國立交通大學

機械工程學系

碩士論文

研究生:顏宏儒

指導教授:蕭國模 博士

中華民國九十七年九月

旋轉傾斜梁之穩態及自由振動分析

Steady State And Free Vibration Analysis of a Rotating Inclined Beam

研究生: 顏宏儒

Student: Hong-Ru Yan

指導教授: 蕭國模 博士

Advisor: Dr. Kuo-Mo Hsiao

國立交通大學機械工程學系

Submitted to Department of Mechanical Engineering College of Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Master of Science in

Mechanical Engineering September 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年九月

國立交通大學

博碩士論文全文電子檔著作權授權書

(提供授權人裝訂於紙本論文書名頁之次頁用)

本授權書所授權之學位論文,為本人於國立交通大學機械工程系所

論文題目:旋轉傾斜梁之穩態及自由振動分析 指導教授:蕭國模

同意

本人茲將本著作,以非專屬、無償授權國立交通大學與台灣聯合大 學系統圖書館:基於推動讀者間「資源共享、互惠合作」之理念, 與回饋社會與學術研究之目的,國立交通大學及台灣聯合大學系統 圖書館得不限地域、時間與次數,以紙本、光碟或數位化等各種方 法收錄、重製與利用;於著作權法合理使用範圍內,讀者得進行線 上檢索、閱覽、下載或列印。

論文全文上載網路公開之範圍及時間:

本校及台灣聯合大學系統區域	■ 中華民國 99 年 9 月 11 日
網路	公開
校外網際網路	■ 中華民國 99 年 9 月 11 日 公開

📓 全文電子檔送交國家圖書館

授權人:顏宏儒

親筆答名: 顏宏儒 中華民國 97 年 9 月 || B

Page 2 of 4

國立交通大學

博碩士紙本論文著作權授權書

(提供授權人裝訂於全文電子檔授權書之次頁用)

本授權書所授權之學位論文,為本人於國立交通大學機械工程系所 固九控制 組, 97 學年度第 學期取得碩士學位之論文。

論文題目:旋轉傾斜梁之穩態及自由振動分析 指導教授:蕭國模

本人茲將本著作,以非專屬、無償授權國立交通大學,基於推動讀 者間「資源共享、互惠合作」之理念,與回饋社會與學術研究之目 的,國立交通大學圖書館得以紙本收錄、重製與利用;於著作權法 合理使用範圍內,讀者得進行閱覽或列印。

本論文為本人向經濟部智慧局申請專利(未申請者本條款請不予理 會)的附件之一,申請文號為:_____,請將論文延 至____年___月___日再公開。

授 權 人:顏宏儒

親筆簽名:<u>酸京儒</u> 中華民國 91 年 9 月 11 日

國家圖書館 博碩士論文電子檔案上網授權書

(提供授權人裝訂於紙本論文本校授權書之後)

ID:GT009514577

本授權書所授權之論文為授權人在國立交通大學機械工程系所 97 學年度第 / 學期取得碩士學位之論文。

論文題目:旋轉傾斜梁之穩態及自由振動分析 指導教授:蕭國模

茲同意將授權人擁有著作權之上列論文全文(含摘要),非專屬、 無償授權國家圖書館,不限地域、時間與次數,以微縮、光碟或其 他各種數位化方式將上列論文重製,並得將數位化之上列論文及論 文電子檔以上載網路方式,提供讀者基於個人非營利性質之線上檢 索、閱覽、下載或列印。

※ 讀者基於非營利性質之線上檢索、閱覽、下載或列印上列論文,應依著作權法 相關規定辦理。

授權人:顏宏儒 親筆簽名: 顏定儒 民國97年9月11日

國立交通大學

論文口試委員會審定書

本校___機械工程學系碩士班 顏 宏 儒 君

所提論文(中文) 旋轉傾斜梁之穩態及自由振動分析

 (英文)
 Steady state and free vibration

 analysis of a rotating inclined beam

合於碩士資格水準、業經本委員會評審認可。
口試委員: <u>第5名等</u>
第一次表示
正義中
指導教授: <u>第1回</u>模
系主任: 吴宗院成教授
中華民國 97年 9 月 10 日

旋轉傾斜梁之穩態及自由振動分析

研究生:顏宏儒

指導教授:蕭國模博士

國立交通大學機械工程學系碩士班

摘要

本研究探討了具不同傾斜角(inclination angle)之等速旋轉傾斜尤拉梁 (Euler beam)的穩態變形及自然振動。本研究考慮了兩種情況:設定角 (setting angle)β=0°及90°。當設定角為90°時,本研究探討了其穩態變形及自 然振動頻率,當設定角為0°時,本研究僅探討其穩態變形。本研究以級數 解求設定角為90°之旋轉傾斜尤拉梁的側向振動頻率及振態,本研究亦以級 數解求設定角為β=0°之旋轉傾斜尤拉梁的側向穩態變形。本研究用 d'Alembert 原理、虛功原理及幾何非線性梁理論的一致線性化在一旋轉座標 系統中推導等速旋轉傾斜尤拉梁的線性運動方程式。本研究考慮了轉動慣 量對自然振動頻率的影響。

本研究將旋轉梁分成數段,每一段稱為一個元素。當設定角β=90°時, 本研究將每一個元素之側向振動之統御方程式的解表示成一個含四個獨立 係數的級數,再由旋轉梁兩端的邊界條件及相鄰元素在共同節點的連續條 件求得一組齊次方程式,使該組齊次方程式係數形成之矩陣的行列式值為 零時的根,即為自然振動頻率。本研究以二分法(bisection method)求使行式 值為零的根,當設定角為β=0°時,本研究用類似的方法求得一組非齊次方 程式,再以高斯消去法解該非齊次方程式求得側向穩態變形。

本研究以數值例題說明本文方法的正確性,並探討傾斜角、轉速、轉軸半徑及細長比對等速旋轉傾斜尤拉梁之側向穩態變形(β=0°)和自然振動 頻率(β=90°)的影響。

Steady State And Free Vibration Analysis of a Rotating Inclined Beam

Student : Hong-Ru Yan

Advisor : Dr. Kuo-Mo Hsiao

Department of Mechanical Engineering National Chiao Tung University

Abstract

The steady state and vibration analysis of rotating inclined Euler beam with constant angular velocity is studied in this paper. Two different setting angles $\beta = 0^{\circ}$ and 90° are considered. The steady state and free vibration are studied for $\beta = 90^{\circ}$. However, only steady state is studied for $\beta = 0^{\circ}$. A method based on the power series solution is employed to solve the natural frequency of the rotating inclined Euler beam for $\beta = 90^{\circ}$. A similar method based on the power series solution is proposed to solve the steady lateral deformation for $\beta = 0^{\circ}$. In this paper the linear equations of motion for a rotating inclined Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically non-linear beam theory in a rotating coordinate system. The effect of rotary inertia on the natural frequency of the rotating inclined beam is considered.

Here the rotating beam is divided into several segments. For the case $\beta = 90^{\circ}$, the governing equations for the lateral vibration of each segment are solved by a power series with four independent coefficients. Substituting the power series solution of each segment into the corresponding boundary conditions at two end nodes of the rotating beam and the continuity conditions at common node between two adjacent segments, a set of simultaneous linear

homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. For the case $\beta = 0^{\circ}$, a similar procedure is used to determine the steady lateral deformation. However, a set of simultaneous linear nonhomogeneous equations, which can be solved using Gauss Elimination, are obtained.

Numerical examples are studied to verify the accuracy of the proposed method and to investigate the effects of inclined angle on the steady lateral deformation ($\beta = 0^{\circ}$) and the natural frequency ($\beta = 90^{\circ}$) of rotating Euler beams with different angular velocity, radius of the hub, and slenderness ratio of the beam.

誌謝

衷心感謝指導教授 蕭國模博士在這兩年碩士班期間的指導與教誨,使本 論文得以順利的完成。蕭老師在研究上嚴謹的態度,使我受益良多,在此致上 最高的謝意與敬意。

感謝葉孟考老師、蔣長榮及尹慶中老師撥冗擔任口試委員並對本論文所提 出的指正與建議,使本論文能夠更臻完善。

感謝陳弘虎學長在研究上的專業、蔡明旭學長在碩班研究上的大力協助及 耐人尋味的衛生習慣、劉峰成學長大方的分享資源、楊水勝學長及黃孝衡學長 平常生活上的照應,讓我見證了學長與學弟的溫厚友情。

感謝林育丞同學在課業上的大力援助、嚴承侯同學過人的交際手腕、蔡汶 志同學大方的友情、潘權文同學偶爾的友情客串及涂潔鳳同學平常的生活點 綴,幫助我在碩班生涯成長,協助我的學業能更進一步、再上層樓。還有周裕 淳學弟的幫助及其與學長時不時上演的實驗室相聲,讓這兩年生涯平添不少趣 味性。

感謝爺爺、父母親、弟弟妹妹們以及所有關心我的人對我的支持與鼓勵, 僅以此成果與榮耀,獻給所有關心我的人。

V

中	文摘要I	-
英	文摘要I	Π
致	.謝	V
目	錄	VI
表	目錄	VIII
圖	目錄	XI
第	一章 導論	1
第	二章 理論推導	4
	2.1 問題描述	4
	2.2 座標系統	4
	2.3 Euler 梁的變形描述	5
	2.4 旋轉傾斜梁的統御方程式	11
第	三章 旋轉梁的穩態與振動	17
	3.1 $\beta = \frac{\pi}{2}$ 時旋轉傾斜梁的穩態	17
	3.2 $\beta = \frac{\pi}{2}$ 時旋轉梁的振動方程式及其解	18
	3.3 $\beta = \frac{\pi}{2}$ 時旋轉梁結構的節點位移、節點力及邊界條件	24
	3.4 $\beta = \frac{\pi}{2}$ 時旋轉傾斜梁的自然頻率及振動模態	27
	3.5 $\beta = 0^{\circ}$ 時旋轉梁的穩態	29
	3.6 $\beta = 0^{\circ}$ 時旋轉梁的振動方程式	36
第	四章 數值計算方法與程序	39
	4.1 β=0°時求側向穩態解的計算程序	39

4.2 $\beta = 90°$ 時求自然頻率及振動模態的計算程序	. 39
第五章 數值例題	. 42
第六章 結論與展望	. 46
參考文獻	. 49
附表	. 51
附圖	. 84
附錄 A	. 106

表目錄

表一	不同設定角的旋轉梁之自然頻率的收斂分析	
	$(\alpha = 0^{\circ}, \ \overline{r} = 1, \ \sqrt{\overline{\eta}} = 1000, \ \overline{k} = 0.06)$	51
表二	不同傾斜角的旋轉梁之自然頻率的收斂分析	
	$(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 1000, \ \bar{k} = 0.06, \ \alpha = 0^{\circ}, 15^{\circ})$	52
表三	不同傾斜角的旋轉梁之自然頻率的收斂分析	
	$(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 1000, \ \bar{k} = 0.06, \ \alpha = 30^{\circ}, 45^{\circ})$	53
表四	不同傾斜角的旋轉梁之自然頻率的收斂分析	
	$(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 1000, \ \bar{k} = 0.06, \ \alpha = 60^{\circ}, 90^{\circ})$	54
表五	旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \bar{r} = 0)$	55
表六	旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \bar{r} = 0.5)$	56
表七	旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \bar{r} = 1)$	57
表八	旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \overline{r} = 1.5)$	58
表九	旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 90^{\circ}, \alpha = 0^{\circ}, \bar{r} = 0)$	59
表十	旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 90^{\circ}, \alpha = 0^{\circ}, \bar{r} = 0.5)$	60
表十一	- 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	
	$(\beta = 90^{\circ}, \alpha = 0^{\circ}, \bar{r} = 1)$	61
表十二	- 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率	

表二十五	旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率	
	$(\beta = 90^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 10)$	75
表二十六	旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率	
	$(\beta = 90^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 20)$	76
表二十七	旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率	
	$(\beta = 90^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 50)$	77
表二十八	旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率	
	$(\beta = 90^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 100)$	78
表二十九	旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率	
	$(\beta = 90^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 500)$	79
表三十 旋	E轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率	
()	$\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 1000$)	80
表三十一	不同傾斜角與不同轉速下的端點位移	
	$(\beta = 0^{\circ}, \bar{r} = 0.5, \sqrt{\bar{\eta}} = 100)$	80
表三十二	不同傾斜角與不同轉速下的端點位移	
	$(\beta = 0^{\circ}, \overline{r} = 1, \sqrt{\overline{\eta}} = 100)$	81
表三十三	不同傾斜角與不同轉速下的端點位移	
	($\beta = 0^{\circ}, \overline{r} = 1.5, \sqrt{\overline{\eta}} = 100$)	82

圖目錄

圖一	無傾斜角的旋轉梁結構	84
圖二	具傾斜角的旋轉梁架構	85
圖三	旋轉傾斜梁的上視圖	86
圖四	旋轉傾斜梁的側視圖	86
圖五	梁的變形圖	87
圖六	作用於梁中任一小段的端點負荷	88
圖七	雙精度與四倍精度之行列式值的比較	
	$(\bar{r} = 1.5, \sqrt{\bar{\eta}} = 1000, \bar{k} = 0.06, N=1)$	89
圖八	不同轉速下的第一及第二振動模態	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \bar{r} = 1, \sqrt{\bar{\eta}} = 10)$	90
圖九	不同轉速下的第三及第四振動模態	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \overline{r} = 1, \sqrt{\overline{\eta}} = 10)$	91
圖十	不同轉速下的第五及第六振動模態	
	$(\beta = 0^\circ, \alpha = 0^\circ, \overline{r} = 1, \sqrt{\overline{\eta}} = 10)$	92
圖十一	不同轉速下的第一及第二振動模態	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \overline{r} = 1, \sqrt{\overline{\eta}} = 50)$	93
圖十二	- 不同轉速下的第三及第四振動模態	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \overline{r} = 1, \sqrt{\overline{\eta}} = 50)$	94
圖十三	- 不同轉速下的第五及第六振動模態	
	$(\beta = 0^{\circ}, \alpha = 0^{\circ}, \overline{r} = 1, \sqrt{\overline{\eta}} = 50)$	95
圖十四	1 不同傾斜角下的振動頻率	
	$(\beta = 90^\circ, \overline{r} = 1, \sqrt{\overline{\eta}} = 10)$	96
圖十五	不同傾斜角下的振動頻率	

	()	$\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 20$)	96
圖十六	不	同傾斜角下的振動頻率	
	()	$\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 50$)	97
圖十七	不	同傾斜角下的振動頻率	
	()	$\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 100$)	98
圖十八	不	同傾斜角下的振動頻率	
	()	$\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 500$)	99
圖十九	不	同傾斜角下的振動頻率	
	()	$\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 1000$)	100
圖二十	傾	目斜旋轉梁在不同轉速下的側向穩態變形	
	()	$\beta = 0^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 100$)	101
圖二十-	_	傾斜旋轉梁在不同轉速下的側向穩態變形	
		$(\beta = 0^{\circ}, \bar{r} = 1, \sqrt{\eta} = 100)$	102
圖二十.	_	旋轉傾斜梁在不同傾斜角與不同轉速下端點的側向穩態位移	2
		$(\beta = 0^{\circ}, \ \bar{r} = 0.5, \ \sqrt{\bar{\eta}} = 100)$	103
圖二十二	Ξ	旋轉傾斜梁在不同傾斜角與不同轉速下端點的側向穩態位移	2
		$(\beta = 0^{\circ}, \bar{r} = 1, \sqrt{\bar{\eta}} = 100)$	104
圖二十口	四	旋轉傾斜梁在不同傾斜角與不同轉速下端點的側向穩態位移	2
		$(\beta = 0^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 100)$	105

第一章 導論

旋轉梁結構在實際的應用上是很重要的,像渦輪的葉片、直升機的旋 轉翼、衛星的支翼、風扇、飛機的螺旋槳及長且具有撓性的空間旋轉吊桿 等都可以視為旋轉梁結構。在機械領域裡面,依照實用上不同的需求和特 性,我們會需要不同尺寸的旋轉翼。對一細長比較小的梁,其剪變形及旋 轉慣量都不可忽略,故須將其視為 Timoshenko 梁來分析。相對的,對一細 長比較大的梁,其剪變形的影響就可以忽略,故我們就可以把它視為 Euler 梁來分析。振動分析在旋轉梁結構的設計和分析上是很重要的,文獻上在 這方面已有很多的研究。

影響旋轉梁振動頻率的參數很多,包括旋轉柱的半徑、旋轉梁端點的附加質量、旋轉梁的長度、旋轉的速度、剪變形與轉動慣量、設定角、傾斜角、預扭角與旋轉梁根部的彈性拘限等。

關於旋轉梁結構的振動分析在文獻[1-2]有詳細的回顧與探討。 Schilhansl [3]在考慮離心力,但忽略科氏力的情況下,導出了如圖一所示之 等速旋轉梁振動的微分方程式。Lee 與 Kuo[4]探討了如圖一所示之旋轉 Euler 梁其旋轉軸的中心半徑、設定角及轉速對旋轉梁彎矩振動自然頻率的 影響。Yokoyama[5]將旋轉慣量及剪變形、旋轉軸的中心半徑和設定角合併 到有限元素的模式中,探討其對自然頻率的影響。Lee and Lin[6]用線性梁 理論去推導旋轉 Timoshenko Beam 之運動方程式,並探討了旋轉速度和質 量慣性矩(mass moment of inertia)的耦合效應、設定角和旋轉速度對彎矩自 然頻率的影響。

文獻[3-6]均用線性梁理論推導旋轉梁的運動方程式且在作其振動分析時都不考慮科氏力,但均無討論其適當性或影響。Simo and Vu-Quac[7]提到 在分析旋轉結構需要用幾何非線性梁理論(至少取到二次項)才能適當的計 算離心力對彎矩剛度的影響,若用線性梁理論(只取到一次項)將會產生虛假 的彎矩剛度流失。因[3-6] 都採用線性梁理論去推導旋轉梁的運動方程式, 所以[3-6]中推導的旋轉梁之運動方程式及所求得之振動的自然頻率應是不 正確的。

文獻[8,9]中洪利用非線性梁理論的一致線性化,虛功原理,d'Alembert 原理在旋轉座標上推導旋轉 Timoshenko 梁正確的線性運動方程式。文獻[8,9] 在分析時考慮了軸向變形及科氏力。文獻[8,9]中旋轉梁的自然振動是指以 其穩態解為平衡點的微小振動,故須先求出其穩態解。文獻[8,9]提出一套 旋轉梁之自然頻率的級數解法及計算其自然頻率的數值計算程序,並以例 題探討旋轉梁振動的自然頻率及科氏力對自然頻率的影響。文獻[8,9]中並 以細長比很大之 Timoshenko 梁模擬 Euler 梁,發現在低轉速時,科氏力對 Euler 梁自然頻率影響不大,但文獻[8,9]中並無高轉速的結果,因在高轉速 時,文獻[8,9]的數值方法無法收斂,故無法求得其振動的自然頻率。

文獻[10]是考慮如圖一所示的旋轉 Euler 梁,亦利用虛功原理與 d'Alembert 原理,和非線性梁理論的一致線性化在旋轉座標上,推導旋轉 Euler 梁的統御方程式,然後採級數解法來分析旋轉梁之自由振動,但其將 旋轉梁均分成多段,每段稱為一個元素,由每個元素的統御方程式的級數 解,及旋轉梁兩端點的邊界條件及相鄰兩元素在共同節點上的連續條件求 得旋轉梁的自然頻率。文獻[10]發現當細長比很大時,在高轉速下僅用一個 元素無法求得正確的自然頻率,需將旋轉梁分成二個以上的元素,才能求 得精確的自然頻率。但文獻[10]並未考慮如圖二所示在具有傾斜角的旋轉 梁。

文獻[11-13]探討如圖二所示一具有設定角β與傾斜角α的旋轉梁之自 由振動,並考慮 Timoshenko 梁和 Euler 梁二種情況。文獻[11-13]僅考慮軸 向位移的穩態解,並未考慮側向位移的穩態解對自然頻率的影響。當傾斜

2

角不為 0 時,由圖二可以發現因離心力的作用,旋轉梁之軸向位移及側向 位移的穩態解都應不為零。因文獻[11-13]忽略了側向位移的穩態解,其旋 轉梁之自然頻率可能不準確,但因設定角β=^π/₂時,不管傾斜角是多少,旋 轉傾斜梁僅有軸向穩態變形,無側向穩態變形,故其振動的統御方程式應 與文獻[10]的統御方程式有相同的形式,應可用文獻[10]的方法求其自然頻 率。當設定角β=0°時,旋轉傾斜梁的軸向及側向穩態變形都存在,故必須 先求出其軸向及側向穩態解,才能得到其振動的統御方程式,但其形式與 文獻[10]之統御方程式的形式不同,不易求解,故設定角β=0°時,本研究 僅探討旋轉傾斜 Euler 梁的側向穩態解及推導其自然振動的統御方程式,當 設定角不是0°或90°時,旋轉梁的穩態及振動應是3維的,故本研究不擬探 討。

本研究在第二章中先以旋轉傾斜梁正確的變形機制、一致線性化、虚 功原理與 d'Alembert 原理,推導旋轉 Euler 梁的運動方程式(統御方程式)。 在第三章先求出 $\beta = \frac{\pi}{2}$ 的軸向位移的穩態解,再求出以穩態解為平衡點的自 然振動頻率及振態,然後再探討 $\beta = 0^{\circ}$ 時的側向穩態解,及推導出其振動的 統御方程式。第四章中將說明本文所採用的數值計算方法,及求穩態解自 然頻率與振動模態的數值程序。第五章中將以數值例題探討設定角 $\beta = \frac{\pi}{2}$ 時 傾斜角、旋轉速度及細長比等對旋轉傾斜 Euler 梁自然頻率的影響,及設定 角 $\beta = 0^{\circ}$ 時傾斜角、旋轉速度、細長比等對側向穩態解的影響。

第二章 理論推導

2.1 問題描述

如圖二所示,本文考慮一具均勻斷面且雙軸對稱之Euler梁以設定角β 與傾斜角α剛接在一剛性圓柱上。該圓柱以等角速率Ω繞其軸心旋轉。本文 中所有梁的位移、變形和振動指的是在一個以等角速率Ω繞圓柱中心軸旋轉 的旋轉座標上描述的位移、變形和振動。本文中僅考慮梁的軸向位移,單 一個側向位移及旋轉。以等角速率旋轉的傾斜梁存在著一個含軸向及側向 變形但沒有振動的穩態(steady state)。本文中所有的振動都是指以該穩態解 為平衡點的振動。本文中考慮的振動是線性振動,所以由振動造成的位移、 速度和加速度都視為是一微小量(infinitesimal quantity)。

2.2 座標系統

如前所述,本文是在一旋轉座標上描述旋轉梁的位移、變形及運動狀態。本文中所用的旋轉座標系統X₁、X₂、X₃可以說明如下:

如圖三與圖四所示,旋轉座標的原點是取在旋轉梁斷面的形心軸與旋 轉圓柱的交點,其X₁軸和梁變形前的斷面形心軸一致,其X₂和X₃軸是取旋 轉梁變形前的斷面主軸方向。

該旋轉座標系統是以等角速率Ω繞圓柱中心軸旋轉,本文中僅考慮梁在 X₁和X₂軸方向的位移及繞X₃軸的斷面旋轉。本文中旋轉梁的位移、變形、 速度、加速度及運動方程式均在此座標系統中定義。

角速度向量 Ω 在旋轉座標上可表示如下:

 $\mathbf{\Omega} = \{ 0 \quad \Omega \sin \beta \quad \Omega \cos \beta \}$ (2.2.1)

其中β為梁的設定角。本文中以{}代表行矩陣。

2.3 Euler 梁的變形描述

本文是在旋轉座標X_i(i=1,2,3)上描述梁的變形。因本文僅考慮梁在X₁X₂ 平面上的變形,所以Euler梁的變形可以由其形心軸在X₁X₂平面的位移及其 截面繞X₃軸的旋轉來描述,因X_i(i=1,2,3)座標的原點速度及加速度皆不為 零,在推導梁元素的速度及加速度時須加以考慮。

圖五中的P點為梁中的任意點,Q點為P點在形心軸上的對應點,即P點 與Q點位於梁的同一斷面上。在旋轉座標上,P點在梁變形前後的位置向量 可分別表示如下

$$\mathbf{r}_{0} = \{x \quad y \quad z\}$$

$$\mathbf{r} = \{r_{1} \quad r_{2} \quad r_{3}\} = \{x - y \sin \theta + u \quad y \cos \theta + v \quad z\}$$

$$\cos \theta = \frac{\partial(x + u)}{\partial s} = \frac{\partial x}{\partial s} + \frac{\partial u}{\partial s}$$

$$\sin \theta = \frac{\partial v}{\partial s}$$

$$u = u_{s}(x) + u_{d}(x, t)$$

$$v = v_{s}(x) + v_{d}(x, t)$$
(2.3.1)
(2.3.2)
(2.3.3)
(2.3.3)
(2.3.4)
(2.3.5)

如圖五所示,其中t為時間,s為O點到Q點間形心軸在變形後的弧長, $x、y與z分別為梁變形前Q點在X_i(i=1,2,3)軸的座標,<math>u_s(x)$ 與 $v_s(x)$ 為穩態的軸 向位移及側向位移, $u_d(x,t)$ 與 $v_d(x,t)$ 分別是Q點在X₁軸方向及X₂軸方向的 微小位移, θ 為梁斷面繞X₃軸的旋轉角。

本文中的應變採用工程應變。為了推導上的方便,本文中由Green strain [14]求得與其對應之工程應變。Euler梁的Green strain非為零的應變只有 ε_{11} ,可表示成

$$\varepsilon_{11} = \frac{1}{2} (r_{,x}^{t} r_{,x} - 1) \tag{2.3.6}$$

將(2.3.1)式對x微分可得

$$r_{,x} = (1 + \varepsilon_0)(1 - \kappa y)\cos\theta \qquad (2.3.7)$$

$$\varepsilon_0 = \frac{\partial s - \partial x}{\partial x} = \frac{\partial s}{\partial x} - 1 = [(1 + u_{,x})^2 + v_{,x}^2]^{1/2} - 1$$
(2.3.8)

$$\sin\theta = \frac{\partial v}{\partial s} = \frac{\partial x}{\partial s}\frac{\partial v}{\partial x} = \frac{1}{1+\varepsilon_0}\frac{\partial v}{\partial x}$$
(2.3.9)

$$\cos\theta = \frac{\partial x + \partial u}{\partial s} = \frac{\partial x}{\partial s} + \frac{\partial u}{\partial s} = \frac{\partial x}{\partial s} + \frac{\partial x}{\partial s}\frac{\partial u}{\partial x} = \frac{1}{1 + \varepsilon_0}(1 + \frac{\partial u}{\partial x})$$
(2.3.10)

$$\kappa = \frac{1}{\rho} = \frac{\partial \theta}{\partial s} = \frac{\partial x}{\partial s} \frac{\partial \theta}{\partial x} = \frac{1}{1 + \varepsilon_0} \frac{\partial \theta}{\partial x} = \frac{1}{1 + u_{,x}} \left[-\frac{1}{(1 + \varepsilon_0)^2} \varepsilon_{0,x} v_{,x} + \frac{1}{1 + \varepsilon_0} v_{,xx} \right]$$
(2.3.11)
其中 ε_0 為形心軸的單位長度伸長量, κ 為梁中心軸的曲率。

本文中的變形假設為小變形,因此(2.3.8)式可寫成近似值如下

$$\varepsilon_0 = u_{,x} + \frac{1}{2} v_{,x}^2 \tag{2.3.12}$$

將(2.3.8)式-(2.3.11)式代入(2.3.6)式可得Green Strain如下

$$\varepsilon_{11} = \frac{1}{2} \left[(1 + \varepsilon_0)^2 (1 - \kappa y)^2 - 1 \right]$$
(2.3.13)

對應Green Strain ε_{11} 之工程應變 ε 可以表示成[14]

$$\varepsilon = (1 + 2\varepsilon_{11})^{1/2} - 1 \tag{2.3.14}$$

將(2.3.13)式代入(2.3.14)式可得

$$\varepsilon = (1 + \varepsilon_0)(1 - \kappa y) - 1 = \varepsilon_0 - (1 + \varepsilon_0)\kappa y$$
(2.3.15)

本文中假設 $\varepsilon_0 \ll 1 \mathcal{Q} \frac{\partial v}{\partial x} \ll 1$,但因在穩態的軸向應變及側向位移為一有限量(Finite quantity),所以該軸向應變與側向變形間的耦合作用必需考慮,故(2.3.12)式中 ε_0 的二次項在推導的過程中有時仍需保留。由假設 $\frac{\partial v}{\partial x} \ll 1 \mathcal{Q}$ (2.3.9)式知sin $\theta \ll 1$,所以本文在以後的推導中將採近似式。

$$\sin\theta \approx \theta$$
、 $\cos\theta \approx 1$ 、 $1+\varepsilon_0 \approx 1$
由(2.3.9)及(2.3.16)式可得 (2.3.16)

$$\theta \approx v_{,x} \tag{2.3.17}$$

由(2.3.11) 及(2.3.16)式可得

$$\kappa \approx \theta_{,x} \approx -\varepsilon_{0,x} v_{,x} + v_{,xx} \tag{2.3.18}$$

將(2.3.18)式代入(2.3.15)式可得

$$\varepsilon = \varepsilon_0 + y\varepsilon_{0,x}v_{,x} - yv_{,xx} \tag{2.3.19}$$

(2.3.18)及(2.3.19)式中加底線之項為二次項,因推導的需要仍先予保 留。為了方便稱呼,本文將由振動造成的位移、應變、速度及加速度都稱 為擾動量。本文最後推導的結果將保留至擾動量的一次項,但推導的過程 中,如果太早做線性化會造成一些擾動量之一次項的漏失,但太慢做線性 化又會使推導過程變的很繁雜,所以本文在推導時將在適當的時間引入線 性化。

因本文用虛功原理及d'Alembert原理推導運動方程式,所以需要應變的 變分,位置向量的變分及速度和加速度。其推導如下所示。

將(2.3.19)式變分並保留到零次項可以得到

$$\delta \varepsilon = \delta \varepsilon_0 - y \delta v_{,xx}$$
(2.3.20)

將(2.3.12)式 變分 並保留到 - 次項可得

 $\delta \varepsilon_0 = \delta u_{,x} + v_{,x} \delta v_{,x}$
(2.3.21)

將(2.3.1)式變分可得

 $\delta \mathbf{r} = \begin{cases} -y \delta \theta \cos \theta + \delta u \\ -y \delta \theta \sin \theta + \delta v \\ 0 \end{cases}$ (2.3.22)

因 X₁ X₂ X₃座標之原點的速度不為零,所以旋轉梁P點的絕對速度可以表示成

$$\mathbf{v} = \{v_1 \quad v_2 \quad v_3\} = \mathbf{v}_0 + \mathbf{\Omega} \times \mathbf{r} + \dot{\mathbf{r}}$$
(2.3.23)

$$\mathbf{v}_{O} = \mathbf{\Omega} \times \mathbf{r}_{AO}$$

 $\mathbf{r}_{AO} = \{R\cos\alpha - R\sin\alpha \ 0\}$ (2.3.25)

(2.3.24)

