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Student : Kai-Ming Hsu Advisor : Zheng-Ming Ge

Abstract

In this thesis, the chaotic behavior in new Duffing-van der Pol system is studied
by phase portraits, time history, . Poincaré maps, ' Eyapunov exponent, bifurcation
diagrams, and parametric diagram. Asnew-kind.-of chaotic generalized synchronization
system, pragmatical hybrid projective..chaotic generalized synchronization
(PHPCGS), is obtained by pragmatical asymptotical stability theorem and adaptive
control law. Second new type for chaotic synchronization, pragmatical chaotic
symplectic synchronization (PCSS), is obtained by new dynamic surface control and
pragmatical asymptotical stability theorem. A new method, using GYC partial region
stability theory, is studied for chaos synchronization, chaos control, and chaos
anti-control. Moreover, the new Duffing-van der Pol system with Legendre function
parameters is studied for chaos and synchronization. Numerical analyses, such as
phase portraits and time histories can be provided to verify the effectiveness in all

above studies.
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Chapter 1

Introduction

In the phenomenon of chaos, the chaotic state is very sensitive to its initial
condition and chaos causes often irregular behavior in practical systems. Slight errors
occurring in initial states of two identical oscillators will lead to completely different
trajectories after enough time. Research efforts have studied control and
synchronization of chaos in many chaotic systems [1-4].

Many methods have been applied theoretically and experimentally to
synchronize chaotic system [5-7]. Chaos synchronization has been widely
investigated in a variety of fields such as secure communication [8], biological
science [9], chemical reaction [10]; physical science [11], and many other fields. So
far, there exist many types of synchronization .such as complete synchronization
[4,12,13], phase synchronization [14;15]-lag, synchronization [16,17], projective
synchronization [18-22], and generalized synchronization [23], etc. Complete
synchronizations and antisynchronizations are the special cases of generalized
projective synchronization where the scaling factor o = 1 and o = -1 , respectively.

Many approaches for the synchronization of chaotic systems are based on the
exact knowledge of the system structure and parameters. But in practice, almost all
parameters of the system are uncertain. In current study, the traditional Lyapunov
stability theorem and Babalat lemma are used to prove that the error vector
approaches zero in adaptive synchronization [24-28]. But the question of that why the
estimated parameters also approach uncertain parameters remains unanswered. By the
pragmatical asymptotical stability theorem, the question can be answered strictly
[29-31].

In symplectic synchronization, there exists a functional relationship between
1



“master” systemand “slave” system. The final state y of “slave” system not
only depends upon the state x of “master” system but also depends upon itself. In
other words, the “slave” system does not completely obey the “master” system
but plays a role to determine the final state y of “slave” system [32]. The generalized
synchronization is a special case of the symplectic synchronization. Besides, the state
variables of another different order system as a constituent of functional relation
between “master” and “slave” are used.

Chaos control has attracted a great deal of attention from various fields. There
are many control techniques for chaos control, such as active control [33],
observer-based control [34], feedback and non-feedback control [35-38], inverse
optimal control [39], adaptive control [40,41], etc. A new chaos synchronization and
chaos control strategy by GYC partial region stability theory are proposed [42,43]. By
using the GYC partial region stability theory,the controllers are of lower degree than
that of controllers by using traditional-Lyapunov: asymptotical stability theorem
[21-28]. The simple linear homogencous. Lyapunov function of error states makes the
controllers introducing less simulation error.

This thesis is organized as follows. Chapter 2 gives the dynamic equation of new
Duffing-Van der Pol system. The chaotic behaviors are studied. In Chapter 3 and
Chapter 4, numerical simulations of generalized and symplectic synchronization
scheme based on the pragmatical asymptotical stability theorem with adaptive control
and new dynamic surface control are presented. In Chapter 5, numerical simulations
of chaos synchronization scheme based on GYC partial region stability theory are
presented. In Chapter 6, numerical simulations of chaos control and anti-control
scheme based on GYC partial region stability theory are presented. In Chapter 7,
numerical simulations of chaos synchronization scheme using chaotic system with

Legendre function parameters are presented. In Chapter 8, conclusions are drawn.
2



Chapter 2
Chaos of a New Duffing-Van der Pol System

In this Chapter, the chaotic behaviors of a new Duffing-Van der Pol system is
studied numerically by phase portraits, time histories, Poincaré maps, Lyapunov

exponents, bifurcation diagrams, and parametric diagram.

2.1 Description of New Duffing-Van der Pol System

Duffing equation and Van der Pol equation are two typical nonlinear

nonautonomous systems:

dx, .
T
i 2.1)
dx, 3 .
—==-X,—X, —ax,+dsinwt
dt
dx, .
T T M
j’ 2.2)
x .
7; = —bx, +c(1—x32)x4 + fsinwr

A new autonomous Duffing-Van der Pol system is proposed by coupling of these
two typical nonautonomous systems. Exchanging sinwt in Eq. (2.1) with x; and

sinwt in Eq. (2.2) with x;, we obtain the new autonomous Duffing-van der Pol

system:
L3
d
%:—xl — X, —ax, +dx,
t
23
. (2.3)
d
dx
7;:—bx3 +c(1—x32)x4 + fx,

where a, b, ¢, d, f are parameters. Computational analysis of Eq. (2.3) is studied as



follows.

2.2 Computational Analysis of a New Duffing-Van der Pol

System

For numerical analysis of computation, this system exhibits chaos when the

parameters of system are a=0.01,b=1,c=5,d =0.67, f =0.05 and the initial states
of system are x,(0)=2,x,(0)=2.4,x,(0)=5,x,(0)=6. The bifurcation diagram by

changing damping parameter a is shown in Fig. 2.1. Its corresponding Lyapunov
exponents are shown in Fig. 2.2. The phase portraits, time histories, and Poincaré
maps of the systems are showed in Fig. 2.3~Fig. 2.5. When a=0.012, period 2
phenomena are shown in Fig. 2.3. When a=0.01 and a=0.0006, the chaotic behaviors
are given in Fig. 2.4 and Fig. 2.5,.respectively. In.addition, the parametric diagram is

obtained in Fig. 2.6.
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Chapter 3
Pragmatical Hybrid Projective Chaotic Generalized
Synchronization of Chaotic System with Uncertain

Parameters by Adaptive Control

A new kind of generalized synchronization, pragmatical hybrid projective
chaotic generalized synchronization (PHPCGS) of two identical chaotic systems of
which one has uncertain parameters, by pragmatical adaptive control, is achieved with
the state vector of another hyperchaotic chaotic system as a constituent of the
functional relation between master and slave. The PHPCGS is as follows:

y=G(x)=zH x (3.1
where  x=(x,,%,,..,X,) , ¥ =V, V,,eum)2:€R" are the n-dimensional state

vectors of  master system | —and: “slave. system, respectively,

H =diag[h,h,,...h,] €R""=is a constant scaling diagonal matrix where %, are

called scaling factors, which may+ either pesitive or negative to form the hybrid

projective synchronization. z:[zl(t),zz(t),...,zn(t)] is a given state vector with

chaotic time function components. The existence of z causes so called chaotic
synchronization. Based on the pragmatical asymptotical stability theorem, adaptive
control law is used. Furthermore, the scheme can achieve not only projective
synchronization, but also projective anti-synchronization. With all above
consideration, PHPCGS is achieved. Numerical simulations are provided to verify the

effectiveness of the proposed scheme.

3.1 The PHPCGS Scheme of Chaotic Systems by Adaptive

Control

There are two identical nonlinear dynamical systems, and the master system
10



controls the slave system. The master system is given by

x=Ax+ f(x,B) (3.2)
where x=[x,,x,,---x,]' € R" denotes a state vector, 4 is an 7X71 uncertain

constant coefficient matrix, f is a nonlinear vector function, and B is a vector of

uncertain constant coefficients in f. The slave system is given by

v =Ay+ f(y,B)+u(t) (3.3)
where y=[»,,7,,--y,]' €R" denotes a state vector, 4 is an 7Xn estimated
coefficient matrix, B is a vector of estimated coefficients in £, and
u(t)=[u,(t),u,(t),--u, ()] €R" is a control input vector. The chaotic system which

affords chaotic z matrix, is called functional system because in Eq. (3.1), it is a
constituent of function G. The functionalisystem is given by
z=Cz+g(z) (3.4)

T .
where z=[z,z,,---z,] € R" denotes a statc. wector, C is an nXn constant

coefficient matrix, g is a nonlinear vector function. PHPCGS demands:

y=G(x,z) =zHx (3.5)
Our goal is to accomplish Eq. (3.5) via controller u(t) and parameter update dynamics.
Define the error vector e:

e=zHx -y (3.6)
The synchronization is achieved when

lime, =0 (i=12,..,n) (3.7)

t—©

By (3.2), (3.3), and (3.4), the error dynamics is

e=zHx+zHx—-y

= zHAx- A y+ zHf (x,B) - [ (v, B )+ CzHx + g () Hx -u(1) (3-8)

11



A Lyapunov function V(e,4,,B,) is chosen as a positive definite function of

BB, (3.9)

where = 4-4, B=B-B, A and B, are two vectors whose elements are all
the elements of matrix 4 and of matrix B, respectively. By properly choosing

u (Z), 4, and §C, its time derivative J along any solution of Eq. (3.8) and

c 2

parameter update differential equations for 4, and f?c can be obtained as

V=eCe (3.10)

where C is a diagonal negative definite matrix. J is a negative definite function of e
but a negative semi-definite function of.e,4 ;B 7In the current scheme of adaptive

synchronization [24-28], the traditional Lyapunov. stability theorem and Babalat
lemma are used to prove that the error veetor approaches zero, as time approaches
infinity. But the question that why the estimated parameters also approach uncertain
parameters remains unanswered. By the GYC pragmatical asymptotical stability
theorem, the question can be answered strictly. The equilibrium point ¢= 4= 5 =0
is pragmatically asymptotically stable. Under the assumption of equal probability, it is
actually asymptotically stable, as shown in Appendix. Hence, PHPCGS can be

achieved.

