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ABSTRACT

The hyperchaotic dynamics”.of a-tachometer:system is studied by means of
phase portraits, Poincare maps, bifurcation diagram, power spectra and
Lyapunov exponents. Pragmatical hybrid projective hyperchaotic generalized
synchronization and GYC pragmatical hybrid projective hyperchaotic
symplectic synchronization (PHPHSS) of two hyperchaotic tachometer system
with different order system as a constituent by adaptive backstepping control are
obtained and verified by numerical simulation. Besides, hyperchaotic generalized
synchronization and chaos control of tachometer system by GYC partial region
stability are proposed. Furthermore, boids control and lag synchronization of
tachometer system can be successfully obtained. Finally, numerical simulations

are shown they are work.
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Chapter 1
Introduction

Chaos is defined as the phenomenon of occurence of bounded nonperiodic evolution
in completely deterministic nonlinear dynamical system with high sensitive dependence
on initial conditional [1]. Phase portraits, Poincare maps, bifurcation diagram, power
spectrum and two positive Lyapunov exponents diagram are used to present a
hyperchaotic tachometer system which will be studied in this proposal.

Synchronization in chaotic dynamical systems has been a theme in nonlinear
sciences and received considerable attention.'Since the pioneering work by Pecora and
Carroll [2], much attention has been devoted to research on synchronization of chaos. In
recent years, synchronization in-chaotic dynamical systems has widely studied in the
past decade [3-13], and has+ many  possible ‘applications especially in secret
communication, chemical reaction, | and--biological systems [14].An interesting
synchronization, termed as projective synchronization, has been reported by Mainieri
and Rehack [15] that the drive and response vectors synchronize up to a scaling factor.
Backstepping has become one of the most popular design methods for adaptive
nonlinear control and synchronization [16-19]. Most of the control methods are based
on the exact knowledge of the system structure and fully known parameters. But some
of the system parameters are uncertain. Many researchers have dedicated to solve this
problem by adaptive synchronization [20-24]. In current researches [25-29], by
Lyapunov asymptotical stability theorem and Babalat lemma, the error vector can be
proved to tend to zero. But the question that why the estimated parameters also
approach uncertain values remain no answer. In this thesis, the question is answered

strictly by pragmatical asymptotical stability theorem.



In Chapter 2, chaos of tachometer system is studied by Lyapunov exponents,
bifurcation diagram, phase portraits, time histories of state variables and power spectra.
In Chapter 3, generalized synchronization is investigated [30-35]. This means that

we give a function relationship between the states of the master and slave is Yy = G(X).

A specific case, hybrid projective chaotic generalized synchronization

y =G(x) = px(t)z(t)’ (1-1)
is studied, where x, y are the state vectors of master and slave, z is state vector of a
functional chaotic system, p is a constant vector with positive and negative entries to
form hybrid projective synchronization. Numerical simulations are presented.

In Chapter 4, we give a functional relationship between the states of the

9% ¢¢

“master”’-“slave”and “slave”. This .means ‘that the final desired state y of the
“slave”’system not only depends upon: the “master”’system state x but also depends upon
the state y itself. Namely, the “slave”system plays a rule to determine the final desired
state y itself and is not a pure .slave [36]. This kind of synchronization, is
called“symplectic synchronization”*, and-the “master”system is called partner A, the
“slave”system is called partner B. The GYC pragmatical hybrid projective hyperchaotic
generalized symplectic synchronization

y=H(Xy,z,t)= px(t)z()y(t) (1-2)
is studied, where x, y are the state vectors of partner A and partner B, z is state vector of
a different order chaotic system, p is a constant vector with positive and negative entries.
When the“slave”state y is removed from the function H(X,Y,z,t), this traditional
generalized synchronizations is obtained, which is the special cases of the symplectic
synchronization. Namely:

y=H(xz,t) = px(t)z(t) (1-3)
Numerical simulations show that it can be achieved.
The term “*symplectic” comes from the Greek for “interwined”. H. Weyl first introduced the term in 1939 in his

book “The Classical Groups”(P. 165 in both the first edition, 1939, and second edition, 1946, Princeton University
Press).



In Chapter 5, a new generalized synchronization by GYC partial region stability is
proposed [37, 38]. The Lyapunov function is a simple linear function and the controllers
are simpler by using the GYC partial region stability theory. The simulation results are
more precise because the controllers are in lower degree than that of traditional
controllers. Numerical simulations can show that it can be achieved. In Chapter 6, chaos
control by GYC partial region stability [37, 38] is also proposed.

In Chapter 7, boids (short for “Birdoid”) control [39] is proposed as an artificial life
program, simulating animal motion such as flocking behavior of birds, herding behavior
of land animals and schooling behavior of fish [40]. Flocks and related synchronized
group behaviors such as schools of fish or herds of land animals are both beautiful to
watch and intriguing to contemplate.Als ‘with- most artificial life simulations, boids
exhibit complex flocking behavier, which arises from the interaction of simple local
rules. Yet all evidence indicate that flock motion must-be merely the aggregate result of
the actions of individual animals, each acting solely on the basis of its own local
perception of the world. The boids ‘framework" is often used in computer graphics,
providing a realistic scene with a flock of birds, schools of fish or herds of animals. This
approach assumes a flock is simply the result of the interaction between the behaviors of
individual birds. The synchronization behavior of boids is also similar to chaotic
synchronization, since flocks behave in a chaotic fashion and synchronize their speed
with nearby flockmates. To simulate a flock we simulate the behavior of an individual
bird, we also simulate portions of the bird’s perceptual mechanisms and aspects of the
physics of aerodynamics flight. We investigate the complex flocking behavior and the
emergent behavior by using computer simulations.

In Chapter 8, lag synchronization for tachometer system is studied. Backstepping
control is used to achieve the lag synchronization of two tachometer system. Controllers

are obtained by backstepping design method that recursively interlace the choice of a



Lyapunov function with the design of feedback control. The simulations for the
tachometer system show that the control technique is successful.

This paper is organized as follows. In Chapter 2, chaos of tachometer system is
presented. In Chapter 3, pragmatical hybrid projective hyperchaotic generalized
synchronization (PHPHGS) of hyperchaotic tachometer system by adaptive
backstepping control is introduced. In Chapter 4, pragmatical hybrid projective
hyperchaotic symplectic synchronization of hyperchaotic tachometer systems with
different order system by adaptive backstepping control is presented. In Chapter 5,
hyperchaotic generalized synchronization of tachometer system by GYC partial region
stability theory is shown. In Chapter 6, chaos control of tachometer system is studied by
GYC partial region stability theory. In Chaptér 7, boids control of chaos for tachometer
system is introduced. In Chapter 8, lag synchromization for tachometer system is
presented. Numerical simulations “are shown in the end of this proposal. Finally,

conclusions are drawn in Chapter9.



Chapter 2
Chaos of Tachometer System

The tachometer system considered is shown in Fig. 1 [41]. The masses of the rods

and vertical axis O,0, are neglected, and ball A and B are assumed as particles with
equal mass m,. The vertical axis rotates with constant speed n and is subjected to a
vertical vibration AsinX, where X, is a state variable, A is the amplitude of vibration.
m, is the mass of the sleeve C, | is the length of rod BC, 21 is the length of AB. ¢ is the
angle between rod AB and vertical axis O,0,, K, is the spring constant of a restoring
spiral spring which is used to restrain,the ‘angle ¢ caused by centrifugal forces of A

and B, Kk, is the viscous damping coefficient caused by friction in the bearings. Let

X\=@¢, X,=¢, X,=X,.

By Lagrange equation, the state equations-for the autonomous tachometer system are

d
axl X,
ix _ 1 —2m,gsinX, N 2m, Asin X, sin X,
dt"? 2m, +4m,sin’ X, I I
. . kX, Kk,Xx
—4m, X; sin X, cos X, +2m, sin X, cos X,77° —%—%) (2-1)
d
ax3 Xy
d

The third and fourth equations of system (2-1) give a simple harmonic vibration

system. When A=0, at steady state, a given constant 1 corresponds to a definite¢,

therefore this system can be used as a tachometer.



Choose m =3, m,=3, g=9.8, I=1.5, A=5, k=4, k,=1. n is used as a variable
parameter. =1 gives period 1 motion, n=1.5 gives period 3 motion, =4 gives chaotic
motion. Taking n as abscissa, the Lyapunov exponents diagram is shown as Fig. 2.
Hyperchaos [42] with two positive LE is found. Bifurcation diagram, phase portraits

and Poincare maps, time histories, and power spectra are presented in Figs 3~6.
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Chapter 3

Pragmatical Hybrid Projective Hyperchaotic
Generalized Synchronization (PHPHGS) of
Hyperchaotic Tachometer System by Adaptive
Backstepping control

In this chapter, pragmatical hybrid projective hyperchaotic generalized
synchronization of two hyperchaotic tachometer system by adaptive backstepping
control is obtained. The state vectors of Mathieu-Duffing system with hyperchaotic
Lyapunov exponents are constituent of'the functional relation between master system
and slave system. Pragmatieal ; hybrid = projective hyperchaotic generalized

synchronization is obtained and verified by numerical simulation.

3.1 Pragmatical hybrid projective.generalized synchronization
scheme

The drive system is described by
X = f(x) (3-1)

where x Z[Xl,xz o Xy ]T e R" is the state vector, some parameters of Eq (3-1) are

uncertain. The slave system is
y="f(y)+u (3-2)

where y =[y1, /KRN yn]T e R" is the state vector, and u is a controlled vector, some

parameters of Eq (3-2) are estimated. The functional chaotic system is
2="1(2) (3-3)

where 7= [Z1 2 Zyy ]T e M" is a hyperchaotic state vector and all parameters of

Eq (3-3) are known.

11



The control target is forcing the slave system to track an n-dimensional desired vector
h(t) = [, ©, b, .0, ©] = [px, O©2 0, px, OO P, %, O230)]

where p,,p,, -, P, are constant vector whose entries are either positive or negative to

form hybrid projective synchronization. Define the error vector as

e(t) = y(t)-ht) =y - pxz’, (3-4)
where e(t)=[e,.e,,-~e, | eR".
The controlling goal is that the error dynamical vector

lime =0 (3-5)

tow

3.2 Hyperchaotic tachometer system and Mathieu-Duffing system with
two positive Lyapunov exponents

The tachometer system of four-dimension shown in Fig. 1 is given by:

d
axl X,
EX =_klxl I 1 =2m;gsin X, +2m2AsinX3 sin X,
dt™* 2ml’ 2m, +4m, sin®x, | I
. ) K, Xx

—4m, X; sin X, cos X, +2m, sin X, cos X,77° — %) (3-6)
d
EXS = X4
d

ax4 =—AsinX,

where X,, X,, X;, X,are state variables and k,, k,, A, I, g, m ,m, are constants,
when k, =4, k, =1, m, =3, m =3, A=5, 1=4.55, g=9.8, I=1.5, the system exhibits

chaotic behavior with hyperchaotic Lyapunov exponents as shown in Fig. 2.

The Mathieu-Duffing system of four-dimension is given by:

12



EZI = 22
d 3 3
azzz —-az, —bz,z, —az; —bz,z; —cz, +dz,
d (3-7)
aza =1,
d

3
EZ“ =-2,-12; -1z, + fz,

where a=20.30, b=0.5970, c=0.005, d=-24.4400478, ¢=0.002, f=14.63, the system

exhibits chaotic behavior with hyperchaotic Lyapunov exponents as shown in Fig. 7.
3.3 Numerical simulations for pragmatical hybrid projective

hyperchaotic generalized synchronization (PHPHGS) of

hyperchaotic tachometer system by-adaptive backstepping control

The tachometer system is the master system:

d
axl X,
ix =_k1X1 et 1 —2m,gsinX, +2m2Asinx3sinx1
dt™* 2ml’ 2m, +4m, sin® X, [ |
. ) K, x
—4m, X; sin X, cos X, +2m, sin X, cos X,77° — %) (3-8)
d
axs =Xy
d

ax4 =—AsinX,

where K,, A are uncertain parameters.

The slave system is as follow:

13



d
a Yi=Ys

d - 121 Y, 1 -2m,gsiny, 2m,Asiny,siny,

_y2= 2 cee S +

dt 2m| 2m, +4m, sin” y, | |

—4m,y2 siny, cosy, +2m, siny, cosy,n’ —%) (3-9)

d
ays =Y,

d A
pm y, =—Asiny,

A

where k;, A are estimated parameters.

