Chaos and Boids Control, Generalized, Symplectic

Synchronization and Hyperchaaos of Chaotic Systems

SR Y
TS I

PERRA L ANE -



<

EHEEFEFIRF B KZ LERHEER

Chaos and Boids Control, Generalized, Symplectic

Synchronization and Hyperchaos of Chaotic Systems

Py A TRELR Student: Tsung-Wen Chen
hERE A& Advisor: Zheng-Ming Ge
s PR+

1l N A L

i owm
A Thesis
Submitted to Institute of Mechanical Engineering
College of Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirement
For the Degree of master of science
In
Mechanical Engineering
January 2009

Hsinchu, Taiwan, Republic of China

PERRL L AE- Y



=
%
(3
b
4

AR B W T 2 BARIALHE

FRIE X v 24

Frasm X (P OB b 1 B BT AiE 5] > BB R R IKRE P HALEL

(3 x) Chaos and Boids Control, Generalized, Symplectic

Synchronization and Hyperchaos of Chaotic Systems

SMFELEHAL $BALE I HR"

oREB -




3

m R EFE LA ES R RE IFRY EAER

RN T B S I

#F&

AR UAPR R KPS - Lyapunov dp i s AR E SR K

BRI RIE B S A R K o gt S 7 R GYC IR A R SR T

E_ /

WORF R ke BIEA e fei A deshleay 2hp JL R MRIE B L AR ERE ¥
E G T G o pLeb s H4E T Lorenz Lk $oi4 Bess€l S#ic i L #ceE A 2 A E A
b

Fa BB E A B A AR B o e LY

d Ap Bl fopE AL 9 TR o



Chaos and Boids Control, Generalized, Symplectic
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Student : Tsung-Wen Chen Advisor : Zheng-Ming Ge

Abstract

In this thesis, the chaotic behavior in an inertial tachometer system is studied by
phase portraits, time histories, Pqincaré maps, Lyapunov exponents, bifurcation
diagram and parametric diagram. A new, strategy to achieve chaos generalized
synchronization and chaos control by GYC partial region stability theory is proposed
Boids control of chaos for a nonautenomous inertial tachometer system is presented.
Moreover, the Lorenz system with Bessel function parameters is studied for chaotic
and hyperchaotic behaviors. Finally, a new symplectic synchronization of different
order nonautonomous systems via nonlinear control is studied. Numerical analysis,
such as phase portraits and time histories can be provided to verfy the effectiveness in

all above studies.
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Chapter 1

Introduction

Chaos is an interesting nonlinear phenomenon in nature and has been
investigated extensively. Lorenz researched the strange changes in the atmosphere
that is the first example to study chaos in 1963. In nature, most of dynamic systems
are nonlinear and can be described by the nonlinear equation of motion. Chaotic
system features that it has complex dynamical behaviors and sensitive behavior
dependence on initial conditions.

Chaos synchronization, first proposed by Fujisaka and Yamada in 1983 [1], did
not received great attention until 1990 [2]. In recent years, synchronization in chaotic
dynamic system is a very interésting problen and has been widely studied [3-5].
There are different types of synchronization for interacting chaotic systems, such as
complete synchronization [6], géneralized-synchronization [7], phase synchronization
[8-9], lag synchronization [10-11], anticipating synchronization [12-13] and so on.
Recently, many valuable control methods and techniques have been developed to
synchronize chaotic systems, such as PC methods [2], linear error feedback control
[14-18], adaptive control, active control, fuzzy control and impulsive control [19-27].

This thesis is organized as follows. In Chapter 2, the chaotic behaviors of an
inertial tachometer system is studied numerically by phase portraits, time histories,
Poincaré maps, Lyapunov exponents, bifurcation diagram, and parametric diagram.
These methods can be used to explain that chaos exists in an inertial tachometer
system.

In Chapter 3 and Chapter 4, a new strategy to achieve chaos generalized

synchronization and chaos control by GYC partial region stability theory (see



Appendix A) is proposed [28-29]. By using the GYC partial region stability theory,
the Lyapunov function is a simple linear homogeneous function of error states and the
controllers are more simple and have less simulation error because they are in lower
degree than that of traditional controllers.