3.2 Description of Two New Chaotic 4D Systems, a New
Duffing-Van der Pol System and a New Mathieu-Duffing

System

This section introduces new Duffing-Van der Pol system and new

Mathieu-Duffing system.
12



3.2.1 New Duffing-Van der Pol system
The master new Duffing-Van der Pol system:

dax, _
__x2

dt
% X, — X, —ax, +dx,

3.11
& (3.11)
dt
dx, _

dt

The slave system is

= x4

—bx, +c(1—x32)x4 + /X,

dt
(3.12)

d ~ . ~
iz_b)@ +C(1_y32)y4+ﬁ/1 +u,

dt
where u ,u,,u,, u, are control ‘inputs, a b, c, d f are uncertain parameters,

b, ¢, d and f are estimated.parameters. The master system exhibits chaos

A

a,
when the parameters are a =0.01,bslLe=5," d =0.67, f =0.05and the initial states

are x,(0)=2,x,(0)=2.4,x,(0)=5, x,(0)=6.

3.2.2 New Mathieu-Duffing system
The functional system is a new Mathieu-Duffing system. By coupling two

noautonomous nonlinear Mathieu system and Duffing system, a new Mathieu-Duffing

system is obtained:

dz,

da

dz, 3

ar _(a3 +sz3)Zl _(as +b323)21 — ¢z, +d,z,

dz

Sy,

dt

dz, 3

—=—z,—2, — fZ, + &2

dt 3 3 344 3“1

This system exhibits chaos when the parameters of system are a,=20.3,
13
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b,=0.597,¢,=0.005,d,=-24.44,£,=0.002,g,=14.63 and the initial states of system
are z,(0=-2,z,(0)=10,z,(0)=-2,2,(0)=10, its phase portraits and time histories as

shown in Fig. 3.1.

3.3 Numerical Results for PHPCGS of Two New

Duffing-Van der Pol Systems
Since the master system, slave system, and functional system are described by
Eq. (3.11), Eq. (3.12), and Eq. (3.13), respectively, the error dynamics Eq. (3.8)
becomes:
e =n (xzz1 +x,2, ) -y, —u,
e, =h, {zz [—xl — X, —ax, + de +Xx, [—(a3 +b,z, )(zl +z ) —cyz, + d323]}
F I+ ay, —dyy —u,
& =hy(x,2,+x,2, ) — v, —uy
e, =h, {24 [—bx3 +c(1—x32)x4 +ﬁcl]+x4 [—23 -z - fiz, +g3zl]}

+l;y3 —@(l—yf)y4 _fyl T,

(3.14)

Choose a positive definite Lyapunov function for ¢, e,, e,, ¢, a, b, ¢, d, f:

V:%(elz+622+e32+e42+&2+52+52+a~72+]72) (3.15)

where a=a—-a, b zb—l;, c=c-c, c?:d—c;’, and f:f—f. Controllers and
parameter update dynamics are selected as:
u, =h (x,2,+x2,) -y, +¢
u, =h, {—22 [xl +x, +ax, —c§x3]—x2 [(a3 +b3z3)(z] + 213)+c3z2 —d3z3}}
.. n
+y,+y, +ay,—dy,+e
1 1 2 3 2 (316)

u, = h, (x4z3 +x3z4)—y4 +e,

u, =h, {24 [—b)c3 +c(1—x32)x4 +fx1]+x4 [—23 -z} - f,z, +g3zl}}

+£)’3 _é(l_%z))ﬁ_fjﬁ e
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é=e4h4z4 (l—xf)x4 (3.17)
é—g@@&
;—qmaﬁ
The time derivative of V'is
V:—ef—ezz—ef—ef <0 (3.18)

which is negative semi-definite function for e, e,, e, e, a, b, ¢, d, f. The

Lyapunov asymptotical stability theorem cannot be satisfied in this case. The common
origin of error dynamics and parameter update dynamics cannot be concluded to be

asymptotically stable. By pragmatical asymptotical theorem, D is a 9-manifold, n = 9

and the number of error state variables p = 4. Whene, = e, = ¢, = ¢,=0and a,

l;, c, c?, f take arbitrary values , V1£0550.X is a 5-manifold, m = n -p=9-4=
5. m + 1 < n are satisfied. Bythe, pragmatical asymptotical stability theorem, the

common origin of error dynamics (3.14)  and parameter dynamics (3.17) is

asymptotically stable. The equilibritm pomnt-e ='e, = ¢, = ¢, = a = b =¢

= d = f =0 is pragmatically asymptotically stable. The PHPCGS is achieved

under this scheme.
In this numerical simulation, we select the “unknown” parameter and initial

states of the master system and of functional system the same as that in Section 3.2 to

ensure the chaotic behavior. The initial states of slave system are y,(0)=y,(0)=5
and »,(0)=y,(0)=10 , the estimated parameters have initial conditions
&(O)=l;(0)=é(0)=c§(0)=f(0)=0 and the scaling matrix is

H= diag(2,§,2,_71). The numerical results are shown in Fig. 3.2 and Fig. 3.3.
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Fig. 3.1 Phase portrait and time histories of chaotic Mathieu-Duffing system.
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Chapter 4
Pragmatical Chaotic Symplectic Synchronization
with Different Order System by New Dynamic

Surface Control

A new type of chaotic synchronization, pragmatical chaotic symplectic
synchronization (PCSS), is obtained with the state variables of another different order

system as a constituent of the functional relation between “master” and “slave” .

The PCSS as follows:
y:H(x,y,t)+F(t) 4.1)
where x and y are the “master” and the “slave” system, respectively. The final
state y of “slave” system not onlydepends upon.the state x of “master” system but
also depends upon itself. In other words, the ' “slave” system does not completely
obey the “master” system but-plays arole to determine the final state y of “slave”
system. This kind of synchronization called “symplectic synchronization”*, and the
“master” and “slave” system called partner A and partner B, respectively. When
H=H(x,t) symplectic synchronization becomes traditional generalized synchronization.

Therefore the latter is a special case of the former.

* The term “symplectic” comes from the Greek for “intertwined”. H. Weyl first introduced the term in 1939 in
his book “The Classical Groups”(P. 165 in both the first edition, 1939, and second edition, 1946, Princeton

University Press)
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F (t) is a given chaotic vector of time from the states of another different order

chaotic system. Based on the pragmatical asymptotical stability theorem, new
dynamic surface control (NDSC) which makes the controllers more simple, and
adaptive control, the synchronization is achieved. Numerical simulations are provided

to verify the effectiveness of the proposed scheme.

4.1 Pragmatical Chaotic Symplectic Synchronization Scheme

There are two identical nonlinear chaotic dynamical systems, and the “master ”
system controls the “slave” system. In symplectic synchronization, the “master”

system is called partner A:

x=Ax+ f(x,B) (4.2)
where x=[x,,x,,---x,]' € R" denotes a stater.vector, 4 is an 7X71 uncertain

constant coefficient matrix, f is a.nhonlineat~vector- function, and B is a vector of

uncertain constant coefficients in f, The"—slave” 'system is called partner B:
y=Ay+f(y.B) (4.3)
where y=[»,,7,,=-y,]' €R" denotes a state vector, 4 is an 7Xn estimated

coefficient matrix, B is a vector of estimated coefficients in /. With controllers,

partner B becomes
B, = A+ (0, B) +uo) (4.4)
where u(t) =[u,(t),u,(t),---u,(t)]' €R" is a control input vector. The chaotic system

which affords chaotic F(?) vector, is called functional system. However, the PCSS
also can be achieved even the order of functional system is different from that of
partners A and B. Now we choose the order of the former is less than the latter. The

augmented functional system can be easily obtained as shown in Section 4.3. The
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augmented functional system becomes

F =CF +g(F) (4.5)

where F =[F,F,,--F,]' € R" denotes a state vector, C is an 7X7 constant

coefficient matrix, g is a nonlinear vector function. PCSS demands:
y=H(x,y,t)+F(t)

(4.6)

where H (x, y,t) consists of state vector x of partner A and state vector y of partner

B. Our goal is to accomplish Eq. (4.6) via controller u(z) and parameter update

dynamics. Define the error vector e:
e =H(x,y,t)-y,+F(t) 4.7)
The synchronization is achieved:when

lime, =0 (i=12,..,1) (4.8)

t—©

The error dynamics is

o OH  JOH L OH o io
o ) e (4.9)

By Eq. (4.2) ~ Eq. (4.5), Eq. (4.9) becomes

oH

OH OH T ~ B
e:E[Aerf(x,B)]+E[Ay+f(y,B)}+E (4.10)

—/]y—f(y,l?)—u(t)+CF+g(F)
In order to reduce terms of the u(z), NDSC is used which makes u(z) more simple.