Mathieu-Duffing system is the hyperchaotic functional system:

Ga =t
z,=-az, —bz,z, —az; —bz,z} = cz, +dz;
(3-10)
%23 =12,
%24 =-z,-17; —tz, + fz,

where a=20.3, b==0.597, c=0.005, d=-24.4399, t=0.002,=14.63.

Inorder tolead (Y,, Y,. Y. ¥;) 10 (PXZ, P,X%23. PyX,Zi, P,X,23) . choose U,

u,, u,, u, ascontroller adding to Eq (3-9), namely:

ayl =Y, +y,
d, - Ky 1 —2m,gsiny, _ 2m,Asiny, siny,
dt” 2 2m1|2 2m, +4m, sin 2 Y, | |
—4m,y; siny, cos y, +2m, sin y, cos y,7” — kizz)ﬂlz (3-11)
d
ay.’: = y4 +u3
d N
ay4 =—Asiny, +U,

14



Define error states as follows:
€ =Y - plxlzl3

&, =Y, pzxzzg

=Y, - p3x3z§’

€ =Ys— p4x4zj

(3-12)

where Xio Xy, X5y X4y Zy, Z,, Zy, Z,, Y5 Y., Y5, Y, are states, p,, P,, Ps;,

p, are given parameters and we choose p, =3, p,=4, p,=6, p,=-2 to give

hybrid projective synchronization.

Differentiating Eq (3-12) with respect to time, we obtain the error dynamics:
€ =e,+ pzxzzg - plxzzl3 —3p1X121222 +U,
6 —— ke, _ K, plxlzl3 _ p2klxlz§
*ooaml® 2ml? 2ml?

+oa843ap;X52i22 +3bp,X,2,252,

+3ap,X,z; 25 +3bp,X,2, 23z, #3cp,X,23--3dp,X, 252,
1 ( 2m,gsiny, L 2m, Asin Y, sin Yy,
2m, +4m, sin’ y, I I

—4m,y3 siny, cosy,

+2m, siny, cosy,n’ — kiyz) (3-13)
o +§;122§Sin2 - _2m29|Sin X 2m2Asi1: X, sinX, _4m X’ sinx, cosx
+2m, sinx, cosX, 77’ —%) +U,
6, =€, + P,X,Z; — PsX,Z3 —3P5X,23Z, +U,
&, =—Asiny, + p,Asinx,z} +3p,X, 2,22 +3p,X,2322 +3tp, X,z —3fp,x,z,22 +u,
Choose a positive definite control Lyapunov function:
V, = %ef (3-14)
Then by first equation of error dynamics, it is obtained that
V, =e (e, + P,X, 23 — P, X, 2} =3P, X,2Z, +U,) (3-15)
Choose U, =—pP,X,Z) + P,X,Z, +3p,X, 2,2, , &, =a,(e)=-€ , Eq (3-15) can be
written as
V, =-¢’ <0 (3-16)

15



then e, =0 1is asymptotically stable. When e, is considered as a controller, «,(€,)

is an estimative function.

Define W, =e, —,(¢,) =¢, +€, and

W, =¢, +6,. (3-17)
Choose a positive definite control Lyapunov function:
1 1~
V, =V, +§W22 +§k12 (3-18)

where Izl =k, - IZI, |21 is estimated value of the unknown parameter K, .

Differentiating Eq (3-18), we obtain
V, =V, +W,W, +k k, (3-19)
_ ke, _klplxlzl3 n p2klxlzg+“.

2ml1*>  2m|l’ 2m,1°

+3ap,X,2,25 +3bp,X,2,252, +3ap,X, 2’2, +3bp,x,2,2;2,

; 2
Vz =€ +W2{\N2 —§

+3cp,X,2; —3dp,X,232Z,
p,Z; _2m, gsin X 3 2m;, Asin X, sin X,
2m, +4m, sin” X, | |

2 .
—4m,X5sin X, cos X,

| - (3-20)
+2m, sin X, cos X,;7° — iz %)

i 2m, Asi i
N 1 ~ 2m,gsiny, L 2m, siny,;siny, 4m, yj sin y, cos Y,

2m, +4m, sin’ y, | I

k
+2m, siny, cos y,;7° — izyz)
+U,}+ (K, _Rl)lzl

Choose

(3-21)
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M ; 3 3
klel kl plezl _ kl pZXlZZ
2ml*> 2m/l® 2m,1°

—3ap2XZZIZ§ _3bp2X22122223 _3asz22132§ —3bp2X22132§Z3

u, =—2W, +e, 4

—3cp,X,2; +3dp, X, 252,
P,2, _2m,gsinx,__2m,AsinX; sin

—4m,x; sinX, cosX,  (3-22)
2m, +4m, sin” X, I I e

. k,x
+2m, sinX, cosX,° — |222)

2m, gsi 2m, Asi i
- ! — (- Sy, M Asny,siny, 4m2y; siny, cos,
2m, +4m, sin” y, I |
k
+2m,siny, cosy,n’ —i—zyz)
Eq (3-20) becomes:
V, =-e —-W,; <0 (3-23)

then e, =0 is asymptotically stable.

Choose a positive definite control Lyapunov function:

V, =V, +V, +%e§ (3-24)

Differentiating Eq (3-24), it is obtained that:
V, =V, +V, +e.é,

, 5 , , s (3-25)
=—e —W, +e,(e, + P,X,Z, — P3X,Z5 —3P;X325Z, +U;y)

Choose U, =—p,X,Z; + PsX,Z; +3p;X,2;2, , and e, =, (e;,)=-€, , Eq (3-25)
becomes:

V, =—e} -W, —e <0 (3-26)
then e, =0 is asymptotically stable.
When e, is considered as a controller, «,(e;) 1is a estimative function. Define

W, =¢e, —a,(e)=¢e, +e,, then

W, =¢, +6, (3-27)

Choose a positive definite control Lyapunov function:

17



V, =V, +V, +V, +%W42 +%R2 (3-28)

where A=A—A.
Differentiating Eq (3-28), it is obtained that
V, =V, +V, +V, +W,W, + AA
= —e? —W?—e? +W, (W, —e, — Asiny, + p,Az} sin X, +3p,X,2,2 (3-29)

+3p,X,z32; +3tp,x,z; —3fp,x,z,2; +u,)+(A- A)K

Choose
A=-A=—p,z}sinxW, (3-30)
u, =—2W, +e, + AsinY, — p, Azl sinx, —-3p,x,z,22 (3:31)
-3p,X,z3z; —3tp,x,z, +3fp,X,2,2;
Eq (3-29) becomes:
V,=-e} -W,] el -W]<0 (3-32)

then e, =0 is asymptotically=stable. The rbackstepping design is accomplished.

Numerical simulations show that the tesult.is-satisfactory as shown in Figs 8, 9, 10, 11,
12, 13.
The Lyapunov function \/4

V,=—e’—(e +e,)" —e] — (e, +e,)> <0 (3-33)
is a negative semi-definite function ofe,, e,, e, e,, IZI, K, while from Eqs (3-14),

(3-18), (3-24), (3-28)

V=V, :%ef +%(e1 +e,)’ +%e32 +%(e3 +e,)? +%I?12 +%K2 (3-34)

is a positive definite function of e, ,e,,e,, e, k,,A.

The Lyapunov asymptotical stability theory can not be satisfied in this case. The
common origin of error dynamics and parameter update dynamics cannot be determined
to be asymptotically stable. By pragmatical asymptotical stability theory (see

Appendix-A), D is a 6 -manifold, n = 6 and the number of error state variables p = 4.

Whene, = e, = e, = ¢,=0and I21 , A take arbitrary values , V =0, so X is a 2D

18



manifold, m =n —p =6 — 4 =2. m + 1< n are satisfied. By the pragmatical
asymptotical stability theorem, not only the error vector e tends to zero but also all

estimated parameters approach their uncertain parameters. PHPHGS of chaotic systems
by adaptive backstepping control is accomplished. The equilibrium point € = e, =

~

e, = ¢ = Izl = A =0 is pragmatically asymptotically stable. The numerical results

are shown in Figs 8~13, the generalized synchronization is accomplished after 800s

with hybrid projective constants p,=1, p,=-1, p,=1, p,=-1 with e, (0) is 600,
e,(0) 1s 1012, e,;(0) is 400, and e,(0) 1s 532. The estimated parameters approach

the uncertain parameters of the chaotic system with two positive Lyapunov exponents as

shown in Figs 12-13. The initial values of estimated parameters are Izl (0)= K(O) =0.

19



= =00 |- —

5=20.30 b=0.297 c=0.005,.=0.002 =14.63
D15 T T T T T T T

0.1

0.05

-0.05 -

-0.15 —

-0.2 ! L
S24.4403 <24 4402 224 4402 224 44017 -24. 4401 -24.44 0 2444 24,4399 24 43599
P

Fig. 7 The Mathieu-Duffing is‘}istem' ;Wi,th'tWO' pqsitive Lyapunov exponents.

=00

Aaoo |- —

=00 |- —

[=] == E=T=] 150 f=IaTa] ==0 =00 =50 ETaTa] aso S0o0
1

Fig. 8  Time history of e, when ¢, is 381.3.

=00 |- .
==so |- -
p=Tm Tm —
1=0 | -
R=T=0 -

=0 |- —

ol
=0 | i
-1oo | E

-1s0o kb =
[=] =0 100 1s0 =00 =2s0 El=T=] S50 ETaTa aso
1

Fig.9  Time history of e, when e,, is330.

20



=00 |- -

=50 |- —

zZ0o0 |- -

-10 [=] =] == =0 ET=] =0 =1=] =]
t

Fig. 10 Time history of e, when e,, is260.

_=o | .

-100 | —

[m} =20 40 =0 =20 100 120
1

Fig. 11  Time history of e, when e, 1is 230.

SEaaE T T T T T T T T T =
TO000 —

SO00 —
—

fay

-S5000 —

o [=TuTs] 1000 1500 ZOooo =500 S0o00 Ss500 A000 As00 S000
1

Fig. 12 Time history of k, =k, — |21.

S00 - -
BO0 |- —
400 - -
200 | —

2'{:’ o |-

-Z0o0 - -

—400 [ _

-&500 |- —

-800 |- —

O 20 A0 [=im} s0 100 120 140 160 180 200
+

Fig. 13 Time history of A=A-A.

21



Chapter 4

Pragmatical Hybrid Projective Hyperchaotic
Symplectic Synchronization of Hyperchaotic
Tachometer Systems with Different Order System by
Adaptive Backstepping Control

In this chapter, GYC pragmatical hybrid projective hyperchaotic symplectic
synchronization (PHPHSS) of two hyperchaotic tachometer system with different order
system as a constituent by adaptive backstepping control is obtained. The state vector of
extended Lorenz system is the constituent of the functional relation between

9% ¢¢

“master”-“slave” and “slave”. Traditional generalized synchronizations are special cases
of the symplectic synchronization. GYC pragmatical asymptotical stability theorem is
used. Both projective synchronization and projective-antisynchronization are obtained.

Pragmatical hybrid projective hyperehaotic sympleetic synchronization is obtained and

verified by numerical simulation.

4.1  Synchronization scheme

The partner A is described by
X = f(x) (4-1)

where x =[X1,x2 ,---,Xn]T e R" is the state vector function, the parameters of Eq (4-1)

are uncertain. The partner B is described by
y=f(y)+u (4-2)

where y Z[yl,yz,---, Y, ]T e R" is the state vector, and u is a controlled vector, the

parameters of Eq (4-2) are estimated. The functional different order chaotic system is
2="1(2) (4-3)

where z= [21,22,- N Zn]T e R" is a chaotic state vector function and all parameters of
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Eq (4-3) are known.
The control target is forcing the state vector y of partner B to track an n-dimensional

desired vector
h(t) = [h1 (t), hz (t): ) hn (t)] = [ P X (t)yl (t)zl (t): P2 X, (t) Y, (t)zz (t), . (t) Y, (t)Zn (t)]

where p,,p,, -, P, are constant vector with positive and negative entries.

Define the tracking error as
&M=y, (t)_hi )= Yi — Pi%Yizi, 1=1,2,...,n) (4-4)

where e(t) = [el,ez e, ]T e R" denotes an error vector.

