the nonlinear Eq. 3.30. So we expand ϕ(x) in basis of Bloch states
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ϕnk(x)

ϕ(x) =
∑

n

∫ π/2

−π/2

An(k)ϕnk(x)dk, (3.31)

where n is the band index and the integral is taken over the first Brillouin zone.
The k·p method applied that in the vicinity of a certain k0, the Bloch wave
function is approximated to

ϕnk(x) � ei(k−k0)xϕnk0(x). (3.32)

Then under 1-band approximation(n = 0), the condensate wave function of the
infinite large system can be written as

ϕ(x) �
∫
An(k)ei(k−k0)xϕnk0(x)dk = ϕnk0(x)

∫
An(k)ei(k−k0)xdk

= ϕnk0(x)Fnk0(x). (3.33)

The expression is valid in the assumption of slow varying envelope function
Fnk0(x) in coordinate space.

Substitute Eq. 3.33 in to Eq. 3.30, the linear part of the equation becomes

−1
2
∂2ϕ

∂x2
+ V0 sin2(

π

2
x)ϕ(x)

=
∫
An(k)[−1

2
∂2

∂x2
+ V0 sin2(

π

2
x)]ϕnk(x)dk (3.34)

=
∫
An(k)En(k)ϕnk(x)dk (3.35)

� ϕnk0(x)
∫
An(k)[En(k0) + Vg(k0)(k − k0)

+
1

2meff
(k − k0)2]ei(k−k0)xdk (3.36)

= En(k0)ϕnk0(x)Fnk0(x) + ϕnk0(x)[Vg(k0)p̂+
p̂2

2meff
]Fnk0(x). (3.37)

Thus, in the k·p approximation the expansion of the band structure around
k = k0 changes the problem to another scenario. We are no longer dealing
with the system containing a periodic potential with infinite number of wells.
Rather, the dynamics of the particle can be described in terms of an envelope
wave packet with the effective mass m∗ and the group velocity Vg moving in the
free space. Extend the approach to the interacting condensate, the GP equation
becomes

ϕnk0(x)[Vg(k0)p̂+
p̂2

2meff
+ σ|ϕnk0Fnk0 |2]Fnk0 = [µ− En(k0)]ϕnk0(x)Fnk0(x).

(3.38)
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Integrate Eq. 3.38 by ϕ∗
nk0

(x) we obtain

[−iVg(k0)
∂

∂x
− 1

2meff

∂2

∂x2
+ σ′|Fnk0 |2]Fnk0(x) = [µ− En(k0)]Fnk0(x), (3.39)

where

σ′ =
∫

|ϕnk0(x)|4dx =
2π
2
σ

∫ 1

−1

|ϕnk0(x)|4dx

=
σ

2π
[1 +

8
V 2

0

(k2
0 + V0 − 2E(k0))2

[1 + 4
V 2

0
(k2 + V 2

0 − 2E(k0))2]2
]. (3.40)

In Eq. 3.40 we have used the analytic expression derived in Appendix D. The
3rd order derivative term ic3

∂3

∂x3 would be included in Eq. 3.39 for points close
to the one with infinite mass and c3 is in the form of

c3 =
1
6

−6π4(−2k0 + π)V0

[(−2k0π + π2)2 + V 2
0 ]5/2

. (3.41)

3.4.4 Collective Excitations

Following the history of investigation of superfluid phenomenon of liquid he-
lium that we briefly introduced in the previous section we know the concept
of elementary excitations plays an important role to explain the properties of
the Bose liquid. The elementary excitation spectrum for He4 has been directly
observed by neutron scattering[32], and we know the low frequency excitation
are phonons, long-wavelength collective modes of the superfluid. However a sat-
isfactory microscopic theory is only valid in explanation of behaviors for dilute
quantum gases. It is until the realization of BEC that the theory can be tested
experimentally.

The observation of collective excitations of the Bose-Einstein condensation
in the magnetic-optical trap (MOT) stimulates a lot of calculations[33]. The
oscillation spectra of the low-lying states give us the information about the
dilute atomic gas at extremely low temperatures. A complete derivation of
formulas to obtain excitation spectra in Bogoliubov’s approach is in Appendix
D. Spectra for a condensate in the harmonic magnetic trap and double well are
also shown there.

Let’s come back to the optical lattice system. To investigate the superfluid
behavior we have to find out if the system remains in energy minimum against
external perturbations. In second quantization language the grand canonical,
many-body hamiltonian can be written in terms of the boson field operator
Fnk0(x) ≡< ˆF (x) > as

H =
∫
dx{ ˆF (x)

†
(−iVg

∂

∂x
− 1

2meff

∂2

∂x2
+ E) ˆF (x) +

σ′

2
| ˆF (x)|4 − µ| ˆF (x)|2}.