其中r_{AO}為由A點到O點的向量, Ω 為圓柱的旋轉速度, r 為(2.3.1)式中P點 變形後的位置向量, r 為P點在旋轉座標上的速度

將(2.2.1)式與(2.3.25)式代入(2.3.26)式可得

$$\mathbf{v}_{\mathrm{O}} = \{ R\Omega \sin \alpha \quad R\Omega \cos \beta \cos \alpha \quad -R\Omega \cos \alpha \sin \beta \}$$
(2.3.26)

$$\mathbf{\hat{u}}(2.2.1) \mathbf{d} \mathcal{B}(2.3.1) \mathbf{d} \mathbf{j} \mathbf{d}$$

$$\mathbf{\hat{u}}(x-y\sin\theta+u)\cos\beta$$

$$\Omega(x-y\sin\theta+u)\cos\beta$$

$$-\Omega(x-y\sin\theta+u)\sin\beta$$
(2.3.27)

r可由(2.3.1)式中對時間微分求得

$$\dot{\mathbf{r}} = \frac{\partial \mathbf{r}}{\partial t} = \left\{ \dot{u} - y\dot{\theta}\cos\theta \quad \dot{v} - y\dot{\theta}\sin\theta \quad 0 \right\}$$
(2.3.28)

將(2.3.26)式、(2.3.27)式與(2.3.28)式代入(2.3.23)式可得

$$v_{1} = R\Omega \sin \alpha - y\Omega \cos \beta \cos \theta + z\Omega \sin \beta - \Omega v \cos \beta + \dot{u} - y\dot{\theta} \cos \theta$$
$$v_{2} = R\Omega \cos \beta \cos \alpha + \Omega (x - y \sin \theta + u) \cos \beta + \dot{v} - y\dot{\theta} \sin \theta$$
$$= \Omega (x + R \cos \alpha) \cos \beta + \Omega u \cos \beta + \dot{v} - y(\Omega \cos \beta + \dot{\theta}) \sin \theta$$
$$v_{3} = -R\Omega \cos \alpha \sin \beta - \Omega (x - y \sin \theta + u) \sin \beta$$

 $= -\Omega(x + R\cos\alpha - y\sin\theta + u)\sin\beta$

旋轉梁P點的絕對加速度可以表示成

$$\mathbf{a} = \{a_1 \quad a_2 \quad a_3\} = \mathbf{a}_0 + \dot{\mathbf{\Omega}} \times \mathbf{r} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}) + 2\mathbf{\Omega} \times \dot{\mathbf{r}} + \ddot{\mathbf{r}}$$
(2.3.29)

$$\mathbf{a}_{\mathrm{O}} = \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}_{\mathrm{AO}}) \tag{2.3.30}$$

其中, a_O 為O點的絕對加速度, Ω 為旋轉圓柱的加速度, Ω 為圓柱的旋轉 速度,r為P點變形後的位置向量, $2\Omega \times \dot{r}$ 為科氏加速度, \ddot{r} 為P點在旋轉座 標上的加速度。因本研究僅考慮等角速度的旋轉,所以 Ω 與 $\dot{\Omega} \times r$ 均為零。

$$= \{ -R\Omega^{2} \cos \alpha \quad R\Omega^{2} \cos \beta \sin \alpha \quad -R\Omega^{2} \sin \beta \sin \alpha \}$$

由(2.2.1)式及(2.3.1)式可得

(2.3.31)

$$\mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}) = \begin{cases} -\Omega^2 (x - y \sin \theta + u) \\ -\Omega^2 (y \cos \beta \cos \theta - z \sin \beta + v \cos \beta) \cos \beta \\ \Omega^2 (y \cos \beta \cos \theta - z \sin \beta + v \cos \beta) \sin \beta \end{cases}$$
(2.3.32)

由(2.2.1)式及(2.3.28)式可得

$$\mathbf{\Omega} \times \dot{\mathbf{r}} = \begin{cases} \Omega(-\dot{v} + y\dot{\theta}\sin\theta)\cos\beta \\ \Omega(\dot{u} - y\dot{\theta}\cos\theta)\cos\beta \\ \Omega(-\dot{u} + y\dot{\theta}\cos\theta)\sin\beta \end{cases}$$
(2.3.33)

$$\ddot{\mathbf{r}} = \frac{\partial^2 \mathbf{r}}{\partial t^2} = \left\{ \ddot{\mu} - y(-\dot{\theta}^2 \sin\theta + \ddot{\theta} \cos\theta) \quad \ddot{v} + y(-\dot{\theta}^2 \cos\theta - \ddot{\theta} \sin\theta) \quad 0 \right\}$$
(2.3.34)

將(2.3.31)、(2.3.32)、(2.3.33)及(2.3.34)式代入(2.3.29)式並保留到擾動量的一 次項可得

$$a_{1} = \ddot{u} - y\ddot{\theta} - 2\Omega\dot{v}\cos\beta - \Omega^{2}(R\cos\alpha + x + u - y\theta)$$

$$a_{2} = \ddot{v} + 2\Omega(\dot{u} - y\dot{\theta})\cos\beta + z\Omega^{2}\sin\beta\cos\beta - \Omega^{2}(y + v)\cos^{2}\beta + R\Omega^{2}\cos\beta\sin\alpha$$

$$a_{3} = -2\Omega(\dot{u} - y\dot{\theta})\sin\beta - z\Omega^{2}\sin^{2}\beta + \Omega^{2}(y + v)\sin\beta\cos\beta - R\Omega^{2}\sin\beta\sin\alpha$$

2.4 旋轉傾斜梁的統御方程式

本文利用虛功原理及d'Alembert原理在旋轉座標上推導旋轉傾斜梁的 運動方程式。圖六所示為梁中的一小段,點1、2為其端點, s為形心軸的弧 長。本文中採用形心軸在X₁和X₂軸方向的位移u、v及繞X₃軸的旋轉角θ為 廣義位移。在梁斷面上與該廣義位移對應的廣義合力為在X₁及X₂軸方向的 力F₁及F₂,和繞X₃軸的力矩M。圖六中F_{1j},F_{2j}及M_j(j=1,2)分別代表合 力F₁,F₂及M在端點 j之值。若給端點 j(j=1,2)一個虛位移 δu_j、δv_j及 δθ_j, 其中()_j表示在端點 j之值。由虛功原理可知對應於該端點虛位移,外力作 的虛功等於內力作的虛功

$$\delta W_{ext} = \delta W_{int} \tag{2.4.1}$$

若將加速度視為慣性力,將其併入 body force 中,則內力所作的虛功可 表示成

11

$$\delta W_{int} = \int_{1}^{2} \delta \varepsilon^{t} \sigma dV + \int_{1}^{2} \rho \delta \mathbf{r}^{t} \mathbf{a} dV$$

$$(2.4.2)$$

$$dV = dAdx$$

$$(2.4.3)$$

其中ρ為梁的密度,a為加速度,σ為對應於正應變 ε的正應力,V為 梁在變形前的體積,A為梁的截面積。本文假設材料為彈性材料,所以應力 與應變的關係式可表示成

$$\sigma = E\varepsilon \tag{2.4.4}$$

其中 E 為楊氏模數

將(2.3.20)、(2.4.3)及(2.4.4)式代入(2.4.2)式中右邊的第一項,並利用

$$\int_{A} y dA = 0, 近似式 1 + u_{,x} \approx 1 及保留擾動量到 - 次項可得$$

$$\int_{1}^{2} \delta \varepsilon^{t} \sigma dV = E \int_{1}^{2} [A(u_{,x} \delta u_{,x} + u_{,x} v_{,x} \delta v_{,x}) + I \theta_{,x} \delta \theta_{,x}] dx$$
(2.4.5)

其中
$$I = \int_A y^2 dA$$
為慣性矩。

將(2.3.22)、(2.3.29)及(2.4.3)式代入(2.4.2)式中右邊的第二項,並利用 $\int_A y dA = 0$ 、 $\int_A yz dA = 0$,及保留擾動量到一次項可得

$$\int_{1}^{2} \rho \delta \mathbf{r}^{t} \mathbf{a} dV = \int_{1}^{2} \rho [A \delta u (-R\Omega^{2} \cos \alpha - x\Omega^{2} - u\Omega^{2} - 2\dot{v}\Omega \cos \beta + \ddot{u}) + A \delta v (R\Omega^{2} \cos \beta \sin \alpha - v\Omega^{2} \cos^{2} \beta + 2\dot{u}\Omega \cos \beta + \ddot{v}) + I \delta \theta (\ddot{\theta} - \Omega^{2} \theta \sin^{2} \beta)] dx \qquad (2.4.6)$$

因本文假設梁沒有外加負荷,所以 *Wext* 即為內力之合力所作的虛功, 可表示如下

$$\delta W_{ext} = F_1 \delta u + F_2 \delta v + M \delta \theta \Big|_1^2$$
(2.4.7)

其中() $|_{1}^{2}$ 表示()在端點2之值減掉()在端點1之值。

$$\delta W_{ext} = (F_1 \delta u + F_2 \delta v + M \delta \theta) \Big|_1^2 = \int_1^2 \frac{d}{dx} (F_1 \delta u + F_2 \delta v + M \delta \theta) dx$$

$$= \int_1^2 (F_{1,x} \delta u + F_1 \delta u_{,x} + F_{2,x} \delta v + F_2 \delta v_{,x} + M_{,x} \delta \theta + M \delta \theta_{,x}) dx$$

$$= \int_1^2 (F_{1,x} \delta u + F_1 \delta u_{,x} + F_{2,x} \delta v + (F_2 + M_{,x}) \delta v_{,x} + M \delta \theta_{,x}) dx \qquad (2.4.8)$$

其中F1與F2分別為作用在軸向與側向的力。

由(2.4.1)、(2.4.2)、(2.4.5)、(2.4.6)式及(2.4.8)式可得

$$\begin{aligned} \int_{1}^{2} (F_{1,x}\delta u + F_{1}\delta u_{,x} + F_{2,x}\delta v + (F_{2} + M_{,x})\delta v_{,x} + M\delta\theta_{,x})dx \\ &= E \int_{1}^{2} [A(u_{,x}\delta u_{,x} + u_{,x}v_{,x}\delta v_{,x}) + I\theta_{,x}\delta\theta_{,x}]dx \\ &+ \int_{1}^{2} \rho [A\delta u(-R\Omega^{2}\cos\alpha - x\Omega^{2} - u\Omega^{2} - 2\dot{v}\Omega\cos\beta + \ddot{u}) \\ &+ A\delta v(R\Omega^{2}\cos\beta\sin\alpha - v\Omega^{2}\cos^{2}\beta + 2\dot{u}\Omega\cos\beta + \ddot{v}) \\ &+ I\delta\theta(\ddot{\theta} - \Omega^{2}\theta\sin^{2}\beta)]dx \end{aligned}$$
(2.4.9)

因(2.4.9)式左右兩邊對應於相同虛位移的項必需相等,所以可以得到以 下五個方程式。

$$F_{1,x} = \rho A (-R\Omega^2 \cos \alpha - x\Omega^2 - u\Omega^2 - 2\dot{v}\Omega \cos \beta + \ddot{u})$$
(2.4.10)

$$F_{2,x} = \rho A (R\Omega^2 \cos\beta \sin\alpha - v\Omega^2 \cos^2\beta + 2i\Omega \cos\beta + \ddot{v})$$
(2.4.11)

$$F_2 + M_{,x} = EAu_{,x}v_{,x} + \rho I(\ddot{\theta} - \Omega^2 \theta \sin^2 \beta)$$
(2.4.12)

$$F_1 = EAu_{,x} \tag{2.4.13}$$

$$M = EI\theta_{,x} = EI(v_{,xx} - \underline{\varepsilon}_{0,x}v_{,x})$$
(2.4.14)

由(2.4.14)式對 x 微分兩次可得
$$M_{,xx} = EI(v_{,xxxx} - \varepsilon_{0,xxx}v_{,x} - 2\varepsilon_{0,xx}v_{,xx} - \varepsilon_{0,x}v_{,xxx})$$
(2.4.15)

將(2.4.11)式與(2.4.15)式代入(2.4.12)式, (2.4.13)式代入(2.4.10)式整理可得旋 轉傾斜梁的運動方程式

$$EAu_{,xx} = \rho A (-R\Omega^2 \cos \alpha - x\Omega^2 - u\Omega^2 - 2\dot{v}\Omega \cos \beta + \ddot{u})$$
(2.4.16)

 $EIv_{,xxxx} = EAu_{,xx}v_{,x} + EAu_{,x}v_{,xx} + \rho I(\ddot{v}_{,xx} - \Omega^2 v_{,xx}\sin^2\beta)$ $-\rho A(R\Omega^2\cos\beta\sin\alpha - v\Omega^2\cos^2\beta + 2\dot{u}\Omega\cos\beta + \ddot{v})$ $+ EI(\varepsilon_{0,xxx}v_{,x} + 2\varepsilon_{0,xx}v_{,xx} + \varepsilon_{0,x}v_{,xxx})$ (2.4.17)

因上述加底線的項影響極小[10],故本文之後的推導將不考慮加底線的項。旋轉傾斜梁在穩態時,(2.3.4)式的u_d(x,t)=0及(2.3.5)式的v_d(x,t)=0,即

$$EAu_{s,xx} = \rho A(-R\Omega^2 \cos \alpha - x\Omega^2 - u_s \Omega^2)$$

$$EIv_{s,xxxx} = EA(u_{s,xx}v_{s,x} + u_{s,x}v_{s,xx}) - \rho I\Omega^2 v_{s,xx} \sin^2 \beta$$

$$-\rho A\Omega^2 (R\cos\beta\sin\alpha - v_s\cos^2\beta)$$

$$(2.4.18)$$

將(2.3.4)式及(2.3.5)式代入(2.4.16)式與(2.4.17)式,再將其分別與(2.4.18)及 (2.4.19)式相減並保留擾動量到一次項,即可得振動的統御方程式 $EAu_{d,xx} = \rho A(-u_d \Omega^2 - 2\dot{v}_d \Omega \cos\beta + \ddot{u}_d)$ (2.4.20) $EIv_{d,xxxx} = EA(u_{s,xx}v_{d,x} + u_{d,xx}v_{s,x} + u_{s,x}v_{d,xx} + u_{d,x}v_{s,xx}) + \rho I(\ddot{v}_{d,xx} - \Omega^2 v_{d,xx} \sin^2 \beta)$ $- \rho A(-v_d \Omega^2 \cos^2 \beta + 2\dot{u}_d \Omega \cos \beta + \ddot{v}_d)$ (2.4.21)

由(2.4.18)式可見 $u_s(x)$ 的統御方程式與設定角 β 無關,僅與傾斜角有 關,但由(2.4.19)式可見 $v_s(x)$ 與設定角 β 及(2.4.18)式之軸向穩態解 $u_s(x)$ 有關。

由(2.4.19)式可發現當 $\beta = \frac{\pi}{2}$ 時,側向位移的穩態解 $v_s = 0$,所以其穩態的統御方程式僅剩(2.4.18)式,因 $\cos \frac{\pi}{2} = 0$ 、 $\sin \frac{\pi}{2} = 1$ 、 $v_s = 0$,所以由(2.4.20)式與(2.4.21)式, $\beta = \frac{\pi}{2}$ 之振動的統御方程式可表示如下

$$EAu_{d,xx} = \rho A(-u_d \Omega^2 + \ddot{u}_d) \tag{2.4.22}$$

$$EIv_{d,xxxx} = EA(u_{s,xx}v_{d,x} + u_{s,x}v_{d,xx}) + \rho I(\ddot{v}_{d,xx} - \Omega^2 v_{d,xx}) - \rho A \ddot{v}_d$$
(2.4.23)

當 $\beta = 0^{\circ}$ 時, cos $\beta = 1$ 、sin $\beta = 0$, 由(2.4.19)式, v_s 的統御方程式可表示如下

$$EIv_{s,xxxx} = EA(u_{s,xx}v_{s,x} + u_{s,x}v_{s,xx}) - \rho A \Omega^{2}(R\sin\alpha - v_{s})$$
(2.4.24)

由(2.4.20)式與(2.4.21)式, $\beta = 0^{\circ}$ 之振動的統御方程式可表示如下

$$EAu_{d,xx} = \rho A[-u_d \Omega^2 - 2\Omega \dot{v}_d + \ddot{u}_d]$$

$$EIv_{d,xxx} = EA(u_{s,xx}v_{d,x} + u_{d,xx}v_{s,x} + u_{s,x}v_{d,xx} + u_{d,x}v_{s,xx})$$

$$+ \rho I \ddot{v}_{d,xx} - \rho A[-v_d \Omega^2 + 2\Omega \dot{u}_d + \ddot{v}_d]$$
(2.4.25)
(2.4.26)

因設定角 β 不為0°或 $\frac{\pi}{2}$ 時,其振動應是三維的,故本文中僅考慮 $\beta = \frac{\pi}{2}$ 及 $\beta = 0$ ° 兩種情況。本文將在第三章中由(2.4.18)式求出旋轉傾斜梁的軸向穩態 $解u_s(x)$,由(2.4.22)式及(2.4.23)式求出 $\beta = \frac{\pi}{2}$ 時,不同傾斜角 α 之旋轉傾斜梁 的自然振動頻率,及由(2.4.24)式求出 $\beta = 0$ °時不同 α 之旋轉傾斜梁的側向穩 態解 $v_s(x)$ 。 第三章 旋轉傾斜梁的穩態與振動

如前所述,旋轉傾斜梁存在一個僅含變形但沒有振動的穩態(steady state),本文中所謂的振動就是以該穩態為平衡點的自然振動。本文中僅考 慮設定角 $\beta = 0^{\circ}$ 與 $\beta = \frac{\pi}{2}$ 兩種情況。本章將先探討 $\beta = \frac{\pi}{2}$ 時的穩態解及振動 的級數解和自然頻率,再探討 $\beta = 0^{\circ}$ 時旋轉梁的穩態解。

3.1 $\beta = \frac{\pi}{2}$ 時旋轉傾斜梁的穩態

在第二章已提到當設定角 $\beta = \frac{\pi}{2}$ 時側向位移的穩態解 $v_s(x) = 0$,故本節 中僅求軸向位移的穩態解 u_s 。

本文中假設(2.4.18)式中 $\frac{u_s}{L}$ <<1,其中L為梁的長度,故可以將 u_s 捨去,將(2.4.18)式以下列近似式代替 $u_{s,xx} = -\frac{\rho\Omega^2}{E} [R\cos\alpha + x]$ (3.1.1)

因梁在固定端的位移為0,在自由端的應力為0,所以邊界條件可以表示成

$$u_s(0) = 0, \ u_{s,x}(L) = 0$$
 (3.1.2)

(3.1.1)式的解可以表示成

$$u_s = \frac{\rho \Omega^2}{E} \left[-\frac{1}{6} x^3 - \frac{R \cos \alpha}{2} x^2 + (RL \cos \alpha + \frac{L^2}{2})x \right]$$
(3.1.3)

$$\varepsilon_s = \frac{\rho \Omega^2}{E} \left(-\frac{x^2}{2} - Rx \cos \alpha + RL \cos \alpha + \frac{L^2}{2}\right)$$
(3.1.4)

將(3.1.4)式可知當 x 為 0 時,有最大應變

$$\varepsilon_{\max} = \bar{k}^2 \left(\bar{r} \cos \alpha + \frac{1}{2} \right) \tag{3.1.5}$$

$$\bar{k} = \Omega L \sqrt{\frac{\rho}{E}}$$
(3.1.6)

$$\bar{r} = \frac{R}{L} \tag{3.1.7}$$

其中k 為無因次的轉速, r 為無因次的轉軸半徑

3.2 $\beta = \frac{\pi}{2}$ 時旋轉梁的振動方程式及其解

如前所述,振動造成的位移,即(2.3.4)式之u_d及(2.3.5)式中的v_d,都 是擾動量,所以在推導中僅保留u_d、v_d及其微分到一次項,在不致引起混 淆的情況,為了推導時的方便,在本章中將(2.4.22)式及(2.4.23)式中的u_d 及v_d的下標去掉,即以u、v代表振動造成的位移,所以(2.4.22)式及(2.4.23) 式可改寫成

$$EAu_{,xx} = \rho A[-u\Omega^2 + \ddot{u}] \tag{3.2.1}$$

$$EIv_{,xxxx} = EA(u_{s,xx}v_{,x} + u_{s,x}v_{,xx}) + \rho I(\ddot{v}_{,xx} - \Omega^2 v_{,xx}) - \rho A \ddot{v}$$
(3.2.2)

(3.2.1)式及(3.2.2)式中 u 及 v 的邊界條件可表示成
$$u(0,t) = u_{x}(L,t) = 0 \tag{3.2.3}$$

$$v(0,t) = v_{,x}(0,t) = v_{,xx}(L,t) = v_{,xxx}(L,t) = 0$$
(3.2.4)

由(3.2.1)-(3.2.4)式可發現 u 及 v 並不耦合,故 u 和 v 可分別求解。由 (3.2.1)及(3.2.3)式可以解得旋轉梁軸向振動的振態 u R 及自然頻率 @ 如下

$$u_R = \sin \frac{ax}{L} \tag{3.2.5}$$

$$a = (\overline{K}^2 + \overline{k}^2)^{1/2} = \frac{2n+1}{2}\pi$$
(3.2.6)

$$\overline{K} = \omega L \sqrt{\frac{\rho}{E}}$$
(3.2.7)

其中 K 為無因次的自然頻率。

(3.2.2)式與文獻[10]的振動方程式形式一樣,故本節中採用文獻[10]的 級數解法,文獻[10]中提到在高轉數時僅用一個級數來表示整根梁的振 動,在有些情況無法求得振動頻率,故與文獻[10]一樣,本文在分析時將 梁均分成 N 段,為方便稱呼,每一段稱為一個元素,所以每個元素的長度 皆為

$$l = \frac{L}{N} \tag{3.2.8}$$

第 m 個元素的統御方程式與(3.2.2)式相同,但其獨立變數 x 的範圍為 $x_m \le x \le x_m + l$,其中 $x_m = (m-1)l$, $m=1, 2, \dots N$ 。本文中每個元素都用一 個級數來表示其統御方程式的解。 令

$$\xi = \frac{x - x_m}{l} - \frac{1}{2}, \quad V = \frac{v}{l}, \quad U_s = \frac{u_s}{l}$$
(3.2.9)

$$k = \frac{1}{N}\bar{k} = \Omega l \sqrt{\frac{\rho}{E}}$$
(3.2.10)

$$\eta = \frac{\overline{\eta}}{N^2}, \quad \overline{\eta} = \frac{AL^2}{I} \tag{3.2.11}$$

$$r = N\overline{r} \tag{3.2.12}$$

其中 \bar{k} 已在(3.1.6)式定義, \bar{r} 已在(3.1.7)式定義, \sqrt{n} 稱為細長比。將(3.1.3)、(3.2.9)-(3.2.12)式代入(3.2.2)式中,則可將其無因次化成

$$V_{\xi\xi\xi\xi\xi} - (\eta U_{s,\xi} - k^2) V_{\xi\xi\xi} - \eta U_{s,\xi\xi} V_{\xi\xi} = \frac{\rho l^2}{E} \ddot{V}_{\xi\xi\xi} - \eta \frac{\rho l^2}{E} \ddot{V}$$
(3.2.13)

$$U_{s,\xi\xi} = 3B_{3}\xi^{2} + 2B_{2}\xi + B_{1}$$

$$U_{s,\xi\xi} = 6B_{3}\xi + 2B_{2}$$

$$B_{3} = -\frac{1}{6}k^{2}$$

$$B_{2} = -\frac{1}{2}k^{2}(r_{m} + \frac{1}{2})$$

$$B_{1} = k^{2}(\frac{1}{2}Q_{m}^{2} + r_{m}Q_{m} - \frac{1}{2}r_{m} - \frac{1}{8})$$

$$r_{m} = r\cos\alpha + m - 1$$

$$Q_{m} = N - m + 1$$
(3.2.14)

若振動方程式(3.2.13)式有自然頻率存在,則其解的形式必可表示如下[10]

$$V = V_R(\xi)e^{i\omega t}$$

其中 $i=\sqrt{-1}$, ω 為自然頻率。

將(3.2.14)式及(3.2.15)式代入(3.2.13) 可得

$$V_{R,\xi\xi\xi\xi\xi} + (b\xi^{2} + c\xi + d)V_{R,\xi\xi} + (2b\xi + c)V_{R,\xi} + eV_{R} = 0$$

$$b = \frac{1}{2}\eta k^{2} \cdot c = \eta k^{2}(r_{m} + \frac{1}{2}) \cdot d = K^{2} + k^{2} - \eta k^{2}(\frac{1}{2}Q_{m}^{2} + r_{m}Q_{m} - \frac{1}{2}r_{m} - \frac{1}{8})$$

$$e = -\eta K^{2} \cdot K = \frac{1}{N}\overline{K}$$
(3.2.16)
(3.2.17)

其中 K 已在(3.2.7)式中定義。假設(3.2.17)式的解可表示為

$$V_R(\xi) = \sum_{n=0}^{\infty} C_n \xi^n$$
(3.2.18)

將(3.2.18)式代入(3.2.16)式可得

$$\sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)C_n\xi^{n-4} + d\sum_{n=2}^{\infty} n(n-1)C_n\xi^{n-2} + c\sum_{n=2}^{\infty} n(n-1)C_n\xi^{n-1} + b\sum_{n=2}^{\infty} n(n-1)C_n\xi^n + c\sum_{n=1}^{\infty} nC_n\xi^{n-1} + 2b\sum_{n=1}^{\infty} nC_n\xi^n + e\sum_{n=0}^{\infty} C_n\xi^n = 0$$
(3.2.19)

(3.2.19)式可以改寫成

$$\sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)C_n\xi^{n-4} + d\sum_{n=4}^{\infty} (n-2)(n-3)C_{n-2}\xi^{n-4}$$

(3.2.15)

$$+c\sum_{n=4}^{\infty}(n-3)(n-4)C_{n-3}\xi^{n-4} + b\sum_{n=4}^{\infty}(n-4)(n-5)C_{n-4}\xi^{n-4}$$
$$+c\sum_{n=4}^{\infty}(n-3)C_{n-3}\xi^{n-4} + 2b\sum_{n=4}^{\infty}(n-4)C_{n-4}\xi^{n-4} + e\sum_{n=4}^{\infty}C_{n-4}\xi^{n-4} = 0$$
(3.2.20)

由(3.2.20)式可得以下遞迴關係式

$$C_{n} = \sum_{j=1}^{4} A_{n}^{j} C_{n-j} , \quad n \ge 4$$

$$A_{n}^{1} = 0$$
(3.2.21)

$$C_n = \sum_{i=0}^{3} Y_i^n C_i, \quad n \ge 4$$
(3.2.22)

由(3.2.22)式可得

$$C_{n-j} = \sum_{i=0}^{3} Y_i^{n-j} C_i \quad , j = 1, 2, 3, 4$$
(3.2.23)

將(3.2.23)式代入(3.2.21)式可得

$$C_n = \sum_{j=1}^4 A_n^j \left(\sum_{i=0}^3 Y_i^{n-j} C_i \right) = \sum_{i=0}^3 \left(\sum_{j=1}^4 A_n^j Y_i^{n-j} \right) C_i$$
(3.2.24)

由(3.2.22)與(3.2.24)兩式相等可得

$$Y_i^n = \sum_{j=1}^4 A_n^j Y_i^{n-j} , i = 0, 1, 2, 3 , n \ge 4$$
(3.2.25)

當n=4時由(3.2.21)及(3.2.22)式可得

 $Y_0^4 = A_4^4 \quad , Y_1^4 = A_4^3 \quad , Y_2^4 = A_4^2 \quad , Y_3^4 = A_4^1 \tag{3.2.26}$

比較(3.2.25)及(3.2.26)式得

$$Y_i^{\ J} = 1 \qquad if \quad i = j \\ = 0 \qquad if \quad i \neq j \qquad i, \ j = 0, \ 1, \ 2, \ 3 \qquad (3.2.27)$$

將(3.2.22)式代入(3.2.18)式可得

$$V_R(\xi) = \mathbf{E}^t(\xi)\mathbf{C} \tag{3.2.28}$$

$$\mathbf{E}(\xi) = \{ E_0 \quad E_1 \quad E_2 \quad E_3 \}$$
(3.2.29)

$$E_{0} = 1 + \sum_{n=4}^{\infty} Y_{0}^{n} \xi^{n} , \quad E_{1} = \xi + \sum_{n=4}^{\infty} Y_{1}^{n} \xi^{n} , \quad E_{2} = \xi^{2} + \sum_{n=4}^{\infty} Y_{2}^{n} \xi^{n} , \quad E_{3} = \xi^{3} + \sum_{n=4}^{\infty} Y_{3}^{n} \xi^{n}$$
$$\mathbf{C} = \{C_{0} \quad C_{1} \quad C_{2} \quad C_{3}\}$$
(3.2.30)

(3.2.28)式中的未定係數向量C必需由邊界條件決定。

3.3 $\beta = \frac{\pi}{2}$ 時旋轉梁結構的節點位移、節點力及邊界條件

本節中將梁元素兩端點的位移及節點力表示成未定係數向量C的函數。本節中以()_j表示()在元素第j(j=1, 2)個節點的值,以()^m_j表示()在 第m(m=1, 2, ..., N)個元素的節點j(j=1, 2)之值。本節中令 $\xi_1 = -0.5$, $\xi_2 = 0.5$ 。

由(3.2.28)式可得

 $\mathbf{U}_{j} = \left\{ V_{j} \quad V_{j}^{\prime} \right\} \tag{3.3.1}$

$$V_j = V_R(\xi_j) = \mathbf{E}^t(\xi_j)\mathbf{C}$$
(3.3.2)

$$V'_{j} = V'_{R}(\xi_{j}) = \mathbf{E}'^{t}(\xi_{j})\mathbf{C}$$
(3.3.3)

其中 $\mathbf{U}_{j}(j=1, 2)$ 表示元素在第j個節點的廣義位移向量。 V_{j} 及 V_{j} 分別表示 元素在第j個節點的側向位移及其斜率。

由(3.3.1)~(3.3.3)式可得

$$\mathbf{U}_{j} = \mathbf{N}_{uj}\mathbf{C}$$

$$\mathbf{N}_{uj} = \begin{bmatrix} \mathbf{E}^{t}(\xi_{j}) \\ \mathbf{E}^{\prime t}(\xi_{j}) \end{bmatrix}$$
(3.3.5)

其中Nuj為2×4的矩陣。

將(2.4.14)式對 x 的一次微分代入(2.4.12)式中可得

$$F_2 = EAu_{s,x}v_{,x} + \rho I(\ddot{v}_{,x} - \Omega^2 v_{,x}) - EIv_{,xxx}$$
(3.3.6)

用(3.2.9)式將(2.4.14)及(3.3.6)式中的位移us及v無因次化後,再將(3.2.15) 式代入其中可得

$$F_{2} = \frac{EI}{l^{2}} [(\eta U_{s,\xi} - a)V_{R}' - V_{R}''']$$

$$M = \frac{EI}{l}V_{R}''$$
(3.3.7)
(3.3.8)

其中a及Us,专分別在(3.2.6)及(3.2.14)式中已經定義。

將(3.2.14)式及(3.2.28)式代入(3.3.7)式及(3.3.8)式中可得

$$\mathbf{F}_{j} = \{F_{2j} \ M_{j}\}$$
(3.3.9)

$$F_{2j} = \frac{EI}{l^{2}} \{ \eta U_{s,\xi}(\xi_{j}) - a \} V_{R}'(\xi_{j}) - V_{R}'''(\xi_{j}) \}$$

$$= \frac{EI}{l^{2}} \{ \eta U_{s,\xi}(\xi_{j}) - a \} \mathbf{E}'^{t}(\xi_{j}) - \mathbf{E}'''^{t}(\xi_{j}) \}$$
(3.3.10)

$$M_{j} = \frac{EI}{l} V_{R}''(\xi_{j})$$
$$= \frac{EI}{l} \mathbf{E}''^{t}(\xi_{j}) \mathbf{C}$$
(3.3.11)