The controlling goal is that the error vector
lime =0 (4-5)

tow

4.2 Hyperchaotic tachometer system and L.orenz system

The tachometer system of four-dimension shown in Fig. 1 is given by:

d
axl =X,
d o -k, N 1 —2m,gsin X, N 2m, Asin X, sin X,
dt * 2m,|l? 2m, +4m, sin® X, I I
k, X (4-6)
2 . . 2 27
—4m,X; sin X, cos X, +2m, sin X, cos X,77” — E )
d
—X; =X,
d .
Ex4 =—Asin X,

where X,, X,, X,, X,are state variables and k,, k,, A, I, g, m,,m, are constants,
when k, =4, k, =1, m, =3, m =3, A=5, 1=4.55, g=9.8, I=1.5, the system exhibits
chaotic behavior with hyperchaotic Lyapunov exponents as shown in Fig. 2 .

The Lorenz system of three-dimension is given by:

23



d

EZI = Cl(zz - 21)

d

Jrl = G- -1z, @
d—Z3 = —C3Z3 + 2122

dt

where € =10, c,=28, c,=8/3, the system exhibits chaotic behavior as shown in Fig.

14. Choose Lorenz system as the different order system.

The fourth equation can be chosen asz, = z}. The equation (4-7) can be extended to

four-state system:

d
_Z1
dt
dZ—CZ Z Z,Z
Fz_ 261 7 2 T L1483

(4-8)
d_z
dt
da

= Cl(zz - 21)

3y = —C325+ 2,2,

= 2C121(Zz - Zl)

z
dt ¢

4.3 Numerical simulations for pragmatical hybrid projective
hyperchaotic symplectic synchronization of hyperchaotic
tachometer systems with different order system by
adaptive backstepping control

The partner A of the tachometer system is:

d
=X =%
d LR 1 —2m,gsinX, 2m,AsinX,sinX,
_X2: 5 4.4 — +
dt 2m|l 2m, +4m, sin” X, I I
4m, X; sin X, cos X, + 2m, sin X X2k2x2
—4m, X5 sin X; cos X, +2m, sin X, cos X7 _|—2) (4-9)
d
ax3 =X
d .
—X, =—Asin X,

where K, , A are uncertain parameters.
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The partner B of the tachometer system is:

4, .
at Yi=Y,
iyzz_klyzl+“‘+ 1 . —2m,gsin y1+2m2Asin Yy, sin y,
dt 2m,| 2m, +4m,sin’y, | |
—4m,y:siny, cos Yy, +2m,sin Y, cos y,n° - kigz) (4-10)
d
EY3 =Y,
d .
Ey4 =—Asiny,

A~ A

where k,, A are estimated parameters.

Choose chaotic extended Lorenz system as a.different order system:

-, = Cl(zz - 21)

Z, =C,Z, -7, - 7,4

q (4-11)
—C3Z3 + 2122

N
Il

N
|

4 — 20121(22 - 21)

where ¢,=10, c,=28, c,=8/3.

In order to lead (y,, Y,, Y5, Y4)t0 (PXVY,Z, PX Y22y, PsXYsZy, PuX,Y,Z,) , add

u,, u,, u,, u, ascontrollersto Eq (4-10):
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d
E Y=Y, tU;
d _—kAlyl 1 —2m,gsin Yy, +2m2Asiny3siny1
at’? 2m,|? 2m, +4m, sin’ y, I [
K,y (4-12)
—4m,y; sin y, cos y, +2m, sin y, cos y,° — iz 2) +u,
at Y; =Y, tU;
i =—Asiny. +U
at Y, = Y; 4
Define error states as follows:
€ =Y —PXYZ
€, =Y, = DX, Y52, (4-13)

€ =Y~ P X Y57,
€, =Y, PyX, Y42,
where X, X,, X5, X4, Z,, Z,, 23, 2,, Y5 Y., Y5, Y, are states, p,, P,, P;,

p, are constants, both positive” and negative. We ‘choose p,=0.0003, p,=-0.0004,
p,=0.0006, p,=-0.0002 to give-hybrid prejective synchronization.
Differentiating Eq (4-13) with respect to time, we obtain the error dynamics:

él =6+ DX, Y52, = PiXoYiZ — PG XY, Z, PGV — PX Y, 2+

kAlel _ kA] P XY,Z, + pzkAlxzylzz + pzklxlyzzz

*ooaml? 2m)? 2m|? 2m|?
“ PG X Y02+ P Xy Y2y + Py XY, 2025
1 2m, g sin 2m,Asin V, sin )
_zmgsiny,  -m, Y; Sy —4m,yZsin y, cos Y,

+

2m, +4m, sin” y, | I
+2m, sin y, cos y,;° —%)
(4-14)

Z 2m,gsinX, 2m,Asin X, sin X :
P,Y,2, _ Mg 142 3 L—4m,X; sin X, cos X,

2m, +4m, sin® X, I I

k,x
: 2 272
+2m, sin X; cos X,77 T

p,X,Z, —-2m,gsin 'y, N 2m,Asin y,siny,

- —4m,y>siny, cos Yy
2m, +4m, sin’ y, I I . :

k,y
: 2 2)2
+2m, sin Yy, cos y,n7 —I—z) +U,
é3 =€+ PaXyYaZy — PsXy Y523 + PsCX Y525 — PsX3Y32,2, — P3X3Z5Y, + U,y

. A . 2 A :
e, =—Asiny, + p,Ay,z,sin X, —2p,C,X,Y,2,Z, +2p,C, X, Y,Z, + P,AX,Z,siny, +U,
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Choose a positive definite Lyapunov function:

1.2

V, = Esle1 (4-15)

where S, is a positive constant. Then by first equation of error dynamics (4-14), it is

obtained that

V, =56,(8, + P,X,Y3Z, — PXY,Z — PCX Y, Z, + PCX Y Z — PX Y,Z, +U,) (4-16)
Choose U, =—P,X, Y52, + P X, Y,Z, + PCX Y,Z, — PCX Y, Z + P X Y,Z , € =a,(8)=—€ ,
Eq (4-16) could be written as

V,=-se’ <0 (4-17)

e, =0 is asymptotically stable. When e, is considered as a controller, «,(g,) is an

estimative function. Define W, =e, —«,(¢,) =€, +¢€, and

W, =6, +6 (4-18)
Choose a positive definite Lyapunov function:
V, =V, +%52W22 +%|Zf (4-19)

A

where l?l =K, —121, k, is estimated value of the unknown parameter k,, S, is a

positive constant. Differentiating Eq (4-19), we obtain

V, =V, + S \W,W, + kK,

V2 — _e]2 + Szwz {\Nz —e k1e1 _ k1 P X Y2, " p2k1X2 Y12, " p2k1X1 ¥>2,

Com)l? 2m|I? 2m|? 2mlI?

PG X, Y2+ DX Yo Zy + DXy Yy 225 (4-20)
N 1 _ _2m,gsiny, +2m2A51n y,siny, _4m,y’sin y, cos Y,

2m, +4m, sin” y, I I

. k

+2m, sin y, cos y, i’ —i—zyz)
3 szzZz. : _2m,gsin X N 2m, Asin X, sin X, _ 4m,x sin X, cos X,

2m, +4m, sin” X, I I

K, X, (4-21)

+2m, sin X, cos X,n° — B )

p,X,Z, —-2m,gsin Yy, N 2m,Asin y, sin y,

_ : —4m,yJsiny, cos y
2m, +4m, sin’ y, I I 202 : :

k2y2)

+2m, sin y, cos y,n° — B

+U, )+ (k, — kK,
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Choose
" S BXY, 2,W,s,

k =—k =
1 1
2m,1°
U. = 2W. +e + klel + k1 P XiY,Z p2k1X2Y1zz . p2k1X1Y2zz
2 = 2 1 2 2 2 2
2m)l 2myl 2m)l 2m|l
+0,6.XY,2 — P, X, Y,2, — P, X, Y, 2,25 -
1 2m, g sin 2m, Asin Y, sin )
- —— (- gsiny, | 2M, Ys yl—4m2y22s1n y, cosy,
2m, +4m, sin” y, I |
k,y
. 2
+2m, sin y, cos y,77 —%)
yA 2m,gsinX, 2m,Asin X, sin X .
P.Y,2, _£M.9 1= 2 3 L—4m,x] sin X, cos X,

2m, +4m, sin® X, [ I
k,Xx
: 2 272
+2m, sin X, cos X,77 _|_2)
P, X2, —2m,gsiny, N 2m,Asin y,sin y,
2m, +4m, sin’ y, I I
k2y2)

|2

—4m, yf sin Yy, cos Y,

. 2
+2m, sin 'y, cos y,i7” —

(4-22)

(4-23)

Take the initial value of uncertamn parameter as |21 (0)y=3.998440 . Eq (4-21) becomes:

V, =-sel —s,W,; <0
e, =0 is asymptotically stable.

Choose a positive definite Lyapunov function:

V, =V, +V, +%S3e32

where S, is a positive constant. Differentiating Eq (4-25), it is obtained that:

v3 :vl +v2 +5:6,6
_ 2 W2
=—€ —W, +5,6,(&, + P,X,YsZy — P3X, Y523 + P3G X5 Y524
—PiXY32,2, — P3X 2,5, +U3)
Choose
Us = = PyXyYaZy + DX, Y325 = PsC X Y325 + D3 X Y52, + P3XsZ3Y, + Uy
€, = (e3) =—€
Eq (4-26) becomes:
V, =-s —s,W,; —s,e; <0

e, =0 is asymptotically stable.
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When e, is considered as a controller, «,(e;) is a estimative function. Define

W, =¢e,—a,(e)=¢e, +€,, then

W, =€, +€, (4-28)
Choose a positive definite Lyapunov function:
V, =V, +V, +V, +%S4W42 +%A2 (4-29)

where A=A—A, S, 1s a positive constant.
Differentiating Eq (4-29), it is obtained that
V, =V, +V, +V, + sWW, + AA
——se’ —sW.2—s.e’ +sW, (e, — Asin y, + p,Ay,z, sin X, (4-30)
2 PLCX YAz, +2PCX, Y2 + P AX,Z, sin Y, +U, )+ (A= A)A
Choose
A=—A=—p,y.z,sinxW, 4-31)
u, =—2W, +e, + Asin Y- P, Ay, zg8in X; +2p,6,%, Y;7,2, 432)
-2p,C,X, Y,z — p,AX,Z, siny,
Take the initial value of uncertain parameter as A(O) =4.99379. Eq (4-30) becomes:
V, =-sel —s,W; —s,el —s,W, <0 (4-33)
e, =0 is asymptotically stable. The backstepping design is accomplished. Numerical
simulations show that the result is satisfactory as shown in Figs 15~20.
The Lyapunov function \/4
V, =-se —s,(e +e,)" —s,el —s,(e, +e,)* <0 (4-34)
is a negative semi-definite function ofe,, e,, €;, e,, Izl s E\, while from Eqs (4-15),
(4-19), (4-25), (4-29)
V=V, = %slel2 +%sz(e1 +e,) +%s3e32 +%S4(e3 +e,)’ +%|Zf +% A2 (4-35)

~ o~

is a positive definite function of €,,e,,e;,e,, K, A.

The Lyapunov asymptotical stability theory can not be satisfied in this case. The

common origin of error dynamics and parameter update dynamics cannot be determined
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to be asymptotically stable. By GYC pragmatical asymptotical stability theorem (see
Appendix-A) D is a 6 -manifold, n = 6 and the number of error state variables p = 4.

When ¢, = e, = e = ¢e,=0and kAl, A take arbitrary values , V=0, so X is a
2D manifold, m=n—-p=6-4=2. m+ 1< n are satisfied. By GYC the pragmatical
asymptotical stability theorem, not only the error vector e tends to zero but also all

estimated parameters approach their uncertain parameters. PHPHSS of chaotic systems

by adaptive backstepping control is accomplished. The equilibrium point € = e, =

~

e, = ¢ = Izl = A =0 is pragmatically asymptotically stable. The numerical results

are shown in Figs 15~20, the generalized synchronization is accomplished after 20s

with s, =5,=5,=5,=0.0001 and hybrid projective constants p, =0.0003,
p, =-0.0004, p, =0.0006, p, =-0.0002,:€,(0) =697.9, e,(0) =654.16, e,(0) =
478.402, and e,(0)= 464.3712.5The -estimated parameters approach the uncertain

parameters of the hyperchaotic system as shown in Figs 19-20. The initial values of

estimated parameters are Izl (0)= K(O) =0.
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Fig. 18  Time history of e, when e,, is 464.3712.

Fig. 20  Time history of A.
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Chapter 5

Hyperchaotic Generalized Synchronization of
Tachometer Systems by GYC Partial Region Stability
Theory

In this chapter, hyperchaotic generalized synchronization of tachometer systems by
GYC partial region stability theory is proposed. The Lyapunov function is a simple
linear function and the controllers are simpler by using the GYC partial region stability
theory. The simulation results are more precise because the controllers are in lower
degree than that of traditional controllers. Hyperchaotic generalized synchronization of
tachometer system by GYC partial region stability is obtained and verified by numerical

simulation.

