第一章 序論

1.1 研究目的

隨著半導體科技的演進,晶圓的尺寸基於成本的考量,由四吋、 六吋、八吋發展至現在的十二吋,積體電路的線寬尺寸也製作的越來 越精細,線寬已達奈米等級。但是,只要生產時受到外部因素的些微 影響或是生產設備控制技術不良,都會造成製程品質和良率降低。

標準的半導體製程可分為薄膜沉積,微影,蝕刻,研磨等,薄膜 沉積即是將薄膜氣體通入放有晶圓的腔體內,氣體會與晶圓表面產生 化學反應而在晶圓上生成一層薄膜,這層薄膜可作為電路的介電層或 保護層。微影則是作為圖像轉移的第一步,首先在晶圓上塗佈一層光 阻劑,然後選擇光源透過光罩照射晶圓上的光阻劑,光阻劑上接觸光 線的部份反應而溶解,圖像轉移的第二步即是利用蝕刻技術去除未被 光阻包覆的部份。其中蝕刻製程如何精確地將光阻上的圖形轉移到晶 片上一直是業界相當重視的課題。

早期蝕刻都是採用濕式蝕刻(wet etch)。優點是製程較為簡單、 蝕刻速率快,缺點是圖形的轉移不精確,因此製程的良率比較低。然 而近年來,技術不斷的改良後,研發出乾式蝕刻。乾式蝕刻是產生電 漿來進行蝕刻,由於是採用離子轟擊這種的物理性的蝕刻方式,故會 有較佳的蝕刻深寬比。然而乾式蝕刻並非沒有缺點,在功率方面,由 於電漿並非會完全吸收甚而產生反射功率,往往會造成蝕刻深度不如 預期,另外腔體壓力及氯氣流量亦會影響蝕刻深度,故本研究係希望 透過設計EWMA及LS控制器來加強變壓耦合電漿多晶矽乾式蝕刻機蝕 刻深度的控制,以期大幅改善蝕刻製程的良率。

1.2 本文架構

本論文主旨是蝕刻深度的預測及控制,主要架構分為六章。第一 章序論,介紹研究目的及本文架構。第二章研究背景,介紹電漿基本 概念、電漿蝕刻、製程管制與批次控制、文獻回顧、以及機台簡介, 包括了 TCP9400,D5000,及 N&K 簿膜測厚儀等。第三章實驗設計, 介紹因子設計、最小平方法,實驗編組。第四章介紹所使用的 EWMA 及 LS 控制器。第五章為模擬分析與驗證使用 EWMA 及 LS 控制器對系 統的影響。第六章為結論與未來展望。

第二章 研究背景

2.1 電漿基本概念

電漿在 1879 年被發現,是一種物質的狀態,電漿內部包含的物 種相當繁多,有未解離的氣體分子、紫外光、介穩粒子、中性自由基 等等。電漿內部雖然相當高比例為氣體分子,但因在微觀上電漿所呈 現獨特的集團化現象和離子化現象,因而已逐漸被視為固態、液態、 氣態之外的第四態。電漿目前廣泛的應用在各種領域,例如電漿蝕 刻、醫療殺菌、表面改質等,主要原因是其內部粒子具有高活性,化 學反應活化能也較低,因此易進行反應且速率也較快。電漿又可區分 為熱電漿和非熱電漿,熱電漿的定義為電漿內部完全離子化且電子、 陰離子、陽離子和氣體分子溫度相近;非熱電漿則是未達熱平衡狀態 的電漿,此時電子溫度遠高於陰離子、陽離子和氣體分子的溫度,通 常電子溫度可達數萬K。電漿形成的方式是對氣體分子施加能量,氣 體分子解離後即得電漿。電漿之所以能夠一直保持離子化的原因在於 由原子表面激發出來的電子會再吸收能量成為高能電子並與其他氣 體分子碰撞,這一連串的連鎖反應使得電漿一直維持在離子化的狀 態。[1][2]

2.2 電漿蝕刻

半導體製程中的蝕刻方式可分為溼式蝕刻和乾式蝕刻,溼式蝕刻 的方式是在晶圓的氧化物層上曝上一層光阻,然後將化學蝕刻劑噴灑 在晶圓上分解未覆蓋光阻區域,最後再把光阻洗除。但是由於溼式蝕 刻屬於等向性蝕刻,會連同氧化物的側邊一同蝕刻,因此當線寬低於 3μm後,圖型的轉移會越來越不精確,所以自1980年代後,逐漸被乾 式蝕刻所取代。