(3.42)
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The boson field operators F †(x) and F (x), respectively, create and destroy an
atom at position x and satisfy the commutation relations

[F (x), F †(x′)] = δ(x− x′)
[F (x), F (x′)] = [F †(x), F †(x′)] = 0. (3.43)

Under Bogoliubov’s approach the condensate is assumed to contain most of
atoms such that N −N0 
 N0, where N0 denotes the macroscopic occupation
of the condensate and N is the total number of atoms in the system. In the
case, the field operator can be written as the condensate wave function A(x)
plus a small correction ˆφ(x)

ˆF (x) = A(x) + ˆφ(x), (3.44)

where

φ̂(x) =
∑

q

[uq(x)eiqxâq + v∗q (x)e−iqxâq
†]

φ̂†(x) =
∑

q

[u∗q(x)e
−iqxâq

† + vq(x)eiqxâq] (3.45)

are represented in term of quasi-particle and quasi-hole amplitudes in the ex-
ploitation of so-called Bogoliubov transformation.

From Eq. 3.42 we have zero order term H0 as

H0 =
∫
dxA∗(x)(−iVg

∂

∂x
− 1

2meff

∂2

∂x2
+ E)A(x) +

σ′

2
|A(x)|4 − µ|A(x)|2},

(3.46)
where E ≡ En(k0) and µ = E + σ′A(x)2, and the first order perturbation δH
as

δH = a†qaq

∫
dx[u∗q(x)e

−iqx + vq(x)eiqx](−iVg
∂

∂x
− 1

2meff

∂2

∂x2
)

[uq(x)eiqx + v∗q (x)e−iqx] +
σ′

2
[4A2(x)(|uq(x)|2 + |vq(x)|2)

+2A2(x)(uq
∗(x)vq(x) + vq

∗(x)uq(x))]. (3.47)

Then in matrix form, Eq. 3.47 is equivalent to

δH = a†qaq

∫
dx
(
u∗(x) v(x)

)
B

(
u(x)
v∗(x)

)
(3.48)

where B is a 2× 2 matrix (
c11 c12
c21 c22

)
(3.49)
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in which

c11 = − 1
2meff

[
∂

∂x
+ i(q +meffVg)]2 − 1

2
meffV

2
g + E − µ+ 2σ′A2(x),

c22 = − 1
2meff

[
∂

∂x
+ i(q −meffVg)]2 − 1

2
meffV

2
g + E − µ+ 2σ′A2(x),

and
c12 = c21 = σ′A2(x). (3.50)

Since the envelope function is slow varying in coordinate space, in convenience,
it is to be assumed as a constant in our work and so do amplitudes of quasipar-
ticles. Under the assumption and including the 3rd order correction, the matrix
becomes

B =

(
q2

2meff
+ qVg + c3q

3 + σ′A2 σ′A2

σ′A2 q2

2meff
− qVg − c3q

3 + σ′A2

)
. (3.51)

Minimizing the energy functional of Eq. 3.48 gives us the stationary eigen solu-
tions and they are

λ = (
q2

2meff
+ σ′A2) ±

√
(qVg + c3q3)2 + σ′2A4. (3.52)

Therefore we obtain the criterion to excite quasiparticles, namely when

Vg >

√
q2

4m2
eff

+
σ′A2

meff
− c3q

2, (3.53)

and when q→ 0, Vg > Cs =
√

σ′A2

meff
, the first sound velocity, in the case that

Landau instability occurs.
To investigate the dynamics of the condensate, a small displacement on the

magnetic trapping potential is performed to drive the system. Then start with
the time dependent GP equation

i
∂F̂

∂t
+ iVg

∂F̂

∂x
− ic3

∂3F̂

∂x3
= − 1

2meff

∂2F̂

∂x2
+ EF̂ + σ′|F̂ |2F̂ , (3.54)

with F̂ = (A + uq(t)ei(qx−Eqt)âq + v∗q (t)e−i(qx−Eqt)âq
†)e−iµt, the equations of

motion of the quasiparticels are

i
∂

∂t

(
u
v

)
=

(
q2

2meff
+ qVg + c3q

3 + σ′A2 σ′A2

−σ′A2 − q2

2meff
+ qVg + c3q

3 − σ′A2

)

×
(
u
v

)
. (3.55)
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The quasiparticles will oscillate in multiple frequency of the external field
with excitation energies

Eq = qVg + c3q
3 ±

√
q4

4m2
eff

+
q2σ′A2

meff

= qVg + c3q
3 ± εq. (3.56)

While the motion of atoms is unidirectional with group velocity Vg, the two
excitation branches manifest the phenomenon in analogy of the Doppler effect.
With amplified excitation energies the high energy branch bringing particles
obeying Bose commutation relation

[aq, a
†
k] = δqk, (3.57)

results in the normalization condition

|uq|2 − |vq|2 = 1. (3.58)

Therefore we obtain the amplitudes of particles

|uq|2 =
1
2
(
ξq
εq

+ 1)

|vq|2 =
1
2
(
ξq
εq

− 1), (3.59)

where ξq = ε0q + σ′A2 and ε0q = q2

2meff
.