5.1 Chaos generalized synchronization strategy by GYC partial region
stability theory

Consider the following unidirectional coupled chaotic systems
x=1(t, xX)

y=h(t.y)+u D

whereX=[X1,X2,---,Xn]T eR", y=[yl,y2,---,yn]T e R" denote two state vectors, f

. . T . .
and h are nonlinear vector functions, and u :[ul,u2,~--,un] e R" is a control input

vector.

The generalized synchronization can be accomplished when t — oo, the limit of the

.
error vector e=[e,,e,,--,e,] approaches zero:

yme =0 (5-2)
where
e=G(X)-y (5-3)
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By using the GYC partial region stability theory (Appendix-B), the Lyapunov function

is a homogeneous linear function and the controllers can be designed in lower degree.

5.2 Hyperchaotic tachometer system and a new hyperchaotic
Mathieu-Duffing system

The tachometer system of four-dimension shown in Fig. 1 is given by:

d
EXI =X,
ix B 1 —2m, g sin X, N 2m,Asin X, sin X,
dt = * 2m, +4m,sin’ | |
. . k., k,X
—4m, X3 sin X, cos X, + 2m, sin X, cos X,7° — Ilzl -~ izz) (5-4)
d
EX3 = X4
d .
ax4 = —Asin X,

where X,, X,, X;, X,are state:variables and k,, k,, A, I, g, m,,m, are constants,
when k, =4, k,=1, m, =3, 'm;=3, A=5, 7 =4.55, g=9.8, I=1.5. The system

exhibits chaotic behavior with hyperchaotic Lyapunov exponents in Fig. 2. Its phase

portrait as shown in Fig. 21.
The new hyperchaotic Mathieu-Duffing System is given by:

azl =1,

—2,=-az, —bz,z, —az] —bz,z; —cz, +dz,

5-5
az3 =Z4 ( )

_ 3
az4 =-2,-12; —tz, + fz,
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where its initial states is (5, 6, 4, 3), system parameters are a=5, b=0.597, ¢=0.005, d=-5,
t=0.002, =9, the system exhibits chaotic behavior with hyperchaotic Lyapunov

exponents and its phase portrait as shown in Fig. 7 and Fig. 22.

5.3 Numerical simulations for hyperchaotic generalized

synchronization of tachometer system by GYC partial region
stability theory

The tachometer system is the master system:

d
a Xl = X2
d 1 —2m,gsin X, N 2m, Asin X, sin X,

at > 2m, +4m, sin” X, | |

—4m,X; sin X, cos X, +2m, sifi X, cos¥#p°” —kl—xl—kz—xz)

%= 1 (5-6)
d X, =X,
dt
d :
p X, =—AsinX;,
The slave system is as follow:
d
a Yi=Y,+y
d y = 1 —2m,gsiny, N 2m,Asin Yy, sin y,
dt > 2m +4m, sin’y, | |
—4m,y; sin Y, cos Y, +2m, sin Y, cos y,17° —% - kizlz )+U, (5-7)
d
a Ys =Y, +U;
d

Ey4 =—Asiny; +U,
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CASE I. The generalized synchronization error functionis €=Y—-X+(.

Our goalis y=x-g,1i.e. %ime=¥im(y—x+g)=0 (5-8)
where ¢, =0, =0,;=0, =50 are constants.

The error dynamics becomes:

€, =Y,-X%
_ 1 -2m,gsiny, N 2m,Asin y, sin y,
2m, +4m,sin’y, I I
. . k k
—4m,y: sin y, cos y, +2m, sin y, cos y,i° —Il—zy‘—i—zyz)
B 1 (—2ng sin X, +2m2Asin X, sin X,
(5-9)

2m, +4m, sin’ X, I I
kx, k,x
— 2 ¢ : 2 1% 2%
4m,X; sin X, cos X, + 2Mm, sin X; COS X7 _|_2_|—2)

+2e; —2e2 +u,
. . . 5 b
€ = ys_X3ZY4_X4+2e3 _2e3 U
6, =Y, — X, =—Asiny, + Asin Xy +2e; = 2¢€; +u,

Let initial state be(X,g» X595 X30> X40) = (1.53,-0.47,1.415,0.5), (V10> Yao» Y300 Yao)=

(1.7,1,1.6,0.8) ,we find that the error dynamics always exists in first quadrant as shown

in Fig. 23. By GYC partial region asymptotical stability theorem, one can choose a

linear positive definite Lyapunov function in first quadrant:
V=¢e+e,+e,+¢€, (5-10)

Its time derivative is
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V =¢ +6&,+6, +¢,

=(y,—x, +2€; —2¢] +u,)

1 —-2m,gsin Yy, N 2m,Asin y, sin y,
2m, +4m, sin’ y, I I
2 si ; ki kY,
—4m,y; sin y, cos 'y, +2m,sin Yy, cos Y, —I—z—l—z)
. . . 5-11
1 —2m,gsin X, N 2m, Asin X, sin X, (-11)
2m, +4m, sin” X, | |
2 g1 ; > ki kX,
—4m, X5 sin X, cos X, +2m, sin X, cos X,;7° — TR |—2)
+26; —2€; +U,)+ (Y, — X, +2€; —2€; +U,)
+(—Asiny, + Asin X, +2€; —2€; +U,)
Choose
U =-Yy,+X,—€ +26e
U = — 1 -2m,gsin Y, +2m2Asin Yy, siny,
> 2m, +4m,sin?y, I I
% §i ; 2 ks Ky,
—4m,y; sin y, cos 'y, +2m,’Sin y;CoSY,n _|_2_|—2)
N 1 _ —2m, g sin X, . 2m, AsinX, sin X, (5-12)
2m, +4m, sin” X, | |
244 : > kX kX, 2
—4m,X; sin X, cos X, +2m, sin X, cos X,;;7° — PRl )—e, —26e,
U, =-y, +X, -6 +2€
u, =+Asiny, — Asin x, —e, — 2€;
We obtain
V=-¢-¢-6-¢7<0 (5-13)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of states are shown in Fig. 24 and Fig. 25.

CASE 1I. The generalized synchronization error function is =Y, —X +Fsinat+g
(i=12,3,4). Our goal is %imei = }im(yi - X +F sinwt+9,)=0.

where 9,=0,=0,=0,=30, F=F, =F, =F, =20, ®=0.2are constants.
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The error dynamics becomes:

& =Y,— X, +U, +Focosot +2¢e; —2¢;

6 1 -2m,gsiny, N 2m,Asin y, sin y,
*2m, +4m,sin’y, | |
—4m,y; sin y, cos Yy, +2m, sin y, cos y,° — k|12yl - kizyz)
3 1 —-2m, g sin X, N 2m, Asin X, sin X,
I

2m, +4m, sin” X, I
kx kX
24 : 2 1N 2%
—4m, X; sin X, cos X, +2m, sin X, cos X,7 _|_2_|_2)
+U, + Fo cos ot + 2 —2€;
&, =Y, — X, +U, + Focos ot + 2e — 2¢’

g, = —Asiny, + Asin X, + U, + Focos ot + 2e; — 2€;

Let initial states be (X,, X

(5-14)

10> Xs05%40) = (1:53,-0.4751.415,0.5), (Y105 Yao» Y300 Yao) =

(1.7,1,1.6,0.8) , we find the errot dynamics always exists in first quadrant as shown in

Fig. 26. By GYC partial region asymptoticalrstability theorem, one can choose a linear

positive definite Lyapunov function function infirst quadrant:

V =g +€,+€,+¢,

Its time derivative is

% :(yz—x2+u1+a)c0sa)t+2e§—2e§)

N 1 -2m,gsiny, N 2m,Asin y, sin 'y,
2m, +4m, sin’ y, I I
iy, ky
2¢i ; 2 Ky 2 Y2
—4m,y; sin Yy, cos y, +2m, sin Yy, cos ¥, —I—z_l_z)
1 —2m,gsin X N 2m, Asin X, sin X,
2m, +4m, sin’ X, | |
kx kX
2 ¢i : 2 KA 2%
—4m,X; sin X, cos X, +2m, sin X, cos X,77 —I—z _|_2)

+U, + @cos wt + 262 —2e22)+(y4—x4 +U, + @cos ot + 262 —2632)

+(—Asin y, + Asin X, + U, + @cos @t + 2€; —2€7)
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Choose

U =-Y,+X, - Focoswt—e, +2¢;
U — 1 -2m,Qgsin 'y, +2m2Asin y,sin 'y,
> 2m, +4m,sin’y, | |
kiy, ky
2 3 : 2 19 2 Y2
—4m,y; sin 'y, cos 'y, +2m,sin Yy, cos y,n _|_2_|—2)
1 —2m, g sin X, N 2m, Asin X, sin X,
2m1 +4m2 sin” X | | (5-17)
k.x, Kk X
2 &3 : 2 1N 2%
—4m,X; sin X, cos X, + 2m, sin X, cos X,77 ___I—z)

|2
~-Fwcoswt—e, —2€;
U, =-Yy, +Xx,— Focoswt—e, +2¢;

u, = +Asiny, — Asin x, - F@cos ot — e, =.2¢e;

We obtain
V=-¢-e-6e-¢€<0 (5-18)

which is negative definite function in first quadrant. Four state errors versus time and

time histories of Y; =X +0; and —F sinwt (i=1,2,3,4) are shown in Fig. 27. and

Fig. 28.

CASE 1II. The generalized synchronization error function is e =Y. —%Xi2+gi

(1=1,2,3,4). Our goal is
%imei = %im(yi —%xiz +0,)=0.

where g,=0,=0,=0,=30 are constants.

The error dynamics becomes:
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4 2 2
€ =Y, — XX, +26 —2e, +U,
1 -2m,gsiny, N 2m,Asin y, sin Yy,
c 2
2m, +4m,sin” y, | |

—4m,y: sin y, cos Y, +2m, sin Y, cos y,77° _%_ K, yz)

e, =

_ X, —2m, g sin X, N 2m, Asin X, sin X,
c 2
2m, +4m, sin” X, | | (5-19)
kX,  Kk,x
2 . . 5 | )
—4m,X; sin X, cos X, + 2m, sin X, cos X,77° — |—2 |2 —222)

+2e; —2e2 +u
6, =Y, — XX, +2e; —2el +Uu,
€, = —Asiny, + AX, sin X, +2ef —2€f +u

Let initial states be  (X» Xy05 X505 Xai)= (1.53,-0.47,1.415,0.5), (Y105 V0> Y305 Yao) =

(1.7,1,1.6,0.8) , we find the errof dynamics ‘always exists in first quadrant as shown in

Fig. 29. By GYC partial region asymptotical stability theorem, one can choose a linear

positive definite Lyapunov function function in first quadrant:

V=g +€,+€,+¢, (5-20)

Its time derivative is

V =(y, = XX, +2€; —2€] +Uu,)

+( 1 _ (—Zng sin 'y, +2m2Asin y,siny,
2m, +4m,sin” y, | |
Ky, kY,
—4m,y3 sin 'y, cos Y, +2m, sin y, cos y,;7° — P —I—z)
B X, —2m, g sin X, N 2m, Asin X, sin X,
2m, +4m, sin® X, I I (5-21)
kX KX
—4m, X3 sin X, cos X, +2M, sin X, cos X 2 —=)

|
+26) = 2€; +U,) + (Y, — XX, + 26} —2€] +u; )

+(—Asin y, + AX, sin X, +2e; —2€2 +Uu,)
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Choose
U =-Y, +XX,—¢e +2€
1 —2m,gsin Yy, N 2m,Asin y, sin 'y,

uZ == . 2
2m, +4m,sin” y, | |
Ky, kY
2 5 ; 2 KRR
—4m,y; siny, cos 'y, +2m,sin Yy, cos y,n" — B _|—2)
N X, —2m, g sin X N 2m, Asin X, sin X,
2m, +4m, sin’ X, | | (5-22)
kix,  Kk,x
2 . 5 5
—4m,X; sin X, cos X, + 2m, sin X, cos X,77 —%—I—zz)
—Fwcoswt—e, —2€;
Uy ==Y, + XX, — €, +2€;
u, =+Asiny, — Asin X, —e, — 2€;
We obtain
V=-e-e-6-€<0 (5-23)

which is negative definite function in first quadrant. Four state errors versus time are

shown in Fig. 30.