其中**F**_j表示元素在第*j*個節點的廣義節點力向量。*F*_{2*j*}及*M_j*分別表示元素 在第*j*個節點的側向力及力矩。

由(3.3.9)-(3.3.11)式可得

$$\mathbf{F}_j = \mathbf{N}_{Fj}\mathbf{C} \tag{3.3.12}$$

$$\mathbf{N}_{Fj} = \begin{bmatrix} \frac{EI}{l^2} [(\eta U_{s,\xi}(\xi_j) - a) \mathbf{E}^{\prime t}(\xi_j) - \mathbf{E}^{\prime \prime \prime t}(\xi_j)] \\ \frac{EI}{l} \mathbf{E}^{\prime \prime \prime}(\xi_j) \end{bmatrix}$$
(3.3.13)

$$\ddagger \mathbf{P} \mathbf{N}_{Fj} \not a_{2\times 4}$$
 in $\pounds \mathbb{P} \circ$

旋轉梁的邊界條件可由固定端位移為零和自由端外力為零,以及相鄰 兩元素在共同節點上都需滿足變形的相合條件,及力的平衡條件,即有相 同的側向位移、斜率、側向力及力矩,因此,可得到以下的邊界條件及連 續條件

$$U_{1}^{1} = 0$$

$$U_{2}^{m} = U_{1}^{m+1}$$

$$F_{2}^{m} = F_{1}^{m+1}$$

$$F_{2}^{N} = 0$$
(3.3.14)

其中

 $\mathbf{U}_{j}^{m} = \{V_{j}^{m} \quad V_{j}^{\prime m}\} = \mathbf{N}_{uj}^{m} \mathbf{C}^{m} , \quad m = 1, 2, \dots, N , \quad j = 1, 2$ $\mathbf{F}_{j}^{m} = \{F_{2j}^{m} \quad M_{j}^{m}\} = \mathbf{N}_{Fj}^{m} \mathbf{C}^{m} , \quad m = 1, 2, \dots, N , \quad j = 1, 2$

U^m_j表示第m個元素在第j個節點的位移向量,V^m_j及V^m_j分別表示第m個元 素在第j個節點的側向位移及其斜率,F^m_j表示第m個元素在第j個節點的 節點力向量,F^m_{2j}及M^m_j分別表示第m個元素在第j個節點的側向力及力 矩,C^m表示第m個元素的未定係數向量。

3.4 $\beta = \frac{\pi}{2}$ 時旋轉傾斜梁的自然頻率及振動模態

旋轉梁振動的自然頻率,可由梁結構的兩端點的邊界條件及內部節點 的連續條件求得。將(3.3.4)、(3.3.5)、(3.3.12)及(3.3.13)式代入(3.3.17)式可 得

$$\mathbf{C}_G = \left\{ \mathbf{C}^1 \quad \mathbf{C}^2 \quad \mathbf{C}^3 \quad \cdots \quad \mathbf{C}^N \right\}$$
(3.4.3)

其中 C_G 表示整體梁的未定係數向量,K為 $4N \times 4N$ 的矩陣, C_G 為 $4N \times 1$ 的 矩陣,0為 $4N \times 1$ 的零矩陣。

當(3.4.1)式中的 C_G 有非零解時,表示振動方程式 (3.2.13)式有自然頻率存在。因(3.4.1)式為一齊項式(homogeneous equation),所以僅有當K的行列式值為零時才有非零解。K為無因次振動頻率 \overline{R} 的函數,即 $K = K(\overline{R})$, \overline{R} 在(3.2.7)式中已經定義。所以滿足det $K(\overline{R}) = 0 之 \overline{R}$ 即為(3.2.13)式的無因次自然振動頻率。其計算方法將在下一章中說明。令 \overline{K}_{o} 與X為(3.4.1)式之一對特徵值與特徵向量。特徵向量X可以由以下的廣義特徵值問題得到

 $\left[\mathbf{K}\left(\overline{K}_{\omega}\right)+\mathbf{I}\right]\mathbf{X}=\lambda\mathbf{X}$

(3.4.4)

其中 I 為 $4N \times 4N$ 的矩陣。 $\lambda = 1$ 可視為(3.4.4)式的特徵值。X 可視為解 (3.4.4)式中對應於 $\lambda = 1$ 時之特徵向量。本文中用逆冪法(inverse power method) [15]解(3.4.4)式中 $\lambda = 1$ 時之特徵向量。

令 $C_G = X$,由 C_G 中可得對應於每個元素的未定係數 C^m ,將 C^m 代入 (3.2.18)及(3.2.21)式即可求得對應於 \overline{K}_{ω} 的振動模態。

3.5 $\beta = 0^{\circ}$ 時旋轉梁的穩態

由(2.4.18)式知時旋轉梁軸向位移的穩態運動方程式與 β 無關,所以可 沿用 $\beta = \frac{\pi}{2}$ 時的穩態解(3.1.3)式。本節中僅探討(2.4.24)式之側向位移的穩態 解。 本節與 3.2 節一樣,在分析時將梁均分成 N 個元素,每個元素的長度 皆為(3.2.8)式之l。第m個元素的統御方程式與(2.4.24)式相同,但其獨立變 數x的範圍為 $x_m \le x \le x_m + l$,其中 $x_m = (m-1)l$, $m=1, 2, \dots N$ 。本文中每個元 素都用一個級數來表示其統御方程式的解。

令

$$V_s = \frac{v_s}{l} \tag{3.5.1}$$

將(3.2.8)-(3.2.12)式、(3.5.1)式代入(2.4.24)式中,將其無因次化可得

$$V_{s,\xi\xi\xi\xi} - \eta U_{s,\xi}V_{s,\xi\xi} - \eta U_{s,\xi\xi}V_{s,\xi} - \eta k^{2}V_{s} = -\eta k^{2}r\sin\alpha$$
(3.5.2)
將(3.2.14)式代入(3.5.2)式可得

$$V_{s,\xi\xi\xi\xi} + (C_1 + C_2\xi + C_3\xi^2)V_{s,\xi\xi} + (C_4 + C_5\xi)V_{s,\xi} + C_6V_s = C_7$$
(3.5.3)

其中

$$C_1 = -\eta B_1 \cdot C_2 = -2\eta B_2 \cdot C_3 = -3\eta B_3 \cdot C_4 = C_2$$
$$C_5 = 2C_3 \cdot C_6 = -\eta k^2 \cdot C_7 = -\eta k^2 r \sin \alpha$$

假設(3.5.3)式的解可以表示如下

$$V_s = \sum_{n=0}^{\infty} a_n \xi^n + V_p$$
(3.5.4)

$$V_p = \frac{C_7}{C_6}$$

將(3.5.4)式代入(3.5.3)式可得

$$\sum_{n=4}^{\infty} [n(n-1)(n-2)(n-3)a_n + (n-2)(n-3)C_1a_{n-2} + (n-3)(n-4)C_2a_{n-3} + (n-4)(n-5)C_3a_{n-4} + (n-3)C_4a_{n-3} + (n-4)C_5a_{n-4} + C_6a_{n-4}]\xi^{n-4} = 0$$
(3.5.5)

由(3.5.5)式可得遞迴關係式

由(3.5.6)式可知an(n≥4)可寫成

$$a_n = \sum_{i=0}^{3} Y_i^n a_i , \quad n \ge 4$$
(3.5.7)

由(3.5.7)式可得

$$a_{n-j} = \sum_{i=0}^{3} Y_i^{n-j} a_i \quad , j = 1, 2, 3, 4$$
(3.5.8)

將(3.5.8)式代入(3.5.6)式可得

$$a_n = \sum_{j=1}^4 A_n^j \left(\sum_{i=0}^3 Y_i^{n-j} a_i \right) = \sum_{i=0}^3 \left(\sum_{j=1}^4 A_n^j Y_i^{n-j} \right) a_i$$
(3.5.9)

由(3.5.7)與(3.5.9)兩式相等可得

由上式可得

$$Y_0^4 = A_4^4 , Y_1^4 = A_4^3 , Y_2^4 = A_4^2 , Y_3^4 = A_4^1$$
(3.5.11)

比較(3.5.10)及(3.5.11)式可得

$$Y_i^{j} = 1 \qquad if \quad i = j \\ = 0 \qquad if \quad i \neq j \qquad i, j = 0, 1, 2, 3 \qquad (3.5.12)$$

由(3.5.4)式與(3.5.7)式可得

$$V_s = \sum_{i=0}^{3} N_i(\xi) a_i + V_p = \mathbf{N}^t(\xi) \mathbf{a} + V_p$$
(3.5.13)

$$\mathbf{N}(\xi) = \{N_1 \ N_2 \ N_3 \ N_4\}$$

$$N_1 = 1 + \sum_{n=4}^{N_i} Y_0^n \xi^n \ , \ N_2 = \xi + \sum_{n=4}^{N_i} Y_1^n \xi^n \ , \ N_3 = \xi^2 + \sum_{n=4}^{N_i} Y_2^n \xi^n \ , \ N_4 = \xi^3 + \sum_{n=4}^{N_i} Y_3^n \xi^n$$

$$\mathbf{a} = \{a_0 \ a_1 \ a_2 \ a_3\}$$

$$(3.5.14)$$

本節中將梁元素兩端點的位移及節點力表示成未定係數向量a的函數。本節中以()_j表示()在元素第j(j=1, 2)個節點的值,以()^m_j表示()在第m(m=1, 2, ..., N)個元素的節點j(j=1, 2)之值。本節中令 $\xi_1 = -0.5$ 、 $\xi_2 = 0.5$ 。

由(3.5.13)式可得

 $\mathbf{U}_j = \left\{ V_j \quad V_j' \right\} \tag{3.5.15}$

$$V_j = V_s(\xi_j) = \mathbf{N}^t(\xi_j) \mathbf{a} + V_p \tag{3.5.16}$$

$$V'_{j} = V'_{s}(\xi_{j}) = \mathbf{N}^{\prime t}(\xi_{j})\mathbf{a}$$
(3.5.17)

其中**U**_j(*j*=1, 2)表示元素在第*j*個節點的廣義位移向量。*V_j及V_j分別表示*元素在第*j*個節點的側向位移及其斜率。

由(3.5.15)~(3.5.17)式可得

$$\mathbf{U}_{j} = \mathbf{N}_{uj}\mathbf{a} + \begin{cases} V_{p} \\ 0 \end{cases}$$

$$\mathbf{N}_{uj} = \begin{bmatrix} \mathbf{N}^{t}(\xi_{j}) \\ \mathbf{N}^{\prime t}(\xi_{j}) \end{bmatrix}$$
(3.5.19)

其中Nuj為2×4的矩陣。

將(2.4.14)式對 x 的一次微分代入(2.4.12)式中並去掉對時間的微分項,可得

$$F_2 = EAu_{s,x}v_{s,x} - EIv_{s,xxx}$$
(3.5.20)

將(2.4.14)及(3.5.20)式中位移 u_s 及 v_s 用(3.2.9)式及(3.5.1)式無因次化後,將 (3.5.4)式代入其中可得 $F_2 = \frac{EI}{l^2} [\eta U_{s,\xi} V'_s - V''_s]$ (3.5.21)

$$M = \frac{EI}{l} V_s'' \tag{3.5.22}$$

其中Us, ξ在(3.2.14)式中已經定義。

將(3.2.14)式及(3.5.13)式代入(3.5.21)及(3.5.22)式中可得

$$\mathbf{F}_{j} = \{F_{2j} \ M_{j}\}$$

$$F_{2j} = \frac{EI}{l^{2}} \{ \eta U_{s,\xi}(\xi_{j}) V_{s}'(\xi_{j}) - V_{s}''(\xi_{j}) \}$$
(3.5.23)

$$= \frac{EI}{l^2} [\eta U_{s,\xi}(\xi_j) \mathbf{N}'^t(\xi_j) - \mathbf{N}''^t(\xi_j)] \mathbf{a}$$
(3.5.24)
$$M_j = \frac{EI}{l} V_s''(\xi_j)$$
$$= \frac{EI}{l} \mathbf{N}''^t(\xi_j) \mathbf{a}$$
(3.5.25)

其中**F**_j表示元素在第*j*個節點的廣義節點力向量。*F*_{2*j*}及*M_j*分別表示元素 在第*j*個節點的側向力及力矩。

由(3.5.23)-(3.5.25)式可得

$$\mathbf{F}_{j} = \mathbf{N}_{Fj} \mathbf{a}$$

$$\mathbf{N}_{Fj} = \begin{bmatrix} \frac{EI}{l^{2}} [\eta U_{s,\xi}(\xi_{j}) \mathbf{N}'^{t}(\xi_{j}) - \mathbf{N}''^{t}(\xi_{j})] \\ \frac{EI}{l} \mathbf{N}''^{t}(\xi_{j}) \end{bmatrix}$$

$$(3.5.26)$$

$$(3.5.27)$$

其中NFj為2×4的矩陣

旋轉梁的邊界條件可由固定端位移為零和自由端外力為零,以及相鄰 兩元素在共同節點上都需滿足變形的相合條件,及力的平衡條件,即有相 同的側向位移、斜率、側向力及力矩。因此,可得到以下的邊界及連續條 件

$$U_{1}^{1} = 0$$

$$U_{2}^{m} = U_{1}^{m+1}$$

$$F_{2}^{m} = F_{1}^{m+1}$$

$$F_{2}^{N} = 0$$
(3.5.28)

其中

 $\mathbf{U}_{j}^{m} = \{V_{j}^{m} \quad V_{j}^{\prime m}\} = \mathbf{N}_{uj}^{m} \mathbf{a}^{m} , \quad m = 1, 2, \dots, N , \quad j = 1, 2$ $\mathbf{F}_{j}^{m} = \{F_{2j}^{m} \quad M_{j}^{m}\} = \mathbf{N}_{Fj}^{m} \mathbf{a}^{m} , \quad m = 1, 2, \dots, N , \quad j = 1, 2$

U^m_j表示第m個元素在第j個節點的位移向量, V^m_j及V^m_j分別表示第m個元 素在第j個節點的側向位移及其斜率,F^m_j表示第m個元素在第j個節點的 節點力向量, F^m_{2j}及 M^m_j分別表示第m個元素在第j個節點的側向力及力 矩, a^m表示第m個元素的未定係數向量。

Service .

44000

旋轉梁振動的自然頻率,可由梁結構的兩端點及內部節點的邊界條件 求得。將(3.5.18)、(3.5.19)、(3.5.26)及(3.5.27)式代入(3.5.28)式可得

$$\mathbf{K}\mathbf{a}_G = \mathbf{b}$$

(3.5.29)

其中 \mathbf{a}_G 表示整體梁的未定係數向量, K 為 $4N \times 4N$ 的矩陣, \mathbf{a}_G 為 $4N \times 1$ 的矩陣, b 為 $4N \times 1$ 的行矩陣, b 的元素除第一個元素為 V_p 外其餘皆為零。

解聯立方程式(3.5.29)式即可求得 \mathbf{a}_G ,將 \mathbf{a}_G 中之 \mathbf{a}^m (m=1 \sim N)分別代入 (3.5.6)式求得 a_n ,即可由(3.5.1)式及(3.5.4)式求得 v_s 。

3.6 β=0° 時旋轉梁的振動方程式

如前所述,振動造成的位移,即(2.3.4)式之u_d及(2.3.5)式中的v_d,都 是擾動量,所以在推導中僅保留u_d、v_d及其微分到一次項,在不致引起混 済的情況,為了推導時的方便,在本章中將(2.4.25)式及(2.4.26)式中的u_d 及v_d的下標去掉,即以u、v代表振動造成的位移,所以(2.4.25)式及(2.4.26) 式可改寫成

 $EAu_{,xx} = \rho A[-u\Omega^2 - 2\Omega \dot{v} + \ddot{u}]$

、V代表振動造成的

(3.6.1)

 $EIv_{,xxxx} = EA(u_{s,xx}v_{,x} + u_{,xx}v_{s,x} + u_{s,x}v_{,xx} + u_{,x}v_{s,xx}) + \rho I\ddot{v}_{,xx} + \rho A(v\Omega^2 - 2\Omega\dot{u} - \ddot{v}) \quad (3.6.2)$

(3.6.1)與(3.6.2)式即為旋轉傾斜梁設定角 $\beta = 0^{\circ}$ 時振動的統御方程式。

本節與 3.2 節一樣,在分析時將梁均分成 N 個元素,每個元素的長度 皆為(3.2.8)式之l。第m 個元素的統御方程式與(3.6.1)及(3.6.2)式相同,但 其獨立變數x的範圍為 $x_m \le x \le x_m + l$,其中 $x_m = (m-1)l$, $m=1, 2, \dots N$ 。本文 中每個元素都用一個級數來表示其統御方程式的解。

將(3.2.9)-(3.2.12)式及(3.5.1)式代入(3.6.1)與(3.6.2)式中,則可將其無因 次化成

$$U_{,\xi\xi} + k^{2}U = \frac{\rho l^{2}}{E} \ddot{U} - 2\frac{\rho \Omega l^{2}}{E} \dot{V}$$

$$-V_{,\xi\xi\xi\xi} + \eta V_{s,\xi} U_{,\xi\xi} + \eta U_{s,\xi} V_{,\xi\xi} + \eta V_{s,\xi\xi} U_{,\xi} + \eta U_{s,\xi\xi} V_{,\xi} + \eta k^{2} V$$

$$= -\frac{\rho l^{2}}{E} \ddot{V}_{,\xi\xi} + 2\eta \frac{\rho \Omega l^{2}}{E} \dot{U} + \eta \frac{\rho l^{2}}{E} \ddot{V}$$
(3.6.4)

因振動方程式(3.6.3)式與(3.6.4)式是耦合的偏微分方程式,須同時求 解。若振動方程式(3.6.3)式與(3.6.4)式有自然頻率存在,則其解的形式必 可表示如下[16]

$$\begin{aligned} U(\xi,t) &= (U_{R} + iU_{I})e^{i\alpha t} \\ V(\xi,t) &= (V_{R} + iV_{I})e^{i\alpha t} \\ & \pm \psi_{I} = \sqrt{-1}, \ \omega \not \geq h \ \&f(3.6.5) \ & = \sqrt{-1}, \ \omega \not \geq h \ \&f(3.6.3) \ & = \sqrt{-1}, \ \omega \not \geq h \ \&f(3.6.3) \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ \omega \not \geq h \ & = \sqrt{-1}, \ &$$

(3.6.3)式與(3.6.4)式是耦合的常微分方程式,其解應有如下的形式

$$\mathbf{U} = \begin{cases} U_R \\ U_I \end{cases} = \sum_{n=0}^{\infty} \begin{cases} C_n \\ D_n \end{cases} \boldsymbol{\xi}^n$$
(3.6.8)

$$\mathbf{V} = \begin{cases} V_R \\ V_I \end{cases} = \sum_{n=0}^{\infty} \begin{cases} E_n \\ F_n \end{cases} \boldsymbol{\xi}^n$$
(3.6.9)

其中 C_n 、 D_n 、 E_n 、 F_n 為未定係數。

將(3.6.8)與(3.6.9)式代入(3.6.6)與(3.6.7)式,應可用與文獻[10]相同的方 式求出未定係數間的遞迴關係,但這已超出本研究擬完成的範圍,故沒有 繼續往下推導。

第四章 數值計算方法與程序

本章將說明當傾斜角 $\beta = 0^{\circ}$ 時,求旋轉傾斜梁的側向穩態解之數值程 序,與當 $\beta = 90^{\circ}$ 時,求旋轉傾斜梁運動的自然頻率及振動模態的計算程序。

4.1 $\beta = 0^{\circ}$ 時求側向穩態解的計算程序

假設傾斜角、旋轉梁的細長比、無因次的轉軸半徑及轉速、元數的數 目已給定,將(3.2.14)式之軸向穩態解代入(3.5.2)式,即可得側向穩態解之統 御方程式(3.5.3)式的各項係數,解(3.5.3)式的數值程序可說明如下:

- (1) 由(3.5.6)、(3.5.10)式及(3.5.12)式算出(3.5.14)式之N, (3.5.17)式N, (3.5.25)
 式之N"及(3.5.24)式之N""。
- (2) 藉由節點位移向量(3.5.18)式、節點力向量(3.5.26)式及(3.5.28)式之邊界 條件與連續條件,得到(3.5.29)式的剛度矩陣K及向量b。
- (3) 解線性聯立方程式(3.5.29)式,求得(3.5.31)式的未定係數aG。
- (4) 由a_G中得到(3.5.13)式裡對應於每個元素的向量a,將其代入(3.5.4)式及
 (3.5.6)式求得側向穩態位移。
- 4.2 β=90°時求自然頻率及振動模態的計算程序

由(3.2.5)-(3.2.7)式可以求得旋轉梁軸向振動的振態及自然頻率。

將(3.2.14)式之軸向穩態解及(3.2.5)式代入(3.2.13)式可得側向振動的統 御方程式(3.2.16)式。

由(3.2.21)、(3.2.25)式及(3.2.27)式算出(3.2.29)式之E、(3.3.3)式之E'、 (3.3.11)式之E"及(3.3.10)式之E"。

由節點位移向量(3.3.4)式、節點力向量(3.3.12)式及(3.3.14)式之邊界條件與連續條件,組成(3.4.2)式的剛度矩陣K,K為(3.2.17)式中K的函數。若

$$D(K) = \det \mathbf{K}(K) = 0 \tag{4.2.1}$$

則(3.4.1)式之C_G有非零解,亦即由該K及(3.2.17)式可求得自然頻率。 此外,由於矩陣K的維數隨著元素的個數增加而變大,為了避免行列式的 數值超過計算機所能處理的範圍,所以行列式值均做以下的標準化 (normalization)

$$S(K) = \frac{D(K)}{D(0)} \tag{4.2.2}$$

本章解(4.2.1)式所採用的計算程序可說明如下:

- (1) 設定起始值 K_0 及增量 ΔK 。令 $K_n = K_0 + n\Delta K$, $n = 0, 1, 2, \dots$, 計算 $S(K_n)$ 直到發現 $S(K_I)S(K_{I+1}) < 0$ 。
- (2) 令 $K_L = K_I$, $K_R = K_{I+1}$, $S_L = S(K_I)$, $S_R = S(K_{I+1})$, 其中下標 L 及 R 分別 表示左界及右界。

(3) 以線性內插法,取
$$K_B = \frac{(K_R S_L - K_L S_R)}{(S_L - S_R)}$$
。

(5) 若 $S_L S_B < 0$,則令 $K_M = K_R$, $K_R = K_B$, $S_M = S_R$, $S_R = S_B$ 。 若 $S_L S_B > 0$,則令 $K_M = K_L$, $K_L = K_B$, $S_M = S_L$, $S_L = S_B$ 。

$$(6) \stackrel{\scriptstyle \times}{=} \frac{|K_R - K_L|}{|K_L|} < e_C$$

其中 e_C 為給定的容許誤差值,則令 $K_{\omega} = K_B$, K_{ω} 即(4.2.1)式之解,跳到

步驟(8),否則進行下一步驟。

- (7) 由(K_L, S_L)、(K_R, S_R)、(K_M, S_M)及二次曲線內插法(附錄 A)計算一新的
 K_B,回到步驟(4)。
- (8) 以逆冪法[15]解(3.4.4)式求得該無因次自然頻率 K_{α} 的未定係數向量 C_{G} 。
- (9) 利用(3.2.5)、(3.2.18)式及(3.2.21)式求得該無因次自然頻率的振動模態。
- (10)利用(3.2.17)式求得整體梁的無因次自然頻率 $\overline{K}_{\omega}(\overline{K}_{\omega} = NK_{\omega})$ 。
- (11)回到步驟(1)繼續求下一個自然頻率及振動模態。

第五章 數值例題

本章將分析設定角β=90°之旋轉傾斜 Euler 梁的自然頻率及設定角 β=0°之旋轉傾斜梁的側向穩態解。本章中將考慮不同的轉速、轉軸半 徑、設定角、傾斜角及梁的細長比。

因本文在推導時假設穩態解的軸向應變 ε << 1,所以本文中將最大應 變 ε_{max} 定為10⁻²。本文中稱應變小於最大應變 ε_{max} 時的轉速為合理範圍。 本章中所分析的例題的轉速都為合理的轉速。

例題一:

本例題在探討使用不同的元素數目 N 時,旋轉傾斜 Euler 梁之自然頻 率的收斂情形。文獻[10]提到旋轉梁之細長比 \sqrt{p} 很大時,在高轉速時,使 用一個元素的級數解無法求得較高的自然頻率,所以本例題分析了細長比 $\sqrt{p} = 1000 、 無因次轉速k = 0.06 及無因次轉軸半徑 r = 1 × 1.5 的旋轉傾斜$ $梁,由(3.1.5)式得出此時最大應變分別為<math>\varepsilon_{max} = 5.4 \times 10^{-3}$ 及 7.2×10^{-3} 。傾斜 角 $\alpha = 0^{\circ}$ 時,本例題考慮了設定角 $\beta = 0^{\circ} × 90^{\circ}$ 二種情況,設定角 $\beta = 90^{\circ}$ 時, 本例題考慮了傾斜角 $\alpha = 0^{\circ} × 15^{\circ} × 30^{\circ} × 45^{\circ} × 60^{\circ} × 90^{\circ}$ 六種情況。表一至表 四為旋轉傾斜 Euler 梁在N = 1, 2, 3, 5時之無因次自然頻率及對應該無因 次自然頻率之級數解收斂時所需的項數。圖七為旋轉傾斜 Euler 梁在設定 角 $\beta = 0^{\circ} × 90^{\circ}$,傾斜角 $\alpha = 0^{\circ} × 15^{\circ}$,無因次轉軸半徑 r = 1.5、細長比 $\sqrt{p} = 1000$ 及無因次轉速k = 0.06時,在一個元素的情況下,使用雙精度實 數(Double precision, 64bits/Per real)與四倍精度實數(Quadruple precision, 128bits/Per real)計算行列式值的比較。本章中所有的計算除了另有說明外 都是採用雙精度實數,但由表一至表四發現當N = 1,在細長比及轉速很大 時,無法求得較高的振動頻率,檢查其行列式值(4.2.2)式,發現會有如圖 七的抖動,且用相同數據求得的自然頻率每次都有少許的差異,由(3.2.17) 式及(3.2.21)式發現當轉速、細長比及自然頻率增加時,(3.2.30)式中之 Y_i^n (*i*=0、1、2、3)會逐漸增加,變得很大,再減小,這可能會造成有效位 數不夠,使行列式值抖動,因而無法求得正確的振動頻率,所以本研究在 N=1時,另外以四倍精度的實數分析,由圖七可以發現四倍精度的行列式 值並無抖動現象,且由表一至表四可以發現N=1時用四倍精度求得的自然 頻率與N=2、3、5時用雙精度求得的自然頻率一樣。

但 N 愈大,其級數解收斂所需的項數越小,這是可以預期的。由 (3.2.10)、(3.2.11)式及(3.2.17)式可以發現當 N 增加時,η、k及K 會減少, 故可改善N=1時,雙精度之有效位數不夠的問題。為了確保用雙精度分析 時的準確性,所以本章中以後在分析例題時,都採用 N=3。 例題二:

本例題探討旋轉傾斜 Euler 梁在傾斜角 $\alpha = 0^{\circ}$ 、設定角 $\beta = 0^{\circ}$ 、90°與無因次轉速 $\bar{k} = 0$ 、0.01、0.03、0.06 及無因次轉軸半徑 $\bar{r} = 0$ 、0.5、1、1.5 時的振動頻率, $\alpha = 0^{\circ}$ 為旋轉傾斜梁的特例,本例題與文獻[10]中分析的旋轉梁一樣,故可用文獻[10]的方法求 $\beta = 0^{\circ}$ 時的自然頻率,本例題的部份結果可與文獻[10]的結果比較,以驗證本文結果的正確性。

表五至表十二為傾斜旋轉梁在不同細長比下 $\sqrt{n}=10 \cdot 20 \cdot 50 \cdot 100 \cdot$ 500、1000 的無因次自然頻率。當 $\beta=0^{\circ}$ 時,因科氏力的關係,軸向和側向 振動是耦合的,所以在表五至表八中,(a)表示該振動頻率對應的振態僅在 轉速 $\overline{k}=0$ 時為軸向振動,圖八至圖十三為設定角 $\beta=0^{\circ} \cdot$ 傾斜角 $\alpha=0^{\circ} \cdot$ $\overline{r}=1 \cdot 轉速\overline{k}=0 \cdot 0.03 \cdot 0.06$ 下前六個振動頻率對應的振動模態。由圖八至 圖十可以發現當細長比 $\sqrt{n}=10$,轉速 $\overline{k}=0.06$ 時,第四至第六個振動頻率的 振態為明顯的軸向與側向耦合振動,由圖十一到圖十三可發現當 $\sqrt{n}=50$ 時,僅有第四個振動頻率的振態可看出有些微的軸向與側向耦合,由表五

至表八及圖八至圖十三,可以發現當 $\bar{k}=0$ 時,若軸向振動與側向振動的頻率愈接近時,則在 $\bar{k}\neq0$ 時,其振態有明顯的耦合,且 \bar{k} 愈大耦合愈嚴重。 由表五至表八可以發現 $\beta=0°時,隨著轉速\bar{k}增加,自然頻率\bar{K}_i 會隨著增$ $加,且在細長比<math>\sqrt{7}$ 與無因次轉軸半徑 \bar{r} 愈大時愈明顯。由表九至表十二可 發現 $\beta=90°時也有此種現象,且更明顯。$

例題三:

本例題探討當設定角 β =90°時,具不同轉軸半徑,細長比及傾斜角之 旋轉傾斜 Euler 梁在不同轉速下之自然頻率的變化。本例題考慮了以下的 情況:無因次轉軸半徑 \bar{r} =0.5、1、1.5,細長比 $\sqrt{\bar{n}}$ =10、20、50、100、 500、1000,傾斜角 α =0°、15°、30°、45°、60°、90°,無因次轉速 \bar{k} =0、 0.03、0.06。

表十三至表三十為旋轉傾斜梁在各種情況下的前12個無因次自然頻率 $\overline{K}_i(i=1\sim12)$ 。圖十四至圖十九為不同細長比 \sqrt{n} 之旋轉傾斜梁的 \overline{K}_i - α 圖。 表中(a)代表該 \overline{K}_i 對應振態為軸向振動,沒有(a)的 \overline{K}_i 之振動為側向振動。 由 3-2 節可知當 β =90°時,旋轉梁的軸向振動與側向振動不會耦合,軸向 振動的振態與自然頻率可以由(3.2.5)-(3.2.7)式求出。由(3.2.6)式可知該軸 向振動頻率與傾斜角 α 無關但會隨轉速 \overline{k} 的增加而減少。由表十三至表三 十可見在合理的轉速範圍內,轉速對軸向自然頻率的影響甚小。由表十三 至表三十及圖十四至圖十九可以發現側向振動的 \overline{K}_i 隨著轉速 \overline{k} 增加而增 加,且 i 愈小(即較前面的振動頻率)、細長比 \sqrt{n} 愈大、轉軸半徑 \overline{r} 愈大時 其增加率愈明顯。當 \overline{k} 不為 0 時,側向振動的 \overline{K}_i 隨著傾斜角 α 增加而減 少,且其減少率隨 \overline{k} 、 \sqrt{n} 及 \overline{r} 增加而增加,隨i的增加而減少。 例題四:

本例題探討當設定角β=0°時,具不同轉軸半徑,細長比及傾斜角之 旋轉傾斜 Euler 梁在不同轉速之側向穩態變形。本例題考慮了以下的情

況: $\bar{r}=0.5$ 、1、1.5,細長比 $\sqrt{n}=10$ 、20、50、100、500、1000。由(3.5.2) 式可知當元素的數目相同時, $m^2 r \sin \alpha$ 愈大,則側向穩態變形愈大。當 $r \sin \alpha$ 的值相同,若 $\bar{k}\sqrt{n}$ 的值相同,則有相同的側向穩態變形。因本研究 在推導時假設位移為小位移,所以必須控制 $\bar{k}\sqrt{n}$ 的大小,使側向穩態解在 合理的範圍。本研究假設 $v_{iip}/L<0.1$ 為合理的範圍,其中 v_{iip} 為梁端點的側 向穩態位移。表三十一至表三十三為傾斜角 $\alpha=5^{\circ}$ 、10°、15°、30°、45°、 60°、90°時,不同 $\bar{k}\sqrt{n}$ 之旋轉傾斜Euler 梁的端點穩態側向位移。圖二十至 圖二十一為旋轉傾斜梁在不同無因次轉速 \bar{k} 的側向穩態變形。圖二十二至 圖二十四為旋轉傾斜 Euler 梁在不同傾斜角 $\alpha=5^{\circ}$ 、10°、15°、30°、45°、 90°下的 $v_{iip}/L-\bar{k}\sqrt{n}$ 圖。

由表三十一至表三十三可以看出隨著 $\bar{k}\sqrt{n}$ 的增加,端點位移會顯著的 增加。由表三十一至表三十三可以發現在同一個 $\bar{k}\sqrt{n}$ 之下,隨著元素數目 增加,其穩態解會收斂到一個定值,且級數解所需的收斂項數就愈少,尤 其在 $\bar{k}\sqrt{n}$ 的值愈大時愈明顯,但 $\bar{k}\sqrt{n}$ 的值愈大、 α 愈小,則須愈多的元素 其穩態解才會收斂。為了確保穩態解的正確性,本章中圖二十至圖二十四 都是用 N=200 的結果繪製的。

由圖二十至圖二十一可以發現,當轉速愈大時,側向穩態位移也會愈 大。且隨著傾斜角增加,側向穩態位移也會增大。但是當傾斜角α增加到 60°以上時,其位移隨著傾斜角的增幅就漸漸變得不明顯。

由圖二十二至圖二十四可以發現,當 $\overline{k}\sqrt{n}$ 愈大時,端點位移也愈大。 當 $\alpha > 15^{\circ}$, v_{iip}/L 的值隨 $\overline{k}\sqrt{n}$ 的增加會快速增加。若欲使已知傾斜角之旋轉 梁的穩態側向位移在預設的範圍內,可以由圖二十二至圖二十四決定其 $\overline{k}\sqrt{n}$ 的上限。

第六章 結論與展望

本研究用 d'Alembert 原理、虚功原理、幾何非線性梁理論的一致線性 化在一旋轉座標系統中推導等速旋轉傾斜尤拉梁的線性運動方程式。等速 旋轉的傾斜尤拉梁存在一個沒有振動的穩態變形,本文中所謂的振動就是 以該穩態為平衡點的微小振動。由旋轉梁的穩態統御方程式可知其軸向穩 態變形與傾斜角有關但與設定角無關,但其側向穩態變形與傾斜角及設定 角都有關。由旋轉梁的振動統御方程式可知其振動與穩態變形及設定角都 有關。本文中僅考慮設定角為0°與90°。

當設定角為90°時,旋轉梁的側向穩態變形為零,且因科氏加速度的值 為零,其軸向與側向振動不耦合。其軸向穩態變形與軸向振動頻率及振態 的解析解可以容易的得到。其側向自然振動之統御方程式為一四次的變係 數常微分方程式,本研究將旋轉梁分成數段,每一段稱為一個元素,本研 究將每一個元素之側向振動之統御方程式的解表示成一個含四個獨立係數 的級數,再由旋轉梁兩端的邊界條件及相鄰元素在共同節點的連續條件求 得一組齊次方程式,本研究以二分法解該齊次方程式求得自然振動頻率。

當設定角為0°時,旋轉梁的側向穩態變形不為零,且因科氏加速度的 值不為零,其軸向與側向振動是耦合的,但本研究僅探討其穩態變形。設 定角為0°與90°的軸向穩態變形是相同的,其側向穩態變形之統馭方程式為 一四次的變係數常微分方程式,本研究用類似設定角為90°時解側向自然振 動之統馭方程式的方法,求得一組非齊次方程式,再以高斯消去法解該非 齊次方程式求得側向穩態變形。

由本研究的數值例題可以得到以下的結論:

 當梁的細長比及無因次的轉速很大時,若計算時使用雙精度,則 最 少需將旋轉梁分成兩段,才能得到可靠的自然振動頻率,若計算時使用四 倍精度,則可以不分段。

2. 設定角與傾斜角都為0°時,為旋轉傾斜尤拉梁的特例,可以用文獻 上的方法求解。當轉速不為零時,其軸向與側向振動是耦合的。若轉速為 零時,軸向與側向的自然振動頻率愈接近,則轉速不為零時,軸向與側向 振動的耦合隨無因次轉速增加愈來愈明顯。旋轉梁的自然頻率隨轉速增加 而增加,且當梁的細長比及無因次轉軸半徑愈大時愈明顯。

3. 設定角為90°時,不管傾斜角是多少,旋轉梁的軸向振動與側向振動 不會耦合,軸向振動的自然頻率與傾斜角無關但會隨轉速增加而減少,但 在合理的轉速範圍內,轉速對軸向自然頻率的影響甚小。側向振動的自然 頻率隨著轉速增加而增加,且細長比愈大、無因次轉軸半徑愈大時其增幅 愈顯著,此現象對較前面的振動頻率更加顯著。當轉速不為0時,側向振 動的自然頻率隨著傾斜角增加而減少,且其減少率隨轉速、細長比及無因 次轉軸半徑增加而增加,此現象對較前面的振動頻率更加顯著。

4. 當設定角為 0°時, 若傾斜角、無因次轉軸半徑及無因次轉速與梁的 細長比乘積($\bar{k}\sqrt{n}$)的值相同,則有相同的側向穩態變形。因本研究在推 導時假設位移為小位移,所以必須控制 $\bar{k}\sqrt{n}$ 的大小,使側向穩態解在合理 的範圍。隨著 $\bar{k}\sqrt{n}$ 的增加,端點位移會顯著的增加。當傾斜角α增加時, 端點的側向穩態位移亦會跟著增大,但增幅不如細長比增加時那麼顯著。 隨著元素數目增加,穩態位移會收斂到一個定值,但元素數目愈多時,級 數解所需的收斂項數就愈少,尤其在 $\bar{k}\sqrt{n}$ 愈大時愈明顯,當傾斜角很小、 $\bar{k}\sqrt{n}$ 很大時,須要較多的元素才能得到穩態位移的收斂解。

當設定角為0°時,本研究僅探討旋轉傾斜尤拉梁的穩態變形,以後的研究應探討其軸向與側向的耦合振動。

本研究假設旋轉傾斜尤拉梁的側向穩態變形為小變形,但由本研究的 數值例題可以發現當 k √ f 或傾斜角的值較大時,其側向穩態變形會超出小 變形的範圍,故以後的研究應考慮其側向穩態變形的幾何非線性分析。 本研究僅探討設定角為0°及90°時的旋轉傾斜尤拉梁,其運動是二維的運 動,以後的研究應考慮其他設定角的旋轉傾斜尤拉梁,其運動是三維的運 動。

參考文獻

- A. Leissa, "Vibrational Aspects of Rotating Turbomachinery Blades," ASME Applied Mecanics Reviews, Vol. 34, 1981, pp. 629-635.
- [2] V. Ramamurti, P. Balasubramanian, "Analysis of Turbomachinery Blades-A Review," The Shock, Vibration Digest, Vol. 16, 1984, pp. 13-28.
- [3] M. J. Schilhansl, "Bending Frequency of a Rotating Cantilever Beam," ASME Journal of Applied Mechanics, Vol. 25, 1958, pp. 28-30.
- [4] S. Y. Lee, Y. H. Kuo, "Bending frequency of a rotating beam with an elastically restrained root", ASME Journal of Applied Mechanics, Vol. 58, 1991, pp. 209-214.
- [5] T. Yokoyama, "Free Vibration Characteristics of Rotating Timoshenko Beam," International Journal of Mechanical Science, Vol. 30, No. 10, 1988, pp. 743-755.
- [6] S. Y. Lee, S. M. Lin, "Bending Vibration of Rotating Nonuniform Timoshenko Beams with an Elastically Restrained Root," ASME Journal of Applied Mechanics, Vol. 61, 1994, pp. 949-955.
- [7] J. C. Simo, L. V. Quoc, "The role of non-linear theories in transient dynamic analysis of flexible structures", Journal of Sound and Vibration Vol. 119, 1987, pp. 487-508.
- [8] S. C. Lin, K. M. Hsiao, "Vibration analysis of a rotating Timoshenko beam, Journal of Sound and Vibration" Vol. 240(2), 2001, pp. 303-322.

- [9] 洪船島,"旋轉梁結構之振動分析",國立交通大學機械工程研究 所碩士論文,臺灣,新竹,1997.
- [10] 周志芳,"旋轉梁之自由振動的級數解法",國立交通大學機械工程研究所碩士論文,臺灣,新竹,1998.
- [11] 許哲嘉,"旋轉傾斜梁之動態分析",國立成功大學機械工程學系博士論文,臺灣,臺南,2006.
- [12] S. Y. Lee, J. J. Sheu, "Free Vibrations of a Rotating Inclined beam", ASME Journal of Applied Mechanics, Vol. 74, 2007, pp. 406-414.
- [13] S. Y. Lee, J. J. Sheu, "Free Vibrations of an Extensible Rotating Inclined Timoshenko beam", Journal of Sound and Vibration, Vol. 304, 2007, pp. 606-624.
- [14] T. J. Chung, Continuous Mechanics, Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1988.
- [15] 楊榮哲, "梁元素之一致性共旋轉有限元素推導法及其應用", 國立交通大學機械工程研究所博士論文, 臺灣, 新竹, 1995.
- [16] L. Meirovitch, "A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems," AIAA Journal, Vol. 12, No. 10, 1974, pp. 1337-1342.

表一 不同設定角的旋轉梁之自然頻率的收斂分析

β	i	\overline{K}_i^1	I_1	$\overline{K}_i^{1*}, \ \overline{K}_i^N$	I_1^*	I_2	I_3	I_5
0°	1	0.073496	120	0.073492	120	69	54	41
	2	0.217173	119	0.217192	119	68	54	42
	3	0.359729	118	0.359715	118	69	54	42
	4	0.517461	119	0.517444	119	70	55	43
	5	0.690797	117	0.690788	117	69	55	42
	6	0.877679	116	0.877727	116	69	54	42
	7	1.07709	115	1.07729	115	69	54	42
	8	1.29013	115	1.28934	115	69	54	42
	9	1.51198	114	1.51413	114	69	54	42
	10	-	-	1.57424	114	69	55	42
	11	-	-	1.75208	114	69	55	42
	12	-	-	2.00368	114	69	55	42
			S					
90°	1	0.095034	120	0.095036	120	69	54	41
	2	0.225414	119	0.225399	119	68	54	42
	3	0.364765	118	0.364733	118	69	54	42
	4	0.520978	120	0.520947	120	71	56	44
	5	0.693584	117	0.693418	117	69	55	42
	6	0.879911	116	0.879799	116	69	54	42
	7	1.07900	115	1.07898	115	69	54	42
	8	1.29057	115	1.29076	115	69	54	42
	9	1.51306	114	1.51533	114	69	54	42
	10	-	-	1.56965	114	69	55	42
	11	-	-	1.75312	114	69	55	42
	12	-	-	2.00459	114	69	55	42

 $(\alpha = 0^{\circ}, \ \overline{r} = 1, \ \sqrt{\overline{\eta}} = 1000, \ \overline{k} = 0.06)$

 \overline{K}_i^N :分成 N 段時第 i 個自然頻率, N=2, 3, 5

I_N:分成N段時級數解收斂所須的項數

-:表無法用雙精度求得自然頻率 $\overline{K_i}$

表二 不同傾斜角的旋轉梁之自然頻率的收斂分析

$(\beta = 90^\circ, \bar{r} = 1)$	$.5, \ \sqrt{\overline{\eta}} = 1000$	k = 0.06,	$\alpha = 0^{\circ}, 15^{\circ})$
-----------------------------------	---------------------------------------	-----------	-----------------------------------

α	i	\overline{K}_i^1	I_1	$\overline{K}_i^{1*}, \ \overline{K}_i^N$	I_1^*	I_2	<i>I</i> ₃	I_5
0°	1	0.108115	135	0.107975	135	75	58	44
	2	0.253961	133	0.254346	133	75	58	45
	3	-	-	0.409829	133	75	59	45
	4	-	-	0.582687	133	76	60	46
	5	-	-	0.772541	132	77	60	46
	6	-	-	0.976737	131	76	59	45
	7	-	-	1.19381	130	75	59	45
	8	-	-	1.42330	129	75	59	45
	9	-	-	1.56965	128	75	59	45
	10	-	-	1.66523	128	75	59	45
	11	-	-	1.91986	128	75	59	45
	12	-	-	2.18758	127	76	59	45
			3					
15°	1	0.106929	134	0.106726	134	74	58	44
	2	0.249961	132	0.251544	132	74	58	44
	3	-	E	0.405465	131	75	58	45
	4	-	-70	0.576719	132	76	59	45
	5	-	-	0.764898	131	76	59	45
	6	-	-	0.967374	129	75	59	45
	7	-	-	1.18272	128	75	58	45
	8	-	-	1.41048	127	75	58	45
	9	-	-	1.56965	127	75	58	45
	10	-	-	1.65072	127	75	58	45
	11	-	-	1.90370	126	75	59	45
	12	-	-	2.16981	126	75	59	45

 \overline{K}_i^N :分成 N 段時第 i 個自然頻率, N=2, 3, 5

I_N:分成N段時級數解收斂所須的項數

-:表無法用雙精度求得自然頻率 $\overline{K_i}$

表三 不同傾斜角的旋轉梁之自然頻率的收斂分析

α	i	\overline{K}_i^1	I_1	$\overline{K}_i^{1*}, \ \overline{K}_i^N$	I_1^*	I_2	I ₃	I_5
30°	1	0.102955	129	0.102974	129	72	56	43
	2	0.243108	128	0.243138	128	72	57	43
	3	0.392543	127	0.392372	127	73	57	44
	4	0.558088	128	0.558806	128	74	58	45
	5	-	-	0.741950	127	74	58	44
	6	-	-	0.939260	125	73	57	44
	7	-	-	1.14940	124	73	57	44
	8	-	-	1.37201	123	73	57	44
	9	-	-	1.56965	123	73	57	44
	10	-	-	1.60718	123	73	57	44
	11	-	-	1.85523	123	73	57	44
	12	-	-	2.11657	122	73	57	44
			3					
45°	1	0.096706	122	0.096700	122	69	54	42
	2	0.229158	121	0.229112	121	69	54	42
	3	0.370538	120	0.370519	120	70	55	42
	4	0.528910	121	0.528879	121	71	57	44
	5	0.703657	119	0.703589	119	70	55	43
	6	0.892100	118	0.892261	118	70	55	42
	7	1.09155	117	1.09374	117	70	55	42
	8	-	-	1.30777	117	70	55	42
	9	-	-	1.53455	116	70	55	42
	10	-	-	1.56965	116	70	55	42
	11	-	-	1.77447	116	70	55	43
	12	-	-	2.02798	116	70	55	43

 $(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 1000, \ \bar{k} = 0.06, \ \alpha = 30^{\circ}, 45^{\circ})$

 \overline{K}_i^N :分成 N 段時第 i 個自然頻率, N=2, 3, 5

I_N:分成N段時級數解收斂所須的項數

-:表無法用雙精度求得自然頻率 $\overline{K_i}$

表四 不同傾斜角的旋轉梁之自然頻率的收斂分析

$(\beta = 90^\circ, \overline{r} = 1.$	5, $\sqrt{\overline{\eta}} = 1000$	k = 0.06	$\alpha = 60^\circ, 90^\circ$)
--	------------------------------------	----------	---------------------------------

α	i	\overline{K}_i^1	I_1	$\overline{K}_i^{1*}, \ \overline{K}_i^N$	I_1^*	<i>I</i> ₂	I ₃	I_5
60°	1	0.087836	111	0.087836	111	65	51	40
	2	0.209377	110	0.209376	110	65	51	40
	3	0.339751	110	0.339749	110	65	52	40
	4	0.486680	112	0.486672	112	67	53	41
	5	0.649462	108	0.649439	108	65	52	40
	6	0.825899	108	0.825922	108	65	52	40
	7	1.01527	107	1.01523	107	65	52	40
	8	1.21731	107	1.21730	107	65	52	40
	9	1.43250	106	1.43247	106	65	52	40
	10	1.56965	106	1.56965	106	66	52	40
	11	1.66103	106	1.66121	106	66	52	40
	12	1.90467	107	1.90406	107	66	52	41
			S					
90°	1	0.061076	82	0.061076	82	52	42	33
	2	0.150719	81	0.150719	81	51	41	32
	3	0.248025	79	0.248025	79	52	42	33
	4	0.360245	78	0.360245	78	51	41	33
	5	0.487009	76	0.487009	76	50	41	33
	6	0.627359	75	0.627359	75	51	41	33
	7	0.781368	74	0.781368	74	51	41	33
	8	0.949627	73	0.949627	73	51	42	33
	9	1.13287	75	1.13287	75	52	42	34
	10	1.33182	74	1.33182	74	53	43	34
	11	1.54712	76	1.54712	76	54	43	35
	12	1.56965	76	1.56965	76	54	44	35

 \overline{K}_i^N :分成 N 段時第 i 個自然頻率, N=2, 3, 5

I_N:分成N段時級數解收斂所須的項數
表五 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

$(\beta = 0^{\circ})$	$\alpha = 0^{\circ}$.	$\overline{r}=0$)
(p - 0),	$\alpha = 0$,	1-01

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34368	1.57086(a)	1.91377	4.64916	4.71271(a)	7.82080
	20	0.17483	1.05976	1.57090(a)	2.82455	4.71242(a)	5.19143
	50	0.07039	0.43847	1.21597	1.57089(a)	2.35246	3.82715
	100	0.03542	0.22122	0.61596	1.20191	1.57089(a)	1.97766
	500	0.00815	0.04990	0.13001	0.24886	0.40694	0.60428
	1000	0.00505	0.03212	0.07397	0.13450	0.21420	0.31334
0.03	10	0.34371	1.57136(a)	1.91479	4.64763	4.71521(a)	7.81728
	20	0.17517	1.06152 🏾	1.57173(a)	2.82646	4.71269(a)	5.19335
	50	0.07142	0.44333	1.22129	1.57166(a)	2.35806	3.83284
	100	0.03740	0.23087	0.62669	1.21333	1.57166(a)	1.98942
	500	0.01192	0.08258	0.17328	0.29900	0.46129	0.66132
	1000	0.00817	0.07250	0.13429	0.21077	0.30264	0.41078
0.06	10	0.34380	1.57304(a)	1.91825	4.64320	4.72292(a)	7.80891
	20	0.17629	1.06746	1.57452(a)	2.83288	4.71359(a)	5.19984
	50	0.07461	0.45936	1.23905	1.57427(a)	2.37684	3.85195
	100	0.04251	0.26077	0.66148	1.25097	1.57425(a)	2.02856
	500	0.01631	0.14495	0.26853	0.42142	0.60506	0.82114
	1000	0.01138	0.13822	0.24063	0.35519	0.48328	0.62447

表六 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

 $(\beta = 0^{\circ}, \alpha = 0^{\circ}, \bar{r} = 0.5)$

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34380	1.57086(a)	1.91385	4.64923	4.71271(a)	7.82088
	20	0.17505	1.05995	1.57090(a)	2.82474	4.71242(a)	5.19161
	50	0.07094	0.43896	1.21646	1.57089(a)	2.35298	3.82768
	100	0.03651	0.22220	0.61696	1.20296	1.57089(a)	1.97874
	500	0.01197	0.05403	0.13467	0.25394	0.41226	0.60978
	1000	0.01004	0.03812	0.08168	0.14350	0.22404	0.32373
					-		
0.03	10	0.34472	1.57136(a)	1.91558	4.64831	4.71524(a)	7.81786
	20	0.17716	1.06323 🏼	1.57173(a)	2.82813	4.71269(a)	5.19501
	50	0.07618	0.44765	1.22573	1.57167(a)	2.36270	3.83756
	100	0.04580	0.23910	0.63548	1.22267	1.57166(a)	1.99909
	500	0.02853	0.10266	0.20115	0.33356	0.50076	0.70425
	1000	0.02709	0.09409	0.16637	0.25376	0.35588	0.47296
0.06	10	0.34778	1.57305(a)	1.92140	4.64566	4.72329(a)	7.81082
	20	0.18404	1.07422	1.57453(a)	2.83952	4.71359(a)	5.20644
	50	0.09137	0.47576	1.25643	1.57428(a)	2.39515	3.87068
	100	0.06740	0.28870	0.69384	1.28658	1.57426(a)	2.06605
	500	0.05406	0.18812	0.33266	0.50738	0.71148	0.94541
	1000	0.05272	0.18228	0.30671	0.44525	0.59843	0.76479

表七 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

$(\beta = 0^{\circ},$	$\alpha = 0^{\circ}$,	$\overline{r} = 1$)
(r - r)	,	· - /

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34391	1.57086(a)	1.91394	4.64931	4.71271(a)	7.82095
	20	0.17528	1.06014	1.57090(a)	2.82492	4.71242(a)	5.19180
	50	0.07149	0.43944	1.21696	1.57089(a)	2.35349	3.82820
	100	0.03757	0.22316	0.61796	1.20402	1.57089(a)	1.97983
	500	0.01482	0.05784	0.13914	0.25889	0.41751	0.61521
	1000	0.01326	0.04323	0.08859	0.15184	0.23336	0.33372
			E		E.		
0.03	10	0.34572	1.57136(a)	1.91637	4.64899	4.71527(a)	7.81844
	20	0.17913	1.06493 🏹	1.57173(a)	2.82979	4.71269(a)	5.19666
	50	0.08066	0.45192	1.23016	1.57167(a)	2.36732	3.84227
	100	0.05286	0.24704	0.64413	1.23193	1.57166(a)	2.00871
	500	0.03849	0.11914	0.22494	0.36404	0.53657	0.74407
	1000	0.03735	0.11134	0.19239	0.28902	0.40025	0.52578
0.06	10	0.35171	1.57307(a)	1.92454	4.64810	4.72367(a)	7.81269
	20	0.19147	1.08093	1.57454(a)	2.84615	4.71359(a)	5.21304
	50	0.10546	0.49158	1.27353	1.57429(a)	2.41330	3.88930
	100	0.08524	0.31398	0.72448	1.32100	1.57426(a)	2.10271
	500	0.07454	0.22260	0.38469	0.57787	0.80018	1.05098
	1000	0.07349	0.21719	0.35972	0.51744	0.69079	0.87773

表八 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

 $(\beta = 0^\circ, \alpha = 0^\circ, \overline{r} = 1.5)$

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34402	1.57086(a)	1.91403	4.64939	4.71271(a)	7.82102
	20	0.17550	1.06033	1.57090(a)	2.82511	4.71242(a)	5.19198
	50	0.07204	0.43993	1.21746	1.57089(a)	2.35401	3.82873
	100	0.03860	0.22413	0.61896	1.20507	1.57089(a)	1.98091
	500	0.01720	0.06141	0.14345	0.26373	0.42268	0.62059
	1000	0.01582	0.04775	0.09490	0.15964	0.24224	0.34335
					-		
0.03	10	0.34672	1.57136(a)	1.91717	4.64966	4.71530(a)	7.81901
	20	0.18108	1.06663 🏹	1.57173(a)	2.83146	4.71269(a)	5.19832
	50	0.08490	0.45614	1.23457	1.57167(a)	2.37194	3.84698
	100	0.05907	0.25472	0.65265	1.24111	1.57166(a)	2.01826
	500	0.04632	0.13345	0.24601	0.39155	0.56952	0.78130
	1000	0.04532	0.12614	0.21488	0.31961	0.43901	0.57235
0.06	10	0.35560	1.57308(a)	1.92768	4.65050	4.72408(a)	7.81451
	20	0.19862	1.08760	1.57455(a)	2.85276	4.71360(a)	5.21962
	50	0.11784	0.50687	1.29036	1.57429(a)	2.43127	3.90780
	100	0.09989	0.33722	0.75363	1.35435	1.57427(a)	2.13860
	500	0.09045	0.25220	0.42965	0.63902	0.87766	1.14407
	1000	0.08952	0.24708	0.40536	0.57955	0.77017	0.97486

表九 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

$(\beta = 90^\circ,$	$\alpha = 0^{\circ}$,	$\overline{r}=0$)
(I^{-})	,	- /

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34384	1.57076(a)	1.91376	4.64946	4.71238(a)	7.82141
	20	0.17512	1.05982	1.57076(a)	2.82458	4.71238(a)	5.19144
	50	0.07110	0.43859	1.21601	1.57076(a)	2.35248	3.82717
	100	0.03681	0.22145	0.61604	1.20195	1.57076(a)	1.97768
	500	0.01290	0.05089	0.13039	0.24906	0.40706	0.60437
	1000	0.01120	0.03364	0.07465	0.13487	0.21444	0.31350
0.03	10	0.34513	1.57051(a)	1.91476	4.65032	4.71229(a)	7.82219
	20	0.17778	1.06206	1.57051(a)	2.82668	4.71229(a)	5.19348
	50	0.07749	0.44438	1.22168	1.57051(a)	2.35826	3.83298
	100	0.04796	0.23282	0.62742	1.21371	1.57051(a)	1.98966
	500	0.03228	0.08787	0.17586	0.30051	0.46227	0.66201
	1000	0.03109	0.07847	0.13761	0.21290	0.30413	0.41188
0.06	10	0.34945	1.56965(a)	1.91813	4.65322	4.71201(a)	7.82484
	20	0.18645	1.06960	1.56965(a)	2.83375	4.71201(a)	5.20036
	50	0.09583	0.46338	1.24062	1.56965(a)	2.37766	3.85252
	100	0.07358	0.26765	0.66425	1.25247	1.56965(a)	2.02949
	500	0.06219	0.15692	0.27518	0.42570	0.60804	0.82334
	1000	0.06108	0.15072	0.24802	0.36025	0.48701	0.62736

表十 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

$(\beta = 90^{\circ})$.	$\alpha = 0^{\circ}$.	$\bar{r} = 0.5$)
$(p \rightarrow 0)$	ω σ,	, 0.5)

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34395	1.57076(a)	1.91385	4.64954	4.71238(a)	7.82148
	20	0.17535	1.06001	1.57076(a)	2.82476	4.71238(a)	5.19163
	50	0.07165	0.43907	1.21651	1.57076(a)	2.35300	3.82769
	100	0.03786	0.22242	0.61704	1.20301	1.57076(a)	1.97877
	500	0.01560	0.05495	0.13504	0.25413	0.41239	0.60986
	1000	0.01417	0.03941	0.08229	0.14385	0.22426	0.32389
0.03	10	0.34614	1.57051(a)	1.91555	4.65103	4.71229(a)	7.82285
	20	0.17974	1.06377	1.57051(a)	2.82834	4.71229(a)	5.19514
	50	0.08191	0.44868	1.22613	1.57051(a)	2.36290	3.83770
	100	0.05477	0.24099	0.63621	1.22305	1.57051(a)	1.99933
	500	0.04141	0.10696	0.20338	0.33491	0.50166	0.70490
	1000	0.04043	0.09877	0.16906	0.25554	0.35715	0.47391
0.06	10	0.35339	1.56965(a)	1.92129	4.65604	4.71201(a)	7.82746
	20	0.19384	1.07636	1.56965(a)	2.84040	4.71201(a)	5.20697
	50	0.10946	0.47966	1.25799	1.56965(a)	2.39597	3.87125
	100	0.09036	0.29495	0.69649	1.28804	1.56965(a)	2.06696
	500	0.08087	0.19752	0.33807	0.51095	0.71403	0.94734
	1000	0.07997	0.19196	0.31256	0.44930	0.60145	0.76716

表十一 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

(p - 0), a - 0, r - 1	$(\beta = 90^\circ,$	$\alpha = 0^{\circ}$,	$\overline{r}=1$)
-----------------------	----------------------	------------------------	--------------------

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34407	1.57076(a)	1.91394	4.64962	4.71238(a)	7.82155
	20	0.17557	1.06020	1.57076(a)	2.82495	4.71238(a)	5.19181
	50	0.07219	0.43956	1.21700	1.57076(a)	2.35352	3.82822
	100	0.03888	0.22339	0.61805	1.20406	1.57076(a)	1.97985
	500	0.01788	0.05870	0.13950	0.25909	0.41763	0.61530
	1000	0.01661	0.04437	0.08915	0.15217	0.23358	0.33387
					-		
0.03	10	0.34713	1.57051(a)	1.91635	4.65173	4.71229(a)	7.82351
	20	0.18169	1.06547 🏾	1.57051(a)	2.83001	4.71229(a)	5.19679
	50	0.08609	0.45294	1.23056	1.57051(a)	2.36753	3.84241
	100	0.06080	0.24888	0.64484	1.23231	1.57051(a)	2.00894
	500	0.04882	0.12287	0.22694	0.36528	0.53741	0.74468
	1000	0.04793	0.11532	0.19472	0.29058	0.40138	0.52663
0.06	10	0.35729	1.56965	1.92445	4.65886	4.71201	7.83009
	20	0.20094	1.08307	1.56965	2.84703	4.71201	5.21357
	50	0.12153	0.49536	1.27507	1.56965	2.41411	3.88986
	100	0.10442	0.31976	0.72703	1.32243	1.56965	2.10361
	500	0.09585	0.23062	0.38939	0.58102	0.80246	1.05271
	1000	0.09504	0.22540	0.36473	0.52095	0.69342	0.87980

表十二 旋轉傾斜梁在不同轉速與不同細長比下的振動頻率

 $(\beta = 90^{\circ}, \alpha = 0^{\circ}, \overline{r} = 1.5)$

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	10	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
	20	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
	50	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
	100	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
	500	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
	1000	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.01	10	0.34418	1.57076(a)	1.91403	4.64970	4.71238(a)	7.82163
	20	0.17579	1.06039	1.57076(a)	2.82513	4.71238(a)	5.19199
	50	0.07273	0.44005	1.21750	1.57076(a)	2.35403	3.82874
	100	0.03987	0.22435	0.61905	1.20511	1.57076(a)	1.98093
	500	0.01990	0.06221	0.14380	0.26392	0.42280	0.62067
	1000	0.01872	0.04878	0.09542	0.15995	0.24244	0.34349
					3		
0.03	10	0.34813	1.57051(a)	1.91714	4.65244	4.71229(a)	7.82416
	20	0.18361	1.06717	1.57051(a)	2.83168	4.71229(a)	5.19845
	50	0.09008	0.45716	1.23496	1.57051(a)	2.37214	3.84712
	100	0.06628	0.25650	0.65335	1.24149	1.57051(a)	2.01849
	500	0.05522	0.13680	0.24784	0.39270	0.57031	0.78188
	1000	0.05438	0.12967	0.21697	0.32102	0.44004	0.57314
0.06	10	0.36114	1.56965(a)	1.92760	4.66168	4.71201(a)	7.83271
	20	0.20780	1.08974	1.56965(a)	2.85364	4.71201(a)	5.22015
	50	0.13248	0.51055	1.29188	1.56965(a)	2.43209	3.90837
	100	0.11675	0.34262	0.75609	1.35575	1.56965(a)	2.13949
	500	0.10875	0.25933	0.43388	0.64187	0.87974	1.14567
	1000	0.10798	0.25435	0.40983	0.58269	0.77254	0.97674