乾式蝕刻方式中目前使用最廣泛的為電漿蝕刻,電漿蝕刻的機制 相當複雜,主要可分為物理濺擊和化學性蝕刻。化學性蝕刻的過程首 先是自由基與晶圓表面產生化學反應,然後生成揮發性氣體離開表 面;而物理性蝕刻則是使用電極加速電漿離子來轟擊晶圓表面,將晶 圓表面原子帶離表面。電漿蝕刻的方式相當多,常見的有反應性離子 蝕刻系統(RIE)、電子迴旋共振式蝕刻系統(ECR)和電感耦合電漿 蝕刻系統(ICP)。反應性離子蝕刻系統(RIE)以化學性蝕刻為主, 有較高的選擇比,並輔以離子轟擊來提高反應速率,但由於蝕刻速率 取決於離子轟擊時的能量,一旦電漿能量增加,離子碰撞晶圓表面時 的破壞力也越大,晶圓表面平整度損害也越嚴重,因此發展面臨挑戰。

電子迴旋共振(ECR)系統,以及電感耦合電漿(ICP)蝕刻系統, 其產生電漿之方式係在真空腔體上方設置一感應線圈,感應線圈面與

5

晶圓面平行,然後通以交流電流,依據電感作用原理,此時將會產生 垂直線圈面的磁場,如此一來蝕刻氣體在感應磁場內會以圓周方式運 動,分子間相互碰撞而產生電漿,電漿產生後開啟下方的射頻產生 器,引導電漿移動到晶圓表面進行蝕刻。在此種方式下如果想要增加 蝕刻速度,只要提高感應磁場產生高密度的電漿離子即可,而且電漿 離子能量增加方向平行晶圓表面,所以較不會破壞晶圓表面的平整 度。在本論文中所使用的即為新式的電漿蝕刻機台TCP9400。 [1][3][4][5]

2.3 製程管制與批次控制

SPC(統計製程管制)技術由W.A. Shewart提出,其藉由各項統 計資料例如管制圖等,來分析製程中造成產品品質變異的可歸屬原 因,並協助排除造成品質變異的因素,而EPC(工業製程管制)則由 Box和Kramer所提出,依[7]所述:「・・・・是一種利用迴饋控制的技術, 針對製程中存在之干擾進行補償性的修正調整,藉由製程輸出與目標 間的差異進行補償,使製程輸出能盡快收斂至目標值,藉以降低製程 變異,達到增強製程能力的目的。」兩者的差異在於SPC是在分析製 程的可歸屬原因後,線外排除造成品質變異的原因以改善製程良率。 而EPC則是利用電腦控制系統線上消除變異情況。由於早期SPC主要應 用於間斷性製程而EPC則應用於連續性製程,而半導體製程的前段為 連續性製程,後段為間斷性製程,因此半導體業界逐漸發展出結合SPC 和EPC的RtR批次控制。[6][7]

RtR批次控制如[8]所述為「RtR批次控制針對半導體製程受到漂 動變異干擾時以一個製程批次或lot為基礎之離散時間控制系統,利 用製程後量測資料來回授修正製程配方設定,進而補償或降低不同干 擾所造成的影響。」目前RtR批次控制中發展出相當多的控制法則, 例如EWMA控制器、Double EWMA控制器等。在本論文中所要探討的即 是EWMA控制器對變壓耦合電漿多晶矽乾式蝕刻機蝕刻深度的影響,並 輔以LS控制器作分析比較,以期大幅改善蝕刻製程的良率。

1896

2.4 文獻回顧

1992年Helen Zhu, Roger Lindquist 發表了一篇論文[9]提到, 等向性乾式蝕刻只有化學蝕刻,即然沒有離子轟擊就很難控制水平與 垂直方向的蝕刻率比。會影響蝕刻率比的因素很多,以蝕刻材質來 說,摻雜介電材質及沒有摻雜介電材質就有很明顯的不同了。對於大 部份情況來說,摻雜 BPSG 材質的蝕刻率比為約為1:1,如果沒有摻 雜介電材質一般說來蝕刻率比約為 1.2~1.5:1,最糟的情況是 1.5~2:1。這很大的原因是因為會在薄膜上造成聚合層的合金介電 層。除此之外降低腔體壓力,可以增加垂直方向的蝕刻率深度。