In Chapter 5, boids control of chaos for a nonautonomous inertial tachometer
system is presented. Boids is short for “Birdoid”. Boids control [30] is an artificial
life program, simulating animal motion such as congregating behavior of birds,
herding behavior of land animals and moving behavior of fishes [31]. The behavior of
boids can either be characterized as chaotic or orderly. The boids work in a manner
similar to cellular neural networks, since each boid acts individually and references a
neighborhood, as cellular neural networks do [32]. Boids control is an interesting
strategy for control. Some computer simulation eéxamples are given in this Chapter.

In Chapter 6, the chaotie- behaviors 1n. Lorenz system with Bessel function
parameters is studied numerically byitime-histories of states, phase portraits, Poincaré
maps, bifurcation diagram, Lyapunov-exponents and parameter diagram. It is found
that chaos and hyperchaos abundantly exist.

In Chapter 7, a new symplectic synchronization*

y=F(Xxy,1) (1-1)
is studied, where X, Yy are state vectors of the “master” and of the “slave” ,
respectively, F(X,y,t) is a given function of X , Yy and time. When
F(x,y,t)= F(Xt), Eq. (1-1) reduces to the generalized synchronization Yy =F(X,t).
Therefore the generalized synchronization is a special case of symplectic generalized
synchronization. In Eq. (1-1), the final desired state Yy of the “slave” system [33]
not only depends upon the “master” system state X but also depends upon the
*The term  “symplectic” comes the Greek for “interwined” . H. Weyl first introduced in 1939 in this book “The Classical

Groups” (P. 165 in both the first edition, 1939, and second edition, 1946, Princeton University Press).
2



“slave” system state Y itself. Therefore the “slave” system is not traditional pure
slave obeying the “master” system completely but plays a role to determine the final
desired state of the “slave” system. In other words, it plays an “interwined” role, so
we call this kind of synchronization “symplectic synchronization” , and call the

“master” system partner A, the “slave” system partner B. By using the Barbalat
lemma [34], the symplectic synchronization can be achieved. In simulation examples,
Duffing system, Van der Pol system and Chen-Lee system [35] are used.

In Chapter 8, conclusions are drawn. In Appendix, GYC (Ge-Yao-Chen) partial

region stability theory is given.



Chapter 2

Chaos of an Inertial Tachometer System

2.1 Preliminaries

An inertial tachometer system is studied by phase portraits, time histories,

Poincaré maps, Lyapunov exponents, bifurcation diagram, and parametric diagram.

2.2 Description of an Inertial Tachometer System

The physical model of the inertial tachometer system is shown in Fig. 2.1. The
mass of bent rod is neglected and,‘the ‘balls, m and m, are considered as two
particles.

We can write the kinetic and potential energies of the system as follow :

T :%ml(lng2 +1°° sin® go)+%m2(lng2 +1%7° cos’ ¢)+%J772 (2-1)
IT=-gl(m, cosp+m, sin ¢)

where

m,,m, : the mass of ballsand m >m,,

J : the moment of inertia of the shaft about vertical center axis,

| : the length of rod,

@ - the angle between the shaft and the rod,

n - constant angular velocity of the tachometer,

g : gravity acceleration,

The Lagrangianis L =T —IT, the corresponding Lagrange equations are
(m, +m)I*@—(m, —m,)I*n* sin g cos ¢ + gl(M, cos @ —m, cos @) = —K¢ (2-2)

where K is damping coefficient in bent rod bearing.
4



We assume that the inertial tachometer is subjected to an external vertical

vibration basement AsinX, where X, is state variable, A is the amplitude of
vibration. The vertical axis rotates with constant speed 7. The Lagrange equation
now are given in a noninertial vibrating reference frame, which is fixed with the
basement. Due to the inertial force appearing in the noninertial frame, the gravity
acceleration in the noninertial frame becomes g—Aw’sinwt. Let X, =¢, X, =¢,
X;=Asinat, X,=X,, o=n.