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
0.03	0°	0.34614	1.57051(a)	1.91555	4.65103	4.71229(a)	7.82285
	15°	0.34610	1.57051(a)	1.91553	4.65100	4.71229(a)	7.82283
	30°	0.34600	1.57051(a)	1.91545	4.65093	4.71229(a)	7.82276
	45°	0.34584	1.57051(a)	1.91532	4.65082	4.71229(a)	7.82266
	60°	0.34563	1.57051(a)	1.91516	4.65067	4.71229(a)	7.82252
	75°	0.34539	1.57051(a)	1.91497	4.65050	4.71229(a)	7.82236
	90°	0.34513	1.57051(a)	1.91476	4.65032	4.71229(a)	7.82219
0.06	0°	0.35339	1.56965(a)	1.92129	4.65604	4.71201(a)	7.82746
	15°	0.35326	1.56965(a)	1.92118	4.65594	4.71201(a)	7.82738
	30°	0.35287	1.56965(a)	1.92087	4.65566	4.71201(a)	7.82711
	45°	0.35225	1.56965(a)	1.92037	4.65521	4.71201(a)	7.82670
	60°	0.35143	1.56965(a)	1.91971	4.65463	4.71201(a)	7.82615
	75°	0.35048	1.56965(a)	1.91895	4.65395	4.71201(a)	7.82552
	90°	0.34945	1.56965(a)	1.91813	4.65322	4.71201(a)	7.82484
					1		
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u> </u>	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	7.85398(a)	10.9956(a)	11.1813	14.1372(a)	14.5867	17.2788(a)
0.03	0°	7.85392(a)	10.9955(a)	11.1827	14.1371(a)	14.5879	17.2787(a)
	15°				<pre></pre>		
		7.85392(a)	10.9955(a)	11.1826	14.1371(a)	14.5879	17.2787(a)
	30°	7.85392(a) 7.85392(a)	10.9955(a) 10.9955(a)	11.1826 11.1826	14.1371(a) 14.1371(a)	14.5879 14.5878	17.2787(a) 17.2787(a)
	30° 45°	7.85392(a) 7.85392(a) 7.85392(a)	10.9955(a) 10.9955(a) 10.9955(a)	11.1826 11.1826 11.1825	14.1371(a) 14.1371(a) 14.1371(a)	14.5879 14.5878 14.5878	17.2787(a) 17.2787(a) 17.2787(a)
	30° 45° 60°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.1826 11.1826 11.1825 11.1824	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.5879 14.5878 14.5878 14.5877	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
	30° 45° 60° 75°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.1826 11.1826 11.1825 11.1824 11.1822	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.5879 14.5878 14.5878 14.5877 14.5875	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
	30° 45° 60° 75° 90°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
0.06	30° 45° 60° 75° 90° 0°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a)	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821 11.1868	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a)	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874 14.5916	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
0.06	30° 45° 60° 75° 90° 0° 15°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a)	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821 11.1868 11.1867	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a)	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874 14.5916 14.5916	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
0.06	30° 45° 60° 75° 90° 0° 15° 30°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a)	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821 11.1868 11.1867 11.1865	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a)	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874 14.5916 14.5916 14.5914	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
0.06	30° 45° 60° 75° 90° 0° 15° 30° 45°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	10.9955(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821 11.1868 11.1867 11.1865 11.1861	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a)	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874 14.5916 14.5916 14.5914 14.5910	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
0.06	30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a)	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821 11.1868 11.1867 11.1865 11.1861 11.1856	14.1371(a) $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874 14.5916 14.5916 14.5914 14.5910 14.5906	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
0.06	30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	10.9955(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$	11.1826 11.1826 11.1825 11.1824 11.1822 11.1821 11.1868 11.1867 11.1865 11.1861 11.1856 11.1851	14.1371(a) $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$	14.5879 14.5878 14.5878 14.5877 14.5875 14.5874 14.5916 14.5916 14.5914 14.5910 14.5906 14.5901	17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)

 $(\beta = 90^{\circ}, \ \bar{r} = 0.5, \ \sqrt{\bar{\eta}} = 10)$

表十四 旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
0.03	0°	0.17974	1.06377	1.57051(a)	2.82834	4.71229(a)	5.19514
	15°	0.17968	1.06371	1.57051(a)	2.82829	4.71229(a)	5.19508
	30°	0.17948	1.06354	1.57051(a)	2.82812	4.71229(a)	5.19492
	45°	0.17917	1.06327	1.57051(a)	2.82786	4.71229(a)	5.19465
	60°	0.17876	1.06291	1.57051(a)	2.82751	4.71229(a)	5.19431
	75°	0.17829	1.06250	1.57051(a)	2.82711	4.71229(a)	5.19391
	90°	0.17778	1.06206	1.57051(a)	2.82668	4.71229(a)	5.19348
0.06	0°	0.19384	1.07636	1.56965(a)	2.84040	4.71201(a)	5.20697
	15°	0.19359	1.07613	1.56965(a)	2.84017	4.71201(a)	5.20675
	30°	0.19286	1.07546	1.56965(a)	2.83951	4.71201(a)	5.20609
	45°	0.19170	1.07439	1.56965(a)	2.83845	4.71201(a)	5.20504
	60°	0.19018	1.07299	1.56965(a)	2.83708	4.71201(a)	5.20367
	75°	0.18839	1.07136	1.56965(a)	2.83547	4.71201(a)	5.20208
	90°	0.18645	1.06960	1.56965(a)	2.83375	4.71201(a)	5.20036
\overline{k}	α	\overline{K}_7	\overline{K}_8	K996	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	7.85398(a)	7.98477	10.9956(a)	11.0545	14.1372(a)	14.2939
0.03	0°	7.85392(a)	7.98856	10.9955(a)	11.0581	14.1371(a)	14.2973
	15°	7.85392(a)	7.98850	10.9955(a)	11.0581	14.1371(a)	14.2973
	30°	7.85392(a)	7 98834	10.0055(a)			14 0071
		. ,	7.70034	10.9955(a)	11.0579	14.1371(a)	14.2971
	45°	7.85392(a)	7.98809	10.9955(a) 10.9955(a)	11.0579 11.0577	14.1371(a) 14.1371(a)	14.2971 14.2969
	45° 60°	7.85392(a) 7.85392(a)	7.98809 7.98776	10.9955(a) 10.9955(a) 10.9955(a)	11.0579 11.0577 11.0574	14.1371(a) 14.1371(a) 14.1371(a)	14.2971 14.2969 14.2966
	45° 60° 75°	7.85392(a) 7.85392(a) 7.85392(a)	7.98809 7.98776 7.98737	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0579 11.0577 11.0574 11.0570	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.2971 14.2969 14.2966 14.2963
	45° 60° 75° 90°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	7.98809 7.98776 7.98737 7.98696	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0579 11.0577 11.0574 11.0570 11.0566	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.2971 14.2969 14.2966 14.2963 14.2959
0.06	45° 60° 75° 90° 0°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a)	7.98809 7.98776 7.98737 7.98696 7.99991	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a)	11.0579 11.0577 11.0574 11.0570 11.0566 11.0689	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a)	14.2971 14.2969 14.2966 14.2963 14.2959 14.3075
0.06	45° 60° 75° 90° 0° 15°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	7.98809 7.98776 7.98737 7.98696 7.99991 7.99969	10.9955(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$	11.0579 11.0577 11.0574 11.0570 11.0566 11.0689 11.0687	14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a)	14.2971 14.2969 14.2966 14.2963 14.2959 14.3075 14.3073
0.06	45° 60° 75° 90° 0° 15° 30°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98809 7.98776 7.98737 7.98696 7.99991 7.99969 7.99906	10.9955(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$	11.0579 11.0577 11.0574 11.0570 11.0566 11.0689 11.0687 11.0681	14.1371(a) $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$	14.2971 14.2969 14.2966 14.2963 14.2959 14.3075 14.3073 14.3067
0.06	45° 60° 75° 90° 0° 15° 30° 45°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98809 7.98776 7.98737 7.98696 7.99991 7.99969 7.99906 7.99804	10.9955(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$	11.0579 11.0577 11.0574 11.0570 11.0566 11.0689 11.0687 11.0681 11.0671	14.1371(a) $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$	14.2971 14.2969 14.2966 14.2963 14.2959 14.3075 14.3073 14.3067 14.3058
0.06	45° 60° 75° 90° 0° 15° 30° 45° 60°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98809 7.98776 7.98737 7.98696 7.99991 7.99969 7.99906 7.99804 7.99672	10.9955(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$	11.0579 11.0577 11.0574 11.0570 11.0566 11.0689 11.0687 11.0681 11.0671 11.0659	14.1371(a) $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$	14.2971 14.2969 14.2966 14.2963 14.2959 14.3075 14.3075 14.3067 14.3058 14.3046
0.06	45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98809 7.98776 7.98737 7.98696 7.99991 7.99969 7.99906 7.99804 7.99672 7.99518	10.9953(a) $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9955(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$ $10.9954(a)$	11.0579 11.0577 11.0574 11.0570 11.0566 11.0689 11.0687 11.0681 11.0671 11.0659 11.0644	14.1371(a) $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1371(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$ $14.1370(a)$	14.2971 14.2969 14.2966 14.2963 14.2959 14.3075 14.3073 14.3067 14.3058 14.3046 14.3032

 $(\beta = 90^{\circ}, \ \bar{r} = 0.5, \ \sqrt{\bar{\eta}} = 20)$

表十五 旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
0.03	0°	0.08191	0.44868	1.22613	1.57051(a)	2.36290	3.83770
	15°	0.08176	0.44854	1.22598	1.57051(a)	2.36274	3.83754
	30°	0.08133	0.44811	1.22553	1.57051(a)	2.36228	3.83707
	45°	0.08064	0.44742	1.22483	1.57051(a)	2.36154	3.83632
	60°	0.07973	0.44653	1.22391	1.57051(a)	2.36058	3.83534
	75°	0.07866	0.44550	1.22284	1.57051(a)	2.35947	3.83420
	90°	0.07749	0.44438	1.22168	1.57051(a)	2.35826	3.83298
0.06	0°	0.10946	0.47966	1.25799	1.56965(a)	2.39597	3.87125
	15°	0.10902	0.47911	1.25740	1.56965(a)	2.39535	3.87061
	30°	0.10773	0.47751	1.25568	1.56965(a)	2.39353	3.86874
	45°	0.10565	0.47495	1.25293	1.56965(a)	2.39063	3.86577
	60°	0.10288	0.47160	1.24934	1.56965(a)	2.38684	3.86190
	75°	0.09954	0.46765	1.24514	1.56965(a)	2.38242	3.85738
	90°	0.09583	0.46338	1.24062	1.56965(a)	2.37766	3.85252
			116		1		
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u> </u>	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°		-		7.05200()	0 0 6 9 5 1	10.0056(n)
	0	4.71239(a)	5.60923	/.66//0	7.85398(a)	9.90854	10.9930(a)
0.03	0°	4.71239(a) 4.71229(a)	5.60923 5.62048	7.67886	7.85398(a) 7.85392(a)	9.96834	10.9955(a)
0.03	0° 15°	4.71239(a) 4.71229(a) 4.71229(a)	5.60923 5.62048 5.62032	7.67886 7.67870	7.85398(a) 7.85392(a) 7.85392(a)	9.96834 9.97955 9.97939	10.9955(a) 10.9955(a)
0.03	0° 15° 30°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.60923 5.62048 5.62032 5.61985	7.67886 7.67870 7.67823	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.96834 9.97955 9.97939 9.97893	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.60923 5.62048 5.62032 5.61985 5.61910	7.67886 7.67870 7.67823 7.67748	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.96834 9.97955 9.97939 9.97893 9.97819	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812	7.67886 7.67870 7.67823 7.67748 7.67650	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.96834 9.97955 9.97939 9.97893 9.97819 9.97722	$\begin{array}{r} 10.9955(a) \\ 10.9955(a) \\ 10.9955(a) \\ 10.9955(a) \\ 10.9955(a) \\ 10.9955(a) \end{array}$
0.03	0° 15° 30° 45° 60° 75°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697	7.67886 7.67870 7.67823 7.67748 7.67650 7.67537	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.96834 9.97955 9.97939 9.97893 9.97819 9.97722 9.97610	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75° 90°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697 5.61575	7.67886 7.67870 7.67823 7.67748 7.67650 7.67537 7.67415	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.96834 9.97955 9.97939 9.97893 9.97819 9.97722 9.97610 9.97489	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75° 90°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697 5.61575 5.65408	7.67886 7.67870 7.67823 7.67748 7.67748 7.67650 7.67537 7.67415 7.71223	7.85398(a) 7.85392(a)	9.968349.979559.979399.978939.978199.977229.976109.9748910.0125	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697 5.61575 5.65408 5.65344	7.67886 7.67870 7.67823 7.67748 7.67650 7.67537 7.67415 7.71223 7.71159	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a)	9.968349.979559.979399.978939.978199.977229.976109.9748910.012510.0119	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a)
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697 5.61575 5.65408 5.65344 5.65156	7.67886 7.67870 7.67823 7.67748 7.67650 7.67537 7.67415 7.71223 7.71159 7.70971	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.968349.979559.979399.978939.978199.977229.976109.9748910.012510.011910.0100	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ \end{array}$
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697 5.61575 5.65408 5.65344 5.65156 5.64857	7.67886 7.67870 7.67823 7.67748 7.67650 7.67537 7.67415 7.71223 7.71159 7.70971 7.70673	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.968349.979559.979399.978939.978199.977229.976109.9748910.012510.011910.010010.0071	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ \end{array}$
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.60923 5.62048 5.62032 5.61985 5.61910 5.61812 5.61697 5.61575 5.65408 5.65344 5.65156 5.64857 5.64467	7.677886 7.67870 7.67823 7.67748 7.67748 7.67650 7.67537 7.67415 7.71223 7.71159 7.70971 7.70673 7.70284	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.968349.979559.979399.978939.978199.977229.976109.9748910.012510.011910.010010.007110.0032	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) $
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\begin{array}{r} 5.60923 \\ \hline 5.62048 \\ \hline 5.62032 \\ \hline 5.61985 \\ \hline 5.61910 \\ \hline 5.61812 \\ \hline 5.61697 \\ \hline 5.61575 \\ \hline 5.65408 \\ \hline 5.65344 \\ \hline 5.65156 \\ \hline 5.64857 \\ \hline 5.64467 \\ \hline 5.64012 \end{array}$	7.67886 7.67870 7.67823 7.67748 7.67748 7.67650 7.67537 7.67415 7.71223 7.71159 7.70971 7.70971 7.70673 7.70284 7.69831	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a)	9.96834 9.97955 9.97939 9.97893 9.97819 9.97722 9.97610 9.97489 10.0125 10.0119 10.0100 10.0071 10.0032 9.99872	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) $

 $(\beta = 90^{\circ}, \ \bar{r} = 0.5, \ \sqrt{\bar{\eta}} = 50)$

$(\beta = 90^\circ, \bar{r} =$	$0.5, \sqrt{i}$	$\overline{7} = 100$)
--------------------------------	-----------------	------------------------

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
0.03	0°	0.05477	0.24099	0.63621	1.22305	1.57051(a)	1.99933
	15°	0.05455	0.24072	0.63591	1.22274	1.57051(a)	1.99900
	30°	0.05391	0.23991	0.63504	1.22181	1.57051(a)	1.99804
	45°	0.05287	0.23863	0.63365	1.22033	1.57051(a)	1.99650
	60°	0.05148	0.23694	0.63183	1.21839	1.57051(a)	1.99450
	75°	0.04981	0.23497	0.62971	1.21614	1.57051(a)	1.99217
	90°	0.04796	0.23282	0.62742	1.21371	1.57051(a)	1.98966
0.06	0°	0.09036	0.29495	0.69649	1.28804	1.56965(a)	2.06696
	15°	0.08984	0.29407	0.69542	1.28684	1.56965(a)	2.06570
	30°	0.08830	0.29146	0.69228	1.28334	1.56965(a)	2.06199
	45°	0.08580	0.28725	0.68724	1.27774	1.56965(a)	2.05607
	60°	0.08241	0.28166	0.68060	1.27041	1.56965(a)	2.04833
	75°	0.07828	0.27500	0.67278	1.26179	1.56965(a)	2.03927
	90°	0.07358	0.26765	0.66425	1.25247	1.56965(a)	2.02949
			and a second sec				
\overline{k}	α	\overline{K}_7	\overline{K}_8	K9396	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	α 0°	<u><i>K</i></u> ₇ 2.93704	<u><i>K</i></u> ₈ 4.07761	K 9196 4.71239(a)	\overline{K}_{10} 5.39167	\overline{K}_{11} 6.87230	\overline{K}_{12} 7.85398(a)
	α 0°	\overline{K}_7 2.93704 2.96052	$\overline{K_8}$ 4.07761 4.10128	K996 4.71239(a) 4.71229(a)	$ \overline{K}_{10} 5.39167 5.41542 $	$ \overline{K}_{11} 6.87230 6.89606 $	\overline{K}_{12} 7.85398(a) 7.85392(a)
	α 0° 0° 15°	$ \overline{K}_{7} 2.93704 2.96052 2.96018 $	$ \overline{K_8} 4.07761 4.10128 4.10094 $	K9.96 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a)	$ \overline{K}_{10} \\ 5.39167 \\ 5.41542 \\ 5.41508 $	$ \overline{K}_{11} 6.87230 6.89606 6.89572 $	$ \overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) $
	α 0° 15° 30°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 $	$ \overline{K_8} 4.07761 4.10128 4.10094 4.09995 $	K9.96 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408	$ \overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 $	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
	α 0° 15° 30° 45°	$ \overline{K_7} $ 2.93704 2.96052 2.96018 2.95920 2.95764	$ \overline{K_8} 4.07761 4.10128 4.10094 4.09995 4.09836 $	$ \overline{K_{9.96}} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248	$ \overline{K}_{11} \\ 6.87230 \\ 6.89606 \\ 6.89572 \\ 6.89472 \\ 6.89312 $	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 $	$ \overline{K_8} 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 $	$ \overline{K_{9.96}} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41041	$ \overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 $	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
$ \overline{\frac{k}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 $	$ \overline{K_8} 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 $	$\overline{K_{9.96}}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41041 5.40798	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
	α 0° 15° 30° 45° 60° 75° 90°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 2.95066 $	$\overline{K_8}$ 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130	$\overline{K_{9.966}}$ 4.71239(a) 4.71229(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88600	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 2.95066 3.02970 $	$ \overline{K_8} 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130 4.17136 $	$\overline{K_{9,9,06}}$ $4.71239(a)$ $4.71229(a)$	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538 5.48597	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88600 6.96680	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85375(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 2.95066 3.02970 3.02840 $	$\overline{K_8}$ 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130 4.17136 4.17003	$\overline{K_{9.96}}$ 4.71239(a) 4.71229(a) 4.71201(a) 4.71201(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538 5.48597 5.48463	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88860 6.96680 6.96544	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$ \overline{K_7} 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 2.95066 3.02970 3.02840 3.02457 $	$\overline{K_8}$ 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130 4.17136 4.17003 4.16612	$\overline{K_{9.96}}$ 4.71239(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538 5.48597 5.48463 5.48068	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88861 6.88600 6.96680 6.96544 6.96147	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)
$ \overline{k} 0 0.03 0.06 $	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$ \overline{K_7} $ 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 2.95066 3.02970 3.02840 3.02457 3.01846	$\overline{K_8}$ 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130 4.17136 4.17003 4.16612 4.15990	$\overline{K_{9.96}}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538 5.48597 5.48463 5.48068 5.47439	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88600 6.96680 6.96544 6.96147 6.95515	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$ \overline{K_7} $ 2.93704 2.96052 2.96018 2.95920 2.95764 2.95559 2.95321 2.95066 3.02970 3.02840 3.02457 3.01846 3.01048	$\overline{K_8}$ 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130 4.17136 4.17003 4.16612 4.15990 4.15177	$\overline{K_{9.96}}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538 5.40538 5.48597 5.48463 5.48068 5.47439 5.46618	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88600 6.96680 6.96544 6.96147 6.95515 6.94690	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\begin{array}{r} \overline{K_7} \\ \hline 2.93704 \\ \hline 2.96052 \\ \hline 2.96018 \\ \hline 2.95920 \\ \hline 2.95764 \\ \hline 2.95559 \\ \hline 2.95559 \\ \hline 2.95321 \\ \hline 2.95066 \\ \hline 3.02970 \\ \hline 3.02840 \\ \hline 3.02457 \\ \hline 3.01846 \\ \hline 3.01048 \\ \hline 3.00115 \\ \end{array}$	$\overline{K_8}$ 4.07761 4.10128 4.10094 4.09995 4.09836 4.09630 4.09389 4.09130 4.17136 4.17003 4.16612 4.15990 4.15177 4.14229	$\overline{K_{9.96}}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_{10}}$ 5.39167 5.41542 5.41508 5.41408 5.41248 5.41248 5.41041 5.40798 5.40538 5.40538 5.48597 5.48463 5.48068 5.47439 5.46618 5.45660	\overline{K}_{11} 6.87230 6.89606 6.89572 6.89472 6.89312 6.89104 6.88861 6.88600 6.96680 6.96544 6.96147 6.95515 6.94690 6.93727	\overline{K}_{12} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)

$(\beta = 90^{\circ}, \bar{r} = 0.5,$	$\sqrt{\eta} = 500$)
---------------------------------------	-----------------------

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
0.03	0°	0.04141	0.10696	0.20338	0.33491	0.50166	0.70490
	15°	0.04113	0.10637	0.20251	0.33382	0.50038	0.70349
	30°	0.04031	0.10462	0.19996	0.33057	0.49661	0.69934
	45°	0.03897	0.10178	0.19581	0.32532	0.49054	0.69268
	60°	0.03714	0.09793	0.19023	0.31831	0.48248	0.68388
	75°	0.03488	0.09323	0.18347	0.30988	0.47287	0.67344
_	90°	0.03228	0.08787	0.17586	0.30051	0.46227	0.66201
0.06	0°	0.08087	0.19752	0.33807	0.51095	0.71403	0.94734
	15°	0.08030	0.19629	0.33616	0.50834	0.71076	0.94347
	30°	0.07863	0.19262	0.33047	0.50060	0.70105	0.93199
	45°	0.07590	0.18663	0.32119	0.48797	0.68523	0.91334
	60°	0.07217	0.17849	0.30857	0.47083	0.66386	0.88824
	75°	0.06755	0.16847	0.29305	0.44980	0.63775	0.85775
	90°	0.06219	0.15692	0.27518	0.42570	0.60804	0.82334
			the second se				
					8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	K 9396	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	α 0°	\overline{K}_7 0.83322	$\frac{\overline{K}_8}{1.10900}$	К₉ вс 1.42398	\overline{K}_{10} 1.57080(a)	\overline{K}_{11} 1.77809	$\frac{\overline{K}_{12}}{2.17124}$
	α 0° 0°	$ \overline{K}_{7} 0.83322 0.94562 $	$\overline{K_8}$ 1.10900 1.22443	K ₉ 1.42398 1.54167	$ \overline{K}_{10} \overline{1.57080(a)} \overline{1.57051(a)} $	$ \overline{K}_{11} 1.77809 1.89749 $	$ \overline{K}_{12} 2.17124 2.29198 $
	α 0° 0° 15°	$ \overline{K}_{7} 0.83322 0.94562 0.94412 $	$ \overline{K_8} 1.10900 1.22443 1.22286 $	K9 96 1.42398 1.54167 1.54004	$ \overline{K}_{10} \overline{1.57080(a)} \overline{1.57051(a)} \overline{1.57051(a)} $	$ \overline{K}_{11} 1.77809 1.89749 1.89583 $	$ \overline{K}_{12} 2.17124 2.29198 2.29028 $
	α 0° 15° 30°	$ \overline{K_7} 0.83322 0.94562 0.94412 0.93970 $	$ \overline{K_8} 1.10900 1.22443 1.22286 1.21825 $	K9 96 1.42398 1.54167 1.54004 1.53528	\overline{K}_{10} 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)	$ \overline{K}_{11} \\ 1.77809 \\ 1.89749 \\ 1.89583 \\ 1.89095 $	$ \overline{K_{12}} 2.17124 2.29198 2.29028 2.28531 $
	α 0° 15° 30° 45°	$ \overline{K_7} 0.83322 0.94562 0.94412 0.93970 0.93262 $	$ \overline{K_8} 1.10900 1.22443 1.22286 1.21825 1.21086 $	K996 1.42398 1.54167 1.54004 1.53528 1.52766	$\overline{K_{10}}$ 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)	$ \overline{K}_{11} $ 1.77809 1.89749 1.89583 1.89095 1.88315	$ \overline{K_{12}} 2.17124 2.29198 2.29028 2.28531 2.27738 $
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 0.83322 0.94562 0.94412 0.93970 0.93262 0.92329 $	$ \overline{K_8} 1.10900 1.22443 1.22286 1.21825 1.21086 1.20114 $	K9 96 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765	$\overline{K_{10}}$ 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)	\overline{K}_{11} 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292	$ \overline{K}_{12} 2.17124 2.29198 2.29028 2.28531 2.27738 2.26698 $
$ \overline{\frac{k}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 0.83322 0.94562 0.94412 0.93970 0.93262 0.92329 0.91227 $	$\overline{K_8}$ 1.10900 1.22443 1.22286 1.21825 1.21086 1.20114 1.18970	K9 96 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590	$\overline{K_{10}}$ 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)	\overline{K}_{11} 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093	$ \overline{K_{12}} 2.17124 2.29198 2.29028 2.28531 2.27738 2.26698 2.25480 $
$ \overline{\frac{\bar{k}}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75° 90°	$\begin{array}{c} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \end{array}$	$\overline{K_8}$ 1.10900 1.22443 1.22286 1.21825 1.21086 1.20114 1.18970 1.17727	K9 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590 1.49316	\overline{K}_{10} 1.57080(a) 1.57051(a)	\overline{K}_{11} 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796	$\begin{array}{r} \overline{K}_{12} \\ \hline 2.17124 \\ \hline 2.29198 \\ \hline 2.29028 \\ \hline 2.28531 \\ \hline 2.27738 \\ \hline 2.26698 \\ \hline 2.25480 \\ \hline 2.24165 \end{array}$
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$\begin{array}{c} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \\ 1.21228 \end{array}$	$\begin{array}{r} \overline{K_8} \\ \hline 1.10900 \\ 1.22443 \\ 1.22286 \\ 1.21825 \\ 1.21086 \\ 1.20114 \\ 1.18970 \\ 1.17727 \\ 1.51041 \end{array}$	$ \overline{K_9} 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590 1.49316 1.56965(a) $	\overline{K}_{10} 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.84307	$\overline{K_{11}}$ 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796 2.21127	$\begin{array}{r} \overline{K}_{12} \\ \hline 2.17124 \\ \hline 2.29198 \\ \hline 2.29028 \\ \hline 2.28531 \\ \hline 2.27738 \\ \hline 2.26698 \\ \hline 2.25480 \\ \hline 2.24165 \\ \hline 2.61575 \end{array}$
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\begin{array}{r} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \\ 1.21228 \\ 1.20789 \end{array}$	$\begin{array}{r} \overline{K_8} \\ \hline 1.10900 \\ 1.22443 \\ 1.22286 \\ 1.21825 \\ 1.21086 \\ 1.20114 \\ 1.18970 \\ 1.17727 \\ 1.51041 \\ 1.50558 \end{array}$	$ \overline{K_9 \text{ of }} $ 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590 1.49316 1.56965(a) 1.56965(a) 1.56965(a)	\overline{K}_{10} 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.84307 1.84307 1.83787	$\overline{K_{11}}$ 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796 2.21127 2.20576	$\begin{array}{r} \overline{K}_{12} \\ \hline 2.17124 \\ \hline 2.29198 \\ \hline 2.29028 \\ \hline 2.28531 \\ \hline 2.27738 \\ \hline 2.26698 \\ \hline 2.25480 \\ \hline 2.24165 \\ \hline 2.61575 \\ \hline 2.60998 \end{array}$
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\begin{array}{r} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \\ 1.21228 \\ 1.20789 \\ 1.19489 \\ \end{array}$	$\overline{K_8}$ 1.10900 1.22443 1.22286 1.21825 1.21086 1.20114 1.18970 1.17727 1.51041 1.50558 1.49130	$ \overline{K_9 \text{ of }} $	\overline{K}_{10} 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.84307 1.84307 1.83787 1.82251	$\overline{K_{11}}$ 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796 2.21127 2.20576 2.18950	$\begin{array}{r} \overline{K}_{12} \\ \hline 2.17124 \\ \hline 2.29198 \\ \hline 2.29028 \\ \hline 2.28531 \\ \hline 2.27738 \\ \hline 2.26698 \\ \hline 2.25480 \\ \hline 2.25480 \\ \hline 2.24165 \\ \hline 2.61575 \\ \hline 2.60998 \\ \hline 2.59299 \end{array}$
$ \overline{k} 0 0.03 0.06 $	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\begin{array}{r} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \\ 1.21228 \\ 1.20789 \\ 1.19489 \\ 1.17381 \\ \end{array}$	$\overline{K_8}$ 1.10900 1.22443 1.22286 1.21825 1.21086 1.20114 1.18970 1.17727 1.51041 1.50558 1.49130 1.46819	$\overline{K_{9.96}}$ 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590 1.49316 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	\overline{K}_{10} 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.84307 1.84307 1.82251 1.79771	$\overline{K_{11}}$ 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796 2.21127 2.20576 2.18950 2.16331	$\overline{k_{12}}$ 2.17124 2.29198 2.29028 2.28531 2.27738 2.26698 2.25480 2.24165 2.61575 2.60998 2.59299 2.56564
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\begin{array}{r} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \\ 1.21228 \\ 1.20789 \\ 1.19489 \\ 1.17381 \\ 1.14556 \\ \end{array}$	$\overline{K_8}$ 1.10900 1.22443 1.22286 1.21825 1.21086 1.20114 1.18970 1.17727 1.51041 1.50558 1.49130 1.46819 1.43732	$\overline{K_{9.96}}$ 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590 1.49316 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	$\overline{K_{10}}$ 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.84307 1.83787 1.82251 1.79771 1.76471	$\overline{K_{11}}$ 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796 2.21127 2.20576 2.18950 2.16331 2.12855	$\overline{k_{12}}$ 2.17124 2.29198 2.29028 2.28531 2.27738 2.26698 2.25480 2.24165 2.61575 2.60998 2.59299 2.56564 2.52944
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\begin{array}{r} \overline{K_7} \\ 0.83322 \\ 0.94562 \\ 0.94412 \\ 0.93970 \\ 0.93262 \\ 0.92329 \\ 0.91227 \\ 0.90025 \\ 1.21228 \\ 1.20789 \\ 1.19489 \\ 1.17381 \\ 1.14556 \\ 1.11144 \\ \end{array}$	$\begin{array}{r} \overline{K_8} \\ \hline 1.10900 \\ 1.22443 \\ 1.22286 \\ 1.21825 \\ 1.21086 \\ 1.20114 \\ 1.18970 \\ 1.17727 \\ 1.51041 \\ 1.50558 \\ 1.49130 \\ 1.46819 \\ 1.43732 \\ 1.40024 \end{array}$	$\overline{K_9}$ 1.42398 1.54167 1.54004 1.53528 1.52766 1.51765 1.50590 1.49316 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	\overline{K}_{10} 1.57080(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.84307 1.83787 1.82251 1.79771 1.76471 1.72523	$\overline{K_{11}}$ 1.77809 1.89749 1.89583 1.89095 1.88315 1.87292 1.86093 1.84796 2.21127 2.20576 2.18950 2.16331 2.12855 2.08712	$\begin{array}{r} \overline{K_{12}} \\ \hline 2.17124 \\ \hline 2.29198 \\ \hline 2.29028 \\ \hline 2.28531 \\ \hline 2.27738 \\ \hline 2.26698 \\ \hline 2.25480 \\ \hline 2.25480 \\ \hline 2.24165 \\ \hline 2.61575 \\ \hline 2.60998 \\ \hline 2.59299 \\ \hline 2.56564 \\ \hline 2.52944 \\ \hline 2.48643 \\ \end{array}$