CASE IV. The generalized synchronization error function is €=y —-X+2+(, Z is

the state vector of new Mathieu-Duffing system, where 9, =0, =0, =0, =50 are

constants.

The goal system for synchronization is the new Mathieu-Duffing system

d

Ezl =1,

d 3 3

azzz —-az, —bz,z, —az; -bz,z; —cz, +dz,

d , (5-24)
dt 37 4

524:—23—z§—tz4+ fz,

Our goal is
lime=1lim(y-Xx+z+qg)=0

t—>o t
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The error dynamics becomes:
. 2 2
€& =Y,—X,+12,+2e,—2e; +U,

6 = 1 -2m,gsin 'y, N 2m,Asin y, sin 'y,
> 2m, +4m,sin’y, | |
kiy, _kpy
2 . . 2 171 272
—4m,y; siny,cosy, +2m siny cosy,n — cp )
1 —2m, g sin X, N 2m, Asin X, sin X,
2m, +4m, sin” X, | I (5-25)
. . kx,  k,x
—4m, X; sin X, cos X, + 2m, sin X, cos X,;77° — — - — —2-2)
2m | I

+u, —az, —bz,z, —az -bz,z} —cz, + dz, + 2] - 2¢]
&, =Y, — XX, +U, +2, +2€] —2€’
¢, =—Asiny, + AX,sin X, +U, — 2, — 2] —tz, + fz, + 2e] — 2¢;
Let initial states be (X5, Xy» X505 Xio) 20 (1853,-0.47,1.415,0.5), (Y105 Ya0> Ys05 Yao) =

(1.7,1,1.6,0.8) , we find that the efror dynamics always exists in first quadrant as shown

in Fig. 31. By GYC partial region asymptotical stability theorem, one can choose a

linear positive definite Lyapunov function function in-first quadrant:

V =g +€,+€e,+¢e, (5-26)

Its time derivative is
Vo =(y, =X, +U, +2,+2€; -2¢} )
1 -2m,gsiny, N 2m,Asin y, sin y,
2m, +4m, sin’ y, | |
Ky k.,

2 I?

+(

—4m,y; sin y, cos Y, +2m, sin y, cos y,i7° —

1 —-2m,gsin X N 2m, Asin X, sin X,
2m, +4m, sin® X, | | (5-27)

kX K, X

2 g : 2 /A BN
—4m, X; sin X, cos X, +2m, sin X, cos X,77 _|_2_|—2)
+u, —az, —bz,z, —az) —bz,z’ —cz, + dz, + 2€2 - 2€7)
(Y, = XX, + Uy + 2, + 2] - 2€])

+(—Asiny, + AX, sin X, +U, —Z, — Z —tz, + fz, +2€] —2¢7)
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Choose

U ==Y, +X,—2,— € +2€,
U =— 1 -2m,gsiny, +2m2Asin y,siny,
? 2m, +4m, sin’ vy, I |

ky, K,y

> si i 2 _ ™Yy 2 Y
—4m,y; sin 'y, cosy, +2m,sin Yy, cosy,n” — PR )

N 1 —2m, g sin X, N 2m, Asin X, sin X,

2m, +4m, sin® X, | | (5.28)
i - kX, K,X
—4m, X2 sin X, cos X, + 2m, sin X, cos X,;° — —- _%)

P
+az, +bz,z, +az] +bz,z) +cz, —dz, —e, - 2€]
Uy =—Y, +X,—2,—€ +26e
u, = +Asiny, — Asin X, + z, + 2] +tz, — fz, +e, - 2e;
We obtain
V=-—e-e-6-6€<0 (5-29)

which is negative definite function in. first quadrant. Four state errors versus time and

time histories of y, —x,+g; and =4 (i=1,2,3,4) are shown in Fig. 32. and Fig.

33.
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Fig. 21 Phase portrait for tachometer system.
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Fig. 22 Chaotic phase portraits for Mathieu-Duffing system in the first quadrant.

Fig. 23  Phase portrait of error dynamics for Case I.
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Fig. 24 Time histories of errors for Case I.
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Fig. 25 Time histories of X, X2, X3, X,, Y1, Y2, ¥3, Y, for Case 1.
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Fig. 26  Phase portrait of error dynamics for Case II.
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Chapter 6

Chaos Control of Tachometer System by GYC Partial
Region Stability Theory

In this chapter, chaos control of tachometer system by GYC partial region stability is
proposed. The Lyapunov function is a simple linear function and the controllers are
more simple by using the GYC partial region stability theory. The simulation results are
more precise because the controllers are in lower order than that of traditional
controllers. Chaos control of tachometer system by GYC partial region stability is

obtained and verified by numerical simulation.

6.1 Chaos control scheme

Consider the following chaotic systems
x=1(t, x) (6-1)

T . . .
where X=[X,X,,---,X,] €R" is a state vector, f:R,xR" —R" is a vector function.

The goal system which can be either chaotic or regular, is

y=9(ty) (6-2)

where Y =[Y,, ;.. Y, ]T eR" isa state vector, g:R, xR" = R" is a vector function.
In order to make the chaotic state X approaching the goal state y, define e=x-y

as the state error. The chaos control is accomplished in the sense that [38, 43-49]:
}ime = ym(x -y)=0 (6-3)
In this chapter, we will use examples in which the e state is placed in the first quadrant
of coordinate system and use the GYC partial region stability theory, The Lyapunov
function is a simple linear function and the controllers are more simple by using the

GYC partial region stability theory (Appendix-B). The simulation results are more

precise because the controllers are in lower order than that of traditional controllers.
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6.2 Hyperchaotic tachometer system and new hyperchaotic
Mathieu-Duffing system

The tachometer system of four-dimension shown in Fig. 1 is given by:

d

axl = X2
d « = 1 —2m,gsin X, N 2m,Asin X, sin X,

dt= * 2m, +4m,sin’ X, I I

. . kx kX
—4m,X; sin X, cos X, +2m, sin X, cos X77° —% —%) (6-4)

d
a =%
™ X, =—Asin X,

where X,, X,, X;, X,are state variables and:k,, k,, A, I, g, m ,m, are constants,
when Kk, =4, k, =1, m, =3, m;=3,_A=5,, n=4.55 ¢g=9.8, |I=1.5. The system

exhibits chaotic behavior with hyperchaotic Lyapunov exponents in Fig. 2. Its phase

portrait as shown in Fig. 21.

The new hyperchaotic Mathieu-Duffing System is given by:

azl = 22

pri i —bz,z, —az} —bz,z} —cz, + dz,

d (6-5)
az3 =1

d

Gl = z,-7 -9z, + fz,

where its initial states is (2, 3, 4, 2.5), system parameters are a=5, b==0.5970, c¢=0.005,
d=-5, g=0.002, =9, the system exhibits chaotic behavior with hyperchaotic Lyapunov

exponents and its phase portraits as shown in Fig. 7 and Fig. 22.
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6.3 Numerical simulations for hyperchaotic tachometer system and

new hyperchaotic Mathieu-Duffing system

CASE I. Control the chaotic motion to zero.

The old origin of the tachometer system is translated to (X, X,, X;,X,) =(9,,9,,05,9,)

where ¢,=5,09,=5,0,=5,09,=5

X =X,—(

X, = (

dt
i 1 —2m,gsin(x, — g,)
dt 2m, +4m, sin’*(x, — d,) I

| 2m,Asin(x; - g,)sin(x, ~ g,)
|

—4m, (X, — g,)’ sin(X, — g,) cos(X'=dy) 6-6)
+2m, sin(x, — g,) cos(X, =@, > & kl(xllz_ 9;) kz(lez— 92))

ax3 =X, —0;

d :

aX“ =—Asin(X; - 0,)

and the chaotic motion always happens in the first quadrant of coordinate system

(X5 %5, %;,X,). This tachometer system is presented as simulated examples where the

initial conditions is X,=6.53,x,, =5.53,%,=6415Xx,=55. The chaotic motion is shown in

Fig. 34.

In order to lead (X, X,, X;,X,) to the goal, we add controllers u,,u,,u,,u, to each

equation of Eq. (6-6), respectively:
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d
L5

% %= L (2MOSinGs —0,)
mi+4mz SIT ()(1_92) I

2m,Asin(x, —g,)sin(x —g,) —4m,(x, —g,)* sin(X, —g,)cos(X —g,)

|
i 2 kl Y -4, (6-7)
+2m Sin(x ~0,)cos(X ~G, )7 (Xllz 5) kz(lez )1,

d
a)% =%—0;+y

d .
a X, =—Asin(X; —g,)+U,

In this case, we will control the chaotic motion of the tachometer system (6-8) to zero.

The goal is y =0. The state error.is e, =Xy =7, ='X, where i=(1,2,3,4) and error

dynamics becomes:

& =X =x2—gl+2972—2972+u1
1 —2m,gsin(X, _gz)+

2m +4m, sin’ (% —g,) I

2m, Asi - in(x, — )

A0 =0) g, (1, g, sin G, os( -G, o

+2m sin(X, —g,)cos(X, — g, )17’ kl(X1Iz—92) kz()%lz_gz))”ef—zef*‘uz
és :X3 =X—0; +2€§ —2632 +U
€, =X, =—Asin(x, —g4)+2e§ _2332 +U,

€ =%=

In Fig. 35, we see that the error dynamics always exists in first quadrant.

By GYC partial region stability, one can easily choose a linear Lyapunov function in the

form of a positive definite function in first quadrant as:

V =g +€,+€e,+¢€, (6-9)
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Its time derivative through error dynamics (6-8) is

\/ =é1+é2+é3+é4
_ (e2 — g, +2e2-2¢? +u1)
1 (_2ngSin(el_gz)
2m, +4m,sin’(e, — g,) |
N 2m,Asin(e; — g,)sin(e, — ¢,)
I (6-10)

—4m, (e, - 92)2 sin(e, — g,)cos(e, - g,)

+2m, sin(e, — g,) cos(e, — g,)n’

_ kl(el — gz) _ kz(ez - gz)

1? I?

)+ 2e; —2e; +Uu,)
+(e, — g, +26e) —2el +U;)+ (=Asin(e, — g,) + 2e; —2e; +u,)

Choose

-e,+0,—-6 +2e;
u, = - 1 (_2ng Sin(el_gz)
2m, + 4m, sin’(e, — g,) I
N 2m,Asin(e, — g,)sin(e, — g,)
I
—4m, (e, - 92)2 sin(e, — g,)cos(e, - g,)
+2m, sin(e, — g,) cos(e, — g,)n> (6-11)
_ kl(el - gz) _ kz(ez - gz))

2 2

c
I

—e, —2¢€;
2
u,=-e,+9,—e,+2e,

u, = +Asin(e, - g,)—e, — 2e;

We obtain
V=-e-e-6e-¢€<0 (6-12)

which is negative definite function in first quadrant. The numerical results are shown in

Fig. 36. After 30 sec, the motion trajectories approach the origin.
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CASE II. Control the chaotic motion to a sine function.

The tacometer system of which the old origin is translated to

(Xlsxzaxaaxzt):(g]a d,,0,, g4) where 0 :309 g, :30: g3 :30, 9,4 =30

and the chaotic motion always happens in the first quadrant of coordinate system

(X5 X,,%;,X,) . This tachometer system is presented as simulated examples where the

initial conditions is X, =31.53,%,, =29.53,%,, =31.415,%,, =30.5.