And the state equations can be written as :

X =X,
X, = [(m, —m,)7n’ cos X, sin X,
m, +m,
o . k
_T(g_n X, )(m, SlnXI—mZCOSXI)—I—ZXZ] (2-3)
X, =X,
X, =—An’ sin X,

2.3 Computational Analysis of an dnertial Tachometer

System

For numerical analysis of computation, this system exhibits chaos when the
parameters are m =9, m,=1, A=10.5, n=1, =03, k=05, g=9.81 and
the initial condition is (X, X,, X;, X,)= (0, 0, 2, 2). The bifurcation diagram by
changing parameter A is shown in Fig. 2.2. Its corresponding Lyapunov exponents are
shown in Fig. 2.3. The phase portraits, time histories, and Poincaré maps of the
systems are showed in Fig. 2.4~Fig. 2.7. As A =0.5, it is period 1 in Fig. 2.4. As A
=2.5 and A =4.6, they are period 2 and period 4 in Fig. 2.5~Fig. 2.6. As A =10.5, the
chaotic behavior is given in Fig. 2.7, respectively. In addition, the parametric diagram

is obtained in Fig. 2.8.
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Chapter 3
Chaos Generalized Synchronization of Inertial
Tachometer Systems with a New Mathieu-Van der
Pol Systems as Functional System by GYC Partial
Region Stability Theory

3.1 Preliminaries

A new strategy to achieve generalized chaos synchronization by GYC partial
region stability theory is proposed. By using the GYC partial region stability theory
the Lyapunov function is a simple lineatrhomogeneous function of error states and
the controllers are more simple-and introduce less simulation error because they are
in lower degree than that of traditionalcontrollers. In simulation examples, an

inertial tachometer system and Mathieu-Van der Pol system are used.

3.2 Generalized Chaos Synchronization Strategy

Consider the following unidirectional coupled chaotic systems
x="1(t, x)

y=h(t,y)+u G-

where X=[X1,X2,---,Xn]T eR", yz[yl,yz,--~,yn]T eR" denote the master state
vector and slave state vector respectively, f and h are nonlinear vector functions,
and u=[u,u,, --,un]T eR" is a control input vector.

The generalized synchronization can be accomplished when t — oo, the limit of

.
the error vector €= [e1 N-AREN en] approaches zero:
13



lime=0 (3-2)

t—owo
where
e=G(Xx)-y (3-3)

G(x) isa given function of X.

By using the partial region stability theory, the Lyapunov function is linear
homogeneous function of error states. The controllers can be designed in lower

degree.

3.3 Chaos of a New Mathieu- Van der Pol System

Mathieu equation and van der Pol equation are two typical nonlinear
non-autonomous systems:

(3-4)

2,=1,
z,=—(a,+b sinwt)z, — (@b sinwt)z*=c z, +d, sinwt

,=1,
{ (3-5)

2,=—-67,+ f1(1—232)z4 +g; sinwt

Exchanging sinwt in Eq. (3-4) with z, and sinwt in Eq. (3-5) with Zz,, we obtain
a new autonomous Mathieu-Van der Pol system :
2,=1,
z,=—(a,+bz,)z,—(a,+bz,)z’ —c;z,+dz

2,=1, (3-6)

2, =—ez,+f,(1-2])z,+ 9,2,

where a,,b,c,d ,e, f,0,, are uncertain parameters. This system exhibits chaos
when the parameters of system are a =10, b =3, ¢, =04, d, =70, ¢ =1,
f,=5, g,=0.1 and the initial states of system are (z,,2,,,2;,z,) =(0.1,-0.5, 0.1,

-0.5). Its phase portraits and time histories are shown in Fig. 3.1 and Fig. 3.2.

3.4 Numerical Simulations

14



The following master and slave are two inertial tachometer systems with

unidirectional coupling:

X =X,
. 1 > .
X, = [(Mm, —m, )" cos X, sin X,

m, +m,

1 ) . K

_T(g -1 X3)(m1 sin X, —M, cos Xl)_l_zxz] (3-7)
Xy = X,
X, =—An’ sin X,

Y1 =Y,y
) 1 )
Y, = e [(m, —m,)n’ cos Y, sin Y,
1 2 . k
_T(g_ﬂ y;)(m; siny, —m, cosyl)—|—2y2]+u2 (3-8)
Y3 =Y, U
Ya =_A772 siny; +U,

CASE |. The generalized synchronization error function is € =X —Y; +20

(1=1,2,3,4). Our goalis Yy, =X %20, 1e.