$(\beta = 90^{\circ},$	$\overline{r}=0.5$,	$\sqrt{\eta} = 1000$)
------------------------	----------------------	------------------------

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_{A}	\overline{K}_{5}	\overline{K}_{6}
0	0°	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.03	0°	0.04043	0.09877	0.16906	0.25554	0.35715	0.47391
	15°	0.04015	0.09815	0.16810	0.25423	0.35551	0.47198
	30°	0.03932	0.09632	0.16526	0.25036	0.35065	0.46624
	45°	0.03795	0.09332	0.16061	0.24404	0.34274	0.45690
	60°	0.03608	0.08925	0.15431	0.23547	0.33205	0.44435
	75°	0.03378	0.08424	0.14654	0.22495	0.31899	0.42910
	90°	0.03109	0.07847	0.13761	0.21290	0.30413	0.41188
0.06	0°	0.07997	0.19196	0.31256	0.44930	0.60145	0.76716
	15°	0.07940	0.19071	0.31061	0.44662	0.59800	0.76294
	30°	0.07772	0.18700	0.30482	0.43864	0.58775	0.75039
	45°	0.07496	0.18093	0.29533	0.42558	0.57096	0.72985
	60°	0.07119	0.17268	0.28242	0.40778	0.54809	0.70189
	75°	0.06652	0.16249	0.26648	0.38577	0.51980	0.66733
	90°	0.06108	0.15072	0.24802	0.36025	0.48701	0.62736
			E		1 E		
\overline{k}	α	\overline{K}_7	\overline{K}_8	K9196	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
\overline{k}	α 0°	\overline{K}_7 0.41690	$\overline{K_8}$ 0.55500	 	$\overline{\overline{K}_{10}}$ 0.89031	\overline{K}_{11} 1.08750	$\frac{\overline{K}_{12}}{1.30436}$
	α 0° 0°	\overline{K}_7 0.41690 0.60656	$\overline{K_8}$ 0.55500 0.75590	K ₉ 96 0.71281 0.92260	$ \overline{\overline{K}_{10}} 0.89031 1.10721 $	$ \overline{K}_{11} 1.08750 1.31014 $	$ \overline{K_{12}} 1.30436 1.53168 $
	α 0° 0° 15°	$ \overline{K_7} 0.41690 0.60656 0.60436 $	$ \overline{K_8} 0.55500 0.75590 0.75348 $	K _{9.96} 0.71281 0.92260 0.92000	$ \overline{\overline{K}_{10}} 0.89031 1.10721 1.10445 $	$ \overline{K}_{11} 1.08750 1.31014 1.30725 $	$ \overline{K_{12}} 1.30436 1.53168 1.52868 $
	α 0° 0° 15° 30°	$ \overline{K_7} 0.41690 0.60656 0.60436 0.59786 $	$ \overline{K_8} 0.55500 0.75590 0.75348 0.74633 $	K996 0.71281 0.92260 0.92000 0.91231	$ \overline{K}_{10} \\ 0.89031 \\ 1.10721 \\ 1.10445 \\ 1.09631 \\ $	$ \overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 $	$ \overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 $
	α 0° 15° 30° 45°	$ \overline{K_7} 0.41690 0.60656 0.60436 0.59786 0.58731 $	$ \overline{K_8} 0.55500 0.75590 0.75348 0.74633 0.73476 $	K996 0.71281 0.92260 0.92000 0.91231 0.89989	\overline{K}_{10} 0.89031 1.10721 1.10445 1.09631 1.08320	$ \overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 $	$ \overline{K_{12}} 1.30436 1.53168 1.52868 1.51986 1.50568 $
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 0.41690 0.60656 0.60436 0.59786 0.58731 0.57318 $	$ \overline{K_8} 0.55500 0.75590 0.75348 0.74633 0.73476 0.71932 $	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337	$\overline{\overline{K}_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579	$ \overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 $	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30436 \\ \hline 1.53168 \\ \hline 1.52868 \\ \hline 1.51986 \\ \hline 1.50568 \\ \hline 1.48694 \end{array}$
	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 0.41690 0.60656 0.60436 0.59786 0.58731 0.57318 0.55611 $	$\overline{K_8} \\ 0.55500 \\ 0.75590 \\ 0.75348 \\ 0.74633 \\ 0.73476 \\ 0.71932 \\ 0.70076 \\ \end{array}$	Kggg 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337 0.86361	$\overline{\overline{k}_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579 1.04505	$ \overline{K}_{11} $ 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536	\overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 1.50568 1.48694 1.46474
$ \overline{\frac{\overline{k}}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75° 90°	$ \overline{K_7} $ 0.41690 0.60656 0.60436 0.59786 0.58731 0.57318 0.55611 0.53698	$\overline{K_8}$ 0.55500 0.75590 0.75348 0.74633 0.73476 0.71932 0.70076 0.68010	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337 0.86361 0.84172	$\overline{k_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579 1.04505 1.02218	\overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536 1.22170	\overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 1.50568 1.48694 1.46474 1.44043
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$ \overline{K_7} $ 0.41690 0.60656 0.60436 0.59786 0.58731 0.57318 0.55611 0.53698 0.94579	$\begin{array}{c} \overline{K_8} \\ \hline 0.55500 \\ 0.75590 \\ 0.75348 \\ 0.74633 \\ 0.73476 \\ 0.71932 \\ 0.70076 \\ 0.68010 \\ \hline 1.13746 \end{array}$	Kggg 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337 0.86361 0.84172 1.34263	$\overline{k_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579 1.04505 1.02218 1.56187	\overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536 1.22170 1.56965(a)	\overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 1.50568 1.48694 1.46474 1.44043 1.79576
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\overline{K_7}$ 0.41690 0.60656 0.60436 0.59786 0.59786 0.58731 0.57318 0.55611 0.53698 0.94579 0.94081	$\begin{array}{c} \overline{K_8} \\ \hline 0.55500 \\ 0.75590 \\ 0.75348 \\ 0.74633 \\ 0.73476 \\ 0.71932 \\ 0.70076 \\ 0.68010 \\ \hline 1.13746 \\ 1.13174 \end{array}$	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337 0.86361 0.84172 1.34263 1.33621	$\overline{K_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579 1.04505 1.02218 1.56187 1.55478	\overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536 1.22170 1.56965(a) 1.56965(a)	\overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 1.50568 1.48694 1.46474 1.44043 1.79576 1.78805
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 0.41690 0.60656 0.60436 0.59786 0.59786 0.58731 0.57318 0.55611 0.53698 0.94579 0.94081 0.92600	$\begin{array}{c} \overline{K_8} \\ \hline 0.55500 \\ 0.75590 \\ 0.75348 \\ 0.74633 \\ 0.73476 \\ 0.71932 \\ 0.70076 \\ 0.68010 \\ \hline 1.13746 \\ 1.13174 \\ 1.11475 \end{array}$	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337 0.86361 0.84172 1.34263 1.33621 1.31714	$\overline{k_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579 1.04505 1.02218 1.56187 1.55478 1.55478 1.53375	$\begin{array}{r} \overline{K}_{11} \\ \hline 1.08750 \\ \hline 1.31014 \\ \hline 1.30725 \\ \hline 1.29874 \\ \hline 1.28504 \\ \hline 1.26691 \\ \hline 1.24536 \\ \hline 1.22170 \\ \hline 1.56965(a) \\ \hline 1.5696(a) \\ \hline 1.5696(a) \\ \hline 1.5696(a) \\ 1.5696(a) \\ \hline 1.569(a) \\ \hline 1.569(a) \\ \hline 1.569(a) \\ \hline 1.569($	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30436 \\ \hline 1.53168 \\ \hline 1.52868 \\ \hline 1.51986 \\ \hline 1.50568 \\ \hline 1.48694 \\ \hline 1.46474 \\ \hline 1.46474 \\ \hline 1.44043 \\ \hline 1.79576 \\ \hline 1.78805 \\ \hline 1.76519 \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\overline{K_7}$ 0.41690 0.60656 0.60436 0.59786 0.59786 0.58731 0.57318 0.55611 0.53698 0.94579 0.94081 0.92600 0.90178	$\overline{K_8}$ 0.55500 0.75590 0.75348 0.74633 0.73476 0.71932 0.70076 0.68010 1.13746 1.13174 1.11475 1.08698	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.86361 0.84172 1.34263 1.33621 1.31714 1.286000	$\overline{k_{10}}$ 0.89031 1.10721 1.10445 1.09631 1.08320 1.06579 1.04505 1.02218 1.56187 1.55478 1.53375 1.49945	\overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536 1.22170 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	\overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 1.50568 1.48694 1.46474 1.46474 1.44043 1.79576 1.78805 1.76519 1.72796
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\overline{K_7}$ 0.416900.606560.604360.597860.597860.587310.573180.556110.536980.945790.940810.926000.901780.86884	$\overline{K_8}$ 0.55500 0.75590 0.75348 0.74633 0.74633 0.73476 0.71932 0.70076 0.68010 1.13746 1.13174 1.11475 1.08698 1.04928	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.86361 0.84172 1.34263 1.33621 1.31714 1.28600 1.24381	$\overline{k_{10}}$ 0.89031 1.10721 1.107445 1.09631 1.08320 1.06579 1.04505 1.02218 1.56187 1.55478 1.55375 1.49945 1.45308	\overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536 1.22170 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	\overline{K}_{12} 1.30436 1.53168 1.52868 1.51986 1.50568 1.48694 1.46474 1.46474 1.44043 1.79576 1.78805 1.76519 1.72796 1.67774
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 0.41690 0.60656 0.60436 0.59786 0.59786 0.58731 0.57318 0.55611 0.53698 0.94579 0.94081 0.92600 0.90178 0.86884 0.82822	$\overline{K_8}$ 0.55500 0.75590 0.75348 0.74633 0.73476 0.71932 0.70076 0.68010 1.13746 1.13174 1.11475 1.08698 1.04928 1.00291	K996 0.71281 0.92260 0.92000 0.91231 0.89989 0.88337 0.86361 0.84172 1.34263 1.33621 1.31714 1.28600 1.24381 1.19207	$\overline{k_{10}}$ 0.89031 1.10721 1.107445 1.09631 1.08320 1.06579 1.04505 1.02218 1.56187 1.55478 1.55478 1.53375 1.49945 1.45308 1.39639	\overline{K}_{11} 1.08750 1.31014 1.30725 1.29874 1.28504 1.26691 1.24536 1.22170 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30436 \\ \hline 1.53168 \\ \hline 1.52868 \\ \hline 1.51986 \\ \hline 1.50568 \\ \hline 1.48694 \\ \hline 1.46474 \\ \hline 1.46474 \\ \hline 1.46474 \\ \hline 1.79576 \\ \hline 1.79576 \\ \hline 1.78805 \\ \hline 1.76519 \\ \hline 1.72796 \\ \hline 1.67774 \\ \hline 1.61653 \end{array}$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
0.03	0°	0.34713	1.57051(a)	1.91635	4.65173	4.71229(a)	7.82351
	15°	0.34707	1.57051(a)	1.91629	4.65169	4.71229(a)	7.82346
	30°	0.34687	1.57051(a)	1.91613	4.65154	4.71229(a)	7.82333
	45°	0.34655	1.57051(a)	1.91588	4.65132	4.71229(a)	7.82312
	60°	0.34614	1.57051(a)	1.91555	4.65103	4.71229(a)	7.82285
	75°	0.34565	1.57051(a)	1.91517	4.65069	4.71229(a)	7.82253
	90°	0.34513	1.57051(a)	1.91476	4.65032	4.71229(a)	7.82219
0.06	0°	0.35729	1.56965(a)	1.92445	4.65886	4.71201(a)	7.83009
	15°	0.35703	1.56965(a)	1.92423	4.65867	4.71201(a)	7.82991
	30°	0.35625	1.56965(a)	1.92360	4.65810	4.71201(a)	7.82939
	45°	0.35501	1.56965(a)	1.92260	4.65721	4.71201(a)	7.82855
	60°	0.35339	1.56965(a)	1.92129	4.65604	4.71201(a)	7.82746
	75°	0.35150	1.56965(a)	1.91977	4.65468	4.71201(a)	7.82620
	90°	0.34945	1.56965(a)	1.91813	4.65322	4.71201(a)	7.82484
				-//	5		
			And a second				
\overline{k}	α	\overline{K}_7	\overline{K}_8	K9396	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	α 0°	\overline{K}_7 7.85398(a)	$\frac{\overline{K}_8}{10.9956(a)}$	 <u> </u> <u> </u>	\overline{K}_{10} 14.1372(a)	\overline{K}_{11} 14.5867	\overline{K}_{12} 17.2788(a)
$\frac{\overline{k}}{0}$	α 0° 0°	$ \overline{K_7} 7.85398(a) 7.85392(a) $	$ \overline{K_8} 10.9956(a) 10.9955(a) $	K9.96 11.1813 11.1833	$ \overline{K}_{10} 14.1372(a) 14.1371(a) $	$ \overline{K}_{11} \\ 14.5867 \\ 14.5885 $	$ \overline{K}_{12} 17.2788(a) 17.2787(a) $
$\frac{\overline{k}}{0}$	α 0° 15°	$ \overline{K_7} $ 7.85398(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9955(a) 10.9955(a) 10.9955(a) $	K9.96 11.1813 11.1833 11.1832	$ \overline{K}_{10} $ 14.1372(a) 14.1371(a) 14.1371(a)	$ \overline{K}_{11} \\ 14.5867 \\ 14.5885 \\ 14.5884 $	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$ 0.03	α 0° 15° 30°	$ \overline{K_7} $ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) $	K9.96 11.1813 11.1833 11.1832 11.1831	$ \overline{K}_{10} $ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	$ \overline{K}_{11} $ 14.5867 14.5885 14.5884 14.5883	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} $ 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	K9.96 11.1813 11.1833 11.1832 11.1831 11.1831 11.1829	$ \overline{K}_{10} $ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45° 60°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) $	K9.96 11.1813 11.1833 11.1832 11.1831 11.1829 11.1827	$ \overline{K}_{10} $ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) $	K9.96 11.1813 11.1833 11.1832 11.1831 11.1829 11.1827 11.1824	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)	$\overline{K_{9.96}}$ 11.1813 11.1833 11.1832 11.1831 11.1829 11.1827 11.1824 11.1821	\overline{K}_{10} 14.1372(a) 14.1371(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877 14.5874	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 7.85398(a) 7.85392(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)	K9.96 11.1813 11.1833 11.1832 11.1831 11.1829 11.1827 11.1824 11.1821 11.1892	$\overline{K_{10}}$ 14.1372(a) 14.1371(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877 14.5874 14.5938	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9954(a)10.9954(a)	K9.96 11.1813 11.1833 11.1833 11.1831 11.1831 11.1829 11.1827 11.1824 11.1821 11.1892 11.1892 11.1892	$\overline{K_{10}}$ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877 14.5874 14.5938 14.5936	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9954(a)10.9954(a)10.9954(a)	K9.96 11.1813 11.1833 11.1833 11.1831 11.1831 11.1829 11.1827 11.1824 11.1821 11.1892 11.1892 11.1886	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a)	$\overline{K_{11}}$ 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877 14.5874 14.5938 14.5936 14.5932	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)	$ \overline{K_{9,966}} $ 11.1813 11.1833 11.1832 11.1832 11.1831 11.1829 11.1827 11.1827 11.1824 11.1821 11.1892 11.1892 11.1890 11.1886 11.1878	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5883 14.5881 14.5879 14.5877 14.5874 14.5938 14.5936 14.5932 14.5925	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)	$\overline{K_{9.96}}$ 11.1813 11.1833 11.1832 11.1832 11.1831 11.1829 11.1827 11.1827 11.1824 11.1821 11.1892 11.1890 11.1886 11.1878 11.1868	$\overline{k_{10}}$ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a)	$\overline{K_{11}}$ 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877 14.5874 14.5938 14.5936 14.5932 14.5925 14.5916	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9956(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)	$\overline{K_{9.96}}$ 11.1813 11.1833 11.1832 11.1832 11.1831 11.1829 11.1827 11.1827 11.1824 11.1821 11.1892 11.1890 11.1886 11.1878 11.1868 11.1857	$\overline{k_{10}}$ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5885 14.5884 14.5883 14.5881 14.5879 14.5877 14.5874 14.5938 14.5936 14.5932 14.5925 14.5916 14.5906	\overline{K}_{12} 17.2788(a) 17.2787(a)

 $(\beta = 90^\circ, \overline{r} = 1, \sqrt{\overline{\eta}} = 10)$

表二十 旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
0.03	0°	0.18169	1.06547	1.57051(a)	2.83001	4.71229(a)	5.19679
	15°	0.18156	1.06535	1.57051(a)	2.82990	4.71229(a)	5.19668
	30°	0.18117	1.06501	1.57051(a)	2.82957	4.71229(a)	5.19635
	45°	0.18055	1.06447	1.57051(a)	2.82904	4.71229(a)	5.19582
	60°	0.17974	1.06377	1.57051(a)	2.82834	4.71229(a)	5.19514
	75°	0.17880	1.06294	1.57051(a)	2.82754	4.71229(a)	5.19434
	90°	0.17778	1.06206	1.57051(a)	2.82668	4.71229(a)	5.19348
0.06	0°	0.20094	1.08307	1.56965(a)	2.84703	4.71201(a)	5.21357
	15°	0.20047	1.08262	1.56965(a)	2.84658	4.71201(a)	5.21312
	30°	0.19906	1.08110	1.56965(a)	2.84525	4.71201(a)	5.21180
	45°	0.19681	1.07915	1.56965(a)	2.84315	4.71201(a)	5.20970
	60°	0.19384	1.07636	1.56965(a)	2.84040	4.71201(a)	5.20697
	75°	0.19031	1.07311	1.56965(a)	2.83720	4.71201(a)	5.20379
	90°	0.18645	1.06960	1.56965(a)	2.83375	4.71201(a)	5.20036
				-// 6			
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u> </u>	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	7.85398(a)	7.98477	10.9956(a)	11.0545	14.1372(a)	14.2939
0.03	0°	7.85392(a)	7.99016	10.9955(a)	11.0596	14.1371(a)	14.2988
	15°	7.85392(a)	7.99005	10.9955(a)	11.0595	14.1371(a)	14.2987
	30°	7.85392(a)	7.98973	10.9955(a)	11.0592	14.1371(a)	14.2984
	45°	7.85392(a)	7.98922	10.9955(a)	11.0587	14.1371(a)	14.2979
	60°	7.85392(a)	7.98856	10.9955(a)	11.0581	14.1371(a)	14.2973
	75°	7.85392(a)	7.98779	10.9955(a)	11.0574	14.1371(a)	14.2966
	90°	7.85392(a)	7.98696	10.9955(a)	11.0566	14.1371(a)	14.2959
0.06	0°	7.85375(a)	8.00629	10.9954(a)	11.0750	14.1370(a)	14.3132
	15°	7.85375(a)	8.00585	10.9954(a)	11.0746	14.1370(a)	14.3129
	30°	7.85375(a)	8.00458	10.9954(a)	11.0733	14.1370(a)	14.3117
	45°	7.85375(a)	8.00255	10.9954(a)	11.0714	14.1370(a)	14.3099
	60°	7.85375(a)	7.99991	10.9954(a)	11.0689	14.1370(a)	14.3075
	75°	7.85375(a)	7.99683	10.9954(a)	11.0660	14.1370(a)	14.3047

 $(\beta = 90^\circ, \overline{r} = 1, \sqrt{\overline{\eta}} = 20)$

表二十一 旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
0.03	0°	0.08609	0.45294	1.23056	1.57051(a)	2.36753	3.84241
	15°	0.08582	0.45265	1.23025	1.57051(a)	2.36721	3.84209
	30°	0.08499	0.45180	1.22937	1.57051(a)	2.36629	3.84115
	45°	0.08367	0.45045	1.22796	1.57051(a)	2.36482	3.83965
	60°	0.08191	0.44868	1.22613	1.57051(a)	2.36290	3.83770
	75°	0.07981	0.44661	1.22399	1.57051(a)	2.36067	3.83542
	90°	0.07749	0.44438	1.22168	1.57051(a)	2.35826	3.83298
0.06	0°	0.12153	0.49536	1.27507	1.56965(a)	2.41411	3.88986
	15°	0.12075	0.49431	1.27391	1.56965(a)	2.41288	3.88860
	30°	0.11842	0.49121	1.27052	1.56965(a)	2.40927	3.88488
	45°	0.11462	0.48623	1.26510	1.56965(a)	2.40351	3.87897
	60°	0.10946	0.47966	1.25799	1.56965(a)	2.39597	3.87125
	75°	0.10312	0.47188	1.24965	1.56965(a)	2.38716	3.86223
	90°	0.09583	0.46338	1.24062	1.56965(a)	2.37766	3.85252
					1		
\overline{k}	α	\overline{K}_7	\overline{K}_8	K 9896	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	4.71239(a)	5.60923	7.66770	7.85398(a)	9.96854	10.9956(a)
0.03	0°	4.71220(a)	5 (2522				
	-	4.71229(a)	5.62522	7.68357	7.85392(a)	9.98421	10.9955(a)
	15°	4.71229(a) 4.71229(a)	5.62522 5.62490	7.68357 7.68325	7.85392(a) 7.85392(a)	9.98421 9.98389	10.9955(a) 10.9955(a)
	15° 30°	4.71229(a) 4.71229(a) 4.71229(a)	5.62322 5.62490 5.62395	7.68357 7.68325 7.68231	7.85392(a) 7.85392(a) 7.85392(a)	9.98421 9.98389 9.98296	10.9955(a) 10.9955(a) 10.9955(a)
	15° 30° 45°	4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62322 5.62490 5.62395 5.62245	7.68357 7.68325 7.68231 7.68081	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98421 9.98389 9.98296 9.98148	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
	15° 30° 45° 60°	4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62322 5.62490 5.62395 5.62245 5.62048	7.68357 7.68325 7.68231 7.68081 7.67886	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98421 9.98389 9.98296 9.98148 9.97955	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
	15° 30° 45° 60° 75°	 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 	5.62322 5.62490 5.62395 5.62245 5.62048 5.61820	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
	15° 30° 45° 60° 75° 90°	4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62322 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97489	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.06	15° 30° 45° 60° 75° 90°	4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62322 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575 5.67285	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415 7.73095	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97489 10.0310	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a)
0.06	15° 30° 45° 60° 75° 90° 0° 15°	4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a)	5.62522 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575 5.67285 5.67157	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415 7.73095 7.72967	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97489 10.0310 10.0298	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a)
0.06	15° 30° 45° 60° 75° 90° 0° 15° 30°	 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 	5.62322 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575 5.67285 5.67157 5.66783	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415 7.73095 7.72967 7.72594	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97489 10.0310 10.0298 10.0261	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a)
0.06	15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 	5.62322 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575 5.67285 5.67157 5.66783 5.66186	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415 7.73095 7.72967 7.72594 7.71999	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97489 10.0310 10.0298 10.0261 10.0202	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a)
0.06	15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\begin{array}{r} 4.71229(a) \\ 4.71201(a) \end{array}$	5.62522 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575 5.67285 5.67157 5.66783 5.66186 5.65408	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415 7.73095 7.72967 7.72594 7.71999 7.71223	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97489 10.0310 10.0298 10.0261 10.0202 10.0125	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a)
0.06	15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.62522 5.62490 5.62395 5.62245 5.62048 5.61820 5.61575 5.67285 5.67157 5.66783 5.66186 5.65408 5.64500	7.68357 7.68325 7.68231 7.68081 7.67886 7.67659 7.67415 7.73095 7.72967 7.72594 7.71999 7.71223 7.70317	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.98421 9.98389 9.98296 9.98148 9.97955 9.97730 9.97730 9.97489 10.0310 10.0298 10.0261 10.0202 10.0125 10.0035	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a)

 $(\beta = 90^\circ, \overline{r} = 1, \sqrt{\overline{\eta}} = 50)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_{6}
0	0°	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
0.03	0°	0.06080	0.24888	0.64484	1.23231	1.57051(a)	2.00894
	15°	0.06041	0.24835	0.64426	1.23168	1.57051(a)	2.00829
	30°	0.05925	0.24679	0.64254	1.22984	1.57051(a)	2.00637
	45°	0.05735	0.24429	0.63980	1.22690	1.57051(a)	2.00332
	60°	0.05477	0.24099	0.63621	1.22305	1.57051(a)	1.99933
	75°	0.05160	0.23709	0.63199	1.21856	1.57051(a)	1.99467
	90°	0.04796	0.23282	0.62742	1.21371	1.57051(a)	1.98966
0.06	0°	0.10442	0.31976	0.72703	1.32243	1.56965(a)	2.10361
	15°	0.10352	0.31813	0.72500	1.32012	1.56965(a)	2.10114
	30°	0.10085	0.31332	0.71900	1.31333	1.56965(a)	2.09387
	45°	0.09644	0.30549	0.70933	1.30242	1.56965(a)	2.08224
	60°	0.09036	0.29495	0.69649	1.28804	1.56965(a)	2.06696
	75°	0.08271	0.28214	0.68117	1.27103	1.56965(a)	2.04899
	90°	0.07358	0.26765	0.66425	1.25247	1.56965(a)	2.02949
\overline{k}	α	\overline{V}	$\overline{\mathbf{Z}}$	V		\overline{V}	TZ
	u	К 7	κ ₈	V V 0396	K ₁₀	к ₁₁	<i>K</i> ₁₂
0	0°	к ₇ 2.93704	4.07761	4.71239(a)	5.39167	6.87230	$\frac{K_{12}}{7.85398(a)}$
0 0.03	0° 0°	K ₇ 2.93704 2.97034	4.07761 4.11123	4.71239(a) 4.71229(a)	5.39167 5.42544	K11 6.87230 6.90611	$\frac{K_{12}}{7.85398(a)}$ 7.85392(a)
0 0.03	0° 0° 15°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ \end{array} $		Kg 4.71239(a) 4.71229(a) 4.71229(a)	K10 5.39167 5.42544 5.42476	$ \begin{array}{r} \kappa_{11} \\ \hline 6.87230 \\ 6.90611 \\ 6.90542 \\ \hline $	$ \frac{K_{12}}{7.85398(a)} \\ 7.85392(a) \\ 7.85392(a) $
0 0.03	0° 0° 15° 30°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ $	$ \begin{array}{r} $	Kg 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)		$ \begin{array}{r} \kappa_{11} \\ \hline 6.87230 \\ 6.90611 \\ 6.90542 \\ 6.90342 \\ \hline $	$\frac{\kappa_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
0 0.03	0° 0° 15° 30° 45°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ 2.96459 \\ \end{array} $	$ \begin{array}{r} $	Kg 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)		$ \begin{array}{r} $	$\frac{\kappa_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
0 0.03	0° 0° 15° 30° 45° 60°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ 2.96459 \\ 2.96052 \\ \end{array} $	$ \begin{array}{r} $	K9 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)		$\begin{array}{r} \kappa_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \end{array}$	$\frac{\kappa_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
0 0.03	0° 0° 15° 30° 45° 60° 75°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ 2.96459 \\ 2.96052 \\ 2.95577 \\ \end{array} $	$ \begin{array}{r} $	K9 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	K10 5.39167 5.42544 5.42544 5.42476 5.42276 5.41957 5.41542 5.41058	$\begin{array}{r} \kappa_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \end{array}$	$\frac{\kappa_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
0 0.03	0° 0° 15° 30° 45° 60° 75° 90°	$\begin{array}{r} K_7 \\ \hline 2.93704 \\ \hline 2.97034 \\ \hline 2.96967 \\ \hline 2.96771 \\ \hline 2.96459 \\ \hline 2.96052 \\ \hline 2.95577 \\ \hline 2.95066 \end{array}$	$ \begin{array}{r} $	K9 4.71239(a) 4.71229(a)	$\begin{array}{r} \kappa_{10} \\ \hline 5.39167 \\ \hline 5.42544 \\ \hline 5.42476 \\ \hline 5.42276 \\ \hline 5.41957 \\ \hline 5.41542 \\ \hline 5.41058 \\ \hline 5.40538 \end{array}$	$\begin{array}{r} x_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \end{array}$	$\frac{k_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)
0 0.03 0.06	0° 0° 15° 30° 45° 60° 75° 90°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ 2.96459 \\ 2.96052 \\ 2.95577 \\ 2.95066 \\ 3.06771 \\ $	$ \begin{array}{r} $	K9 4.71239(a) 4.71229(a)	$\begin{array}{r} \kappa_{10} \\ \hline 5.39167 \\ \hline 5.42544 \\ \hline 5.42476 \\ \hline 5.42276 \\ \hline 5.41957 \\ \hline 5.41542 \\ \hline 5.41058 \\ \hline 5.40538 \\ \hline 5.52530 \end{array}$	$\begin{array}{r} \kappa_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \\ \hline 7.00639 \end{array}$	$\frac{k_{12}}{7.85398(a)}$ 7.85392(a)
0 0.03 0.06	0° 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ \hline 2.97034 \\ \hline 2.96967 \\ \hline 2.96771 \\ \hline 2.96459 \\ \hline 2.96052 \\ \hline 2.95577 \\ \hline 2.95066 \\ \hline 3.06771 \\ \hline 3.06514 \end{array}$	$ \begin{array}{r} $	K9 4.71239(a) 4.71229(a)	$\begin{array}{r} \kappa_{10} \\ \hline 5.39167 \\ \hline 5.42544 \\ \hline 5.42544 \\ \hline 5.42476 \\ \hline 5.42276 \\ \hline 5.41957 \\ \hline 5.41542 \\ \hline 5.41058 \\ \hline 5.40538 \\ \hline 5.52530 \\ \hline 5.52263 \end{array}$	$\begin{array}{r} x_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \\ \hline 7.00639 \\ \hline 7.00370 \end{array}$	$\frac{k_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)
0 0.03 0.06	0° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ 2.96459 \\ 2.96052 \\ 2.95577 \\ 2.95066 \\ 3.06771 \\ 3.06514 \\ 3.05759 \\ \end{array} $	$ \begin{array}{r} $	K9 4.71239(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\begin{array}{r} \kappa_{10} \\ \hline 5.39167 \\ \hline 5.42544 \\ \hline 5.42544 \\ \hline 5.42476 \\ \hline 5.42276 \\ \hline 5.41957 \\ \hline 5.41542 \\ \hline 5.41058 \\ \hline 5.40538 \\ \hline 5.52530 \\ \hline 5.52263 \\ \hline 5.51480 \end{array}$	$\begin{array}{r} x_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \\ \hline 7.00639 \\ \hline 7.00370 \\ \hline 6.99581 \end{array}$	$\frac{k_{12}}{7.85398(a)}$ 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)
0 0.03 0.06	0° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75° 90° 45° 45° 50° 90° 15° 30° 45°	$ \begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ 2.97034 \\ 2.96967 \\ 2.96771 \\ 2.96459 \\ 2.96052 \\ 2.95577 \\ 2.95066 \\ 3.06771 \\ 3.06514 \\ 3.05759 \\ 3.04552 \\ \end{array} $	$ \begin{array}{r} $	$\begin{array}{r} k_9 \\ \hline 4.71239(a) \\ 4.71229(a) \\ 4.71201(a) \\ 4.71201(a) \\ 4.71201(a) \\ 4.71201(a) \\ 4.71201(a) \end{array}$	$\begin{array}{r} \kappa_{10} \\ \hline 5.39167 \\ \hline 5.42544 \\ \hline 5.42544 \\ \hline 5.42476 \\ \hline 5.42276 \\ \hline 5.41957 \\ \hline 5.41957 \\ \hline 5.41542 \\ \hline 5.41058 \\ \hline 5.40538 \\ \hline 5.52530 \\ \hline 5.52263 \\ \hline 5.51480 \\ \hline 5.50230 \end{array}$	$\begin{array}{r} x_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \\ \hline 7.00639 \\ \hline 7.00370 \\ \hline 6.99581 \\ \hline 6.98323 \\ \end{array}$	K_{12} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)
0 0.03 0.06	0° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\begin{array}{r} \kappa_7 \\ \hline 2.93704 \\ \hline 2.97034 \\ \hline 2.96967 \\ \hline 2.96967 \\ \hline 2.96459 \\ \hline 2.96052 \\ \hline 2.95577 \\ \hline 2.95066 \\ \hline 3.06771 \\ \hline 3.06514 \\ \hline 3.05759 \\ \hline 3.04552 \\ \hline 3.02970 \\ \end{array}$	$ \begin{array}{r} \kappa_8 \\ \underline{4.07761} \\ 4.11123 \\ 4.11055 \\ 4.10857 \\ 4.10540 \\ 4.10540 \\ 4.10128 \\ 4.09647 \\ 4.09130 \\ 4.21020 \\ 4.20756 \\ 4.19983 \\ 4.18750 \\ 4.17136 \\ \end{array} $	$\begin{array}{r} k_9 \\ \hline 4.71239(a) \\ 4.71229(a) \\ 4.71201(a) \\ 4.7$	$\begin{array}{r} \kappa_{10} \\ \hline 5.39167 \\ \hline 5.42544 \\ \hline 5.42544 \\ \hline 5.42476 \\ \hline 5.42276 \\ \hline 5.41957 \\ \hline 5.41542 \\ \hline 5.41058 \\ \hline 5.40538 \\ \hline 5.52530 \\ \hline 5.52263 \\ \hline 5.52263 \\ \hline 5.51480 \\ \hline 5.50230 \\ \hline 5.48597 \end{array}$	$\begin{array}{r} x_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \\ \hline 7.00639 \\ \hline 7.00370 \\ \hline 6.99581 \\ \hline 6.98323 \\ \hline 6.96680 \\ \end{array}$	K_{12} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)
0 0.03	0° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75° 90°	$\begin{array}{r} & K_7 \\ \hline 2.93704 \\ \hline 2.97034 \\ \hline 2.96967 \\ \hline 2.96771 \\ \hline 2.96459 \\ \hline 2.96052 \\ \hline 2.95577 \\ \hline 2.95066 \\ \hline 3.06771 \\ \hline 3.06514 \\ \hline 3.05759 \\ \hline 3.04552 \\ \hline 3.02970 \\ \hline 3.01116 \\ \end{array}$	$ \begin{array}{r} \kappa_8 \\ \underline{4.07761} \\ 4.11123 \\ 4.11055 \\ 4.10857 \\ 4.10540 \\ 4.10128 \\ 4.09647 \\ 4.09130 \\ 4.21020 \\ 4.20756 \\ 4.19983 \\ 4.18750 \\ 4.17136 \\ 4.15247 \\ \end{array} $	$\begin{array}{r} k_9 \\ \hline 4.71239(a) \\ 4.71229(a) \\ 4.71201(a) \\ 4.7$	κ_{10} 5.391675.425445.425445.424765.422765.419575.415425.410585.405385.525305.522635.514805.502305.485975.46688	$\begin{array}{r} x_{11} \\ \hline 6.87230 \\ \hline 6.90611 \\ \hline 6.90542 \\ \hline 6.90342 \\ \hline 6.90023 \\ \hline 6.89606 \\ \hline 6.89121 \\ \hline 6.88600 \\ \hline 7.00639 \\ \hline 7.00370 \\ \hline 6.99581 \\ \hline 6.98323 \\ \hline 6.96680 \\ \hline 6.94760 \\ \end{array}$	K_{12} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)