7

2001年國立清華大學林志忠先生發表的論文[10]指出,當RF偏 壓振幅增加時,離子能量中心會朝向高能量移動,也就是離子平均能 量增加非等向性也跟著上升。

2.5 機台簡介

TCP 9400SiE 多晶矽乾蝕刻機和 Lam Station 機台監控軟體

LAM RESEARCH CO., LTD. (科林研發代理)於 1992 年所開發的高 密度變壓耦合非等向性乾式蝕刻機台,如(圖 2-1)所示,可分為四個 部份溫度控制器、遙控操作控制面板、幫浦和蝕刻機主體,目前所配 置的蝕刻氣體有氯氣、氧氣、氦等;適用的蝕刻材料有 Si(single, poly, amorphous), Si₃N₄, SiO₂(TEOS)等。[11]另外為了方便監控機 台內部狀況,科林研發亦自行設計一套外部監控軟體,採用符合國際 標準的 SECS 和 RS232 作為通訊界面,每 0.8 秒將腔體壓力和氣體流 量等機台的內部環境參數紀錄起來,該程式並可以與內鍵程式相互溝 通交換資訊。[12]

大試片掃描探針顯微鏡 D5000

大試片掃描探針顯微鏡系統主要分為四個部份:(1)Tip Head
(include Scanner & Tip Holder);(2)OM & Lamp;(3) Stage & Pump;
(4) Controler & PC,所使用的原子力顯微鏡(AFM)技術和掃描隧
道顯微鏡(STM)技術使 D5000 可在不破壞試片的情形下進行故障檢

測和測量粗糙度等功能。結構如(圖 2-2)所示,當探針在設定的微區 域內移動時,連接探針的懸臂因為表面形貌的不同而產生不同的形 變,懸臂形變量傳回內部電路進行訊號處理即可得到晶圓表面的 3D 形貌、表面粗糙度、粒徑大小等參數,如(圖 2-3)所示。其最大平面 掃描範圍為 150 × 150 μm²,最大高度掃描範圍為 6 μm;並可對直 徑大於 350 毫米的試片掃描超過一百個區域。[13][14]

場發射掃描式電子顯微鏡 FESEM

顯微鏡外觀如(圖 2-4),功能如(圖 2-5)所示,在電子槍產生電 子束後,電子束被聚光鏡和末透鏡縮小 2000-3000 倍後會聚在試片表 面,並反應產生多種訊號,藉由分析這些訊號可以得到試片特徵,例 如分析二次電子可得到表面形貌特徵,背散射電子可得到晶體學特 徵,電子-空穴對可得到雜質、晶格缺陷特徵。而本實驗中使用的機 型為 HITACHI S-4000,其解析度為 1.5 nm at 25 keV,放大倍率 20 ~ 300,000 倍。[15][16]

n&k 簿膜測厚儀

n&k1280,如(圖 2-6)所示,其分析原始資料的模型以 Forouhi-Bloomer模型為基礎。這些方程式是從光吸收的量子理論所 推導而來。n&k1280 可被應用在測量半導體、介電質、聚合物和金屬 層的厚度。其技術特性如下:

波長範圍在 190nm 至 1000nm 之間;基線波動:R≦0.2%(total);T ≤0.2%(total);厚度準確度規格:±4Å(~1000Å);測量時間:5s per point。[17]

n&k簿膜測厚儀與veeco公司所開發的大試片掃描探計顯微鏡相 比較,大試片掃描探計顯微鏡較精確但是掃描速度較緩慢,而n&k簿 膜測厚儀反應較迅速,在建立模型時為求精準反應實際機台情況因此 選用大試片掃描探計顯微鏡,而在驗證時為了避免每批次間距過長, 機台變動過大所產生的誤差及模擬即時控制情形,所以選擇n&k簿膜 測厚儀來量測蝕刻深度,在此先予說明。

EES BOX 半導體先進製程控制資料收集模組

EES BOX 資料收集模組是專為半導體先進製程控制所設計的設備,以RS232 介面與設備機台相連結,當機台運作時所偵測到的機台 狀況會透過RS232 即時傳回 EES BOX 主機,主機內建的資料收集程式 (Real-Time Monitor System, RTMS)會將所偵測到的數據存入資料 庫。另外考慮到不同的使用者需求及增加 EES BOX 的適應性,因此 EES BOX 還設計擴充糟區,使用者可外接資料擷取卡至擴充糟區,再 將感測器外加至機台上偵測所欲擷取的機台參數。 [12]

第三章 實驗設計

3.1 因子設計

在本論文中,希望分析比較 EWMA 控制器和 LS 控制器兩者應用在 TCP9400 機台上的優劣,以提供往後業界使用設計上的參考。為此須 要有一個足夠逼近真實情況或可以反應實際機台腔體內蝕刻機制的 模型,來作為 EWMA 和 LS 控制器控制的標的。

在實驗中,採取三個因子來進行實驗,每個因子皆採取高、中、 低三個水準,為了簡單而快速的探討每個因子對於蝕刻深度所造成的 影響,而且考慮到每個因子之間的交互作用,因此採用了3⁴因子設計 法。根據3⁴因子設計法,若採取三個因子來進行實驗,則須 27 次實 驗,但在本實驗中,受限於實驗設備,因此實際上只進行 13 次實驗, 在此先予說明。