This method extends the traditional dynamic surface control [44]. A virtual controller

W 1is chosen as follows

mW +W = H(x,y,t)+ F(t), }irgW(t)=H(x,y,t)+F(t) (4.11)

The m is a time function to be determined. Define the boundary layer errors as
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s=W —H(x,p,t)+ F(t) (4.12)

Its derivative is

. s d
S=ES—E(H(x,y,t)+F(t)) (4.13)

Eq. (4.7) and Eq. (4.10) becomes

e =W-y, (4.14)

é:W—fly—f(y,é)—u(t) (4.15)
A Lyapunov function V(e,s, EC,EC) is chosen as a positive definite function of
B? .

¢ c*

e, s, A

V(e,s,4,B) zleTe+lsTs+—A T4 +
2 2 2

1

1~ ~
BB, (4.16)

c

A

where 1= A4- A4, B=B_B, Atand B

c c

are two vectors whose elements are all

the elements of matrix 4 and of matrix B, respectively. Its time derivative along

any solution of Eq. (4.13) and Eq. (4.15) and parameter update differential equations

for 4. and Z§C is ¥ . Choose u(t), m(t), /;16 and f?c so that

V =e"Pe+s"Os (4.17)
where P and Q are diagonal negative definite matrixes, and ¥ is a negative
semi-definite function of e,s,;lc,f?c . In the current scheme of adaptive

synchronization [24-28], the traditional Lyapunov stability theorem and Babalat
lemma are used to prove that the error vector approaches zero, as time approaches
infinity. But the question that why the estimated parameters also approach uncertain
parameters remains unanswered. By the pragmatical asymptotical stability theorem,
the question can be answered strictly. The equilibrium point e=gs=A4=B=0 is

pragmatically asymptotically stable (see Appendix). Under the assumption of equal

22



probability, it is actually asymptotically stable. Hence, the PCSS can be achieved.

4.2 Numerical Results for the PCSS by New Dynamic

Surface Control

Since the partner A, new Duffing-Van der Pol system, is described as

@

a7’

%z—xl —x —ax, +dx,

4.18

e (4.18)
a

dx, 2

I —bx, +c(1—x3 )x4 + /X,

where a, b, ¢, d, fare uncertain parameters:Fhe partner B is described as

dy, _

g W

d . -
%= —W =y —ay, +dy,

(4.19)

Py,

a !
D _py o=y f

=y e (1=07 ) v+ A

where a, b, ¢, d and [ are estimated parameters.

For this scheme, u;, u; u3; and uy are added to the partner B then becomes

controlled partner B:
dy,
L=y +u
i Yo T Y
dy . A
ST byt

(4.20)

by,
dt 4 3
dy ~ R A
7;:_17373 +C(1_y32)y4 + 7 +uy

The chaotic Lii system is chosen as functional system [45] and the augmented state
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variable is z, =z, :

dz
d_tl = g(Zz Zl)
LAY =—zz,+ hz,
dt (4.21)
dz,
= z,z, —kz,
dz
7; =2gz, (Zz Z1)
In the PCSS, we select the
i=1,2,---,n
H, (x,y,t)=(-x, )j y,+z/ |2, i=even (4.22)
773, i=odd
Now n=4. By NDSC, the error dynamics Eq. (4.15) becomes:
é = Wl —h Y
o, =W, +y,+y +ay —c;’y —u
.2 .2 1 1 2 3 2 (423)
e =W;—y, —u,
e, = W4 +by, _é(l_Y32)Y4 — -
and the boundary layer error dynamics Eq:i(4=13) becomes:
. =S
Sy =7_[_3x12x2% —xy, +3gz/ (Zz —Zl)]
1
. __S2 3 2 3 A 3
5> _m__[_zxzyz (_xl —X T ax, +dx3)_x2 (_)ﬁ N T, +dy3)
2
+2z (—Zz + hz )
(e e (4.24)
. =S
8, :j—[—3x§x4y3 -xy,+3z; (2,7, —kz3)J
3
. ) N A 7
S, :?“—[—Zm‘y4 (—bx3 +c(1—x32)x4 +fxl)—xf (—by3 +c(1—y32)y4 +fj/1)
4
+4gzz, (22 -z ):I

Choose a positive definite Lyapunov function for e, e,, e, e, s, S,, §;, S,,

1 - ~ - ~ ~
V:E(elz+e22+e32+e42+s12+s22+s32+sj+a2+b2+c2+d2+f2) (4.25)

where d=(a—a), b=(b-b), =(-¢), d=(d-d), and f=(f-f). We
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select controllers, estimated parameter dynamics, and the m as:

u, = VK —)te
u, =W, +y +y +ay —c;’y +e
MERR R 2 376 (4.26)
uy =W, =y, +e
u, =W, +by, —@(l—yf)y4 _JAﬁ’l te,
They are more simple.
a= ~2X,1,5,
l; ==2X,X, 1,8,
¢=2x;y,(1-x7)s, (4.27)
C? = 2X,%3),5,
]; =2X,X,,8,
— )

=5 _3“‘12)(2)’1 _xljyz +38212 (Zz _Zl)
m, = ~ 3 o 3

=, =2, (_xl _)‘f —ax, +Cb%)_)‘§('yl s +aj/3)+222 (_les +}Ez)

(4.28)
_ =5
=5, =30x,0, ~ XY, +32 (lez —kz3)
-,

m, = — . g -

5 —2.x4y4(—lpr3 +C(1—x32)x4 +ﬁ¢1) ) (_b)% +c(1—y32)y4 +J5’1) +4gz,z, (Zz _Zl)

The time derivative of V is
;o 2 2 2 2 2 2 2 2
V=-—e —e;—e —e,—s —5,—5,—5, <0 (4.29)
which is negative semi-definite function for e, e,, e, e, s, S,, S, S,, 4,

b, ¢, d, f.The Lyapunov asymptotical stability theorem cannot be satisfied in this
case. The common origin of error dynamics, parameter update dynamics, and
boundary layer error dynamics cannot be concluded to be asymptotically stable. By
pragmatical asymptotical theorem, D is a 13-manifold, » = 13 and the number of error

state variables p = 8. When ¢, = ¢, = ¢, = ¢,= 5= s,= s, = 5,= 0 and 4,

b, c, d , f take arbitrary values, ¥ =0, so X'is a 5-manifold, m=n-p=13-38
= 5. m + 1 < n are satisfied. By the pragmatical asymptotical stability theorem, the
common origin of error dynamics (4.23), boundary layer error dynamics (4.24), and

parameter dynamics (4.27) are asymptotically stable. The equilibrium point ¢ = e,
25



= e =¢ =s5=5 =58 =s=4a4=5b=¢=4d=Ff=0Iis
pragmatically asymptotically stable. The PCSS is achieved under this scheme.

In this numerical simulation, we select the “unknown” parameter and initial
states of the partner A and of functional system as a=0.01, b=1, c=5, d=0.67, {=0.05,

g=36, h=20, k=3 to ensure the chaotic behavior. The initial states of those system are
X, (O) =2, X, (O) =24, x, (O) =5, x, (O) =6, (O) =35, ), (O) =5, (O) =10,
¥,(0)=10, z(0)=2z,(0)=2/(0)=2z,(0)=10. The estimated parameters have initial

conditions a(0)= I;(O) =¢(0)= d (0)= f(O) =0. The numerical results are shown

in Fig. 4.1 ~ Fig. 4.4.
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Chapter 5

Chaos Generalized Synchronization of New
Duffing-Van der Pol Systems by GYC Partial Region

Stability Theory

A new chaos generalized synchronization strategy, using the GYC partial region
stability theory, the controllers are of lower degree than that of controllers by using
traditional Lyapunov asymptotical stability theorem. The simple linear homogeneous
Lyapunov function of error states makes the controllers introducing less simulation
error. A new Duffing-Van der Pol system and hyper-chaotic Lii system [46] are used

as simulated examples.

5.1 Chaos Generalized-Synchronization Strategy

Consider the following unidirectional.coupled chaotic systems
x=f(¢,x)

§=h(s,y)+u G-

where x =[x, x,,-,x,]' €R", y=[1,0.,»,] €R" denote the master state
vector and slave state vector respectively, f and h are nonlinear vector functions,
and u=[u,u,,-,u,] €R" isa control input vector.

The generalized synchronization can be accomplished when ¢ — oo, the limit of
the error vector e=[e,,e,,",¢,]' approaches zero:

lime=0 (5.2)

—®

where
e=G(x)-y (5.3)

G(x) is a given function of X.
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By using the partial region stability theory (see Appendix), the linear
homogeneous terms of the entries of e can be used to construct a positive definite

Lyapunov function and the controllers can be designed in lower degree.