 $(\beta = 90^\circ, \overline{r} = 1, \sqrt{\overline{\eta}} = 100)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
0.03	0°	0.04882	0.12287	0.22694	0.36528	0.53741	0.74468
	15°	0.04835	0.12185	0.22543	0.36332	0.53507	0.74206
	30°	0.04695	0.11883	0.22093	0.35747	0.52814	0.73429
	45°	0.04463	0.11384	0.21353	0.34791	0.51686	0.72172
	60°	0.04141	0.10696	0.20338	0.33491	0.50166	0.70490
	75°	0.03730	0.09827	0.19072	0.31891	0.48317	0.68463
	90°	0.03228	0.08787	0.17586	0.30051	0.46227	0.66201
0.06	0°	0.09585	0.23062	0.38939	0.58102	0.80246	1.05271
	15°	0.09491	0.22853	0.38614	0.57658	0.79684	1.04598
	30°	0.09208	0.22227	0.37643	0.56331	0.78005	1.02589
	45°	0.08740	0.21190	0.36037	0.54136	0.75232	0.99280
	60°	0.08087	0.19752	0.33807	0.51095	0.71403	0.94734
	75°	0.07249	0.17920	0.30967	0.47232	0.66572	0.89041
	90°	0.06219	0.15692	0.27518	0.42570	0.60804	0.82334
\overline{k}	α	\overline{K}_7	$\overline{K_8}$		\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
\overline{k}	α 0°	\overline{K}_7 0.83322	$\overline{K_8}$ 1.10900	K ₉ 1.42398	\overline{K}_{10} 1.57080(a)	\overline{K}_{11} 1.77809	\overline{K}_{12} 2.17124
$ \overline{k} 0 0.03 $	α 0° 0°	$ \overline{K}_{7} 0.83322 0.98839 $	$\overline{K_8}$ 1.10900 1.26943	K ₉ I 1.42398 1.57051(a)	$ \overline{K}_{10} 1.57080(a) 1.58835 $	$ \overline{K}_{11} 1.77809 1.94548 $	$ \overline{K}_{12} 2.17124 2.34099 $
	α 0° 0° 15°	$ \overline{K_7} 0.83322 0.98839 0.98555 $	$ \overline{K_8} 1.10900 1.26943 1.26643 $	$ \overline{K_{9,9,6}} 1.42398 1.57051(a) 1.57051(a) $	$ \overline{K}_{10} \\ \overline{1.57080(a)} \\ \overline{1.58835} \\ \overline{1.58523} $	$ \overline{K}_{11} \\ 1.77809 \\ 1.94548 \\ 1.94226 $	$ \overline{K}_{12} 2.17124 2.34099 2.33769 $
	α 0° 15° 30°	$ \overline{K}_{7} $ 0.83322 0.98839 0.98555 0.97716	$ \overline{K_8} 1.10900 1.26943 1.26643 1.25757 $	$ \overline{K_{996}} 1.42398 1.57051(a) 1.57051(a) 1.57051(a) $	$ \overline{K}_{10} $ 1.57080(a) 1.58835 1.58523 1.57601	$ \overline{K}_{11} $ 1.77809 1.94548 1.94226 1.93277	$ \overline{K}_{12} 2.17124 2.34099 2.33769 2.32798 $
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45°	$ \overline{K}_{7} $ 0.83322 0.98839 0.98555 0.97716 0.96363	$ \overline{K_8} 1.10900 1.26943 1.26643 1.25757 1.24332 $	$ \overline{K_{996}} 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 $	$ \overline{K}_{10} $ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a)	$ \overline{K}_{11} $ 1.77809 1.94548 1.94226 1.93277 1.91755	$ \overline{K}_{12} 2.17124 2.34099 2.33769 2.32798 2.31244 $
$ \overline{\overline{k}} 0 0.03 $	α 0° 15° 30° 45° 60°	$ \overline{K}_{7} $ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562	$\overline{\overline{K}_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443	$\overline{K_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.54167	\overline{K}_{10} 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a)	$ \overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 $	$ \overline{K_{12}} 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 $
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197	$\overline{K_{990}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.54167 1.51851	$\overline{k_{10}}$ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a)	\overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380	$ \overline{K_{12}} 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 2.26787 $
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025	$\overline{\overline{K}_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727	$\overline{K_{990}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.56122 1.54167 1.51851 1.49316	\overline{k}_{10} 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)	\overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796	$\overline{k_{12}}$ 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 2.26787 2.24165
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025 1.33273	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727 1.56965(a)	$\overline{K_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.56122 1.54167 1.51851 1.49316 1.64396	\overline{K}_{10} 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.98783	\overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796 2.36555	\overline{K}_{12} 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 2.26787 2.24165 2.77809
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025 1.33273 1.32498	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727 1.56965(a) 1.56965(a)	$\overline{K_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.54167 1.51851 1.49316 1.64396 1.63532	$\overline{k_{10}}$ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.98783 1.97841	\overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796 2.36555 2.35545	$ \overline{K}_{12} 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 2.26787 2.24165 2.77809 2.76742 $
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025 1.33273 1.32498 1.30191	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727 1.56965(a) 1.56965(a) 1.56965(a)	$\overline{K_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.54167 1.54167 1.51851 1.49316 1.64396 1.63532 1.60962	$\overline{k_{10}}$ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.98783 1.97841 1.95044	\overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796 2.36555 2.35545 2.32553	$\overline{k_{12}}$ 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 2.26787 2.24165 2.77809 2.76742 2.73583
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 15° 30° 45°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025 1.33273 1.32498 1.30191 1.26404	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56955(a) 1.56955(a)	$\overline{K_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.54167 1.51851 1.49316 1.64396 1.63532 1.60962 1.56965(a)	$\overline{k_{10}}$ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.98783 1.97841 1.95044 1.90481	\overline{K}_{11} 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796 2.36555 2.35545 2.32553 2.27685	$\overline{k_{12}}$ 2.17124 2.34099 2.33769 2.32798 2.31244 2.29198 2.26787 2.24165 2.77809 2.76742 2.73583 2.68455
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025 1.33273 1.32498 1.30191 1.26404 1.21228	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56758 1.51041	$\overline{k_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.54167 1.51851 1.49316 1.64396 1.63532 1.60962 1.56965(a) 1.56965(a)	$\overline{k_{10}}$ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.98783 1.97841 1.95044 1.90481 1.84307	$\overline{k_{11}}$ 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796 2.36555 2.35545 2.32553 2.27685 2.21127	$\begin{array}{r} \overline{k_{12}} \\ \hline 2.17124 \\ \hline 2.34099 \\ \hline 2.33769 \\ \hline 2.32798 \\ \hline 2.32798 \\ \hline 2.31244 \\ \hline 2.29198 \\ \hline 2.26787 \\ \hline 2.24165 \\ \hline 2.77809 \\ \hline 2.76742 \\ \hline 2.73583 \\ \hline 2.68455 \\ \hline 2.61575 \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 0.83322 0.98839 0.98555 0.97716 0.96363 0.94562 0.92409 0.90025 1.33273 1.32498 1.30191 1.26404 1.21228 1.14800	$\overline{K_8}$ 1.10900 1.26943 1.26643 1.25757 1.24332 1.22443 1.20197 1.17727 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56758 1.51041 1.43999	$\overline{K_{996}}$ 1.42398 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.56122 1.56122 1.54167 1.51851 1.49316 1.64396 1.63532 1.60962 1.56965(a) 1.56965(a) 1.56965(a)	$\overline{k_{10}}$ 1.57080(a) 1.58835 1.58523 1.57601 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.98783 1.97841 1.95044 1.90481 1.84307 1.76755	$\overline{k_{11}}$ 1.77809 1.94548 1.94226 1.93277 1.91755 1.89749 1.87380 1.84796 2.36555 2.35545 2.32553 2.27685 2.21127 2.13154	$\begin{array}{r} \overline{k_{12}} \\ \hline 2.17124 \\ \hline 2.34099 \\ \hline 2.33769 \\ \hline 2.32798 \\ \hline 2.32798 \\ \hline 2.31244 \\ \hline 2.29198 \\ \hline 2.26787 \\ \hline 2.24165 \\ \hline 2.77809 \\ \hline 2.76742 \\ \hline 2.73583 \\ \hline 2.68455 \\ \hline 2.61575 \\ \hline 2.53255 \\ \end{array}$

 $(\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 500)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.03	0°	0.04793	0.11532	0.19472	0.29058	0.40138	0.52663
	15°	0.04746	0.11427	0.19310	0.28836	0.39857	0.52326
	30°	0.04604	0.11114	0.18824	0.28173	0.39017	0.51321
	45°	0.04370	0.10596	0.18021	0.27075	0.37630	0.49666
	60°	0.04043	0.09877	0.16906	0.25554	0.35715	0.47391
	75°	0.03625	0.08961	0.15486	0.23622	0.33298	0.44543
	90°	0.03109	0.07847	0.13761	0.21290	0.30413	0.41188
0.06	0°	0.09504	0.22540	0.36473	0.52095	0.69342	0.87980
	15°	0.09409	0.22329	0.36144	0.51643	0.68762	0.87270
	30°	0.09125	0.21697	0.35159	0.50292	0.67029	0.85146
	45°	0.08654	0.20650	0.33526	0.48050	0.64152	0.81622
	60°	0.07997	0.19196	0.31256	0.44930	0.60145	0.76716
	75°	0.07152	0.17340	0.28355	0.40933	0.55009	0.70433
	90°	0.06108	0.15072	0.24802	0.36025	0.48701	0.62736
					1		
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u> К9в96</u>	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	0.41690	0.55500	0.71281	0.89031	1.08750	1.30436
0.03	0°	0.66684	0.82273	0.99507	1.18447	1.39145	1.57051(a)
	15°	0.66296	0.81841	0.99035	1.17941	1.38611	1.57051(a)
	30°	0.65141	0.80555	0.97635	1.16443	1.37028	1.57051(a)
	45°	0.63246	0.78451	0.95351	1.14005	1.34460	1.56751
	60°	0.60656	0.75590	0.92260	1.10721	1.31014	1.53168
	75°	0.57440	0.72065	0.88479	1.06729	1.26847	1.48855
	90°	0.53698	0.68010	0.84172	1.02218	1.22170	1.44043
0.06	0°	1.07898	1.29076	1.51533	1.56965(a)	1.75312	2.00459
	15°	1.07058	1.28107	1.50440	1.56965(a)	1.74097	1.99129
	20°	1 04544	1.25210	1.47170	1.56965(a)	1.70469	1.95158
	30	1.01311					
	50 45°	1.00376	1.20410	1.41760	1.56965(a)	1.64474	1.88607
	30 45° 60°	1.00376 0.94579	1.20410 1.13746	1.41760 1.34263	1.56965(a) 1.56187	1.64474 1.56965(a)	1.88607 1.79576
	50 45° 60° 75°	1.00376 0.94579 0.87171	1.20410 1.13746 1.05256	1.41760 1.34263 1.24748	1.56965(a) 1.56187 1.45711	1.64474 1.56965(a) 1.56965(a)	1.88607 1.79576 1.68210

 $(\beta = 90^{\circ}, \ \bar{r} = 1, \ \sqrt{\bar{\eta}} = 1000)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
0.03	0°	0.34813	1.57051(a)	1.91714	4.65244	4.71229(a)	7.82416
	15°	0.34803	1.57051(a)	1.91706	4.65237	4.71229(a)	7.82410
	30°	0.34773	1.57051(a)	1.91682	4.65216	4.71229(a)	7.82390
	45°	0.34725	1.57051(a)	1.91644	4.65182	4.71229(a)	7.82359
	60°	0.34664	1.57051(a)	1.91595	4.65138	4.71229(a)	7.82318
	75°	0.34591	1.57051(a)	1.91538	4.65087	4.71229(a)	7.82270
	90°	0.34513	1.57051(a)	1.91476	4.65032	4.71229(a)	7.82219
0.06	0°	0.36114	1.56965(a)	1.92760	4.66168	4.71201(a)	7.83271
	15°	0.36075	1.56965(a)	1.92728	4.66139	4.71201(a)	7.83244
	30°	0.35960	1.56965(a)	1.92633	4.66054	4.71201(a)	7.83166
	45°	0.35776	1.56965(a)	1.92483	4.65920	4.71201(a)	7.83041
	60°	0.35535	1.56965(a)	1.92287	4.65745	4.71201(a)	7.82878
	75°	0.35252	1.56965(a)	1.92058	4.65541	4.71201(a)	7.82688
	90°	0.34945	1.56965(a)	1.91813	4.65322	4.71201(a)	7.82484
					2		
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u> </u>	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	α 0°	\overline{K}_7 7.85398(a)	$\frac{\overline{K}_8}{10.9956(a)}$	<u>К₉₁₉₆</u> 11.1813	\overline{K}_{10} 14.1372(a)	$\frac{\overline{K}_{11}}{14.5867}$	\overline{K}_{12} 17.2788(a)
	α 0° 0°	$ \overline{K}_{7} 7.85398(a) 7.85392(a) $	$ \overline{K_8} 10.9956(a) 10.9955(a) $	K ₉ pc 11.1813 11.1839	$ \overline{K}_{10} 14.1372(a) 14.1371(a) $	$ \overline{K}_{11} \\ 14.5867 \\ 14.5890 $	$ \overline{K}_{12} 17.2788(a) 17.2787(a) $
$ \frac{\overline{k}}{0} 0.03 $	α 0° 15°	$ \overline{K}_{7} $ 7.85398(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9955(a) 10.9955(a) 10.9955(a) $	Kg bg 11.1813 11.1839 11.1838	$ \overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) $	$ \overline{K}_{11} \\ 14.5867 \\ 14.5890 \\ 14.5889 $	$ \overline{K}_{12} $ 17.2788(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$ 0.03	α 0° 15° 30°	$ \overline{K}_{7} $ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) $	K ₉ вс 11.1813 11.1839 11.1838 11.1836	$ \overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) $	$ \overline{K}_{11} $ 14.5867 14.5890 14.5889 14.5888	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45°	$ \overline{K}_{7} $ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) $	K9 K9 11.1813 11.1839 11.1838 11.1838 11.1836 11.1833	$ \overline{K}_{10} $ 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45° 60°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$\frac{\overline{K}_8}{10.9955(a)}$ 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	K9 90 11.1813 11.1839 11.1838 11.1836 11.1833 11.1833	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	$ \overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 $	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) $	K9 90 11.1813 11.1839 11.1838 11.1836 11.1833 11.1830 11.1825	$\begin{array}{r} \overline{K_{10}} \\ \hline 14.1372(a) \\ 14.1371(a) \\ \end{array}$	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_8} $ 10.9955(a)	K9 96 11.1813 11.1839 11.1838 11.1836 11.1833 11.1833 11.1832 11.1833 11.1832	\overline{K}_{10} 14.1372(a) 14.1371(a)	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5874	\overline{K}_{12} 17.2788(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 7.85398(a) 7.85392(a)	$\frac{\overline{K_8}}{10.9956(a)}$ 10.9955(a)	K990 11.1813 11.1839 11.1838 11.1836 11.1833 11.1833 11.1830 11.1825 11.1821 11.1916	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5874 14.5959	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	$ \overline{K_8} 10.9955(a) 10.9954(a) 10.9954(a) $	K990 11.1813 11.1839 11.1838 11.1836 11.1833 11.1833 11.1830 11.1825 11.1821 11.1916 11.1913	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5874 14.5959 14.5957	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a)	K9 11.1813 11.1839 11.1838 11.1836 11.1836 11.1833 11.1833 11.1830 11.1825 11.1821 11.1916 11.1906	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5874 14.5959 14.5957 14.5951	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a)	K9 11.1813 11.1839 11.1838 11.1836 11.1836 11.1833 11.1833 11.1830 11.1825 11.1821 11.1916 11.1906 11.1895	$\begin{array}{r} \overline{K}_{10} \\ \hline 14.1372(a) \\ 14.1371(a) \\ 14.1370(a) \\ 14.1370(a)$	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5878 14.5959 14.5957 14.5951 14.5940	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a) 10.9954(a)	K9 00 11.1813 11.1839 11.1839 11.1838 11.1836 11.1833 11.1833 11.1830 11.1825 11.1825 11.1821 11.1916 11.1906 11.1895 11.1880	\overline{K}_{10} 14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a) 14.1370(a)	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5874 14.5959 14.5957 14.5957 14.5951 14.5940 14.5927	\overline{K}_{12} 17.2788(a) 17.2787(a)
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	$\overline{K_8}$ 10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9955(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)10.9954(a)	$\overline{K_{9900}}$ 11.1813 11.1839 11.1839 11.1836 11.1836 11.1833 11.1830 11.1825 11.1821 11.1916 11.1913 11.1906 11.1895 11.1880 11.1863	$\begin{array}{r} \overline{K_{10}} \\ \hline 14.1372(a) \\ 14.1371(a) \\ 14.1370(a) \\ 14.1370(a)$	\overline{K}_{11} 14.5867 14.5890 14.5889 14.5888 14.5885 14.5882 14.5878 14.5874 14.5959 14.5957 14.5951 14.5940 14.5927 14.5912	\overline{K}_{12} 17.2788(a) 17.2787(a)

 $(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 10)$

表二十六 旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率

	0	\overline{K} .	\overline{K}_{2}	\overline{K}_{2}	\overline{K} .	K r	\overline{K}_{c}
<u>~</u>	 	0 17/70	1 05053	1 57080(a)	2 82/21	/ 71220(a)	5 10110
0.02	0 0°	0.17473	1.03933	1.57050(a)	2.02431	4.71239(a)	5 109/5
0.05	0 1 <i>5</i> °	0.18301	1.00/1/	1.57051(a)	2.03100	4.71229(a)	5.19845
	15 20°	0.18342	1.00/00	1.5/051(a)	2.83151	4.71229(a)	5.19828
	30 45°	0.18284	1.00049	1.57051(a)	2.83101	4.71229(a)	5.19/78
	45 60°	0.18192	1.06568	1.57051(a)	2.83021	4.71229(a)	5.19699
	60 7.5°	0.18072	1.06462	1.57051(a)	2.82918	4.71229(a)	5.19597
	75	0.17931	1.06339	1.57051(a)	2.82797	4.71229(a)	5.19477
	90°	0.17778	1.06206	1.57051(a)	2.82668	4.71229(a)	5.19348
0.06	0°	0.20780	1.08974	1.56965(a)	2.85364	4.71201(a)	5.22015
	15°	0.20711	1.08906	1.56965(a)	2.85296	4.71201(a)	5.21948
	30°	0.20507	1.08610	1.56965(a)	2.85098	4.71201(a)	5.21751
	45°	0.20179	1.08388	1.56965(a)	2.84783	4.71201(a)	5.21437
	60°	0.19742	1.07972	1.56965(a)	2.84372	4.71201(a)	5.21027
	75°	0.19221	1.07485	1.56965(a)	2.83892	4.71201(a)	5.20549
	90°	0.18645	1.06960	1.56965(a)	2.83375	4.71201(a)	5.20036
					E		
\overline{k}	α	\overline{K}_7	\overline{K}_8	K996	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	Ô٥		· · · · · · · · · · · · · · · · · · ·	10.00500			14 2020
	0	7.85398(a)	7.98477	10.9956(a)	11.0545	14.1372(a)	14.2939
0.03	0°	7.85398(a) 7.85392(a)	7.98477 7.99175	10.9956(a) 10.9955(a)	11.0545 11.0612	14.1372(a) 14.1371(a)	14.2939
0.03	0° 15°	7.85398(a) 7.85392(a) 7.85392(a)	7.98477 7.99175 7.99159	10.9956(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610	14.1372(a) 14.1371(a) 14.1371(a)	14.2939 14.3002 14.3001
0.03	0° 15° 30°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a)	7.98477 7.99175 7.99159 7.99111	10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610 11.0605	14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.2939 14.3002 14.3001 14.2996
0.03	0° 15° 30° 45°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	7.98477 7.99175 7.99159 7.99111 7.99035	10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610 11.0605 11.0598	14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.2939 14.3002 14.3001 14.2996 14.2989
0.03	0° 15° 30° 45° 60°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936	10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589	14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.2939 14.3002 14.3001 14.2996 14.2989 14.2980
0.03	0° 15° 30° 45° 60° 75°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820	10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578	14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.293914.300214.300114.299614.298914.298014.2970
0.03	0° 15° 30° 45° 60° 75° 90°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696	10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578 11.0566	14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a)	14.293914.300214.300114.299614.298914.298014.297014.2959
0.03	0° 15° 30° 45° 60° 75° 90° 0°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696 8.01266	10.9956(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578 11.0566 11.0810	14.1372(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1371(a) 14.1370(a)	14.293914.300214.300114.299614.298914.298014.297014.295914.3190
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696 8.01266 8.01201	$\begin{array}{c} 10.9956(a) \\ 10.9955(a) \\ 10.9954(a) \\ 10.9954(a) \end{array}$	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578 11.0566 11.0810 11.0804	$\begin{array}{r} 14.1372(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ \end{array}$	14.293914.300214.300114.299614.298914.298014.297014.295914.319014.3184
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696 8.01266 8.01201 8.01010	$\begin{array}{c} 10.9956(a) \\ 10.9955(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ \end{array}$	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578 11.0566 11.0810 11.0786	$\begin{array}{c} 14.1372(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ \end{array}$	14.293914.300214.300114.299614.298014.298014.297014.295914.319014.3167
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696 8.01266 8.01201 8.01010 8.00706	$\begin{array}{r} 10.9956(a) \\ 10.9955(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ \end{array}$	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578 11.0566 11.0810 11.0786 11.0757	$\begin{array}{r} 14.1372(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ 14.1370(a)\\ \end{array}$	14.293914.300214.300114.299614.298914.298014.297014.295914.319014.316714.3139
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696 8.01266 8.01266 8.01201 8.01010 8.00706 8.00310	$\begin{array}{r} 10.9956(a) \\ 10.9955(a) \\ 10.9954(a) $	11.0545 11.0612 11.0610 11.0605 11.0598 11.0589 11.0578 11.0566 11.0810 11.0786 11.0757 11.0719	$\begin{array}{r} 14.1372(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1370(a)\\ 14.1370(a)\\$	14.293914.300214.300114.299614.298914.298014.297014.295914.319014.318414.316714.313914.3104
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	7.98477 7.99175 7.99159 7.99111 7.99035 7.98936 7.98820 7.98696 8.01266 8.01266 8.01201 8.01010 8.00706 8.00310 7.99849	$\begin{array}{c} 10.9956(a) \\ 10.9955(a) \\ 10.9954(a) $	11.0545 11.0612 11.0605 11.0598 11.0589 11.0578 11.0566 11.0810 11.0786 11.0719 11.0675	$\begin{array}{r} 14.1372(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1371(a)\\ 14.1370(a)\\ 14.1370(a)\\$	14.293914.300214.300114.299614.298014.298014.297014.295914.319014.318414.316714.313914.310414.3062

 $(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 20)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
0.03	0°	0.09008	0.45716	1.23496	1.57051(a)	2.37214	3.84712
	15°	0.08968	0.45673	1.23451	1.57051(a)	2.37167	3.84664
	30°	0.08850	0.45547	1.23319	1.57051(a)	2.37029	3.84523
	45°	0.08659	0.45346	1.23109	1.57051(a)	2.36809	3.84298
	60°	0.08403	0.45082	1.22834	1.57051(a)	2.36522	3.84006
	75°	0.08094	0.44772	1.22514	1.57051(a)	2.36187	3.83664
	90°	0.07749	0.44438	1.22168	1.57051(a)	2.35826	3.83298
0.06	0°	0.13248	0.51055	1.29188	1.56965(a)	2.43209	3.90837
	15°	0.13140	0.50902	1.29018	1.56965(a)	2.43026	3.90648
	30°	0.12819	0.50451	1.28516	1.56965(a)	2.42488	3.90094
	45°	0.12291	0.49723	1.27712	1.56965(a)	2.41630	3.89211
	60°	0.11566	0.48758	1.26656	1.56965(a)	2.40506	3.88057
	75°	0.10657	0.47607	1.25413	1.56965(a)	2.39190	3.86707
	90°	0.09583	0.46338	1.24062	1.56965(a)	2.37766	3.85252
					1		
\overline{k}	α	\overline{K}_7	\overline{K}_8	K 9896	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	٥°		5 60923 🍕	7 66770	7 05200(-)	0.06854	10.0056(a)
0	0	4.71239(a)	5.00725	1.00770	7.85398(a)	9.900.04	10.7750(a)
0.03	0°	4.71239(a) 4.71229(a)	5.62995	7.68828	7.85398(a) 7.85392(a)	9.90834	10.9955(a)
0.03	0° 15°	4.71239(a) 4.71229(a) 4.71229(a)	5.62995 5.62946	7.68828 7.68780	7.85398(a) 7.85392(a) 7.85392(a)	9.98886 9.98839	10.9955(a) 10.9955(a)
0.03	0° 15° 30°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62995 5.62946 5.62805	7.68828 7.68780 7.68639	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.90834 9.98886 9.98839 9.98699	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62995 5.62946 5.62805 5.62579	7.68828 7.68780 7.68639 7.68414	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98886 9.98839 9.98699 9.98477	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62995 5.62946 5.62805 5.62579 5.62285	7.68828 7.68780 7.68639 7.68414 7.68122	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98886 9.98839 9.98699 9.98477 9.98188	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62995 5.62946 5.62805 5.62579 5.62285 5.61943	7.68828 7.68780 7.68639 7.68414 7.68122 7.67781	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.98886 9.98839 9.98699 9.98477 9.98188 9.97851	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75° 90°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575	7.68828 7.68780 7.68639 7.68414 7.68122 7.67781 7.67415	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	9.90834 9.98886 9.98839 9.98699 9.98477 9.98188 9.97851 9.97489	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75° 90°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a)	5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575 5.69155	7.68828 7.68780 7.68639 7.68414 7.68122 7.67781 7.67415 7.74962	7.85398(a) 7.85392(a)	9.90834 9.98886 9.98839 9.98699 9.98477 9.98188 9.97851 9.97489 10.0495	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a)
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a)	5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575 5.69155 5.68964	7.68828 7.68780 7.68639 7.68414 7.68122 7.67781 7.67415 7.74962 7.74771	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a)	9.90834 9.98886 9.98839 9.98699 9.98477 9.98188 9.97851 9.97489 10.0495 10.0477	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a)
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575 5.69155 5.68964 5.68404	7.68828 7.68780 7.68639 7.68414 7.68122 7.67781 7.67415 7.74962 7.74771 7.74212	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.98886 9.98839 9.98699 9.98477 9.98188 9.97851 9.97489 10.0495 10.0477 10.0421	10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9955(a) 10.9954(a) 10.9954(a) 10.9954(a)
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575 5.69155 5.68964 5.68404 5.67512	7.00770 7.68828 7.68780 7.68639 7.68414 7.68122 7.67781 7.67415 7.74962 7.74212 7.73322	7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	9.908349.988869.988399.986999.984779.981889.978519.9748910.049510.047710.042110.0333	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ 10.9954(a) \\ \end{array}$
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.60923 5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575 5.69155 5.68964 5.68404 5.68404 5.67512 5.66348	$\begin{array}{r} 7.68780 \\ 7.68780 \\ 7.68780 \\ 7.68639 \\ 7.68414 \\ 7.68122 \\ 7.67781 \\ 7.67415 \\ \hline 7.74962 \\ 7.74771 \\ 7.74212 \\ 7.73322 \\ 7.72159 \end{array}$	7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	9.908349.988869.988399.986999.984779.981889.978519.9748910.049510.047710.042110.033310.0218	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) $
0.03	0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	5.60923 5.62995 5.62946 5.62805 5.62579 5.62285 5.61943 5.61575 5.69155 5.68964 5.68404 5.68404 5.67512 5.66348 5.64987	$\begin{array}{r} 7.68828 \\ 7.68780 \\ 7.68639 \\ 7.68639 \\ 7.68414 \\ 7.68122 \\ 7.67781 \\ 7.67781 \\ 7.67415 \\ 7.74962 \\ 7.74771 \\ 7.74212 \\ 7.73322 \\ 7.72159 \\ 7.70803 \end{array}$	7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	9.98886 9.98839 9.98699 9.98699 9.98477 9.98188 9.97851 9.97489 10.0495 10.0477 10.0421 10.0333 10.0218 10.0083	$\begin{array}{r} 10.9955(a) \\ 10.9954(a) $