On the other hand, the low energy branch, which we assert to be constructed
by antiparticles obeying anti-Bose commutation relation[34]

[b†q, bk] = [aq, a
†
k] = δqk, (3.60)

and the anti-normalization condition

|uq|2 − |vq|2 = −1. (3.61)

Then the amplitudes of antiparticles are

|uq|2 =
1
2
(
ξq
εq

− 1)

|vq|2 =
1
2
(
ξq
εq

+ 1). (3.62)

In mean field approximation, the depletion of the condensate by ensemble
average of the excitation field operator < φ̃†φ̃ > is given as

Ñ =
∑

q

[|uq|2 + |vq|2]f(q) + |vq|2, (3.63)

where f(q) = < a†qaq > = < bqb
†
q > = [eEq/kBT + 1]−1. For meff > 0, the

low energy excitation is initiated if Vg > Cs which gives us an estimation for
the occurrence of Landau instability. While for meff < 0 the spectra become
complex indicating the exponential growth of the number of the quasiparticles.
The superfluid phenomenon vanishes due to the rise of dynamical instability.
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3.5 Numerical Results and Discussions

We simulate an 1D optical lattice model with shallow dimensionless potential
of V0 = 2. As a typical value we take the total number of lattice site I = 250.

In Fig. 3.11 we show m−1
eff , Vg and Cs in function of quasimomentum k. For

k ≥ 1.13581 meff becomes negative indicating the cutoff while afterwards that

superfluid behavior vanishes. In Fig. 3.11(b) we have Cs =
√

σ′A2

meff
, where A2

is the condensate density defined as

A =
√
N0π/Rmax. (3.64)

Eq. 3.63 is constructed from the normalization condition

N = A2

∫ Rmax

−Rmax

|ϕnk(x)|2dx = N0 + Ñ . (3.65)

While we set N = 750 and Rmax = 250, the self-consistent calculations return
736.025 ≤ N0(k) ≤ 748.221 at T = 0 K. For k ≥ 1.03914 the low energy
excitations are stimulated and the Landau instability occurs.

In Fig. 3.12 we plot N0/N for N = 750 and 900 at T = 0 K and 30 nK.
Different from the smooth curve of the condensate fraction vs. temperature
in the absence of the lattice, there is a kink in the fraction of the condensate
accelerated by the lattice even at T = 0 K. For T > 0 the kink becomes sharp.
The sudden decrease of atoms in the condensate attributes to the creation of
anti-quasiparticles of the low excitation energy branch. We assert that Landau
instability occurs in company with the superfluid. Before the collapse of the
condensate our calculations show two plateaus in good matched with that ob-
served in the experiment data. The two regions are separated by the appearance
of Landau and dynamical instabilities . With the increase of the total number
of particles, the region of the second plateau diminishes. It takes more energy to
excite anti-particles according to Eq. 3.51 and for N > Nc ∼ 1200 in our work,
it is no longer to excite atoms in low energy branch. While the velocity unit is
about 3.613 mm/s, Landau instability occurs at vL = 2.9 mm/s and dynamical
instability occurs at vd = 3.1 mm/s. However the correspondent data in the
experiment are vL = 2.5 mm/s and vd = 4.0 mm/s. Obviously there are some
differences between the results. The error in vd might arise from the two-band
approximation. And practically, a comparison between 1D simulation and 3D
experimental set-up might cause errors too, even we have made some reductions
of experimental parameters to 1D case. But actually, via calculations of excita-
tion spectra, we do prove that both Landau and dynamical instability occur to
destroy the superfluid.

In order to explore the physics of strange phenomena behind Fig. 3.12 we plot
dispersion relations of the quasiparticle in various quasimomentum k. Fig. 3.13
shows the low excitation energy spectra for N = 750 at T = 30 nK. First, we
choose k = 0.55582 lying in the first plateau and we see clearly that excitation
is allowed only for few momenta q. Therefore for k < 1.03914 most atoms are
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in condensed state. For k = 1.03914, 1.06331 and 1.08747, Eq almost linearly
increase with q. Since Eq(k = 1.03914) < Eq(k = 1.06331) < Eq(k = 1.08747),
it explains the sharp kink at k = 1.03914 and afterwards the fraction arises.
As we come to the point at k = 1.11164 where Eq is nonlinear of q, instability
appears when q ≥ 0.7. And for k > 1.11164, the positive assurance of Eq. 3.51
is not fulfilled. By Fig. 3.13 our results confirm the existence of the critical
velocity over which the superfluid vanishes.

Fig. 3.14 shows spectra of the high energy branch. In comparison with the
spectra in Fig. 3.13, there are no forbidden excitations for k < 1.03491. Except
the dispersion curve of k = 1.11164, all spectra are linear in q, and the number
of thermal atoms of various of k come in order of 10 at T = 30 nK. The
excitation energy for k = 1.11164 however is lower such that there are about 50
thermal atoms in this case.
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Figure 3.11: In (a) we show m−1
eff (k). For k ≥ 1.13581 meff becomes negative

and the damping occurs in the system. In (b) we show Vg(k) and Cs(k). Vg is
zero at k = 0 and π/2. For k ≥ 1.03914 Vg > Cs and for k ≥ 1.03581 Cs is not
defined.
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Figure 3.12: Fraction N0/N of k at V0 = 2, T = 0 K, 30 nK. At T = 0 K, very
few quasiparticles are excited due to the quantum fluctuations. When T > 0 the
kink around some k indicates the onset of Landau instability. For k > 1.11164
the superfluid breakdowns due to the occurrence of dynamical instability.
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Figure 3.13: Low energy branch of the excitation energy spectra at V0 = 2,
N = 750, T = 30nK. For smaller k, Eq < 0 for all q indicates the group velocity
is too small to excite quasiparticles. Since it is easier to excite quasiparticles for
smaller Eq, the figure explain the kink of fraction at k = 1.03914.