5.2 Numerical Simulations

Two new Duffing-Van der Pol systems with unidirectional coupling are given:

X, =X,
. 3
X, ==X, —X; —ax, +dx,

X, =x,

X, =—bx, +c(l—x32)x4 + /x,

W=y, T, (5.4)
Py ==y =y —ay, +dy, +u,
V3 =Yyt
Yy =—by, +c(1—y32)y4 + e,
CASE I. The generalized synchronization-error-function is
e =x, —y +30, i=1, 2,34 (5.5)

The addition of the constant 30 makes the error dynamics always happens in the first

quadrant. Our goal is y, =x, +30, i.e.

lime, = lim(x, — y, +30) =0, i=1,23 4 (5.6)
t—©

t—o

The error dynamics becomes

. . 2 2
Q=X =Y =X—Y,tXx —X —Uy

. . . 3 3 2 2

€, =X, =Y, ==X, — X, —ax, +dx; —(=y, = y; —ay, +dy;)+x; —x; —u,

(5.7

- . _ 2_ 2_
€ =Xy =Yy =Xy m Yy T Xy — Xy — Uy

e, =X, —y, =—bx, +c(1—x32)x4 + fx _(_by3 +C(1—y32)y4 +ﬁ’1)+x32 _x32 —u,
Let initial states be (x,x,,x;,x,)= (2, 2.4, 5, 6), (¥, V,, V5,¥,)=(5, 5, 1, 1) and

system parameters a=0.01, b=1, ¢=5, d=0.67, f=0.05,we find that the error
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dynamic always exists in first quadrant as shown in Fig. 5.1. By GYC partial region

asymptotical stability theory, one can choose a Lyapunov function in the form of a

positive definite function in first quadrant:

V=e+e +e +e,

(5.8)
Its time derivative is
V=¢+é+6é+é,
2 2
_(xz_Y2+x1 X _“1)
3 3 2 2
+(—x1—xl —ax, +dx;+y, +y +ay,—dy, +x; —x, —uz) (5.9)
2 2
+(x4—y4+x3 X3 _“3)
2 2 2 2
—i—(—bx3 +c(1—x3 )x4+fxl +by3—c(1—y3)y4—ﬁ/1 + x5 —X; —u4)
Choose
U =x,—y, +x +e
U, =—X, — X, —ax, +dx, +J + Vi +ay; —dy, =X +e,
2 (5.10)
Uy =X, =YV, T X5 T &

u, =—bx, +c(1—x32)x4 + o+ by, —c(l—yf)y4 — ), —xi +e,
We obtain

V=-e—-e,—-e,—-¢,<0

(5.11)

which is negative definite function in the first quadrant. Four state errors versus time

and time histories of states are shown in Fig. 5.2 and Fig. 5.3.

CASE I1I. The generalized synchronization error function is

e, =x,—y,+Fsinwtcos wt +50,

i=1,2,3 4 (5.12)
Our goal is y, = x, + F'sinwt cos wt +50, i.e.
lime, = lim(x;, — y, + F'sin wt cos wt + 50) = 0, i=1,2,34 (5.13)

The error dynamics becomes
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é =x —y +Fwcos’ ot — Fwosin® ot

é =x,+Fwcos’ ot — Fosin® ot — y, +x, — x; —u,
é, =—x,— X, —ax, +dx, + Focos’ wt — Fosin® ot
~(=y =W —ap, +dy;) + X5 = x5 —u,
é, =x,+Fwcos’ ot — Fosin® ot — y, +x; —x; —u, (5.14)

é, =—bx, +c(1—x32)x4 + fx, + Fwcos” ot — Fosin® ot

_(_by3 +c(1—y32)y4+ﬁ/1)+x§ _xj_”4

Let initial states be (x,x,,x;,x,)= (2, 2.4, 5, 6), (¥, V,, V3,¥,)=(5, 5, 1, 1) and

system parameters a =0.01, b=1, ¢=5, d=0.67, f=0.05,F=5 and w=0.2,
we find that the error dynamics always exists in first quadrant as shown in Fig. 5.4.
By GYC partial region asymptotical stability theory, one can choose a Lyapunov

function in the form of a positive definite functionin first quadrant:
V=e+e,+e,+e, (5.15)

Its time derivative is

V= (x2+Fa)cos at —Fosin® ot —y,+x, = ”1)+
+(—x1—xf—axz+dx3+Fa)cos2at—Fa)sin2wt+yl+yf+ay2—dy3+x22—x§—u2)
(x4+Fa)cos ot —Fosin® ax — y4+x4 x4 u3) (5.16)

(—bx3+c 1 X x4+ﬁq +Fawcos” ot — Fosin® ax +by,
—C(l—y3 )y4 - +xj _xj _”4)

Choose

u, =x, +Fowcos’ ot — Fosin® wt —y, +x; +e¢,
U, =—x,— X, —ax, +dx, + Focos’ ot — Fosin® ot +y, +y; +ay, —dy, — x; +e,
2 ) 2
u, =x, +Focos” ot —Fosin” wt -y, +x, +e, (5.17)
u, =—bx, +c(1—x32)x4 + fx, + Focos” ot — Feosin® ot + by,

_C(I_J’;)M - M —xj t+e,

We obtain
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V=-—e-e—-e—-e<0 (5.18)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of states are shown in Fig. 5.5 and Fig. 5.6.

CASE I11. The generalized synchronization error function is

e, =%xl.3—yl.+80, i=1,2,3, 4 (5.19)
. 1 5 .
Our goal is y, =Exl. +80, i.e.

lime, = lim(% x> =y, +80) =0, i=1,2,3,4 (5.20)

t—0

The error dynamics become

2 .

é :Exi X =y,
é =Exfx2 —y, +x =X =u,
é z%xf (—xl—xf—ax2+dx3)—(—y1—yl3_a)b +dy3)+x12—x,2—u2
(5.21)
é =Ex32x4—y4—i-x32—x32—u3
é, =%xf (—bx3+c(l—x32)x4+fxl)—(—by3 +c(1—y§)y4 +]_‘j/1)+x32—x32—u4

Let initial states be (x,,x,,x;,x,)= (2, 2.4, 5, 6), (¥, ¥,,5,¥,)= (5,5, 1, 1) and

system parameters a =0.01, b=1, ¢=5, d=0.67, f=0.05, we find the error
dynamics always exists in first quadrant as shown in Fig. 5.7. By GYC partial region
asymptotical stability theory, one can choose a Lyapunov function in the form of a

positive definite function in first quadrant:
V=e+e +e +e, (5.22)

Its time derivative is
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; 3 2 2 2
V:(—xlx2 -V, X =X —u,

10
3
+ Exzz(—x1 -x —axzJra’363)+yl+y13+ay2—afy3 +x12—x12—u2j
(5.23)
+ 3 2 + 2 2
Ex3x4_y4 X3 X3 —Us
3
+ Exﬁ (—bx3+c(1—x32)x4+f)cl)+la)/3—c(l—y32))/4—ﬁ/1 +x32—x32—u4j
Choose
3
u, E)cl)c2—y2+xl+e1
u, z%xf (—x1 - X, —ax, +abc3)+y1 +y) +ay, —dy, —x{ +e,
(5.24)
”3:Ex32x4_y4+x32+e3
3
u, :Exj<—bx3 +c(l—x32)x4+fxl)+by3 —c(l—yf)y4—ﬁ/1—x32+e4
We obtain
V=-—e-e—-e-e<0 (5.25)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of states are shown in Fig. 5.8 and Fig. 5.9.

CASE 1V. The generalized synchronization error function is

ei:xi—yi+%zi+150, i=1, 2, 3, 4 (5.26)

z=[z z, =z =z] Iisthe state vector of hyperchaotic Lii system.