In this case we will control the chaotic motion of the tachometer system (6-6) to sine
function of time. The goal is Yy = F sinwt . The error equation

e, =X —-Y, =X —Fsinot (6-13)

& =X-Y, =X —oF cosat

where F=0.5, 0, =01, 0,=02, ©,=0:15, @,=0.3. Our goal is:
lime, = ym(xi - F sinwt) =0, (1=1,2,3,4)

t—ow

The error dynamics is

& =X —oF cosat =X, — g, —oF cosmt +2€; —2€; +U,
€, =X, —w,F cosw,t
i 1 (2m.gsin(x ~g,)
2m, +4m, sin’(x, — g,) I
i 2m, Asin(X; —g,)sin(x, — g, )
I
—4m, (X, —g,)’ sin(x, — g,) cos(X, — d,) (6-14)
+2m, sin(X, — g,) cos(X, — g,)7°

_ kl(Xl _gz) _ kz(xz — gz)

2 2

)—,F cosw,t +2€ —2€2 +U,

&, =X, —o,Fcoswt =X, -0, - o,F cosmt + 26 —2¢e] +u,

é, = X, —w,F cosw,t = —Asin(x, — g,) — o,F cos ot +2€; —2€; +u,

In Fig. 37, the error dynamics always exists in first quadrant.
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By GYC partial region stability, one can easily choose a linear Lyapunov function in

the form of a positive definite function in first quadrant as:

V =¢ +e,+6,+¢, (6-15)
Its time derivative is
V =€ +6, +6,
=(X,—0g,—o,F cosmot+2e; —2e;+u,)
+( 1 - (_2ngSln(X1_gz)+
2m, +4m,sin” (X, — g,) I
2m,Asin(x; — g,)sin(X, - 9g,)
I
_4m2(xz_gz)2 sin(xl—gz)cos(xl—gz) (6-16)
+2m, sin(x, — g,) cos(X, — g )*
- k‘(xllz_ 9.) _ kz(lez_ gz))— o, F cosw,t+2e) —2e) +u,)
+(X, — 0, — @,F cosm,t+2e; = 26; +u,)
+(—Asin(x, — g,) - @,Fcosat+2e; - 2€; +u,)
Choose
U =-X,+9,+oF cosot—e +26€
u = - 1‘ : (—2ng s1n(x1—gz)+
2m, +4m,sin" (X, — g,) I
2m,Asin(x; — g,)sin(X, — g,)
I
—4m, (X, — g,)” sin(x, — g,) cos(x, — g,) (6-17)
£2m, sin(x, - ;) cos(x, - g, — B8 6L 20,
+,F cosw,t —e, - 2€;
U, =-X, + 0, + o,F coswt —e, + 2€;
u, = Asin(x, - g,) + o,F cosw,t —e, — 2¢e;
We obtain
V=-—e-6-6-€<0 (6-18)
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which is negative definite function in first quadrant. The numerical results are shown in
Fig.38 and Fig. 49. After 30 sec., the errors approach zero and the motion trajectories

approach to sine functions.

CASE III. Control the chaotic motion of tachometer system to chaotic motion of a new
hyperchaotic Mathieu-Duffing System.
The tachometer system of which the old origin 1is translated to
(X %,,%,%,)=(9,,9,,09;,9,) where ¢,=30,9,=30,9,=30,9,=30
and the chaotic motion always happens in the first quadrant of coordinate system
(X, %,,%;,X,). This tachometer system is presented as simulated examples where the

initial conditions is X, =51.53,X,, =49.53,%;=51.415,X,, =50.5.

In this case we will control chaotic motion of to that of a new hyperchaotic

Mathieu-Duffing System. The goal system is a new hyperchaotic Mathieu-Duffing

System:
d
azl = 22
d 3 3
EZ2= —az, —bz,z, —az; —bz,z; —cz, + dz,
q (6-19)
EZ3 = Z4

G =Th T 2} —tz, + fz,
The error equation is €, = X; — z,, (i=1,2,3,4) Our goalis lime=0.

tow

The error dynamics becomes:
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. . s 2 2
& =X-2,=X,—-0,—-2,+2e, —2e; +U,

éz = Xz -7,
_ 1 (_2ngSin(X1_g2)+
2m, +4m, sin’(x, — g,) I
2m,Asin(X, — ¢g,)sin(X, — ¢,)
|
—4m, (X, — g,)* sin(X, — g,) cos(X, — g,) (6-20)

+2m, sin(X, — g,) cos(X, — g,)n°
_ kl(xl -9,) _ kz(xz — gz))

1* &

+az, +bz,z, +az] +bz,z] +cz, —dz, + 2e; - 2e; +u,
6, =X, —2,=X,—0,—2,+2e] -2el+u,
6, =X, —2,=—Asin(X; - g,)+ 2, + z; +tz, — fz, + 2e] - 2e] +u,
By Fig. 40, we know the error dynamics always exists in first quadrant.
By GYC partial region stability, ene ¢an easily choose a Lyapunov function in the form
of a positive definite function in first quadrant as:

V =e +e,+e,+¢g, (6-21)

Its time derivative is

V =6 +6 +6 +8,

(xz—gl—22+2ej—2ej+ul)

+(2 1. : (—2ng s1n(X1—gz)+
m, +4m,sin" (X, — g¢,) |
2m,Asin(X, — g,)sin(X, — g,)
I
—4m,(x, — g,)* sin(X, — g,)cos(X, — @,) (6-22)

+2m, sin(X, — g,)cos(X, — le)ﬂ2
_ kl(Xl — gz) _ kz(xz — gz))

|2 |2

+az, +bz,z, + az] +bz,z) + cz, - dz, + 2e] — 2e] +u,)
+(X, — 0, — 2, +2€; —2€; +U,)

+(—Asin(X, —g,)+ 2z, + 2, +tz, — fz, + 2e; — 2e] +u,)
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Choose

2

u =-Xx,+9,+2z,—¢€ +2e;
1 -2m m(x, —
uz:_2m1+4m2sin2(x1—g2)( zgsl( 1 92)+
2m,Asin(X; — g,)sin(X, — g,)
I
—4m, (X, — g,)’sin(X, — g,)cos(X, - g,)
+2m, sin(X, = g,) cos(X, — g,)7" (6-23)
_kl(xl_gz)_kz(xz_gz))
I° 1°
—-az, —bz,z, —az} -bz,z] —cz, + dz, — e, - 2¢;
Uy =-X,+0,+2, —e,+2¢e}

u, = +Asin(x; - 9,)— z, —z; —tz, + fz;.— e, — 2¢;}

We obtain
V=-—e-e-6-€<0 (6-24)

which is negative definite function i first quadrant. The numerical results are shown in
Fig.41 and Fig. 42. After 30 sec., the errors approach zero and the chaotic trajectories of

tachometer system approach to that of the new Mathieu-Duffing system.
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Fig. 38 Time histories of errors for Case II.
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Fig. 39 Time histories of X, X,, X;, X, for Case II
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Fig. 40 Phase portraits of error dynamics for Case III.
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Chapter 7

BOIDS CONTROL OF CHAOS FOR TACHOMETER
SYSTEM

The aggregate motion of a flock of birds or a herd of land animals is a beautiful and
familiar part of the natural world. They exhibit complex and emergent behaviors such as
flocking behavior, separation behavior, and obstacle avoiding behavior. This paper
explores an approach based on simulation as an alternative to scripting the paths of each
bird individually. Flock centering and separation, obstacle avoidance are studied. A

nonautonomous tachometer system is used for simulation example.

7.1 Boids nonlinear control'scheme
Many nonlinear systems which are knewn to present chaotic behavior are modeled by

a set of nonlinear nonautonomous differential equations:

%zfi(xl,xz,...,x t) (i=L2,---n) (7-1)

dt

where X = (X, (1), X,(t),---, X, (t)) are state variables, and

(14

f(x,t) = (f,(x,1), f,(X,t),---, f, (X,t)) is a nonlinear vector function of x and t. Given

initial state x(0) at t=0, the state x of each isolated boid B, is assumed to evolve

for all t>0 via state equations:

dx.“
gt = OO S =12, (7-2)

We will assume for simplicity that all boids are identical and each boid is coupled

locally only to those neighbor boids whose trajectories lie inside a prescribed sphere

S, ofradius ¢:

S.(2.0) = {Bﬂ I \/ima O (1)’ < e}, (7-3)
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at time t, where y, , indicates the distance between the boids B, and B,. We will

usually delete ¢ and t from S, (&,t) and simply write S, to avoid clutter. Then, the

dynamics of the locally coupled chaotic nonlinear networks, namely, the dynamics of

boids nonlinear networks is defined by

d 5 a a a
%: fi(xl ’XZ ’“.’Xn 9t)+ Z Diﬂgi(xlﬂaxzﬂa'naxnﬂat)
BﬂeSa

(i=L2,--,n, a=12,---,M) (7-4)

where Di'B (i=12,--,n) are coupling coefficients, and g(x)=(g,(X),d,(X),"-d, (X))

is a nonlinear vector function of x.

Case Flock Centering: Boids attempt,to meve toward the average position of nearby
flockmates.

The center of nearby flockmates-is defined by

PR A

N e —
F (1) N (7-5)

a

where N, indicates the number of nearby flockmates. The boids can move toward the

center X by using chaotic synchronization [50]. Therefore, flock centering is

implemented here by imposing the control dynamics

dx,” a ya a & (@ _ g
—d-lt = fi (Xl s X2 PR Xn ’t) + di (XI - Xi ) (7_6)
where d” >0.

Case Il Separation of Flocks: Boids keep a distance from different kinds of flocks.
A flock may attempt to go away from other kinds of flocks. If a flock gets close

enough to a different groups of flocks, that is, if the distance between the centers of two

flocks becomes less than &, >0, boids attempt to scatter. Separation of flocks is

implemented by the dynamics of chaotic desynchronization
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B XX D+ ) (7-7)

where s >0 and ? indicates a center of nearby flockmates. Although s; >0, the
purpose of separation of flocks can be obtained.
Case III  Obstacle Avoidance: Boids attempt to dodge static obstacles.
Assume that a static obstacle is defined by the equation

h(X,X,,-X)=b (i=L2,---,n) (7-8)
where h is a scalar function of X =(X;,X,,--+,X,) and b is a constant. The normal vector

at X=(X,X,,---,X,) onasurface h(x,X,,---,X,)=Db is given by
Oh(X,, Xy, -+ X,) Oh(X, Xy, X,)
OX, ’ OX, ’ (7-9)
”"ah(xl,xz,---,xn)).
OX

V(X Xy, X, ) = (

n

If a boid gets close enough to a static obstacle, that 1s,.if the distance between a boid and

a static obstacle is less than &g, the boids must attempt to dodge the static obstacle.

Obstacle avoidance can be implemented by switching over to a new vector field:

% =(1-u) fi(x“, %%, Xnaat)+ui7/ah(xpgj(:m,xn) (7-10)

where 0<u, <1 and y >0.

7.2 Hyperchaotic tachometer system

The dynamic equation of a tachometer system with vibrating base shown in Fig. 43.

is given by:
i
d « = 1 -2m,gsinX, 2m,A®’ sin wtsin X,
dt > 2m, +4m, sin’ X ’l o’
! 2 ! (7-11)
. : kx, Kk,
—4m,X; sin X, cos X, + 2M, sin X, cos X, X,* — —L-L — —2-2)
o’l° ol
d . _ Z2xXc0s X
dt sin X,

where X,, X,, X,,are state variables and k,, k,,A,l, g, m,,m,,® are constants,
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when k =3, k,=2, m,=2, m =3, A=25, ¢g=9.8, I=1.5, a):\/%. The system

exhibits hyperchaotic behavior. Its Lyapunov exponents and phase portraits are shown

in Figs. 44~46.

7.3 Numerical simulations for boids control of chaos for
tachometer system

The tachometer system is the master system:

d
a X1 = X2

d 1 —-2m,gsinX,  2m,Aw’ sin otsin X,
PR ) 2 - P
dt 2m, +4m, sin” X, o'l 'l

(7-12)
2 . . 2 klxl k2X2
—4m,X; sin X, COS X, +2M, Sin X, COS X X, ——————=
wl” ol

d__ =2XXcosX

dt sin X,

The slave system is

d

a Yi=Y,

d y, = 1 —2m,gsiny, 2m, Aw’ sin et sin y,

dt *>  2m, +4m,sin’ y, ’l o’

7-13
2 . . 2 k] yl k2 y2 ( )
—4m,y; siny, cos y, +2m, siny, cos Y, y," —————==)
o’l” ol
i _ —2Y,Y;co8y,
dt > sin 'y,

Case I. Flock Centering: Boids attempt to move toward the average position of nearby

flockmates.

Flock centering is implemented here by imposing the control dynamics:
dx.”
dt

= fi(xla’Xza""axnaﬂt)-’_dia(g_Xia) (7_14)
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The slave system is rewritten as follows:

d
Y=Y, +d((X1 +X +X3)/3'y1)

dt
d .= 1 -2m,gsiny, 2m,Ax’sinatsiny,
dt”>  2m +4m,sin’ y, 'l 'l
. . ky, kY
—4wﬁ$nmamm+2m$nmammwkjﬁﬁ—;ﬁ% (7-15)

+HA(O4 +%,+X)/3-Y,)
d y. = —2Y,Y;cos Y,

ol +A((% +%,+%)/3-Y,)

Yi

where d=0.0001.

The simulations of flocking behavior of tachometer systems are shown in Figs. 47-49.
The trajectories between two tachometer systems are illustrated in Fig. 47. The distance
between two systems is given: in. Fig. 48.+The synchronization behavior of two

tachometer systems is given in Fig. 49.