72



Figure 3.14: Low energy branch of the excitation energy spectra at V0 = 2,
N = 750, T = 30 nK. In comparison with the spectra in Fig.2.8, there are
no forbidden excitations for k < 1.03491. Except the dispersion curve of k =
1.11164, all spectra are linear in q, and the number of thermal atoms of various
of k come in order of 10 at T = 30 nK.
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3.6 Summary

In this chapter we report theoretical study of the instability phenomenon of a
condensate in an optical lattice. While the frequencies of two laser beams are
controlled to have a detuning δν the lattice is constructed moving at velocity v =
λδν/2. In other words the condensate can be regarded to move in the opposite
direction with the group velocity v = h̄k/m, where k is the quasimomentum
and is well defined as the condensate is loaded into an adiabatically switched-on
lattice.

Distinct from the localized motion in deep traps usually described via the
Bose-Hubbard model[35], We use k ·p method to describe condensate’s motion
in the shallow traps by directly solving time- dependent GP equation. Under
this approximation we construct a wave packet extended broadly in real space.
Therefore we may say the coherence length of the condensate is much larger
than the size of several lattice sites. This also implies the superfluid nature of
the system. But the existence of the optical lattice serves as the roughness to
be able to destroy the superfluid. Instabilities take place if the relative velocity
between the condensate and the lattice exceeds the sound velocity and if the
effective mass of the condensate becomes an undefined negative value wherein
the condensate itself is unstable to against the creation of thermal atoms.

While Burger et al. claimed their observation of destruction of the superfluid
as the occurrence of Landau instability, but we propose in our work a different
point of view that in addition to Landau instability there is also a regime of
dynamical instability. From theoretical calculations, the analyses of excitation
spectra based upon Bogoliubov’s approach clearly explain reasons of the occur-
rence of instabilities. We are glad that the study on superfluid phenomenon of
the BEC provides a successful touchstone to verify theories on superfluids.
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Appendix A

Derivation of Interaction
Potential in Terms of
Scattering Length

Consider the scattering of two distinguishable particles of mass m1 and m2, the
wave function of the center-of-mass motion is a plane wave while the relative
motion satisfies the Schrödinger equation with the mass equal to the reduced
mass µ = m1m2/(m1 + m2). If the particle is incident in the z direction, the
wave function far from the scattering target can be written as

ψ(r) = eikz + ψsc(r), (A.1)

where ψsc is the scattered wave function. If the scattering between particles is
spherical symmetric, the scattered wave function can be expressed in the form
of the spherical wave with the scattering amplitude f(θ) depends only on the
angle of the relative momentum before and after scattering. Then the wave
function at large distance is

ψ(r) = eikz + f(θ)
eikr

r
, (A.2)

and the energy of the system is

E =
h̄2k2

2µ
. (A.3)

To explicitly determine the scattering amplitude we expand the wave function
in terms of the Legendre polynomials Pl(cos θ),

ψ(r) =
∑

l

AlPl(cos θ)Rkl(r). (A.4)
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Substitute Eq. (4) into Schrödinger equation with central potential U(r), the
radial part Rkl(r) satisfies

[
1
r

d2

dr2
r − l(l + 1)

r2
+ k2 − 2µ

h̄2 U(r)]Rkl(r) = 0. (A.5)

In the far field where U(r)→ 0, the asymptotic solution is Bessel function jl(kr)
for the free particle,

Rkl(r) ∼ 1
kr

sin(kr − πl

2
+ δl), (A.6)

with the phase shift δl provided U(r) decrease faster than r−1.
To compare the asymptotic wave function of Eq. (4) with Eq. (2), we expand

the plane wave as

eikz =
∑

l

(2l+1)iljl(kr)Pl(cos θ) ∼
∑

l

(2l+1)il
sin(kr − πl/2)

kr
Pl(cos θ). (A.7)

Then

ψ(r) = eikz + f(θ)
eikr

r

=
∑

l

(2l + 1)Pl(cos θ)eilπ/2 (ei(kr−lπ/2) − e−i(kr−lπ/2))
2ikr

+ f(θ)
eikr

r

=
∑

l

(2l + 1)Pl(cos θ)
(eikr − e−i(kr−lπ))

2ikr
+ f(θ)

eikr

r
(A.8)

=
∑

l

AlPl(cos θ)
1

2ikr
(ei(kr−lπ/2+δl) − ei(kr−lπ/2+δl))

=
∑

l

AlPl(cos θ)
1

2ikr
e−iδle−ilπ/2(ei(kr+2δl) − e−i(kr−lπ)). (A.9)