The goal system for synchronization is hyperchaotic Lii system and initial states

is (1, 1, 1, 1), system parametersa, =36, b, =20, ¢, =3, d, =1.3.
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Z, =a, (22 —Zl)+Z4
z,=bz,-zz,
Z, =—Cz, + 2,2,

z,=dz, +z,z,
We have
. . 1
lime, = lim(x, -y, +Ezi +150)=0
t—o0 t—o©

The error dynamics becomes

¢ =X, —), t—-z

2

o1 2 .2
G =X +E(_CIZS +lez) VTN X

) 1
g=x +5[a1 (Zz _21)+Z4:|_J’2 ‘Hé _x22 -

h

i=1, 2, 3, 4

) 1
& ==X —x] —ax, +dx, +E(blzz _ZIZ3)_(_y1 -3 —ap, +a§’3)+x§ —X ~u,

(5.27)

(5.28)

(5.29)

é, =—bx, +c(1—xf)x4 + fx, +%(dlz4 +zlz3)—[—by3 +c(1—y32)y4 +ﬁ/l]+xf —xf -u,

Let initial states be (x,, x,, x;,X2)= (2, 24,75, 6)." (¥, ¥,, ¥5,v,)= (1, 1, 1, 1) and

system parameters a =0.01, b=1, ¢=5, d=0.67, f=0.05, we find the error

dynamics always exists in first quadrant as shown in Fig. 5.10. By GYC partial region

asymptotical stability theorem, one can choose a Lyapunov function in the form of a

positive definite function in first quadrant:
V=e+e, +e +e,

Its time derivative is
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. 1
V:[)c2 +5|:a1 (22 —zl)+z4]—y2 +x§ —x§ —ulj

1
+| =X, —xf —ax, +dx, +E(blz2 —zlz3)+y1 erl3 +ay, —dy, +X22 —x22 —uzj
(5.31)
+ 1 2 2
X, +E(—clz3 +2,2,) = Y+ Xy — X~y

1
+| —bx, +c(1—x32)x4 + fx, +§(a’lz4+zlz3)+by3 —c(l—yf)y4 —f+x; —xf—uJ
Choose
1 2
ul:x2+5[a1(22—zl)+z4:|—y+x2+e]
v 3 dx l bz — 3 —dy. — 2
Uy ==X =X —ax, + 3+2(1Zz 2123)+y1+y1+ay2 Y, =X, T6

| (5.32)
U, =X, +§(_clz3 +2,2)) =Y, Uy + X, +e

1
u, =—bx, +c(1—x32)x4 + fx +E(dlz4 +2123)+by3 —c(l—yf)y4 — i —x; +e,
We obtain
V=-—e-e—-e-e<0 (5.33)

which is negative definite function.in first quadrant. Four state errors versus time

and time histories of states are shown in Fig. 5.11 and Fig. 5.12.
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Chapter 6

Chaos Control and Anti-control of a New
Duffing-Van der Pol System by GYC Partial Region

Stability Theory

Using the GYC partial region stability theory, a new chaos control and
anti-control strategy is proposed. The controllers are of lower degree than that of
controllers by using traditional Lyapunov asymptotical stability theorem. The simple
linear homogeneous Lyapunov function of error states makes the controllers
introducing less simulation error. A new Duffing-Van der Pol system and

hyper-chaotic Lii system are used as. simulated examples.

6.1 Chaos Control Scheme

Consider the following chaotic systems

x=f(t, %) (6.1)

T . .
where x:[xl,xz,---,x] € R" is a the state vector, f:R xR" —> R" is a vector

n

function.

The goal system which can be either chaotic or regular, is
y=g(y) (6.2)
where y= [yl,yz,...,yn]T €eR" is a state vector, g:R xR"—>R" is a vector

function.

In order to make the chaos state vector X approaching the goal state vector Y,
define €=X—Y as the state error. The chaos control is accomplished in the sense
that [35-41]:

lime=1lim(x-y)=0 (6.3)

43



In this Chapter, we will use examples in which the error dynamics is placed in
the first quadrant of coordinate system and use the GYC partial region stability theory.
The Lyapunov function is a simple linear homogeneous function of error states and
the controllers are simpler because they are in lower degree than that of traditional

controllers.
6.2 Numerical Simulations for Chaos Control
The following chaotic system is the new Duffing-Van der Pol system of which

the old origin is translated to (x,,x,,x;,x,)=(50,50,50,50) and the chaotic motion

always happens in the first quadrant of coordinate system (x,,x,,x;,x,). This
translated new Duffing-Van der Pol system is presented as simulated examples where
the initial states of system are x,(0)=52,x,(0)=52.4,x,(0)=55,x,(0)=56 and the
parameters of system are a=0.01, b=1, ¢=5,'d=0.67, f=0.05. The chaotic

motion is shown in Fig. 6.1.

% = (x, -50)

X, =—(x,-50)—(x, —50)3 —a(x,—50)+d(x,—50)

£, = (x, —50) (©4)
%, ==b(x,=50)+(1=(¥, =50)" ) (x, = 50)+ £ (x, ~350)

In order to lead (xi, x2, x3, x4) to the goal, we add control terms u;, us, u3, usto

each equation of Eq. (6.4), respectively.

X, :(x2 —50)+u1
X, =—(x1 —50)—(x1 —50)3 —a(x2—50)+a7()c3—50)+u2

X, :(x4 —50)+u3 6.5)

%, = b (%, = 50)+ (1= (x,=50)" ) (x, = 50)+ £ (x, ~50) +u,

CASE 1. Control the chaotic motion to zero.

44



In this case we will control the chaotic motion of the new Duffing-Van der Pol

system (6.4) to zero. The goal is y=0. The state error is e=x-y=x and error

dynamics becomes

é =X :(x2 —50)+el2 —e +u,
é, =%, =—(x,—50)—(x, —50)3—a(x2—50)+d(x3—50)+ef—ef+u2
e =X, :(x4—50)+e§ —e +u,

é, =%, =—b(x, —50)+c(1—(x3 —50)2)()(4 —50)+ f(x,—50)+e; — €& +u,

(6.6)

In Fig. 6.2, we see that the error dynamics always exists in first quadrant.
By GYC partial region stability theory, one can easily choose a Lyapunov

function in the form of a positive definite function in first quadrant as:
V=e+e,+e +e, (6.7)

Its time derivative through efror dymamics(6.6) is
V=6+é+é+é,
=(x,~50)+¢ ¢ +14~(x, <30)~(x =30} =afx, -30)+d(x,~0)+§ - +u, (6.8
+(x,—50)+& —& +1, —b(x,~50) +c(1—(x3 —50)2)():4 —50)+1(x —50)+& —¢& +u,
Choose

(x2—50)+e1 —-e

=—(—(x,=50)—(x, 50) a(x,—50)+d(x,—50))—¢ —e,
(x4 50)+ez—e3
(o

—b(x,-50) +c(1 ( 3—50)2)(X4—50)+f(x1—50))—€22—€4

(6.9)

We obtain
V=—e—-e—e—e<0

which is negative definite function in first quadrant. The numerical results are shown

in Fig.6.3. After 100 sec, the motion trajectories approach the origin.

45



CASE II. Control the chaotic motion to a product of sine and cosine functions.

In this case we will control the chaotic motion of the new Duffing-Van der Pol
system (6.4) to a product of sine and cosine functions of time. The goal is
y = Fsinwtcos wt . The error equation

e=X-y=X-Fsin®’coswt (6.10)

lime, = lim(x, — Fsinwtcoswt) =0, i=12,3,4
t—o0

t—o

and é =x-wFcos’ot+wFsin*wt (i=1,2,3,4) and F=5, ©=02,

w,=04, 0,=0.6, w,=0.8.The error dynamics is

é =% —oF cos’ ot + o Fsin’ ot +e; —e;
é, =%, —@,F cos” ot +o,Fsin’ ot +e; —e;
6.11)

.. 2 ) 2 2
e, =x; —,F cos” ot + o, F sin” ajtt e e,

.. 2 % 2 2
e, =x,—w,F cos” ot +w,Fsin” otte; e,

In Fig. 6.4, the error dynamics always exists’in first quadrant.
By GYC partial region stability. theery; one- can easily choose a Lyapunov

function in the form of a positive definitefunction in first quadrant as:
V=e+e,+e +e,
Its time derivative is

V=¢+é+é+é,
=(x, —50) ~@yF cos” @yt + @y F'sin® et +¢& —& +u, —(x, —50) —(x,~50)’
—a(x,~50)+d(x,~50) ~@ F cos’ ayt + o, F'sin’ wyt +€; —¢; +u, +(x,~50)  (6.12)
—wyF cos’ ot + o Fsin’ o +¢, —¢, +u, —b(x, —50)+c(1—(x3 —50)2)(x4 —50)

+f(x,—50)— @, F cos’ oy + o, Fsin’ ot +¢; —€, +u,

Choose

46



1y = (x,~30)—gF o’ +gFsin’ et +€ —¢,
ty = {24 ~50) {50 ~a(x,—50) +d(x,~0) ~3F s’ ay+ i’ x| -
u, :—((x4 —50)—wFoos’ af+ayF'sin’ agt) +é —e,

u, :{4)()% =50) e[ 1-{3,~50] ) o, ~30)+/ (- 50) ~aFecs’ car-+eq s’ @t)—ei e,

(6.13)

We obtain
V=—e—-e—e—e<0

which is negative definite function in first quadrant. The numerical results are shown
in Fig.6.5 and Fig. 6.6. After 100 sec., the errors approach zero and the motion

trajectories approach to sine and cosine functions.