3.2 線性回歸模型(最小平方法)

本論文中採取最小平方法來建立一個近似蝕刻狀況的數學模型,最小平方法為目前常見的建立模型的方法之一,其目的係在尋找 輸入和輸出變數之間的關係,但由於自然界中這樣的數學關係往往是 不存在的,因此最小平方法係以近似逼近的方法,求出最接近實際狀 況或在指定區間內可被接受的數學關係。考慮一個 k 個變數因子、2 階的反應曲面模型如下:

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_i \sum_j \beta_{ij} x_i x_j + \varepsilon$$
(3.1 式)

其中 ε 代表誤差,y 為觀測值,x 為輸入變數因子。此模型包含了任 兩個因子間的交互作用。未知參數 β 是線性函數的係數。

3.3 實驗編組

本實驗研究電漿在穩態之下,建立腔體壓力和 TCP 功率和氯氣流 量為參數,蝕刻深度為輸出的模型,如(圖 3-1)所示。其中參數的選 擇是根據文獻資料及 NDL 工程師的經驗而決定的,如(表 3-1)所示, 一共進行十三組實驗,分別如下:

(一)在編號一和編號二的實驗中,固定壓力和氣體流量,觀察 功率在100W~140W時蝕刻深度的變化。

(二)在編號三和編號四的實驗中,固定功率和氣體流量,觀察 壓力在 8mT~16mT 時蝕刻深度的變化。

(三)在編號五和編號六的實驗中,固定壓力和功率,觀察氣體 流量在 30sccm~40sccm 時蝕刻深度的變化。

在編號一至編號六的實驗,著重在於觀察單一輸入值變化時所導 致輸出值的影響。

(四)在編號七和編號八的實驗中,固定氣體流量,觀察因壓力和功率變化所導致的蝕刻深度的變化。

(五)在編號九和編號十的實驗中,固定功率,觀察氣體流量 和壓力變化所導致的蝕刻深度的變化。

(六)在編號十一和編號十二的實驗中,固定壓力,觀察功率
和氣體流量變化所導致的蝕刻深度的變化。

從編號七至編號八的實驗中,著重在於觀察兩個輸入值之間的交 互作用造成輸出值的影響。

(七)編號十三的實驗則是觀察三個輸入值之間的交互作用。
得到資料後以最小平方法建立模型。

第四章 控制器

4.1 EWMA 控制器

EWMA (Exponentially Weighted Moving Average) 指數加權移 動平均由 Box 和 Jenkins[18]所提出,如(圖 4-1)所示,屬於 IMC 內 模式控制的一種,藉由不斷地追蹤修訂預測模型來降低誤差,其調變 法則整理如下:

$$a_t = \lambda e_t + (1 - \lambda)a_{t-1} \tag{4.1 d}$$

a: 第t 批次預測模型截距項

λ:權重值

∉:第t批次的誤差

at-1: 第 t-1 批次的截距項

其中 $0 < \lambda \leq 1$, λ 值的選擇決定系統收斂的速度。

若從(圖 4-2)[19]觀察可發現,當 t-1 批次輸入為u1-1時,真實輸出u, 與目標值T有誤差u,其中: ŷ:為預測模型、y:為真實模型、T:為 目標值。透過(4.1 式)方式反覆的調整,使誤差逐步收斂直到目標值 與輸出值吻合。(圖 4-3)

89

4.2 LS 控制器

假設現有 n 筆輸入輸出資料,利用這些資料我們可建立欲控制系統的輸入輸出關係模型,藉由此關係式可得下一 run 的輸入值,而當我們取得 n+1 筆輸入輸出資料,再依此建立下一 run 的模型,此即為 LS 控制器之原理,而該建立模型之方式如下。

假設有一組具有 n 個未知數的 m 個線性方程式如下所示:

$$A_{m \times n} x_{n \times 1} = y_{m \times 1} \tag{4.2 d}$$

此方程式可分三種情形來探討:

casel:若m=n 而且 rankA=m=n,則可得唯一解為: $x = A^{-1}y$ (4.3式)

case2: 若 m>n 而且 rankA=n,則為無解之情形,採用最佳化方法, 可得到一近似解為:

$$x^* = (A^T A)^{-1} A^{-1} y \tag{4.4 d}$$

證明如下:

成本函數
$$f(x) = (Ax - y)^T (Ax - y)$$

= $x^T A^T A x - 2x^T A^T y + y^T y$

$$2A^T A x^* - 2A^T y = 0$$

$$x^* = (A^T A)^{-1} A^{-1} y$$

case3: 若 m<n, 而且 rankA=m, 則有無窮多組解, 採用最佳化方法可得:

$$x^* = A^T (AA^T)^{-1} y$$
 (4.5 式)

證明如下:

$$\begin{split} \|x\|^2 = \|(x-x^*) + x^*\|^2 \\ &= [(x-x^*) + x^*]^T [(x-x^*) + x^*] \\ &= \|x-x^*\|^2 + \|x^*\|^2 + 2x^{*T}(x-x^*) \\ &= \|x-x^*\|^2 + \|x^*\|^2 + 2x^{*T}(x-x^*) \\ &= \|x-x^*\|^2 + \|x^*\|^2 + 2x^{*T}(x-x^*) \\ &= x^{*T}(x-x^*) = [A^T(AA^T)^{-1}y]^T [x-A^T(AA^T)^{-1}y] \\ &= y^T(AA^T)^{-1}y]^T [x-A^T(AA^T)^{-1}y] \\ &= y^T(AA^T)^{-1}[Ax - AA^T(AA^T)^{-1}y] \\ &= y^T(AA^T)^{-1}[y-y] \\ &= 0 \\ &= 0 \\ \\ &= 0$$

應用上述 LS 控制器的優點在於可隨時更新受控之系統,以調整偏離 之誤差值而得到更準確的輸出目標值。

第五章 實驗模擬與驗證

5.1 系統模型

實驗數據之安排如(表 3-1)所示,得到的實驗結果如(表 5-1)所 示,每片各取五個點量測,每點各取三個值,平均後代入(3.1 式)再 配合上一章所推導的(4.5 式)求出一個最佳化模型如下:

 $y = 0.0183 + 0.073x_{1} + 0.6869x_{2} + 0.4224x_{3} - 0.9046x_{1}x_{2}$ +12.5163x₂x₃ +1.0297x₁x₃ + 0.2641x₁² - 3.783x₂² + 7.3454x₃² -0.4516x₁²x₂ - 5.787x₁²x₃ - 0.1349x₂²x₁ - 0.4333x₂²x₃ - 0.7982x₃²x₁ +1.1555x₃²x₂ + 1.3889x₁x₂x₃ + 7.2731x₁³ + 0.0591x₂³ - 1.5751x₃³ (5.1 \neq)

其中 y 為系統輸出值即蝕刻深度(A), X₁為腔體壓力,單位(mT), X₂為功率,單位為(w), X₃則為氣體Cl₂的流量,單位(sccm),這個 模型的作用在於使用 EWMA 控制器來模擬時,當作一個假想的模型, 以提供調整截距時所須之誤差值。而上述模型代入適配度公式:

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
(5-2 式)

其中 $SST = \sum (Y_t - \overline{Y})^2$ 稱為總平方和, $SSE = \sum (Y_t - \hat{Y}_t)^2$ 稱為殘差平方和, $SSR = \sum (\hat{Y}_t - \overline{Y})^2$ 稱為迴歸平方和,其中 Y_t 為實際輸出值、 \overline{Y} 為 Y_t 之平均 值、 \hat{Y}_t 為預測輸出值, R^2 稱為相關係數之平方。當 R^2 愈大時,表示該 模式擬合愈好。將(表 5-1)的數據代入後,得 R²為 0.928183,顯示模型建立的準確性良好。

5.2 實驗模擬

以下嘗試使用兩種控制器EWMA及LS來作模擬,每一種皆跑50run 來比較其控制蝕刻深度的誤差結果。

5.2.1 EWMA 控制器

在 EWMA 控制器的部份,首先假定為一條線性一階方程式

y=250+[-172.7849-21.3347 203.3003] x₁ x₂ x₃,利用此條式子求出欲

達到目標 3000 Å 的輸入,其中為了方便求出輸入值,於是我固定壓 力值為 12mmT,氣體流量 35sccm,代入第一節利用實驗數據建好的模 型後,算出誤差值,再利用控制式來調變截距項形成一條新的預測輸 入方程式,如此重覆的改變截距項來達到控制的效果,在此選用的權 重值為 0.1,控制流程圖如(圖 5-1)所示。

5.2.2 LS 控制器

在 LS 控制器的部份藉由每一 run 得到的輸出輸入資料重新建立 模型來得到下一 run 所須的輸入值,為了使輸入值不致於偏離過多, 於是限定輸入值 $9 \le x_1(mT) \le 15$, $90 \le x_2(W) \le 150$,