Compare Eq. (8) and Eq. (9), we obtain

Al = (2l + 1)ileiδl , (A.10)

and

f(θ) =
(2l + 1)

2ik
Pl(cos θ)(e2iδl − 1). (A.11)

A.1 Relative Magnitude of Phase Shifts

In order to determine the phase shifts we make simplifying assumptions in cal-
culations. In classical scattering one introduces impact parameter b which is
given by

L = bP, (A.12)
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Figure A.1: Classical scattering between two particles.

where L and P are incident parameter’s angular momentum and linear momen-
tum. Therefore if the interacting potential is appreciable over the range a, the
scattering effect is negligible for b > a. For the incident particle with momen-
tum P = h̄k and angular momentum L =

√
l(l + 1)h̄ ∼ lh̄, the criterion of

non-interaction is
l > ak. (A.13)

For low energy scattering with ka 
 1, only l = 0 phase shift will differ
appreciably from zero. Then the so called s-wave scattering amplitude becomes

f(θ) =
1
k
eiδ0 sin δ0

∼ δ0
k

≡ −a, (A.14)

and a is defined to be the s-wave scattering length.

A.2 Viewpoints From Quantum Mechanics

In low temperature dilute gases interactions among atoms are weak except when
they approach each other. Consider only two-body elastic scattering between
identical particles, it is convenient to introduce an effective interaction to sim-
plify simulations of the interacting processes.

Since the state of the particle can be specified by momentum k, it is suitable
to deal the many-body system in momentum space. Then the wave function of
Eq. (1) in momentum representation is written as

ψ(k) =
∫
dre−ik·r[eik′·r + ψsc(r)]
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= (2π)3δ(k − k′) + ψsc(k). (A.15)

The Schrödinger equation in momentum space would be derived through the
Fourier transform. From Hψ = Eψ we have∫

dre−ik·r[− h̄
2∇2

m
+ V (r)](eik′·r + ψsc(r)) (A.16)

=
∫
dre−ik·r[

P̂ 2

m
+ V (r)](eik′·r + ψsc(r)) (A.17)

=
h̄2k2

m
[(2π)3δ(k − k′) + ψsc(k)]

+V (k′ − k) +
∫
dre−ik·rV (r)

∫
dk

′′
eik

′′ ·rψsc(k
′′
) (A.18)

=
h̄2k2

m
[(2π)3δ(k − k′) + ψsc(k)]

+V (k′ − k) +
∫
dk

′′
V (k,k

′′
)ψsc(k

′′
) (A.19)

=
h̄2k′2

m
[(2π)3δ(k − k′) + ψsc(k)]. (A.20)

Therefore Eq. (15) satisfies

(
h̄2k′2

m
− h̄2k2

m
)ψsc(k) = V (k′ − k) +

∫
dk

′′
V (k,k

′′
)ψsc(k

′′
). (A.21)

Then the scattered wave function is given by

ψsc(k) = (
h̄2k′2

m
− h̄2k2

m
+ iξ)−1[V (k,k

′
)

+
∫
dk

′′
V (k,k

′′
)ψsc(k

′′
)] (A.22)

= (
h̄2k′2

m
− h̄2k2

m
+ iξ)−1T (k,k′;E). (A.23)

For low energy incident wave and at large distances we have ψsc(r) by Fourier
transform from Eq. (22), namely,

ψsc(r) ∼ −mT (0, 0; 0)
4πh̄2r

. (A.24)

From Eq. (2), (14) and (23) we obtain

T (0, 0; 0) =
4πh̄2a

m
(A.25)

In the Born approximation, T matrix is obtained by taking only V (k,k′)
term and the scattering length becomes

aBorn =
m

4πh̄2V (0) =
m

4πh̄2

∫
drV (r), (A.26)
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corresponding to |k′−k| = 0. Therefore we obtain that the effective interaction
between two particles at low energies is a constant V (0) = 4πh̄2a/m in the
momentum representation. Then in coordinate space the effective interaction
turns out to be 4πh̄2a

m δ(r − r′).
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Appendix B

Analytical Expressions for
Band Structures by Plane
Wave Method

The plan wave methods[1] provides a generic algorithm for eigenvalue problems
with periodic potentials [1] such as

Eϕ(x) = −1
2
∂2ϕ

∂x2
+ V (x)ϕ(x). (B.1)

To solve Eq. B.1 we expand the periodic potential in terms of the plane wave
basis:

V (x) =
∑
G

UGe
iGx, (B.2)

where G is the reciprocal lattice vector. Also we set

ϕ(x) =
∑

k

Cke
ikx, (B.3)

where wave vectors k is taken over all values allowed by the Born-von Karman
boundary condition. Substitute above equations in to Eq. B.1 we would obtain

V (x)ϕ(x) =
∑
Gk

UGCke
i(k+G)x =

∑
Gk′

UGCk′−Ge
ik′x, (B.4)

and therefore the Schrödinger equation becomes

(
k2

2
− E)Ck +

∑
G

UGCk−G = 0. (B.5)

It is convenient to write k = q−G so that q lies in the first Brillouin zone. Then
Eq. B.5 becomes

(
(q −G)2

2
− E)Cq−G +

∑
G′

UG′Cq−G−G′ = 0, (B.6)
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or if we make the change of variables G′ → G′ −G,

(
(q −G)2

2
− E)Cq−G +

∑
G′

UG′−GCq−G′ = 0. (B.7)

For fixed q in the first Brillouin zone the set of Eq. B.7 for all reciprocal lattice
vectors G couples only coefficients of Cq, Cq−G, Cq−G′ , Cq−G” . . .. Then the
original problem has separated into N independent problems: one for each
allowed q in the first Brillouin zone.