CASE I11. Control the chaotic motion to chaotic motion of hyper-chaotic Lii system.
In this case we will contrel chaotic 'motion ‘of the new Duffing-Van der Pol
system (6.4) to that of hyper-chaotic Lii system. The goal system is hyper-chaotic Lii

system:

zZ, =a (22 —Zl)+Z4
z, =bz,—2zz, 6.12)

Zy = —CZy + Z,z,

z,=dz,+2zz,

1 .
The error equation is e=x-§z. The goal is }gge=0. The error dynamics

become

o 1
& =% —% =(x,—50) —g(al(zz —2)+2,)+5 —2 +u

& =~ =—{x =0) (5 =50) ~a(x,~50)+l(x ~50)—(hz—zz) +5 -7+
1 (6.15)
&=x-z :(x4 —50) —g(—CIZ3 +21Z2) +Zi —Zj +ity

6, =52, =b{x,~0) e[ 11,0 ) (x,~0)+/(x -50)-§(¢Z4+ZIZS)+Z§ 2+,
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By Fig. 6.7, we know that the error dynamics always exists in first quadrant.
By GYC partial region stability theory, one can easily choose a Lyapunov

function in the form of a positive definite function in first quadrant as:
V=e+e, +e +e,
Its time derivative is
V=6+é+é+é,
~(x, _50)-§(al(zz Cz)z,) 22— 2 b — (3, - 50)— (x, — 50)°

~a(x,~50)+d(x, -50)%(% nz) 42— 2 b, +(x, —50)

(6.16)
_é(—cl% +2,2, )4z, -z, +uy —b(x —50)+c(1—(x3 —50)2)()64 -50)
+f(xl —50)—%(6[124 +le3)+zj —z; +u,
Choose
1 :
U, :—((x2 —50) —g(q (22 —Zl)+Z4))+Zz ~&
1
U, =— —(x1 —50) —(x1 —50)3 —a(x2 —50)+a’(x3 —50) —g(blz2 —2123)j—222 -e,
(6.17)

1
U, =— (x4 —50) —g(—C]Z3 +le2))+2§ —e,

ty =~ =b(x,50)+¢(1(x,~50)" ) (x, ~50) + £ —50)—%(61124 +zlz3)j—zj —e,
We obtain
V=-—e-e—-e-e<0
which is negative definite function in first quadrant. The numerical results are shown

in Fig.6.8 and Fig. 6.9 where a, =36, b =20, ¢, =3, d, =1.3. After 100 sec., the

errors approach zero and the chaotic trajectories of the new Duffing-Van der Pol

system approach to that of the hyper-chaotic Lii system.
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6.3 Numerical Simulations for Chaos Anti-control

In this section, we will control periodic motion of the new Duffing-Van der Pol
system to that of hyper-chaotic Lii system. The new Duffing-Van der Pol system
exhibits  periodic = motion when the  parameters of system are

a=0.1, b=1, ¢=5, d=0.67, f=0.05 and the initial states of system are

x,(0)=2,x,(0)=2.4,x,(0) =5, x,(0) = 6. The following periodic system

% =(x, —50)

X, =—(x-50)—(x, —50)3 —a(x,—50)+d(x,-50)

% = (x, ~50) (6.18)
%, ==b(x,=50)+¢(1=(¥, =50)" ) (x, = 50)+ £ (x, = 30)

is the new Duffing-Van der Pol system_ of which the old origin is translated to

(x,,x,,%;,x,)=(50,50,50,50) and the periodic motion always happens in the first

quadrant of coordinate system=(x,,x,,¥;;%,).. This franslated new Duffing-Van der

Pol system is presented as simulated examples where the initial states of system are
x,(0)=52,x,(0)=52.4,x,(0) =55,x,(0) =56 and the parameters of system are
a=0.1, b=1, ¢=5, d=0.67, f=0.05. The periodic motion is shown in Fig.
6.10.

In order to lead (xi, x2, x3, x4) to the goal, we add control terms u;, uy, u3, usto

each equation of Eq. (6.18), respectively.

% =(x,—50)+y,

i, =—(x —50)~(x,-50)" —a(x, ~50)+d (x,~50)+u,

%, =(x, —50)+u, (6.19)
%, ==b(x, =50)+¢(1-(x, = 50)" ) (x, = 50)+ £ (x, ~50) +1,

The goal system is hyper-chaotic Lii system:
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Z, =a (22 —zl)+z4
z,=bz,—zz, (6.20)

Z; = —CzZy + Z,Z,

z,=dz, +zz,

1 .
The error equation is € =X -gz . The goal is }l_{ge =0 The error dynamics becomes

L 1
§=x-%=(x, —50)—5(611(22 —z)+z,)+2 2+

o 1

& =3, —2, =—(x,—30)~(x,~50)’ —a(x,~50) +d(x,~50) —(ba-zz)+7 =5+
1 6.21)

&=X—2 :(x4 _50) *5(_0123 +le2) +Z32 _232 i

&, =%y —2,=b{x,—50)+¢{ 1=, ~50]") (x,~50)+ / _50)%(6424 22,42 2+,

By Fig. 6.11, we know the error dyhamics alwaysexists in first quadrant.
By GYC partial region stability theory, one can easily choose a Lyapunov
function in the form of a positive definite function in-first quadrant as:

V=e+e,+e +e,

Its time derivative is

V=¢+e,+é+eé,
- (x, —50)—%(611(22 —z)hz,) bz -2 b — (3~ 50)— (x, - 50)°
—a(x2—50)+d(x3—50)—§(b122—zlz3)+zf—212+u2+(x4—50) 622)
_i(_% +5.2,)+ 22— 2 4= b(x,—50) +(1-(x, ~50) )(x, ~50)

+f(x1 —50)—%(0,’124 +ZIZ3)+Z32 -z; +u,

Choose
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=—{(-50)-almmm)+2) Jo e

u, =—| —(x, —50)—(x, —50)3 —a(x,~50)+d(x,—50) _%(blzz _2123))_212 B
1 (6.23)
u, = (x, —50)—5(_CIZ3+Z122)]+Z32 —e,

U, =— —b(x3 —50)+C(1—(X3 —50)2)(x4 —50)+f(x1 —50)—%(61124 +le3)j—z32 -e,
We obtain
V=-—c—-¢-¢-¢<0
which is negative definite function in first quadrant. The numerical results are

shown in Fig.6.12 and Fig. 6.13 where a, =36, b, =20, ¢, =3, d,=1.3. After 200

sec., the errors approach zero and the periodic trajectories of the translated new

Duffing-Van der Pol system approach to that of'the hyper-chaotic Lii system.
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Chapter 7
Hybrid Projective Symplectic Synchronization of a
New Duffing-Van der Pol System with Legendre
function Parameters by GYC Partial Region Stability

Theory

A new type of chaotic synchronization, hybrid projective symplectic
synchronization (HPSS), is obtained for a Duffing-Van der Pol system with constant
parameter and a new Duffing-Van der Pol system with Legendre function parameters.
The latter is used as “master” system and the former as “slave” system. Based on
the GYC partial region stability itheory, the scheme can be achieved not only for
projective synchronization, but-also for projective -anti-synchronization. Numerical

simulations are provided to verify the .effectiveness of the proposed scheme.

7.1 Hybrid Projective Symplectic Synchronization Scheme

There are two nonlinear chaotic dynamical systems. The “master ” system
controls the “slave” system partly. In symplectic synchronization, the “master”

system is called partner A:
i=f(x) (7.1)
where x=[x,,x,,--x,]" € R" isa state vector. The “slave” system is called partner

B:
y=r) (7.2)
where ¥ =[y,¥,,""" ), 1" €R" is a state vector. With controllers, partner B becomes
y=7)+u() (7.3)
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where u(t) =[u,(¢),u,(t), - -u, (O] €R" is a control input vector. HPSS demands:
y= H(x,y,t) = Gxy (7.4)

where H (x, y,t) consists of state vector x of partner A and state vector y of partner

(nxn)

B, G=diag(g,,g,,g, ) €R is a constant scaling matrix with positive and

negative entries. Our goal is to accomplish Eq. (7.4) via controller u(?). Define the
error vector e:

e zH(x,y,t)—y (7.5)
The synchronization is achieved when
lime =0 (i=1,2,..,n) (7.6)

i
t—>

The error dynamics is

e=——X+——y+——=7 (7.7)
By Eqs (7.2) ~ (7.4), Eq. (7.7) bécomes
. OH oH oH
e=— X)|[+— + —= —ul?
o L/ ] L ] 527 0) () (7.8)
By using the GYC partial region stability theory (see Appendix), the linear
homogeneous terms of the entries of e can be used to construct a positive definite

Lyapunov function in first quadrant and the controllers can be designed in lower

degree. Hence, the HPSS can be achieved.

7.2 Chaos of a New Duffing-Van der Pol System with

Legendre Function Parameters

This section introduces a new Duffing-Van der Pol system with Legendre

function parameters.
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L3

a

%:—xl—xf—axz—i-a’x3

dv, (7.9)
a

&:—bx +c(1—x2)x + fx

dt 3 3 4 1

where a, b, ¢, d, fare parameters. We select the Legendre functions [48] as parameters

of the system. The Legendre functions are defined by

P (x)=(-1)" (1-x*)* L (x) (7.10)

n dxm n

where P, (X) is the Legendre polynomial of degree .

1 [d,, v
P"(X)ZZ"_n!{dx” (x —1) } (7.11)

Choosing n=2, we obtain
L(x)= P (x)=B(x)
1 2 l2 d
L (1) =P (1) = (- (1= VAP (x)

L3(x):Pz2(x):(_1)2(1_x2)5_;1)2(x) (7.12)

P3| (- |

Changing the variable

x =cos (1), ~1<x<1 (7.13)
We have three periodic functions of time L, (x), L,(x), and L;(x) asshown
in Fig. 7.1. When the parameters of system are a=L, +k, b=L;, c=L +0.5, d=L, +
L,, /=L, and the initial states of system are x,(0)=2,x,(0)=2.4,x,(0)=>5,
x,(0) =6, the bifurcation diagram by changing constant parameter & is shown in Fig.
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7.2. Its corresponding Lyapunov exponents are shown in Fig. 7.3. The phase portraits,
time histories, and Poincaré maps of the systems are showed in Fig. 7.4 and Fig. 7.5.
When £=0.35, period 1 phenomena are shown in Fig. 7.4. When k=0, the chaotic

behaviors are given in Fig.7.5.