 $25 \le x_3(sccm) \le 45$, 在前 7run 時由於是 m<n 的狀況,所以使用(4.5

式)來建立模型,第8run則是使用(4.3式),而第9run以後則切換 至(4.4式)。

5.2.3 模擬結果分析與比較

加入 10% noise 後, 在沒有控制器的情況下跑 50run, 如(圖 5-2) 所示, 平均誤差 198Å, 6.6%, 加入 EWMA 控制器後如(圖 5-3)所示, 平均誤差為 75Å, 2.5%, 加入 LS 控制器後如(圖 5-4)所示, 平均誤 差為 141Å, 4.7%。EWMA 及 LS 控制器分別改善了 4.1%和 1.9%, 由此 可見加入控制器後, 對於蝕刻深度的精準度有明顯的改善。而其中 EWMA 控制器改善了 4.1%較 LS 控制器為佳。如(表 5-2)所示。

5.3 實驗驗證

驗證的部份,首先在 Si 底材上長一層 1000 Å 的 SiO₂和 5000 Å 的 poly-Si,然後考量到晶片只有九片,若是每一片僅蝕刻一次的話, 要證明控制器的有效性實在不足,故採取與之前建立模型時不同的作 法,就是沒有曝光阻 而是直接重覆的在晶片上蝕刻,每次蝕刻的目 標值為 1200 Å,如此一來每片即可蝕刻四次,九片即可取得 36 筆資 料,另外考量到 D5000 僅能量測具有圖型的晶片,故改用 N&K 簿膜測 厚儀來量測。

5.3.1 未加控制器

在未加控制器的情形,首先使用 N&K 簿膜測厚儀量測每一片確切 的薄膜厚度,然後將九片放入 TCP9400 機台,選擇 recepi1000 的配 方蝕刻,各參數皆維持腔體壓力 12mT,功率 120W,氯氯流量 35sccm 來蝕刻,待蝕刻完畢後,再使用 N&K 簿膜測厚儀量測其所剩厚度,這 個流程共做兩次,取得 18 筆的資料。

5.3.2 使用 EWMA 控制器之實驗驗證

由於晶片的數量不足,故控制器驗證的部份,僅探討加入 EWMA 控制器的情形。而在這個部份的實驗中,由於每一 run 的輸入值皆是 經由 EWMA 控制器根據上一 run 的誤差計算後的結果,故無法和未加 控制器的情形一樣,九片一次放入 TCP9400 蝕刻,而採取個別蝕刻的 方式。而參數方面,為簡化實驗,因此固定腔體壓力及氯氣流量兩項 參數,僅控制功率。另外為了證實 EWMA 控制器確有效果,故將第一 run 的輸入值設在離預設操作點 120W 較遠處,以觀察 EWMA 控制器是 否能夠有效控制系統的輸出值。

5.3.3 實驗驗證結果分析與比較

驗證所得的數據如(表 5-3)所示,其中未加控制器的蝕刻情形, 將其繪製成(圖 5-5),可發現前面 9 次的蝕刻結果與預設的 1200 Å 有 極大的差距,在與工程師討論後,認為可能是因為該晶圓表面結構較 為完整,故導致蝕刻深度不如預期。而使用 EWMA 控制器後的情形, 如(圖 5-6)所示,發現的確如預期的有調整截距以追蹤實際系統模型 的行為出現。而誤差方面,如(表 5-4)所示,在未加控制器的情形, 其誤差高達有 132 Å,11.07%,若加入 EWMA 後,誤差減少為 25 Å, 2.11%。可發現加入控制器後,卻能有效改善蝕刻深度。

第六章 結論與未來展望

6.1 結論

本研究的目的即為建立一個以腔體壓力,功率,氯氣流量為變 數,蝕刻深度為輸出的預測模型,並且設計 EWMA(Exponential Weighted Moving Average)及 LS(Least Square)控制器去模擬與分 析,比較在兩種控制器的運作下,對於蝕刻深度之預設目標值的改 善會有多少的影響。

研究發現有加入 EWMA 及 LS 控制器的確能夠有效改善蝕刻深度,減少 noise 所造成的誤差。

6.2 未來展望

積體電路的發展一直朝向高密度快速度化及多功能化的方向前 進,目前的技術已經進步到超大型積體電路(Very Large Scale Integration VLSI)的範圍。在邁向高密度化的過程中,各種元件的 尺寸及最小圖案線寬也都不斷縮小,因此如何精確的圖形轉移就顯的 非常重要了。

依目前實務經驗及學術研究可知影響蝕刻深度的參數很多,包括 HBr流量,腔體溫度····等等,也都會影響蝕刻深度,而在本實驗中 僅是提出腔體壓力、功率和氯氣流量作為影響蝕刻深度的變數,若是 要作為蝕刻過程運作機制的模型仍嫌不足,希望在不久的將來,能夠 同時考量更多的因素,並把實驗的數據量增加,建立一組符合機台狀 況的完善的模型。