The band structure and the corresponding Floquet-Bloch modes can be ob-
tained by solving Eq. B.7. The accuracy of modes depends on the number of
plane wave basis taken in expansion. For the case of a Bose condensate in an
optical lattice, the potential is usually in the form of V (x) = sin2(πx/D) which
implies non zero terms in Eq. B.2 to U0 = V/2 and UG1 = U−G1 = −V/4. So
when the potential is rather shallow in which only few bound states exist, we
can approximately use the two band approach for G = 0 and G = G1:

(q2 − E + U0)
2

Cq + UG1Cq−G1 = 0

((q −G1)2 − E + U0)
2

Cq−G1 + U−G1Cq = 0. (B.8)

For simplicity, we have D = 2 and the corresponding G1 = 2π/D = π in our
work. Then we obtain the band structure

E(q) =
V

2
+
q2 + (q − π)2

4
±
√

(q2 − (q − π)2)2 + V 2

4
. (B.9)

On the other hand, the normalization condition 2π
2

∫ 1

−1
|ϕ(x)|2 dx = 1 implies

that |Cq|2 + |Cq−G1 |2 = 1
2π . So we can rewrite the wave function as

ϕ(x) = Cqe
iqx(1 +

2
V

(q2 + V − 2E)e−iπx), (B.10)

where Cq = 1/
√

2π(1+ 4
V 2 (q2+V −2E)2)−1/2, and Cq−G1 = (q2+V −2E)2Cq/V .

Therefore, by definition the effective mass and the group velocity can be written
as

1
meff

=
∂2E

∂q2
= 1 ± π2V 2

[(q2 − (q − π)2)2 + V 2]3/2
(B.11)

Vg =
∂E

∂q
= (q − π

2
)(1 ± π2√

(q2 − (q − π)2)2 + V 2
). (B.12)
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Appendix C

Bloch Theorem and k·p
Method

Consider an electron in a potential U(r) with the perfect periodicity of the
underlying Bravais lattice[1]; ie,

U(r + R) = U(r), (C.1)

for all Bravais lattice vector R. Then eigenstates of the electron ψ that satisfies
the Schrödinger equation

Hψ = (− h̄
2∇2

2m
+ U(r))ψ = Eψ (C.2)

would be written in the form as

ψnk(r) = eik·runk(r), (C.3)

where unk(r) is the Bloch wave function with the smae periodicity of the po-
tential. Then the Bloch theorem states that the eigenstate of H can be chosen
so that associated with each ψ is a wave vector k such that

ψ(r + R) = eik·Rψ(r). (C.4)

C.1 General Remarks About Bloch’s Theorem

1. Bloch theorem introduces a wave vector k and the crystal momentum
h̄k to the electron in the periodic potential. However unlike wave vector
k of a free electron is associated with its momentum by P = h̄k, the
eigenstates ψnk(r) are not eigenstates of the momentum operator due to
the incomplete translational invariance of the Hamiltonian in the presence
of the nonconstant potential; ie,

−ih̄∇ψnk = −ih̄∇(eik·runk(r)) = h̄kψnk − ih̄eik·r∇unk(r). (C.5)
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Therefore k is only viewed as a quantum number characteristic of the
translational symmetry of a periodic potential.

2. The Bloch wave function unk(r) satisfies the eigenvalue equation

Hkunk(r) = (
h̄2

2m
(
1
i
∇ + k)2 + U(r))unk(r) = Enkunk(r), (C.6)

with the boundary condition

unk(r) = unk(r + R). (C.7)

3. The wave k can be restricted in the first Brillouin zone and for any k′ not
in the region can be written as

k′ = k + K, (C.8)

where K is the reciprocal lattice vector of the Bravais lattice. Then for
any given n, we have

ψn,k+K(r) = ψn,k(r),
En,k+K = En,k, (C.9)

and En,k is referred to as the band structure of the system.

4. We’ll show in the next section that from k·p theorem an electron in a level
specified by n and k has a nonvanishing mean velocity

vn(k) =
1
h̄
∇kEnk. (C.10)

It asserts that in spite of interactions between the electron and ions an
electron in a periodic potential moves without any degradation of its mean
velocity.