7.3 Numerical Results

Since the partner A is described by Eq. (7.9). The partner B is described as

@ _

e 7’

d

oA -0 _yl3 —ay,+dy,

dt (7.14)
s _

e

dy

7;: =by;+¢ (1_y32)y4 + /i

where a,, b, ¢, d, and f, are constant parameters. For this scheme, u;, u, u;3

and u, are added to the partner B then becomes controlled partner B:

dy
d_tl:yz +u
d
%:_Jﬁ _y]3 —a,), +d1y3 +u,
(7.15)
%=y +u
dt 4 3
dy, _ 1— 12
a 1 +Cl( — Vs )y4 + [y +u,
In the HPSS, the error function is
e=Gxy—y+100 (7.16)

The addition of the constant 100 makes the error dynamics always happens in the first

quadrant. Our goal is y=Gxy+100, i.e.
lime =1lim(Gxy—y+100)=0 (7.17)

t—o t

The error dynamics Eq. (7.8) becomes:
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& =h (0p + X)) = v+ = -,
e, =h, {yz[—x1 -x —ax2+dx3J+x2[—yl—yf—a1y2+d1y3]}
Y ay, —dy+ = —u,
& =hy (X3 +2,0,) =y 4y - i~y
e, =h, {y4[—bx3 +c(1—x32)x4+fxl]+x4[—b1y3+cl(1—y32)y4+f1yl]}

+byy—c (1=33 ) ya= Sy + i —vi —u,

(7.18)

Let initial states be (X;, X,, X;,%,)=(¥}, ¥, V3. ¥4) = (2, 2.4, 5, 6), system parameters

a:Lz, b:L3, C:Ll +05, d:Ll+L2,f:Ll, a]:0.0], b]:], C]:5, d]:067, ﬁ:005,

and the scaling matrix is G =diag(2,-1,2,-1) we find the error dynamic always
exists in first quadrant as shown in Fig. 7.6. By GYC partial region asymptotical
stability theory, one can choose a Lyapunov function in the form of a positive definite

function in first quadrant:
V=e+e,+e +e, (7.19)

Its time derivative is
V=é+é+é+é,
=h () +x0,) =y, + 3 =W -,
+h, {y2 [—xl - X —ax, +dx3]+x2 [—yl -y —ay, +d1y3}}
YAV @Y, —dys Y =Y T (XY Xy, = Y- ViU
+h, {y4 [—bx3 +c(1—x32)x4Jrfx]}r)@{—bly3 +cl(1—y32)y4 +f1yl}}

+byy—c,(1=37 ) vy = fiy + Vi =i —u,

(7.20)

Choose
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u = h (xzyl +x1y2)_y2 +y12 +e
u, =h, {J’2 I:_xl - x; —ax, +dx3]+x2 I:_J’1 - -ay, +d1y3]}

+y+ Y +ay, —dy, -y +e,

7.21
u3=h3(x4y3+x3y4)—y4+yj+e3 ( )
u,=h, {y4 [—be +c(1—x32)x4 +fx1]+x4 [—bly3 +cl(1—y32)y4+f1yl]}

+b,y, _Cl(l_yf)% —fn—vite,
We obtain
V=—e-¢-e—-¢<0 (7.22)

which is negative definite function in the first quadrant. The numerical result is shown

in Fig. 7.7.
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Fig. 7.1 Time histories.of ‘L,, L,,and L,.

hifurcation

1
0.1 015 0z 0.25 03 0.35
k

Fig. 7.2 The bifurcation diagram for new Duffing-Van der Pol system with

Legendre function parameters.
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Fig. 7.3 The Lyapunov exponents for new Duffing-Van der Pol system with

Legendre: function-parameters.
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Fig. 7.4 Phase portrait, Poincaré maps, and time histories for new Duffing-Van

der Pol system with Legendre function parameters when £=0.35 (period 1).
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Fig. 7.5 Phase portrait, Poincaré maps, and time histories for new Duffing-Van
der Pol system with Legendre function'parameters when k=0 (chaos).
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Fig. 7.6 Phase portraits of error dynamics.
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Chapter 8

Conclusions

In this thesis, the chaotic behavior in new Duffing-Van der Pol system is studied
by phase portraits, time history, Poincaré maps, Lyapunov exponent, bifurcation
diagrams, and parametric diagram.

Three kind of chaotic synchronization are presented. A new kind of generalized
synchronization system in Chapter 3, pragmatical hybrid projective chaotic
generalized synchronization (PHPCGS) of two chaotic systems with uncertain
parameters, is obtained with the state variables of another hyperchaotic
Mathieu-Duffing system as a constituent of the functional relation between master
and slave. Based on the pragmatical asymptotical. stability theorem, adaptive control
law is used.

A new type for chaotic synchrenization in Chapter 4, pragmatical chaotic
symplectic synchronization (PCSS), is obtained with the state variables of another
different order system as a constituent of the functional relation between “master”
and “slave” . Traditional generalized synchronizations are special cases of the
symplectic synchronization. The pragmatical asymptotical stability theorem is used.
New dynamic surface control is also used for making the controllers more simple.

A new chaos generalized synchronization method, using GYC partial region
stability theory, is proposed in Chapter 5. Moreover, we also study the chaos control
and anti-control by using the GYC partial region stability theory in Chapter 6. By
using this theory, the controllers are of lower degree than that of controllers by using
traditional Lyapunov asymptotical stability theorem. The simple linear homogeneous

Lyapunov function of error states makes that the controllers are simpler and introduce
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less simulation error. In addition, by replacing the parameters of the system with
Legendre function, the chaos synchronization can be successfully obtained in Section

7.
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Appendix I GYC Pragmatical Asymptotical Theorem [29]

The stability for many problems in real dynamical systems is actual asymptotical
stability, although may not be mathematical asymptotical stability. The mathematical
asymptotical stability demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin as ¢ — . If there are only a
small part or even one of initial states from which the trajectories or trajectory do not
approach the origin as ¢ — o, the zero solution is not mathematically asymptotically
stable. However, when the probability of occurrence of an event is zero, it means the
event does not occur actually. If the probability of occurrence of the event that the
trajectries from the initial states are that they do not approach zero when # — © | is
zero, the stability of zero solution is actual asymptotical stability though it is not
mathematical asymptotical stability. In order to analyze the asymptotical stability of
the equilibrium point of such systems, the pragmatical asymptotical stability theorem

is used.
Let X and Y be two manifolds of dimensions m -and n(m <n), respectively, and
® be a differentiable map from X to"¥; then~¢(X)" is a subset of Lebesque measure

0 of Y [47]. For an autonomous system

%#(xl,xz,---xn) (A1)

where x=[x,,x,,---x,]" , the function f =[f,fs,f,]" is defined on

D c R".Let x=0 be an equilibrium point for the system (A.1). Then

f(0)=0 (A.2)
For nonautonomous system,

dx

Ezf(xl,xz,---,xn“) (A.3)

where ?=x,,, € R, . The equilibrium point is

J(0,x,,)=0 (A4)

Definition: The equilibrium point for the dynamic system is pragmatically

asymptotically stable provided that with initial points on C which is a subset of
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Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D — C, the corresponding trajectories behave

as that agree with traditional asymptotical stability[29,30].

Theorem: Let V =[x,,x,,~--x,]" : D — R, positive definite, analytic on D,
where Xx;,-:-,X, are all space coordinates such that the derivative of V through

differential equation, 7, is negative semi-definite.

Let X be the m-manifold consisting of point set for whichVx =0, ¥ (x)=0 and

D is an n-manifold. If m+1<n, then the equilibrium point of the system is

pragmatically asymptotically stable.

Proof: Since every point of X can be passed by a trajectory of Eq. (A.1), which
is one dimensional, the collection of these trajectories, C, is a (m +1)-manifold
[29,30]. If (m+1) < n then the collection.C is a Subset of Lebesque measure 0 of D.

By the above definition, the=-equilibrium point of the system is pragmatically

asymptotically stable. o

If an initial point is ergodicly chosen in D, the probability of that the initial point
falls on the collection C is zero. Here, equal probability is assumed for every point
chosen as an initial point in the neighborhood of the equilibrium point. Hence, the
event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability
becomes actual asymptotical stability. When the initial point falls on D-C,
V(x) <0, the corresponding trajectories behave as if they agree with traditional
asymptotical stability because by the existence and uniqueness of the solution of
initial-value problem, these trajectories never meet C.