Case Il  Separation of Flocks: Boids keep a distance from different kinds of flocks.
Separation of flocks is implemented by the dynamics of chaotic desynchronization:
dx,“

—= F(X7, %% X ) 4 8% (X — X) (7-16)

The slave system is rewritten as follows:

d
—-Y =y2+S|((Xl+X2+X3)/3—yl)

dt
d .= 1 -2m,gsiny, 2m,Ax’sinatsiny,
dt”*  2m +4m,sin’ y, ol 'l
. : ky, kY.
_4%3/5 sin Yy, cos y, +2m siny, cos y1)/32 _a)lzllz - a)|22) (7-17)

+5 ((Xl % +X3)/3_y2)
E y, = —2Y,Y; c0s Y,

B5 oy )3y
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where s, =1.

The simulations of flocking behavior of tachometer systems are shown in Figs. 50-52.
The trajectories between two tachometer systems are illustrated in Fig. 50. The distance
between two systems is given in Fig. 51. The synchronization behavior of two

tachometer systems is given in Fig. 52.

Case III. Obstacle Avoidance: Boids attempt to dodge static obstacles.

Obstacle avoidance can be implemented by switching over to a new vector field:

X U £ (0 x7x, 1)  uy T Ko o) (7-18)
t OX;

Define a sphere of radius I, centered at (X,,Y,,Z,) by

(X=X +(y=y)’ +(z-2)" =1 (7-19)
and its normal vector n=(n,,n, ;n,) atthe poit(x,y, z) by

(nxanyanz):(2(X_X1)72(y_yl)az(z_zl)) (7_20)
Define a cylinder of radius 1, centeredat (X,,Y,) .by

(X_Xl)z"'(y_yl)z:rz2 (7-21)
and its normal vector n=(n,,n,,n,) atthe point (x, y, z) by

(nxNy,n,) = (2(X=X%),2(Yy = ¥,),0) (7-22)

Therefore, the “sphere” and the “cylinder” obstacles are specified by the parameters:

(X,Y,,2,,r,) and (X,,Y,,I,) respectively.

ITI-1: Sphere Avoidance

The tachometer system is rewritten as follows:
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EXl :(l_ul)xz +2}/U1(X1 _X)

dt
d 1 -2 sinx  2m Aw’ sin Wt sin X
—X2=(1—U2)( — ng2 1 m, - 1
dt 2m, +4m, sin” X, ol ol
—4m,X; sin X, cos X, +2M, sin X, cos X, X,” — K kX ) (7-23)

o'l o’
+2]/U2(X2 _Y)

d -2
% =)0 o, -2)
SIn X

1

where u,=0.025, u, =0.025, u,=0.025, a sphere centered at X =2.1,Y =0,Z=2.9,
y=0.001. The simulations of the obstacle avoidance behavior for sphere are illustrated

in Figs.53-54.

[11-2: Cylinder Avoidance

The tachometer system is rewritten as follows:

d

EXI =(1-u)x, +2yu,(x, — X)

ix —(1-u,) 1 -2m,g'sin X 1 2m2Aa)2 sin ot sin X,

dt 27 2m, +4m, sin” X, ’l 0l

. . kx kX -

—4m,X; sin X, cos X, +2m, sin X, c0S XX, — a)lzllz — a2)| 2)) (7-24)
+27/U2(X2 _Y)

d. _=2XXcosX,

dt sin X,

where U,=0.025, u,=0.025, a cylinder centered at X =2.1,Y =0,Z =6.5, y=0.001.

The simulations of the obstacle avoidance behavior for cylinder are illustrated in Figs.

55-56.
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Fig. 43  Sketch of a tachometer with vibrating base.

Fig. 44 Lyapunov exponents for tachometer system.

76

35



2

Fig.

MooWw s O

(] =y

1
-

R T T
M B W N

25

20 |

15 -]

10 -

45 Chaotic phase portrait of chaotic for tachometer system.

Fig. 46 Phase portrait of chaotic for tachometer system.

Fig. 47 Flocking of two tachometer systems.

77



fistance

(]} 200 A00 [={m]m] SO0 1000 1200 1400 16500
T

Fig. 48 Distance between two tachometer systems.

Fig. 49 Synchronization of two tachometer systems.

25

Fig. 50 Separation of two tachometer systems.
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Fig. 51 Distance between two tachometer systems.

Fig. 52 Desynchronization of two tachometer systems.

Fig. 53 Sphere avoidance for tachometer system.
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Fig. 56 Cylinder avoidance for tachometer system.
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Chapter 8

Lag Synchronization for Tachometer System

In this Chapter, lag synchronization for two tachometer systems is studied by

backstepping control.

8.1 Lag synchronization of two hyperchaotic tachometer systems by
backstepping control

The tachometer system is the master system:

axl =X,
ix :—k1X1 o 1 —2m,gsinX, +2m2AsinX3sinX1
dt™* 2m|” 2m, +4m, sin’ X, [ I
2X2 (8—1)

S

—4m,X] sin X, cos X, +2m, sinX; cos X,n7° —

—X, =—AsinX,

where X, X,, X;, X,are state variables and K,, K,, A, I, g, m,,m, are constants,

when k, =4, k, =1, m, =3, m=3, A=5, n=4.5, g=9.8, I=1.5, the system exhibits

chaotic behavior as shown in Fig 2.

The slave system is
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d

ayl =Y,

d o =ky . 1 —-2m,gsiny, +2m2Asiny3 sin'y,

dt”* 2ml? 2m, +4m, sin’ y, I I

—4m,y; siny, cosy, +2m,siny, cosy,n’ — ki 2/2) (8-2)

d
a Yi=Y,

d .
o y, =—Asiny,

where Y,, Y,, Y;, Y,are state variables.

In order to lead (y19 yz: y3: y4) to (X1(t_T)a Xz(t_r)a X3(t—2'), X4(t—T)), add

u,, u,, Uy, U, ascontrollersin Eq (842):

d

ay1 =Y,y

d -k, 1 —2m,gsiny, 2m,Asiny,siny,

—Yy,= et — +

dt 2m)l 2m, +4ms sin 1y, | |

—4m,y:sin y, cos y, +2m, siny, cos Y, ;77 = kizb )+ U, (8-3)

d
Eya =Y, U
iy =—Asiny, +U
dt 2 3 4

Define error state vectors as follows:
e =Yy, —X(t-7)

&, =Y, =X (t-7)

e, =Y, —X(t-17)

e, =Y, — X, (t—7)

(8-4)

where 7 is time delay constant, and we choose 7 =5 in order to get lag
synchronization.

Differentiate Eg (8-4) with respect to time, error dynamics is
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g =6+X({t-7)-X({t-7)+y,
ke,  kx((t-17)
2 — > — > 4.
2m| 2m|
1 _2m,gsin Yy, N 2m,Asin y, sin y,

+ —
2m, +4m, sin” y, | I

—4m,y; sin y, cos Y,

(8-5)

. k .
+2m, sin y, cos y,;7° — i2y2)_x2(t—r)+u2

& =¢e+X({t-7)-X{t-7)+u,
g, =—Asiny, - X,(t-7)+u,

Choose a positive definite Lyapunov function

1
V= (8-6)

1

Differentiate Eq (8-6) with respect to time, we have:

V=g (e, + % (t-1)-X(t-7)+U,) (8-7)
Choose U, =—X,(t—7)+ X (t—-7), and €, = «, (€)= —¢€,, Eq (8-7) becomes:

V, =-e! <0 (8-8)
e,=0 is asymptotically stable. When, '€;°1s considered as a controller, «,(€,) is an

estimative function, define W, =€; ~¢,(¢,) =€, #¢€, and its derivative is

W, =¢, +6,. (8-9)
Choose a positive definite Lyapunov function
V, =V, + %Wf (8-10)
Then:
V, =V, +W,W, (8-11)
. ke  kx(t-17)
V, =—e] +W,(W, —g, - —— - +oe
2 1 2 (\NZ 1 2m1| 2 2m1| 2
1 _2m,gsiny, N 2m, Asin y, sin Y, _4m,ysiny, cosy, (8-12)

+ —
2m, +4m, sin” y, | |

) k )
+2m, sin y, cos y,;7° — izyz)—xz(t—z')Jruz)

Choose:
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ke, N klxl(t—r)+.__

2ml®> 2ml?

B 1 _2m,gsiny, N 2m,Asin y, sin 'y,
2m, +4m,sin’ y, I I

K, Y,

|2

u, =-2W, +e +

2 .
—4m,y; sin Yy, cosy,

: 2
+2m; sin 'y, cos y,n” —

)+ X, (t—7)

Eq (8-12) becomes:
V, =—e} -W, <0 (8-13)
e, =0 is asymptotically stable.

Choose a positive definite Lyapunov function

V, =V, +V, +%e§ (8-14)

Then by the third equation of Eq (8-14), we have
V, =V, +V, + e, (3.15)
=—’ W, +¢e,(e, + X, (t—7)= X, (t 5 7))
Choose U, =—X,(t—7)+X,(t—7), and put €; = &,(e;) = —¢,, Eq (8-15) becomes
V, =—e] -W, —e] <0 (8-16)

e,=0 is asymptotically stable. When €, is considered as a controller, ¢,(e;) is an

estimative function, define

W,=¢e,-a,(e;)=¢e,+e, and

W, =€, +€, (8-17)
Choose a positive definite Lyapunov function

V, =V, +V, +V, +%W42 (8-18)

Then by the fourth equation of Eq (8-18), we have
V, =V, +V, +V, +WW,

(8-19)
=—e’ -W, —e] +W,(W, —e, — Asiny, - X,(t—7) +u,)
Choose u, =-2W, +¢e,+ Asiny, +X,(t—7), Eq (8-19) becomes :
V, =-e} -W,] —el -W] <0 (8-20)

e, =0 is asymptotically stable.

Numerical simulations show that the result is satisfactory as shown in Figs. 57.
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Chapter 9

Conclusions

In this thesis, chaos, pragmatical hybrid projective generalized and symplectic
synchronization of a tachometer system by adaptive backstepping control are studied.
Furthermore, a generalized synchronization and control by GYC partial region stability
theory, boids control of chaos and lag synchronization of the same system are studied.

In Chapter 2, the chaotic behaviors of a hyperchaotic tachometer system is studied by
phase portraits, Poincare maps, bifurcation diagram, power spectra and Lyapunov
exponents. Two positive Lyapunov exponents shows the hyperchaos of the system.

In Chapter 3, pragmatical hybrid projective hyperchaotic generalized synchronization
(PHPHGS) of two first given hyperchaotic tachometer systems with hyperchaotic
Lyapunov exponents by adaptive-backstepping-control is studied. Another hyperchaotic
Mathieu-Duffing system with two positive Lyapunov exponents is used as functional
system which is first given by <[51]. PHPHGS" is more complicated than usual
generalized synchronization. For secret communication, the security is greatly
increased.

In Chapter 4, pragmatical hybrid projective hyperchaotic symplectic synchronization
(PHPHSS) of two first given hyperchaotic tachometer systems as partner A and partner
B by adaptive backstepping control is studied. Another chaotic Lorenz system is used as
functional system with different order system. PHPHSS is more complicated than usual
generalized synchronization.

In Chapter 5, hyperchaotic generalized synchronization of tachometer system by
GYC partial region stability is studied. The Lyapunov function is a simple linear
function and the controllers are more simple by using the GYC partial region stability
theory. The simulation results are more precise because the controllers are in lower

degree than that of traditional controllers.
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In Chapter 6, chaos control of tachometer system by GYC partial region stability is
studied. The Lyapunov function is a simple linear function and the controllers are more
simple by using the GYC partial region stability theory. The simulation results are more
precise because the controllers are in lower degree than that of traditional controllers.

In Chapter 7, boids control of chaos for tachometer system is studied. In this chapter,
the chaotic tachometer systems are controlled by using three state variables, and
systems are assumed to be identical for simplicity. The method of chaotic
synchronization is well used to complete boids control scheme.

In Chapter 8, lag synchronization for tachometer system is studied. In this chapter,
backstepping control is used to achieve the lag synchronization of two tachometer
system. Controllers are obtained bysbacKstepping design method that recursively
interlace the choice of a Lyapungv function with the design of feedback control. This
method allows us to arbitrarily- amplify or reduce the scale of the dynamics of the
response system through a control. The simulations for the tachometer system show that

the control technique is successful.