C.2 k·p Perturbation, Group Velocity, and Ef-
fective Mass

Instead of solving the whole band structure of Eq. (6), the k·p method is used
to explore the band structure in the vicinity of some k0[2]. Setting k = k0 + q,
and by perturbation theory we set

Enk = Enk0 +
∂Enk

∂k
|k0 · q +

1
2
∂2Enk

∂k2
|k0 · q2 + . . .

= E
(0)
nk + E

(1)
nk + E

(2)
nk + . . .

unk = u
(0)
nk + u

(1)
nk + u

(2)
nk + . . . , (C.11)

90



Eq. (6) can be rewritten as

[
p2

2m
+
h̄

m
k0 · p +

h̄2k2
0

2m
+ U(r) +H ′][u(0)

nk + u
(1)
nk + u

(2)
nk + . . .]

= [E(0)
nk + E

(1)
nk + E

(2)
nk + . . .][u(0)

nk + u
(1)
nk + u

(2)
nk + . . .], (C.12)

where

H ′ =
h̄2

m
q · (p

h̄
+ k0) +

h̄2q2

2m
= H ′

1 +H ′
2. (C.13)

Then the zeroth order term gives

H0u
(0)
nk = [

p2

2m
+
h̄

m
k0 · p +

h̄2k2
0

2m
+ U(r)]u(0)

nk = E
(0)
nku

(0)
nk . (C.14)

The equation of first order term is

H0u
(1)
nk +H ′

1u
(0)
nk = E

(0)
nku

(1)
nk +E

(1)
nku

(0)
nk . (C.15)

While we set
u

(1)
nk =

∑
n′
Cnn′u

(0)
nk (C.16)

and define H ′
n′n =< u

(0)
n′k|H ′

1|u(0)
nk >, we obtain

Cnn′ =
H ′

n′n

E
(0)
nk − E

(0)
n′k

u
(1)
nk =

∑
n′ �=n

H ′
n′n

E
(0)
nk − E

(0)
n′k

u
(0)
n′k. (C.17)

Also from Eq. (15) we obtain the first order correction to the energy

E
(1)
nk = < nk0|H ′

1|nk0 >=< nk0| h̄
2

m
q · (p

h̄
+ k0)|nk0 >

=
∂Enk

∂k
|k0 · q. (C.18)

While ψnk0(r) = eik0·runk0(r), Eq. (8) give us the group velocity of the Bloch
electron at k0, which in the form of the first derivative of the band structure is

∂Enk

∂k
|k0 =

h̄2

m
< ψnk0 |

1
i
|∇ψnk0 > . (C.19)

Calculations of the second order correction to energy starts by setting

u
(2)
nk =

∑
n′
dnn′u

(0)
nk , (C.20)
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and from

H0u
(2)
nk +H ′

1u
(1)
nk +H ′

2u
(0)
nk = E

(0)
nku

(2)
nk + E

(1)
nku

(1)
nk + E

(2)
nku

(0)
nk , (C.21)

we obtain

E
(2)
nk =

h̄2q2

2m
+ < u

(0)
nk |H ′

1|u(1)
nk >

=
h̄2q2

2m
+
∑
n′ �=n

| < nk0|H ′
1|n′k0 > |2

Enk0 − En′k0

. (C.22)

Compared with Eq. (11) we then define the effective mass m∗ at k0 as

(
1
m∗ )µν = [

1
h̄2

∂2Enk

∂kµ∂kν
]k0 (C.23)

=
1
m
δµν +

2
m

∑
n′ �=n

| < nk0|pµ|n′k0 > | < n′k0|pν |nk0 >

Enk0 −En′k0

.(C.24)
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Appendix D

The Collective Excitation in
The Mean Field
Approximation

In the field operator formulation, the Hamiltonian of the trapped boson gas
at extremely low temperature can be formulated through the binary contact
interaction :

H =
∫
drΨ†(r)[

−h̄2∇2

2m
+ Vtrap(r)]Ψ(r)

+
∫
dr
∫
dr′Ψ†(r)Ψ†(r′)δ(r − r′)Ψ(r′)Ψ(r). (D.1)

The interaction among cold atoms can be represented by the s-wave scattering
length of the binary collisions. Under the mean filed approach Ψ(r) = Φ(r) +
ψ̃(r), where Φ(r) = 〈Ψ(r)〉 is the order parameter of the condensate [2]. Then
the equation of motion for the condensate in the Hatree-Fock-Bogoliubov-Popov
approximation is given by

ih̄
∂Φ
∂t

= [
−h̄2∇2

2m
+ Vtrap − µ]Φ + g[|Φ|2 + 2〈ψ̃†ψ̃〉]Φ + g〈ψ̃ψ̃〉Φ∗. (D.2)

Here g = 4πh̄2a
m and a is the s-wave scattering length. We will use the notations:

nc ≡ |Φ|2, ñ ≡ 〈ψ̃†ψ̃〉 and m̃ ≡ 〈ψ̃ψ̃〉. nc denotes the density of condensate, and
ñ is the density of the non-condensate atoms. So, the equation of the excitation
part is given by

ih̄
∂ψ̃

∂t
= [

−h̄2∇2

2m
+ Vtrap − µ]ψ̃ + g[2nψ̃ +mψ̃†], (D.3)

where n = nc + ñ and m = Φ2 + m̃.