另外雖然批次控制已經較統計製程管制和工業製程管制較能快 速地監控生產線變化並改善良率問題,但是離即時監控尚有一大段路 要走,理想中的蝕刻機台應結合偵測器和控制器,當晶圓進入腔體進 行蝕刻時,能夠偵測因流量、功率等因素變化而造成的蝕刻深度的偏 差,並透過控制器的即時調變使機台在完成單一片晶圓蝕刻前能夠立 即作出反應,以避免蝕刻深度誤差的擴大,因此學生希望未來在業界 繼續進行研究,希望能夠結合蝕刻機台、光學顯微鏡和控制器,發展 出一套能夠即時監控,調變的系統,相信將更能有效的預測及控制蝕 刻深度。

参考文獻

- [1] 莊宗伯,電感耦合電漿蝕刻系統對磷化銦鎵鋁蝕刻之研究,交通 大學,電子物理系,2000年
- [2]張木彬、李灝銘,電漿處理技術於環境工程之應用與發展趨勢, 2004年
- [3] 陳建州,非等向性蝕刻製程於矽基板之應用:翻鑄模仁與矽基板 V型凹槽,中山大學,機械工程學系,2001年
- [4] 徐振斌, 氩/氯對多晶矽於高密度電感式耦合電漿之蝕刻率分析 與模型建立,清華大學,工程與系統科學系,2001年
- [5] 葉文冠、翁俊仁 半導體製程技術與元件設計 2008年
- [6] 胡俊男,應用類神經網路於半導體製程即時控制之研究,元智大學,工業工程與管理研究所,2002年
- [7] 沈瑞蓉,應用多品質特性之SPC-EPC系統於隧道窯爐溫控制之製 程管制探討-以陶瓷電容之介電瓷粉製程為例,朝陽科技大學, 工業工程與管理研究所,2001年
- [8] 機械工業雜誌258期曹永誠、徐明照
- [9] Helen Zhu, Roger Lindquist, Lam Research Corporation PROFILE CONTROL IN ISOTROPIC PLASMA ETCHING, 1992
- [10] 林志忠,電漿蝕刻模擬,工程與系統科學系碩士班,2001 年

[11] NDL Webpage

http://www.ndl.narl.org.tw/cht/ndlcomm/P4_2/33.htm

[12] 郭家瑋,TCP9400SE 電漿蝕刻機台阻抗匹配網路的初始值設定,

國立交通大學機械所碩士論文,2007年

[13] NDL Webpage

http://www.ndl.narl.org.tw/web/department/nmlab/device

_d5000. php

[14] CNSI Webpage

http://nanopicolab.cnsi.ucla.edu/pages/d5000

- [15] 付洪蘭 張路西 實用電子顯微鏡技術 合記圖書出版社,2007 年
- [16] NDL Webpage
- [17] NDL Webpage

http://www.ndl.org.tw/web/department/cfteam/docs/modul es/n&k.pdf

- [18] G. E. Box , M. Jenkins , Time series Analysis:Forcasting and Control , CA : Holden-Day , 1976
- [19] 何人杰, EWMA控制器非固定折扣因子之研究,清華大學統計學 研究所,2000年

- [20] Montgomery 著,黎正中,陳源樹 譯,「實驗設計與分析」第 五版,高立圖書
- [21] Hong Xiao, Introduction to Semiconduction Manufacturing Technology, 2003
- [22] Akira koide and Shinji Tanaka, Simulation of Three Dimensional Etch Profile of Silicon During Orientation Dependent Anisotropic Etching, 1997
- [23] Hyun-Mog Park, Member, IEEE, Dennis S. Grimard, Jessy W. Grizzle, Fellow, IEEE, and Fred L. Terry, Jr., Senior Member, IEEE, Etch Profile Control of High-Aspect Ratio Deep Submicrometer α_- -Si Gate Etch, 2001

	壓力(mT)	功率(₩)	氣體流量
			$(C_2, sccm)$
1	12	100	35
2	12	140	35
3	8	120	35
4	16	120	35
5	12	120	30
6	12	120	40
7	8	140	35
8	16	100	35
9	16	140	30
10	8	140	40
11	8	140	30
12	8	100	40
13	×16	100	30