87



Appendix-A GYC  Pragmatical Stability Theory

The stability for many problems in real dynamical systems is actual asymptotical
stability, although it may not be mathematical asymptotical stability. The mathematical
asymptotical stability demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin as t — oo . If there are only a
small part or one of the initial states from which the trajectories or trajectory do not
approach the origin as t — oo, the zero solution is not mathematically asymptotically
stable. However, when the probability of occurrence of an event is zero, it means the
event does not occur actually. If the probability of occurrence of the event that the
trajectries from the initial states are that they do not approach zero when t — «, is
zero, the stability of zero solution is actual asymptotical stability though it is not
mathematical asymptotical stability. In order to analyze the asymptotical stability of the
equilibrium point of such systems,.the pragmatical asymptotical stability theorem is

used.

Let X and Y be two manifolds of dimensions m and n(m<n), respectively, and ¢ be
a differentiable map from X to Y;sthen” ¢(X) is.a subset of Lebesque measure 0 of Y
[52].

For an autonomous system

dx
Ezf(xlaxzf"xn) (A-l)

where X =[X,,X,,---X,]", the function f =[f,,f,,---f ]"is defined on D = R". Let
X =0 be an equilibrium point for the system (A-1), then

f(0)=0 (A-2)
For nonautonomous system:

dx
E: f(xlaxza.uaxn-ﬂ) (A-3)

where t =X, <R, .The equilibrium point is
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f(0,x,,,)=0 (A-4)
Definition:

The equilibrium point for the dynamic system is pragmatically asymptotically stable
provided that with initial points on C which is a subset of Lebesque measure 0 of D, the
behaviors of the corresponding trajectories cannot be determined, while with initial
points on D —C, the corresponding trajectories behave as that agree with traditional
asymptotical stability [53,54].

Theorem:

Let V =[x,,X,,---X,]" : D — R, be positive definite, analytic on D, where x,,--,X

n
are all space coordinates such that the derivative of V differential equation, V , is
negative semi-definite of [x,X,,---,%,] .

For autonomous system, let X be the m-manifold consisting of point set for which
vx=0, V(x)=0 and D is an nshanifold d4f m+1<n, i.e. m+1<n then the
equilibrium point of the system is pragmatically'asymptotically stable.

For nonautonomous system, let X be the’m+1-manifold consisting of point set for
which Vx#0, \/(Xl, Xy, -+ X, )= 0and’D is_an n+l-manifold. If m+1+1<n+l, i.e.
m+1 <n then the equilibrium point of the system is pragmatically asymptotically stable.
There, for both autonomous and honautenomous system the formula m+1 <n is

universal. So the following proof is only for autonomous system. The proof for
nonautonomous system is similar.

Proof:

Since every point of X can be passed by a trajectory of Eq (A-1), which is one
dimensional, the collection of these trajectories, C, is a (m+1)-manifold [53,54]. If

(m+1) <n, then the collection C is a subset of Lebesque measure 0 of D. By the above
definition, the equilibrium point of the system is pragmatically asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial point falls
on the collection C is zero. Here, equal probability is assumed for every point chosen as
an initial point in the neighborhood of the equilibrium point. Hence, the event that the
initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability

becomes actual asymptotical stability. When the initial point fallson D-C, V(x) <0,

the corresponding trajectories behave as if they agree with traditional asymptotical
stability because by the existence and uniqueness of the solution of initial-value
problem, these trajectories never meet C.
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For Eq (33), the Lyapunov function is a positive definite function of n variables, i.e. p
error state variables and n—p=m differences between unknown and estimated

parameters, while V =e'Ce is a negative semi-definite function of n variables. Since
the number of error state variables is always more than one, p>1, (m+I)<n is

always satisfied; by pragmatical asymptotical stability theorem we have

lime =0 (A-5)

t—w

and the estimated parameters approach the uncertain parameters. The pargmatical
generalized synchronizations is obtained. Therefore, the equilibrium point of the system
is pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.
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Appendix-B GYC  Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous system
in the normal form

dx, = X (t, X, X,), (s=1,---,n) (B-1)

dt

where the function X, is defined on the intersection of the partial region €

(shown in Fig. 58) and

D x2<H (B-2)

and t>t,, where t, and H are certain positive constants. X, which vanishes when the
variables X, are all zero, is a real valued function of t, X,---,X,. It is assumed that

X, 1is smooth enough to ensure the existence, uniqueness of the solution of the initial

value problem. When X, does not cefitain t explicitly, the system is autonomous.

Obviously, X, =0 (s=1,---n) 1s a solution of Eq..(B-1). We are interested to the

asymptotical stability of this zero solution-on partial region Q (including the boundary)
of the neighborhood of the origin which in general may consist of several subregions

(Fig. 58).
Definition 1:

For any given number & >0, if there exists a ¢ >0, such that on the closed given
partial region € when

D X<, (s=L--,n) (B-3)
for all t>t,, the inequality
D X<, (s=1---,n) (B-4)

is satisfied for the solutions of Eq.(B-27) on Q, then the disturbed motion
X, =0 (s=1,---n) is stable on the partial region 2.
Definition 2:

If the undisturbed motion is stable on the partial region €, and there exists a
& >0, so that on the given partial region Q when

>x <8, (s=L,n) (B-5)

91



The equality

lim[z xfj =0 (B-6)

tow

is satisfied for the solutions of Eq.(B-1) on €, then the undisturbed motion
X, =0 (s=1,---,n) is asymptotically stable on the partial region Q.

The intersection of QQ and region defined by Eq. (B-2) is called the region of
attraction.
Definition of Functions V(t,x, -+, X,):

Let us consider the functions V(t,X,---,X,) given on the intersection Q, of the
partial region € and the region

> x2<h, (s=1-,n) (B-7)

for t>t, >0, where t, and h are positive constants. We suppose that the functions are

single-valued and have continuous.’ partial ‘derivatives and become zero when

X ==X =0.

Definition 3:

If there exists t, >0 and a-sufficientlysmall h> 0, so that on partial region Q,
and t>t,, V>0 (or <0), then'Viis a positive (or negative) semidefinite, in general
semidefinite, functionon the €2, and t=>t;.

Definition 4:

If there exists a positive (negative) definitive function W(X,...X,) on Q,, so that

on the partial region Q, and t=>t,
V-W20(or -V -W =0), (B-8)

then V(t,X,,...,X,) is a positive definite function on the partial region Q, and t2>t,.
Definition 5:

If V(t,X,...,X,) is neither definite nor semidefinite on €2, and t>t , then
V(t,X,...,X,) isan indefinite function on partial region Q, and t=>t,. Thatis, for
any small h>0 and any large t, >0, V(t,X,...,X,) can take either positive or
negative value on the partial region €2, and t>t,;.

Definition 6: Bounded function V

If there exists t, >0, h>0, so that on the partial region Q,, we have
V(t,%,.... %) < L (B-9)
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where L is a positive constant, then V is said to be bounded on Q,.

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, sothaton Q, when
D X} <u,and t>t;, wehave
V(X %) < A (B-10)
then V admits an infinitesimal upper bound on €2, .

Theorem 1 [55, 56]

If there can be found for the differential equations of the disturbed motion (Eq.
(B-27)) a definite function V(t,X,...,X ) on the partial region, and for which the

derivative with respect to time based on these equations as given by the following :

dv. oV GoV
—=——4+ ) —X B-11
dt ot SZZI: ox, ° B-11)

is a semidefinite function on the paritial tegion'whose sense is opposite to that of V, or if
it becomes zero identically, then the undistutbed :motion is stable on the partial region.
Proof:

Let us assume for the sake of definiteness that ™V is a positive definite function.

Consequently, there exists a sufficiently large iumber t, and a sufficiently small

number h < H, such that on the intersection €2, of partial region Q and

> x2<h, (s=L...,n) (B-12)

and t>t , the following inequality is satisfied
V(t,X,....X ) ZW(X,..., X,) (B-13)

where W is a certain positive definite function which does not depend on t. Besides that,
Eq. (B-7) may assume only negative or zero value in this region.

Let & be an arbitrarily small positive number. We shall suppose that in any case

& <h. Let us consider the aggregation of all possible values of the quantities X,,..., X

n o

which are on the intersection @, of Q, and
> X =g, (B-14)

and let us designate by | >0 the precise lower limit of the function W under this
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condition. by virtue of Eq. (B-5), we shall have
V(,X,....x, )=l for (X,....Xx,) on ,. (B-15)
We shall now consider the quantities X, as functions of time which satisfy the
differential equations of disturbed motion. We shall assume that the initial values X,

of these functions for t=t; lie on the intersection Q,of €2, and the region

% <6, (B-16)

where O is so small that
V(t), Xigseens Xn0) <
(B-17)
By virtue of the fact that V(t,,0,...,0) =0, such a selection of the number & 1s

obviously possible. We shall suppose thatiin any case the number & is smaller than

& . Then the inequality

Y xi<e, (B-18)

being satisfied at the initial instant . will be satisfied, in the very least, for a sufficiently

small t—t,, since the functions X,(t)' very.continuously with time. We shall show that
these inequalities will be satisfied for all values t >t . Indeed, if these inequalities were

not satisfied at some time, there would have to exist such an instant t=T for which this

inequality would become an equality. In other words, we would have

Y XM =¢, (B-19)

and consequently, on the basis of Eq. (B-9)
V(T>X1(T)a--->xn(T))Z| (B-20)

On the other hand, since & <h, the inequality (Eq.(B-4)) is satisfied in the entire
interval of time [ty, T], and consequently, in this entire time interval c:j—tSO. This

yields

VT, X(TM),.... X, (T SV (), Xgse s Xog)s (B-21)
which contradicts Eq. (B-12) on the basis of Eq. (B-11). Thus, the inequality (Eq. (B-1))
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must be satisfied for all values of t >t;, hence follows that the motion is stable.

Finally, we must point out that from the view-point of mathenatics, the stability on
partial region in general does not be related logically to the stability on whole region. If
an undisturbed solution is stable on a partial region, it may be either stable or unstable
on the whole region and vice versa. From the viewpoint of dynamics, we wre not

interesting to the solution starting from €2, and going out of Q.

Theorem 2 [55, 56]
: o .. . .odv o .
If in satisfying the conditions of theorem 1, the derivative o is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive: definite’ function on the partial region and that

V. . ] . .
consequently, c(ij_t is negative definite. Thus on the: intersection Q, of Q and the

region defined by Eq. (B-4) and “t=t, there will be satisfied not only the inequality

(Eq. (B-5)), but the following inequality as will:

dv
50 S W06 ),

(B-22)
where W, is a positive definite function on the partial region independent of't.

Let us consider the quantities X, as functions of time which satisfy the differential
equations of disturbed motion assuming that the initial values X, =X (t,) of these

quantities satisfy the inequalities (Eq. (B-10)). Since the undisturbed motion is stable in

any case, the magnitude 6 may be selected so small that for all values of t>t; the
quantities X, remain within €,. Then, on the basis of Eq. (B-13) the derivative of
function V(t, X (1),...,X (1)) will be negative at all times and, consequently, this

function will approach a certain limit, as t increases without limit, remaining larger than

this limit at all times. We shall show that this limit is equal to some positive quantity
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different from zero. Then for all values of t>t, the following inequality will be
satisfied:

V(X (t),....x, 1) > (B-23)
where a>0.

Since V permits an infinitesimal upper limit, it follows from this inequality that

DY XM=, (s=1,...,n), (B-24)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity ZXS (t) were smaller than any preassigned
S

number no matter how small, then the magnitude V(t,X,(1),...,X, (1)), as follows from

the definition of an infinitesimal upper limit, would also be arbitrarily small, which
contradicts.

If for all values of t>t; the inequality:(Eq. (B-15)) is satisfied, then Eq. (B-13)

shows that the following inequality ‘will be satisfied at all times:

dv
—=<-, B-25
e (B-25)
where |, is positive number different from zero which constitutes the precise lower
limit of the function W, (t, X, (t),...,X,(t)) under condition (Eq. (B-15)). Consequently,

for all values of t>t, we shall have:
tdVv
V(tbxl(t)a"'axn(t))=V(t0’X109~--aXn0)+JAtOEdtSv(tmX103~-~9Xn0)_|1(t_t0)a

which is, obviously, in contradiction with Eq.(B-14). The contradiction thus obtained
shows that the function V (t,X,(t),...,X,(t)) approached zero as t increase without limit.
Consequently, the same will be true for the function W(X,(t),...,X,(t)) as well, from
which it follows directly that

limx,()=0, (s=1...,n), (B-26)

which proves the theorem.
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