95



In the low temperature, the effect of simultaneously annihilation of two par-
ticles is negligible. To solve Eq. D.3 we first make the Bogoliubov transformation
for the non-condensate wave function ψ̃

ψ̃(r, t) = Σi[ui(r)α̂i − v∗i (r)α̂†
i ]e

−iEit, (D.4)

and we then obtain

Eiui(r) = Lui(r) − gΦ2(r)vi(r)
−Eivi(r) = Lvi(r) − gΦ∗2(r)ui(r), (D.5)

where L = −h̄2∇2

2m + Vtrap − µ+ 2gn(r) = ĥ0(r) + gnc(r). Since ψ̃(r) and ψ̃†(r)
are boson operators, so the quasi-particle and quasi-hole amplitude ui(r) and
vi(r) satisfy the normalization condition

∫
dr[ui(r)u∗j (r) − vi(r)v∗j (r)] = δij .

Instead of solving Eq. D.5 directly, we define φ±i (r) = ui(r) ± vi(r). After
some algebraic manipulations, we obtain

ĥ2
0(r)φ

+
i (r) + 2gnc(r)ĥ0φ

+
i (r) = E2

i φ
+
i (r)

ĥ2
0(r)φ

−
i (r) + 2ĥ0gnc(r)φ−i (r) = E2

i φ
−
i (r). (D.6)

Expand φ+
i (r) in terms of the eigenstates of ĥ0(r), we get

Σα[εαδαβεβC
i
α + 2g(

∫
drφ∗β(r)nc(r)φα(r))εαCi

α] = E2
i C

i
β , (D.7)

where φ+
i = ΣαC

i
αφα(r), and φα(r) satisfies ĥ0(r)φα(r) = εαφα(r). From the

relation ĥ0φ
+
i = Eiφ

−
i , and the normalization condition of ui(r) and vi(r), the

Ci
α satisfies

ΣαεαC
∗i
α C

j
α = Ejδij . (D.8)

Finally we arrive at(
ui(r)
vi(r)

)
=

1
2
Σα(1 ± εα

Ei
)Ci

αφα(r). (D.9)

With the Bose distribution function 〈α̂†
i α̂i〉BE = (eEi/kBT −1)−1 ≡ N0(Ei), the

non-condensate density can thus be represented as ñ(r) = Σi [|ui(r)|2 + |vi(r)|2]
N0(Ei) + |vi(r)|2.

The condensate here is trapped in an axial symmetric double-well con-
structed by adding a laser generated Gaussian barrier to MOT. The GPE for
the condensate part is given by

[
−h̄2∇2

2m
+

1
2
mω(x2 + y2) +

1
2
mωzz

2 + Uge
− r2

2σ2

+g(nc(r) + 2ñ(r))]Φ(r) = µΦ(r). (D.10)

To solve Eq. D.10 we make expansion in terms of the spherical harmonics

Φ(r) =
∑

l

Φl(r)
r

Yl,me
(Ω), (D.11)
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We see that due to the nonspherical potential, the orbital angular momentum
itself is not a good quantum number for the system, but the magnetic quantum
number me, and parity P = (−1)(l+me) are good quantum numbers. For the
ground state condensate me = 0. In diagonalization of Eq. D.10, we multiply it
by Y ∗

l′,m′
e
(Ω) and integrate over Ω. The Laplacian and Gaussian barrier potential

terms can be expressed as

EK =
∑

l

F (r, r′)δl,l′δme,m′
e

EG =
∑

l

F (r, r′)δ(r − r′)δl,l′δme,m′
e
.

On the other hand, the harmonic potential and nonlinear term are in the form
of

EOSC =
∑

l

F (r, r′)δ(r − r′)Cl,me
G1(L,M)

ENON =
∑

l

F (r, r′)δ(r − r′)Cl,me
G2(L,M), (D.12)

where F (r, r′) ≡ 〈Φl′(r)|Ô(r, r′)|Φl(r)〉, G1(L,M) = W3j(l, 2, l′; 0, 0, 0)W3j(l, 2, l′;me, 0,m′
e)

and G2(L,M) = W3j(l, 2n, l′; 0, 0, 0)W3j(l, 2n, l′;me, 0,m′
e), W3j denotes the

Wigner-3j symbol [3]. The condensate profile is obtained by solving Eqs. D.9,
??bg10) self-consistently with the zero non-condensate density at the beginning.

Fig. 2 depicts the excitation energy spectra of the three lowest modes at T
= 0 k. The barrier height varies from Ug = 0 to Ug =10 at a step of 2(h̄ω).
This corresponds to a change from no barrier of single condensate to the almost
completely separated condensates. For the three modes D(0,even), D(1,even)
and D(2,even) of Ug = 0 case, we reproduce the results of Ref. [1]; while we
presented here the excitation energy spectra for the corresponding modes when
the potential emerges from a single well into the double-well.
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Figure D.1: Excitation energy spectra of the three lowest collective excitation
modes D(0,even), D(1,even) and D(2,even) respectively.
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