表 3-1 實驗參數設定

	第一點	第二點	第三點	第四點	第五點	深度
	3029.9	3014.3	3119.1	3475.9	3221	
第一片	3265.8	3259.6	3141.6	3448.7	3353.6	3243.833
	3444.3	3003	3233.8	3324.1	3322.8	
	3543.7	3347.9	3450.723	3410.1	3562.639	
第二片	3372.2	3209.7	3125.92	3451.1	3521.564	3398.708
	3442.2	3516.6	3356.451	3314.9	3374.952	
	3360.3	3272.1	3166.9	3421.4	3468.3	
第三片	3385	3409.3	3247.2	3447.6	3325.4	3344.233
	3367.9	3421.1	3211.3	3283.5	3376.2	
	2906.6	2607.7	3288.6	2917.1	2965.7	
第四片	2718.7	2840.6	2818.1	2961.7	2803.8	2891.273
	2745.7	2886	3129.2	2790.8	2988.8	
	3151.9	3028.7	3170.2	2975.2	3066.4	
第五片	3013.6	3215.2	2996.7	2979.1	2855.3	3031.973

	3112.2	3074.4	2992.9	2903.3	2944.5	
	2963.1	3206.7	3055.6	2970	3095.6	
第六片	3348.3	3115.2	3030	3266.2	3317.2	3123.993
	2997.6	2976.1	2985.1	3334.3	3198.9	
	3565	3293	3421	3283.3	3711.3	
第七片	3531.5	3510.7	3326.3	3347.7	3145.6	3423.447
	3530.3	3421.7	3374	3394.3	3496	
	2505.7	2903.9	2839.7	2585	2647.1	
第八片	2506.9	2564.5	2734.4	2438.8	2587.1	2672.847
	2891.8	2639.4	3001	2636.1	2611.3	
	3005.9	2697.6	2926.7	3046.3	3043	
第九片	2717.8	2875.9	2907.3	2959	3016.9	2922.62
	2876.6	2697.6	3158	2880.3	3030.4	
	3435.9	3312	3397.7	3402.4	3459.9	
第十片	3575.6	3345.5	3523.2	3630.2	3523.1	3435.687
	3449.3	3479.8	3379.3	3377	3244.4	
	3301.6	3209.4	3152	3263.7	3338.7	
第十一片	3133.5	3321.5	3401.7	3256.8	3199.8	3278.067
	3250.7	3398.9	3331.5	3237.2	3374	
	2860.6	3245.2	3076.8	2962.9	3118.6	
第十二片	3016.1	3124.2	2958.1	2862.3	2941.4	3029.873
	3152.2	3077.7	2979.1	3003.4	3069.5	
	2444.5	2551.8	2485.6	2508	2601.3	
第十三片	2423.5	2793.4	2568.2	2623.2	2555.3	2534.6
	2399.5	2491.4	2536.6	2577	2459.7	

表 5-1 建立模型時的數據

	未加控制器	EWMA 控制器	LS 控制器
平均誤差(A)	198	75	141
平均誤差(%)	6.6	2.5	4.7

表 5-2 模擬結果分析比較

	未加控制器的深度	加入 EWMA 控制器的深度
1	1073.2	1249.6
2	989.7	1243.5
3	979.3	1236.4
4	1048.3	1247.1
5	1021	1220.6
6	1010.2	1205.2
7	995.2 F	1203.8
8	1013.6	1189.4
9	1013.3	1177.2
10	1179.471896	1171.3
11	1235.44	1205.9
12	1251.51	1185.7
13	1201.77	1211.2
14	1192.41	1214.5
15	1190.7	1195.4
16	1190.25	1188.8
17	1160.14	1179.1
18	1197.98	1175.5

表 5-3 驗證的數據

	未加控制器	EWMA 控制器
平均誤差(A)	132	25
平均誤差(%)	11.07	2.11

表 5-4 驗證分析與比較

圖 2-1 TCP 9400SE 多晶矽乾蝕刻機儀器

圖 2-2(a) 大試片掃描探針顯微鏡 D5000

圖 2-2(b) 大試片掃描探針顯微鏡 D5000

圖 2-3 大試片掃描探針顯微鏡 D5000 使用範例

圖 2-4(a) 場發射掃描式電子顯微鏡 FESEM (出於 NDL 網站)

圖 2-4(b) 場發射掃描式電子顯微鏡 FESEM

(出於 AppNano Microscopy Laboratories 網站)

圖 2-4(C) 場發射掃描式電子顯微鏡 FESEM

分析項目	檢測說明	範例
SEI (二次電子 影像)	檢測表面樣品形貌觀測,放大倍率: 20 ~ 300000 倍。	

圖 2-5 場發射掃描式電子顯微鏡 FESEM 使用範例

圖 3-1 實驗模型

圖 4-2 EWMA 控制器原理

圖 5-1 EWMA 控制器流程圖

圖 5-3 加入 EWMA 控制器

圖 5-6 加入 EWMA 控制器