For Eq. (9) Lyapunov function V is a positive definite function of n variables, i.e.
p error state variables and n - p = m differences between unknown and estimated

parameters, while 7 = ¢"Ce 1is a negative semi-definite function of n variables.
Since the number of error state variables is always more than one, p>1, (m+1)<n
is always satisfied. By pragmatical asymptotical stability theorem we have
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lime =0 (A.5)

and the estimated parameters approach the uncertain parameters. The
pargmatical generalized synchronizations is obtained. Therefore, the equilibrium point
of the system is pragmatically asymptotically stable. Under the equal probability

assumption, it is actually asymptotically stable for both error state variables and

parameter variables.
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Appendix 11 GYC Partial Region Stability Theory [42]

Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

dx,
dt

:XS(Z‘,XI,'“,X”), (Szl,"',l’l) (A21)
where the function X, is defined on the intersection of the partial region Q

(shown in Fig. A2.1) and

S <H (A22)

N

and ¢>t¢,, where ¢, and H are certain positive constants. X which vanishes when
the variables x  are all zero, is a real valued function of ¢, x,---,x, . It is assumed
that X is smooth enough to ensure the existence;suniqueness of the solution of the

initial value problem. When <X  does not. contain ¢ explicitly, the system is
autonomous.

Obviously, x, =0 (s=1,---n) is a solution of Eq.(A2.1). We are interested to

the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. A2.1).
Definition 1:

For any given number & >0, if there exists a 0 >0, such that on the closed
given partial region 2 when

Zx,f() < 57 (S = 1,"',”) (A23)

for all ¢>¢,, the inequality
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D xi<g, (s=1,...,n) (A2.4)

is satisfied for the solutions of Eq. (A2.1) on Q, then the disturbed motion
x. =0 (s=1,---n) is stable on the partial region €.

N

Definition 2:
If the undisturbed motion is stable on the partial region €2, and there exists a

& >0, so that on the given partial region ©Q when

D x<8, (s=1-,m) (A2.5)

The equality

lim(foj =0 (A2.6)
is satisfied for the solutions of Eq.(A2.1) on €2, then the undisturbed motion
x, =0 (s=1,---n) is asymptotically stable on the partial region Q.

N

The intersection of Q and region.defined by Eq.(A2.5) is called the region of

attraction.

Definition of Functions V(¢,x,,---,x, ):

Let us consider the functions V(¢,x,,---,x,) given on the intersection €, of

the partial region € and the region
Y xI<h, (s=1,n) (A2.7)
for t>1¢,>0, where ¢, and & are positive constants. We suppose that the functions

are single-valued and have continuous partial derivatives and become zero when

Definition 3:

If there exists #, >0 and a sufficiently small 4 >0, so that on partial region
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Q, and t2¢,, V20 (or <£0), then V' is a positive (or negative) semidefinite, in

general semidefinite, function on the Q, and 72>¢,.

Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on €, so

that on the partial region €2, and >¢,

V—W=>0(or—V—-W=>0), (A2.8)

then V(¢,x,...,x,) is a positive definite function on the partial region €, and
t>t,.

Definition 5:

If V(t,x,...,x,) is neither definite nor. semidefinite on Q, and 7>¢,, then
V(t,x,...,x,) is an indefinite function on partial region €2, and ¢>¢,. That is, for
any small 2>0 and any large “4;>0, V(¢,%,~.,x,) can take either positive or

negative value on the partial region €, and 7>¢,.

Definition 6: Bounded function V'

If there exist 7, >0, h>0, so that on the partial region €2, we have

|V(t,xl,...,xn)| <L
where L is a positive constant, then V'is said to be bounded on Q,.

Definition 7: Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, so that on Q, when

fos,u,and t>t,, we have
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|V(t,xl,...,xn)|Sﬂ

then 7 admits an infinitesimal upper bound on €, .

Theorem 1

If there can be found for the differential equations of the disturbed motion a

definite function V(,x,,...,x,) on the partial region, and for which the derivative

with respect to time based on these equations as given by the following:

v oV oV
dt ot ;axs ’ (A2.9)

is a semidefinite function on the partial region whose sense is opposite to that of V, or
if it becomes zero identically, then the undisturbed motion is stable on the partial
region.
Proof:

Let us assume for the saké of definiteness that 1" is a positive definite function.

Consequently, there exists a sufficiently large number 7, and a sufficiently small
number / < H, such that on the intersection €, of partial region Q and

szz <h, (s=1...,n)
and ¢ 2>t,, the following inequality is satisfied

Vit,x,....x,)=W(x,...,x,),

where W is a certain positive definite function which does not depend on z. Besides
that, Eq. (A2.9) may assume only negative or zero value in this region.
Let & be an arbitrarily small positive number. We shall suppose that in any case

g<h. Let us consider the aggregation of all possible values of the quantities

X,,...,X,, which are on the intersection @, of €, and
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Sx=e, (A2.10)

N

and let us designate by />0 the precise lower limit of the function W under this

condition. by virtue of Eq. (A2.5), we shall have

Vit,x,....x,)=l for (x,...,x,) on w,. (A2.11)
We shall now consider the quantities x, as functions of time which satisfy the
differential equations of disturbed motion. We shall assume that the initial values x_,

of these functions for #=¢, lie on the intersection €2, of €, and the region

Y xl<o, (A2.12)

N

where & is so small that

V(ty, X050 %,0) <d (A2.13)

By virtue of the fact that F(z,,0,...,0)= 0, such;a selection of the number & is

obviously possible. We shall suppose that in any case the number & is smaller than
& .Then the inequality

D x] <k, (A2.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently

small 7—t¢,, since the functions x (¢#) very continuously with time. We shall show

that these inequalities will be satisfied for all values ¢>¢,. Indeed, if these

inequalities were not satisfied at some time, there would have to exist such an instant
t=T for which this inequality would become an equality. In other words, we would

have

S (T)=e,

and consequently, on the basis of Eq. (A2.11)
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V(T,xT),...,x (T)) =1 (A2.15)
On the other hand, since & <h, the inequality (Eq.(A2.4)) is satisfied in the

. ) . . o dVv
entire interval of time [ty, T], and consequently, in this entire time interval 7 <0.
t

This yields
VT, x,(T),....,x,(T) <V (ty, X155, %,0)s
which contradicts Eq. (A2.14) on the basis of Eq. (A2.13). Thus, the inequality (Eq.
(A2.4)) must be satisfied for all values of >¢,, hence follows that the motion is
stable.
Finally, we must point out that from the view-point of mathematics, the stability
on partial region in general does not be related logically to the stability on whole

region. If an undisturbed solution'is stabléjon‘a partial region, it may be either stable

or unstable on the whole region and vice versa. From the viewpoint of dynamics, we

are not interesting to the solution’starting from €2, “and going out of Q.

Theorem 2

If in satisfying the conditions of theorem 1, the derivative Z—V is a definite
t

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that
v . . : . .
consequently, > is negative definite. Thus on the intersection €, of Q and the
t
region defined by Eq. (A2.7) and ¢>¢, there will be satisfied not only the inequality

(Eq. (A2.8)), but the following inequality as will:
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cil—I:S—Wl(xl,...xn), (A2.16)

where W, is a positive definite function on the partial region independent of t.
Let us consider the quantities x, as functions of time which satisfy the

differential equations of disturbed motion assuming that the initial values x , = x (Z,)
of these quantities satisfy the inequalities (Eq. (A2.12)). Since the undisturbed motion
is stable in any case, the magnitude & may be selected so small that for all values of

t>t, the quantities x, remain within €, . Then, on the basis of Eq. (A2.16) the

derivative of function V(¢ x,(?),...,x,(¢)) will be negative at all times and,
consequently, this function will approach a certain limit, as ¢ increases without limit,
remaining larger than this limit at;all times. We shall show that this limit is equal to

some positive quantity differentfrom zero. Then for all values of ¢>1, the following
inequality will be satisfied:
Vit x(1),....,x,(t) >« (A2.17)

where a>0.

Since V permits an infinitesimal upper limit, it follows from this inequality that

DXz, (s=1,...n), (A2.18)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity sz (1) were smaller than any preassigned

number no matter how small, then the magnitude V(z,x,(?),...,x, (¢)), as follows

from the definition of an infinitesimal upper limit, would also be arbitrarily small,

which contradicts (A2.17).

If for all values of 7>¢, the inequality (Eq. (A2.18)) is satisfied, then Eq.
78



(A2.16) shows that the following inequality will be satisfied at all times:

<,
dt

where [/, is positive number different from zero which constitutes the precise lower
limit of the function W,(,x,(¢),...,x,(t)) under condition (Eq. (A2.18)).
Consequently, for all values of 7>, we shall have:
v dV
V(t,5,(0)s- %, (1)) :V(to,xlo,...,xn0)+J‘tOEdt <V (lys Xy X0~ (E=1,),

which is, obviously, in contradiction with Eq.(A2.17). The contradiction thus obtained

shows that the function V(t,x,(¢),...,x,(¢)) approached zero as ¢ increase without

limit. Consequently, the same will be true for the function W (x,(?),...,x,(¢)) as well,

from which it follows directly that

limx (¢)=0, (s=L....n),

which proves the theorem.

subregion 1

F 3

e

L
subregion 2

Fig. A2.1 Partial regions Q and €.
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