 $(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 50)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
0.03	0°	0.06628	0.25650	0.65335	1.24149	1.57051(a)	2.01849
	15°	0.06574	0.25573	0.65249	1.24055	1.57051(a)	2.01752
	30°	0.06414	0.25347	0.64995	1.23781	1.57051(a)	2.01466
	45°	0.06150	0.24981	0.64588	1.23343	1.57051(a)	2.01010
	60°	0.05787	0.24497	0.64054	1.22769	1.57051(a)	2.00414
	75°	0.05332	0.23919	0.63425	1.22097	1.57051(a)	1.99717
	90°	0.04796	0.23282	0.62742	1.21371	1.57051(a)	1.98966
0.06	0°	0.11675	0.34262	0.75609	1.35575	1.56965(a)	2.13949
	15°	0.11555	0.34036	0.75318	1.35239	1.56965(a)	2.13586
	30°	0.11196	0.33364	0.74457	1.34248	1.56965(a)	2.12516
	45°	0.10599	0.32263	0.73063	1.32653	1.56965(a)	2.10801
	60°	0.09765	0.30763	0.71196	1.30537	1.56965(a)	2.08539
	75°	0.08690	0.28909	0.68944	1.28019	1.56965(a)	2.05866
	90°	0.07358	0.26765	0.66425	1.25247	1.56965(a)	2.02949
				-// 0			
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u> </u>	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	2.93704	4.07761	4.71239(a)	5.39167	6.87230	7.85398(a)
0.03	0°	2.98013	4.12115	4.71229(a)	5.43543	6.91613	7.85392(a)
	15°	2.97913	4.12013	4.71229(a)	5.43441	6.91511	7.85392(a)
	30°	2.97620	4.11716	4.71229(a)	5.43142	6.91211	7.85392(a)
	45°	2.97153	4.11243	4.71229(a)	5.42665	6.90732	7.85392(a)
	60°	2.96544	4.10626	4.71229(a)	5.42043	6.90109	7.85392(a)
	75°	2.95832	4.09905	4.71229(a)	5.41318	6.89382	7.85392(a)
	90°	2.95066	4.09130	4.71229(a)	5.40538	6.88600	7.85392(a)
0.06	0°	3.10515	4.24860	4.71201(a)	5.56429	7.04572	7.85375(a)
	15°	3.10135	4.24470	4.71201(a)	5.56032	7.04171	7.85375(a)
	30°	3.09017	4.23322	4.71201(a)	5.54866	7.02994	7.85375(a)
	45°	3.07229	4.21488	4.71201(a)	5.53005	7.01118	7.85375(a)
	60°	3.04878	4.19083	4.71201(a)	5.50568	6.98663	7.85375(a)
	60° 75°	3.04878 3.02113	4.19083 4.16262	4.71201(a) 4.71201(a)	5.50568 5.47713	6.98663 6.95791	7.85375(a) 7.85375(a)

 $(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 100)$

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
0.03	0°	0.05522	0.13680	0.24784	0.39271	0.57031	0.78188
	15°	0.05460	0.13544	0.24580	0.39002	0.56706	0.77819
	30°	0.05274	0.13139	0.23970	0.38199	0.55739	0.76721
	45°	0.04964	0.12465	0.22960	0.36875	0.54154	0.74932
	60°	0.04527	0.11521	0.21555	0.35052	0.51993	0.72514
	75°	0.03956	0.10303	0.19764	0.32762	0.49320	0.69560
	90°	0.03228	0.08787	0.17586	0.30051	0.46227	0.66201
0.06	0°	0.10875	0.25933	0.43388	0.64187	0.87974	1.14567
	15°	0.10751	0.25655	0.42957	0.63598	0.87224	1.13663
	30°	0.10376	0.24821	0.41665	0.61830	0.84977	1.10954
	45°	0.09751	0.23430	0.39509	0.58882	0.81234	1.06457
	60°	0.08869	0.21475	0.36478	0.54740	0.75993	1.00187
	75°	0.07710	0.18927	0.32528	0.49353	0.69220	0.92154
	90°	0.06219	0.15692	0.27518	0.42570	0.60804	0.82334
			E		1		
\overline{k}	α	\overline{K}_7	\overline{K}_8	<u>K</u> 996	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	0.83322	1.10900	1.42398	1.57080(a)	1.77809	2.17124
0.03	0°	1.02890	1.31249	1.57051(a)	1.63338	1.99204	2.38877
	15°	1.02486	1.30817	1.57051(a)	1.62885	1.98734	2.38394
	30°	1.01287	1.29540	1.57051(a)	1.61547	1.97349	2.36971
	45°	0.99342	1.27475	1.57051(a)	1.59390	1.95120	2.34685
	60°	0.96731	1.24719	1.56523	1.57051(a)	1.92167	2.31664
	75°	0.93572	1.21409	1.53099	1.57051(a)	1.88656	2.28084
	90°	0.90025	1.17727	1.49316	1.57051(a)	1.84796	2.24165
0.06	0°	1.44013	1.56965(a)	1.76435	2.11973	2.50751	2.92881
	15°	1.42964	1.56965(a)	1.75255	2.10675	2.49349	2.91388
	30°	1.39828	1.56965(a)	1.71732	2.06806	2.45177	2.86949
	45°	1.34637	1.56965(a)	1.65919	2.00445	2.38337	2.79695
	60°	1.27441	1.56965(a)	1.57908	1.91727	2.29012	2.69852
	00	1.2/ / / 1	110 09 00 (u)				
	00 75°	1.18307	1.47833	1.56965(a)	1.80859	2.17479	2.57762

 $(\beta = 90^{\circ}, \ \bar{r} = 1.5, \ \sqrt{\bar{\eta}} = 500)$

表三十 旋轉傾斜 Euler 梁在不同轉速與不同傾斜角下的振動頻率

$(\beta = 90^{\circ},$	$\bar{r} = 1.5$,	$\sqrt{\eta} = 10$)00)
------------------------	-------------------	--------------------	------

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851
0.03	0°	0.05438	0.12967	0.21697	0.32102	0.44004	0.57314
	15°	0.05375	0.12828	0.21482	0.31807	0.43629	0.56862
	30°	0.05188	0.12411	0.20835	0.30923	0.42504	0.55507
	45°	0.04876	0.11716	0.19757	0.29448	0.40632	0.53256
	60°	0.04434	0.10738	0.18242	0.27377	0.38011	0.50120
	75°	0.03855	0.09464	0.16266	0.24682	0.34622	0.46101
	90°	0.03109	0.07847	0.13761	0.21290	0.30413	0.41188
0.06	0°	0.10798	0.25435	0.40983	0.58269	0.77254	0.97674
	15°	0.10673	0.25154	0.40546	0.57672	0.76490	0.96737
	30°	0.10297	0.24314	0.39237	0.55881	0.74195	0.93926
	45°	0.09670	0.22911	0.37052	0.52888	0.70359	0.89226
	60°	0.08784	0.20938	0.33975	0.48667	0.64944	0.82592
	75°	0.07618	0.18360	0.29951	0.43134	0.57837	0.73891
	90°	0.06108	0.15072	0.24802	0.36025	0.48701	0.62736
			3		8 3		
\overline{k}	α	\overline{K}_7	\overline{K}_8	K9896	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
\overline{k}	α 0°	\overline{K}_7 0.41690	$\overline{K_8}$ 0.55500	 <i>K</i>₉896 0.71281	\overline{K}_{10} 0.89031	\overline{K}_{11} 1.08750	$\frac{\overline{K}_{12}}{1.30436}$
	α 0° 0°	\overline{K}_7 0.41690 0.72058	$ \overline{K_8} \\ 0.55500 \\ 0.88300 $	KgBBG 0.71281 1.06110	$ \overline{K}_{10} \\ 0.89031 \\ 1.25556 $	$ \overline{K}_{11} \\ 1.08750 \\ 1.46695 $	$ \overline{K}_{12} 1.30436 1.57051(a) $
	α 0° 0° 15°	$ \overline{K_7} 0.41690 0.72058 0.71533 $	$ \overline{K_8} 0.55500 0.88300 0.87709 $	K ₉₈₉₆ 0.71281 1.06110 1.05460	$ \overline{K}_{10} \\ 0.89031 \\ 1.25556 \\ 1.24854 $	$ \overline{K}_{11} \\ 1.08750 \\ 1.46695 \\ 1.45947 $	$ \overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) $
	α 0° 15° 30°	$ \overline{K_7} 0.41690 0.72058 0.71533 0.69964 $	$ \overline{K_8} 0.55500 0.88300 0.87709 0.85945 $	K ₉₈₉₆ 0.71281 1.06110 1.05460 1.03524	\overline{K}_{10} 0.89031 1.25556 1.24854 1.22765	$ \overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 $	$ \overline{K}_{12} $ 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)
	α 0° 15° 30° 45°	$ \overline{K_7} 0.41690 0.72058 0.71533 0.69964 0.67366 $	$ \overline{K_8} 0.55500 0.88300 0.87709 0.85945 0.83036 $	K9896 0.71281 1.06110 1.05460 1.03524 1.00339	\overline{K}_{10} 0.89031 1.25556 1.24854 1.22765 1.19340	$ \overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 $	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 $	$\frac{\overline{K_8}}{0.55500}$ 0.88300 0.87709 0.85945 0.83036 0.79026	K9896 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974	$\overline{K_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670	$\begin{array}{r} \overline{K_{11}} \\ \hline 1.08750 \\ \hline 1.46695 \\ \hline 1.45947 \\ \hline 1.43724 \\ \hline 1.40090 \\ \hline 1.35160 \end{array}$	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a)
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 $	$\frac{\overline{K_8}}{0.55500}$ 0.88300 0.87709 0.85945 0.83036 0.79026 0.73984	K9896 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534	$\overline{K_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895	$\begin{array}{r} \overline{K}_{11} \\ \hline 1.08750 \\ \hline 1.46695 \\ \hline 1.45947 \\ \hline 1.43724 \\ \hline 1.40090 \\ \hline 1.35160 \\ \hline 1.29104 \end{array}$	$\frac{\overline{K}_{12}}{1.30436}$ 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698	$\begin{array}{c} \overline{K_8} \\ \hline 0.55500 \\ 0.88300 \\ 0.87709 \\ 0.85945 \\ 0.83036 \\ 0.79026 \\ 0.73984 \\ 0.68010 \end{array}$	K9896 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.84172	$\overline{K_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698 1.19381	$\begin{array}{c} \overline{K_8} \\ \hline 0.55500 \\ 0.88300 \\ 0.87709 \\ 0.85945 \\ 0.83036 \\ 0.79026 \\ 0.73984 \\ 0.68010 \\ 1.42330 \end{array}$	$ \overline{K_{9896}} $ 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.90534 0.84172 1.56965(a)	$\overline{K_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218 1.66523	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170 1.91986	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043 2.18758
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0°	$\overline{K_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698 1.19381 1.18272	$\overline{K_8}$ 0.55500 0.88300 0.87709 0.85945 0.83036 0.79026 0.73984 0.68010 1.42330 1.41048	$ \overline{K_{9896}} $ 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.84172 1.56965(a) 1.56965(a)	$\overline{k_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218 1.66523 1.65072	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170 1.91986 1.90370	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043 2.18758 2.16981
$ \overline{k} 0 0.03 0.06 $	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698 1.19381 1.18272 1.14940	$\begin{array}{r} \overline{K_8} \\ \hline 0.55500 \\ 0.88300 \\ 0.87709 \\ 0.85945 \\ 0.83036 \\ 0.79026 \\ 0.73984 \\ 0.68010 \\ \hline 1.42330 \\ 1.41048 \\ 1.37201 \\ \end{array}$	$ \overline{K_{9896}} $ 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.84172 1.56965(a) 1.56965(a) 1.56965(a)	$\overline{k_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218 1.66523 1.65072 1.60718	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170 1.91986 1.90370 1.85523	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043 2.18758 2.16981 2.11657
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\overline{K_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698 1.19381 1.18272 1.14940 1.09374	$\begin{array}{r} \overline{K_8} \\ \hline 0.55500 \\ 0.88300 \\ 0.87709 \\ 0.85945 \\ 0.83036 \\ 0.79026 \\ 0.73984 \\ 0.68010 \\ 1.42330 \\ 1.41048 \\ 1.37201 \\ 1.30777 \\ \end{array}$	$\overline{k_{9896}}$ 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.84172 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.53455	$\overline{K_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218 1.66523 1.65072 1.60718 1.56965(a)	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170 1.91986 1.90370 1.85523 1.77447	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043 2.18758 2.16981 2.11657 2.02798
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\overline{k_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698 1.19381 1.18272 1.14940 1.09374 1.01523	$\begin{array}{r} \overline{K_8} \\ \hline 0.55500 \\ 0.88300 \\ 0.87709 \\ 0.85945 \\ 0.83036 \\ 0.79026 \\ 0.73984 \\ 0.68010 \\ 1.42330 \\ 1.41048 \\ 1.37201 \\ 1.30777 \\ 1.21730 \\ \end{array}$	$\overline{k_{9896}}$ 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.84172 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.53455 1.43247	$\overline{K_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218 1.66523 1.65072 1.60718 1.56965(a) 1.56965(a)	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170 1.91986 1.90370 1.85523 1.77447 1.66121	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043 2.18758 2.16981 2.11657 2.02798 1.90406
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\overline{k_7}$ 0.41690 0.72058 0.71533 0.69964 0.67366 0.63765 0.59195 0.53698 1.19381 1.18272 1.14940 1.09374 1.01523 0.91245	$\begin{array}{r} \overline{K_8} \\ \hline 0.55500 \\ 0.88300 \\ 0.87709 \\ 0.85945 \\ 0.83036 \\ 0.79026 \\ 0.73984 \\ 0.68010 \\ 1.42330 \\ 1.41048 \\ 1.37201 \\ 1.30777 \\ 1.21730 \\ 1.09922 \\ \end{array}$	$\overline{K_{9896}}$ 0.71281 1.06110 1.05460 1.03524 1.00339 0.95974 0.90534 0.84172 1.56965(a) 1.56965(a) 1.56965(a) 1.53455 1.43247 1.29971	$\overline{k_{10}}$ 0.89031 1.25556 1.24854 1.22765 1.19340 1.14670 1.08895 1.02218 1.66523 1.65072 1.60718 1.56965(a) 1.56965(a) 1.51455	\overline{K}_{11} 1.08750 1.46695 1.45947 1.43724 1.40090 1.35160 1.29104 1.22170 1.91986 1.90370 1.85523 1.77447 1.66121 1.56965(a)	\overline{K}_{12} 1.30436 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.57051(a) 1.51189 1.44043 2.18758 2.16981 2.11657 2.02798 1.90406 1.74434

α	$\overline{k}\sqrt{\overline{\eta}}$	v_{tip}^1 / L	I_1	v_{tip}^{10} / L	<i>I</i> ₁₀	v_{tip}^{50} / L	<i>I</i> ₅₀	v_{tip}^{100} / L	<i>I</i> ₁₀₀
5°	1	-5.0437E-03	13	-4.8552E-03	8	-4.8820E-03	6	-4.8851E-03	6
	2	-1.6523E-02	15	-1.4657E-02	8	-1.4915E-02	7	-1.4945E-02	6
	5	-4.6220E-02	20	-3.4038E-02	9	-3.5867E-02	7	-3.6093E-02	7
	10	-6.4628E-02	26	-4.2890E-02	10	-4.7479E-02	8	-4.8104E-02	7
10°	0.5	-2.6605E-03	11	-2.6335E-03	7	-2.6374E-03	6	-2.6379E-03	6
	1	-1.0056E-02	13	-9.6814E-03	8	-9.7346E-03	6	-9.7408E-03	6
	2	-3.2993E-02	15	-2.9275E-02	8	-2.9789E-02	7	-2.9850E-02	6
	5	-9.2663E-02	20	-6.8205E-02	9	-7.1871E-02	7	-7.2324E-02	7
15°	0.2	-6.4503E-04	9	-6.4397E-04	7	-6.4412E-04	6	-6.4414E-04	4
	0.5	-3.9666E-03	11	-3.9267E-03	7	-3.9324E-03	6	-3.9331E-03	6
	1	-1.5005E-02	13	-1.4450E-02	8	-1.4529E-02	6	-1.4538E-02	6
	2	-4.9358E-02	15	-4.3814E-02	8	-4.4581E-02	7	-4.4672E-02	6
30°	0.1	-3.1228E-04	8	-3.1215E-04	6	-3.1217E-04	4	-3.1217E-04	4
	0.2	-1.2464E-03	9	-1.2445E-03	7	-1.2447E-03	6	-1.2448E-03	4
	0.5	-7.6749E-03	11	-7.6008E-03	7/	-7.6115E-03	6	-7.6127E-03	6
	1	-2.9161E-02	12	-2.8119E-02	8	-2.8268E-02	6	-2.8285E-02	6
45°	0.1	-4.4167E-04	8	-4.4151E-04	6	-4.4153E-04	4	-4.4153E-04	4
	0.2	-1.7634E-03	9	-1.7608E-03	7	-1.7612E-03	6	-1.7613E-03	4
	0.5	-1.0881E-02	11	-1.0783E-02	7	-1.0797E-02	6	-1.0799E-02	6
	1	-4.1637E-02	12	-4.0236E-02	8	-4.0436E-02	6	-4.0459E-02	6
60°	0.1	-5.4101E-04	8	-5.4083E-04	6	-5.4085E-04	4	-5.4085E-04	4
	0.2	-2.1609E-03	9	-2.1580E-03	7	-2.1584E-03	6	-2.1585E-03	4
	0.5	-1.3371E-02	11	-1.3261E-02	7	-1.3277E-02	6	-1.3279E-02	6
	0.8	-3.3606E-02	12	-3.2923E-02	7	-3.3021E-02	6	-3.3033E-02	6
90°	0.1	-6.2490E-04	8	-6.2475E-04	6	-6.2477E-04	4	-6.2477E-04	4
	0.2	-2.4984E-03	8	-2.4959E-03	7	-2.4963E-03	5	-2.4963E-03	4
	0.5	-1.5563E-02	11	-1.5467E-02	7	-1.5481E-02	6	-1.5483E-02	6
	0.8	-3.9594E-02	12	-3.8983E-02	7	-3.9072E-02	6	-3.9083E-02	6

)0)
)

α	$\overline{k}\sqrt{\overline{\eta}}$	v_{tip}^1/L	I_1	v_{tip}^{10} / L	<i>I</i> ₁₀	v_{tip}^{50} / L	<i>I</i> ₅₀	v_{tip}^{100} / L	<i>I</i> ₁₀₀
5°	1	-9.5226E-03	13	-9.0554E-03	8	-9.1210E-03	6	-9.1287E-03	6
	2	-2.7664E-02	16	-2.4075E-02	8	-2.4573E-02	7	-2.4632E-02	6
	5	-5.9841E-02	21	-4.5489E-02	9	-4.7925E-02	7	-4.8226E-02	7
	10	-7.3612E-02	29	-5.3176E-02	11	-5.8472E-02	8	-5.9198E-02	7
10°	0.5	-5.2396E-03	11	-5.1664E-03	7	-5.1768E-03	6	-5.1780E-03	6
	1	-1.8997E-02	13	-1.8070E-02	8	-1.8200E-02	6	-1.8215E-02	6
	2	-5.5323E-02	16	-4.8164E-02	8	-4.9156E-02	7	-4.9274E-02	6
	5	-1.2020E-01	21	-9.1323E-02	9	-9.6212E-02	7	-9.6817E-02	7
15°	0.2	-1.2869E-03	9	-1.2839E-03	7	-1.2843E-03	6	-1.2844E-03	4
	0.5	-7.8141E-03	11	-7.7061E-03	7	-7.7215E-03	6	-7.7233E-03	6
	1	-2.8375E-02	13	-2.7002E-02	8	-2.7195E-02	6	-2.7217E-02	6
	2	-8.2973E-02	16	-7.2278E-02	8	-7.3760E-02	7	-7.3937E-02	6
30°	0.1	-6.2421E-04	8	-6.2386E-04	6	-6.2391E-04	4	-6.2392E-04	4
	0.2	-2.4873E-03	9	-2.4819E-03	7	-2.4827E-03	6	-2.4828E-03	4
	0.5	-1.5143E-02	11	-1.4945E-02	7/	-1.4973E-02	6	-1.4977E-02	6
	1	-5.5441E-02	13	-5.2881E-02	8	-5.3242E-02	6	-5.3284E-02	6
45°	0.1	-8.8294E-04	8	-8.8251E-04	6	-8.8257E-04	4	-8.8258E-04	4
	0.2	-3.5205E-03	9	-3.5136E-03	7	-3.5146E-03	6	-3.5147E-03	4
	0.5	-2.1522E-02	11	-2.1267E-02	7	-2.1304E-02	6	-2.1308E-02	6
	1	-7.9854E-02	13	-7.6461E-02	8	-7.6940E-02	6	-7.6996E-02	6
60°	0.1	-1.0817E-03	8	-1.0812E-03	6	-1.0813E-03	4	-1.0813E-03	4
	0.2	-4.3163E-03	9	-4.3090E-03	7	-4.3101E-03	6	-4.3102E-03	4
	0.5	-2.6531E-02	11	-2.6260E-02	7	-2.6299E-02	6	-2.6304E-02	6
_	0.8	-6.5896E-02	12	-6.4253E-02	7	-6.4488E-02	6	-6.4515E-02	6
90°	0.1	-1.2498E-03	8	-1.2495E-03	6	-1.2495E-03	4	-1.2495E-03	4
	0.2	-4.9968E-03	8	-4.9919E-03	7	-4.9926E-03	5	-4.9927E-03	4
	0.5	-3.1125E-02	11	-3.0935E-02	7	-3.0963E-02	6	-3.0966E-02	6
	0.8	-7.9189E-02	12	-7.7966E-02	7	-7.8144E-02	6	-7.8165E-02	6

表三十二	不同傾斜角與不同轉速下的端點位移($\beta = 0^\circ, \bar{r} = 1$,	$\sqrt{\overline{\eta}} = 100$)
------	--	----------------------------------

α	$\overline{k}\sqrt{\overline{\eta}}$	v_{tip}^1 / L	I_1	v_{tip}^{10} / L	<i>I</i> ₁₀	v_{tip}^{50}/L	<i>I</i> ₅₀	v_{tip}^{100} / L	<i>I</i> ₁₀₀
5°	1	-1.3526E-02	14	-1.2725E-02	8	-1.2837E-02	7	-1.2850E-02	6
	2	-3.5673E-02	16	-3.0645E-02	8	-3.1349E-02	7	-3.1433E-02	6
	5	-6.6291E-02	22	-5.1285E-02	10	-5.4090E-02	7	-5.4439E-02	7
	10	-7.7158E-02	32	-5.7815E-02	12	-6.3484E-02	8	-6.4272E-02	7
10°	0.5	-7.7411E-03	12	-7.6043E-03	7	-7.6236E-03	6	-7.6259E-03	6
	1	-2.6998E-02	14	-2.5408E-02	8	-2.5630E-02	7	-2.5656E-02	6
	2	-7.1418E-02	16	-6.1375E-02	8	-6.2780E-02	7	-6.2948E-02	6
	5	-1.3327E-01	22	-1.0306E-01	10	-1.0869E-01	7	-1.0939E-01	7
15°	0.2	-1.9256E-03	10	-1.9199E-03	7	-1.9207E-03	6	-1.9208E-03	5
	0.5	-1.1548E-02	12	-1.1346E-02	7	-1.1375E-02	6	-1.1378E-02	6
	1	-4.0362E-02	14	-3.8007E-02	8	-3.8336E-02	7	-3.8375E-02	6
	2	-1.0731E-01	16	-9.2276E-02	8	-9.4378E-02	7	-9.4629E-02	6
30°	0.1	-9.3579E-04	8	-9.3514E-04	+7	-9.3523E-04	5	-9.3524E-04	4
	0.2	-3.7227E-03	10	-3.7125E-03	7	-3.7139E-03	6	-3.7141E-03	5
	0.5	-2.2412E-02	11	-2.2045E-02	7/	-2.2097E-02	6	-2.2103E-02	6
	1	-7.9244E-02	13	-7.4855E-02	8	-7.5469E-02	6	-7.5541E-02	6
45°	0.1	-1.3238E-03	8	-1.3230E-03	7	-1.3231E-03	4	-1.3231E-03	4
	0.2	-5.2712E-03	9	-5.2583E-03	7	-5.2602E-03	6	-5.2604E-03	4
	0.5	-3.1929E-02	11	-3.1464E-02	7	-3.1530E-02	6	-3.1538E-02	6
	1	-1.1505E-01	13	-1.0925E-01	8	-1.1006E-01	6	-1.1016E-01	6
60°	0.1	-1.6220E-03	8	-1.6212E-03	6	-1.6213E-03	4	-1.6213E-03	4
	0.2	-6.4661E-03	9	-6.4531E-03	7	-6.4550E-03	6	-6.4552E-03	4
	0.5	-3.9485E-02	11	-3.9005E-02	7	-3.9073E-02	6	-3.9081E-02	6
	0.8	-9.6947E-02	12	-9.4104E-02	7	-9.4507E-02	6	-9.4555E-02	6
90°	0.1	-1.8747E-03	8	-1.8742E-03	6	-1.8743E-03	4	-1.8743E-03	4
	0.2	-7.4952E-03	8	-7.4878E-03	7	-7.4889E-03	5	-7.4890E-03	4
	0.5	-4.6688E-02	11	-4.6402E-02	7	-4.6444E-02	6	-4.6449E-02	6
	0.8	-1.1878E-01	12	-1.1695E-01	7	-1.1722E-01	6	-1.1725E-01	6

表三十三	不同傾斜角與不同轉速下的端點位移($\beta = 0^\circ, \bar{r} = 1.5, \checkmark$	$\sqrt{\overline{\eta}} = 100$)
------	--	----------------------------------

圖一 無傾斜角的旋轉梁結構

圖二 具傾斜角的旋轉梁架構

圖三 旋轉傾斜梁的上視圖

圖四 旋轉傾斜梁的側視圖

98

圖五 梁的變形圖

圖七 雙精度與四倍精度之行列式值的比較 $(\bar{r}=1.5, \sqrt{\bar{\eta}}=1000, \bar{k}=0.06, N=1)$

圖八 不同轉速下的第一及第二振動模態($\beta = 0^\circ$, $\alpha = 0^\circ$, $\overline{r} = 1$, $\sqrt{\eta} = 10$)

圖九 不同轉速下的第三及第四振動模態($\beta = 0^\circ$, $\alpha = 0^\circ$, $\overline{r} = 1$, $\sqrt{\eta} = 10$)

圖十 不同轉速下的第五及第六振動模態($\beta = 0^\circ$, $\alpha = 0^\circ$, $\overline{r} = 1$, $\sqrt{\eta} = 10$)

圖十一 不同轉速下的第一及第二振動模態($\beta = 0^\circ$, $\alpha = 0^\circ$, $\bar{r} = 1$, $\sqrt{\bar{\eta}} = 50$)

圖十二 不同轉速下的第三及第四振動模態($\beta = 0^\circ$, $\alpha = 0^\circ$, $\bar{r} = 1$, $\sqrt{\bar{\eta}} = 50$)

圖十三 不同轉速下的第五及第六振動模態($\beta = 0^\circ$, $\alpha = 0^\circ$, $\overline{r} = 1$, $\sqrt{\overline{\eta}} = 50$)

圖十四 不同傾斜角下的振動頻率($\beta=90^\circ$, $\bar{r}=1,\sqrt{\bar{\eta}}=10$)

圖十五 不同傾斜角下的振動頻率($\beta=90^\circ$, $r=1,\sqrt{\eta}=20$)

圖十六 不同傾斜角下的振動頻率($\beta=90^\circ$, $\overline{r}=1,\sqrt{\overline{\eta}}=50$)

圖十七 不同傾斜角下的振動頻率($\beta=90^\circ$, $\overline{r}=1,\sqrt{\overline{\eta}}=100$)

圖十八 不同傾斜角下的振動頻率($\beta=90^\circ$, $\bar{r}=1,\sqrt{\eta}=500$)

 $\overline{k} = 0 = 0.01 = 0.02 = 0.03 = 0.04 = 0.05 \times 0.06$

圖十九 不同傾斜角下的振動頻率($\beta=90^\circ$, $\bar{r}=1,\sqrt{\eta}=1000$)

圖二十 傾斜旋轉梁在不同轉速下的側向穩態變形($\beta=0^\circ$, r=1, $\sqrt{\eta}=100$)

圖二十一 傾斜旋轉梁在不同轉速下的側向穩態變形($\beta=0^\circ$, $\bar{r}=1$, $\sqrt{\eta}=100$)

圖二十二 旋轉傾斜梁在不同傾斜角與不同轉速下端點的側向穩態位移

$$(\beta = 0^{\circ}, \bar{r} = 0.5, \sqrt{\bar{\eta}} = 100)$$

圖二十二 旋轉傾斜梁在不同傾斜角與不同轉速下端點的側向穩態位移

$$(\beta = 0^{\circ}, \bar{r} = 0.5, \sqrt{\bar{\eta}} = 100)$$

圖二十四 旋轉傾斜梁在不同傾斜角與不同轉速下端點的側向穩態位移

$$(\beta = 0^{\circ}, \bar{r} = 1.5, \sqrt{\bar{\eta}} = 100)$$

附錄 A

二次曲線內插法

令 (K_L, S_L) , (K_R, S_R) , (K_M, S_M) 為K-S座標上的三已知點,則 此三點間的關係可以決定一二次曲線

$$\overline{S}(X) = AX^2 + BX + C \tag{a.1}$$

$$X = K - K_L \tag{a.2}$$

因(a.1)式通過(K_L , S_L), (K_R , S_R), (K_M , S_M)三點,所以

其中

$$X_{L} = 0$$
$$X_{R} = K_{R} - K_{L}$$
$$X_{M} = K_{M} - K_{L}$$
$$Y_{R} = S_{R} - S_{L}$$

將(a.3)式代入(a.1)式可得

$$C = S_L$$
$$B = \left(S_M - C - \frac{Y_R X_M^2}{X_R^2}\right) \left/ \left(X_M - \frac{Y_R X_M^2}{X_R^2}\right)\right.$$

$$A = \left(S_R - C - BX_R\right) / X_R^2 \tag{a.4}$$

令 K_B 為二次曲線(a.1)式與K軸的交點且 $K_L \leq K_B \leq K_R$, K_B 即稱為二次曲線內插點, K_B 的求法如下:

將(a.4)式求得之A、B、C之值代回(a.1)式,並求(a.1)式在 $\overline{S}(X)=0$ 之 解,可得兩根 X_1 、 X_2 ,表示如下

$$X_1 \sim X_2 = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$
 (a.5)

本文中假設 $X_1 \leq X_2$ 。本文中所採用之二次曲線內插法將會遇到四種不同的情形。而不同的情形,將決定(a.2)式中X該用 X_1 或者是 X_2 。以下將四種不同的情形,及所決定的X敘述如下

1896

- (1) 當 A > 0、 $S_L > 0 且 S_R < 0 則 令 X_B = X_1$ 。
- (2) 當 A > 0、 $S_L < 0 且 S_R > 0$ 則令 $X_B = X_2$ 。
- (3) 當 A < 0、 $S_L > 0 且 S_R < 0 則 令 X_B = X_2$ 。
- (4) 當 A < 0、 $S_L < 0 且 S_R > 0 則 令 X_B = X_1 \circ$

由上述中四種不同的情形,所決定的 X_B代入(a.2)式中,即可得

$$K_B = X_B + K_L \tag{a.6}$$