lime, = lim(x, -y, +20) =0, (i=1,2,3,4) (3-9)

t—oo

The addition of 20 makes that error dynamics always happens in first quadrant.
The error dynamics becomes

élle_ylzxz_yz_ul
1
m1+m2

€ =X-Y,= [(m, —m, )" cos X, sin X,

1 ) k
_T(g _772X3)(m1 sin X1 - mz Cos Xl)_l_zxz]

1
+m

[(ml —m, )772 cosy, sin Yi (3-10)

m

1 2

1 . k
_T(g _772)I3)(m1 sy, —M, cos y1)_|_2 y,1-u,
é3 :X3_Y3 =X =Y,

é, =X, —V,=—-Ap’sinx, + Ap’siny, —u,

15



Let initial states be (X, X,, X;, X,)=1(0,0,2,2), (Y,,Y,, Y, ¥,)=(2,2,0,0), the error

dynamics always exists in first quadrant as shown in Fig. 3.3. By GYC partial region

asymptotical stability theorem, one can choose a Lyapunov function in the form of a

positive definite function in first quadrant:
V=g +e,+6,+¢,

Its time derivative is

V=¢+6 +6 +¢,
1

m, +m,

=(X-Y,—Uu)+{ [(m, —m,)n’ cos X, sin X,

1 ) k
_T(g _772X3)(m1 sin X, —M, cos X1)_|_2X2]

1

2 .
[(ml —m, )n° cos y sm,
m, +m,

1 . k
-1 —n’y,;)(m, sin y, —m, cos Y= )

+(X, =Y, —U3)+(—A772 sin X+ A772 sin Ys —U4)

Choose

U =X-Y,*§
1 ) :
u, = [((m, —m, )" cos X, sin X,
m, +m,

1 ) k
_T(g _772X3)(m1 s X, —M, cos X1)_|_2X2]

1

2 .
[(ml —-m, )77 cosy, sy,
m, +m,

1 ) k
_T(g _772y3)(m1 sin 'y, —Mm, cos Y1)_|_2y2]+e2
X4 - y4 +e3

U, =
u, =—An’sinx, + Ap’sin y, +e,
which are added at 50s.

We obtain

V=-e-6-6-€<0
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which is negative definite function in first quadrant. Error states versus time and time
histories of states are shown in Fig. 3.4 and Fig. 3.5.
CASE Il. The generalized synchronization error function is

e =X—-Yy,+Fsinwt+20, (i=12,3,4).

Our goal is Y, =x+Fsinwt+20, ie limg=lim(x —y;+Fsinwt+20)=0,

t—o t—owo

(i=1,2,3,4). The error dynamics becomes

& =X-Y, =X —Y,—U +Fwcoswt

€ =X-Y,= [(m, —m,)n* cos X, sin X,

1 2

1 ) K
_T(g _772x3)(m1 sin X, —M, cos X])_I_ZXZ]

1 .
- [(m, —m,)n* cos y, sin y, (3-15)
m, +m,

1 ; k
—T(g — 777y, )(m; sin y, —m, ¢os yl)—l—2 y,]-U, + Fwcos wt
& =X-Y,=X,—Y,—U; =Fwcoswt

6, =X, — Y, =—An’sinx, £ Ay’ siny; = U, + Fwcos wt
Let initial states be (X, X,, X;, X)= (0, 0, 2, 2),5(Y,, ¥,, Y5, ¥4) = (2, 2, 0, 0), and
F =5,w=0.1, the error dynamic always exists in first quadrant as shown in Fig. 3.6.
By GYC partial region asymptotical stability theorem, one can choose a Lyapunov
function in the form of a positive definite function in first quadrant:
V=g +e,+€e,+¢, (3-16)

Its time derivative is

17



V =¢+6 +6€ +¢,

[(m, —m,)n” cos X, sin X,

=(X, =Y, —U, + Fwcoswt) + {
1 2

1 ) k
_I_(g _772X3)(m1 sin X, —M, cos Xl)_l_zxz]

. (3-17)
- [(ml —m, )772 cosy, sin Yi
m, +m,
1 ) ) k
_I_(g —n°y;)(m;sin 'y, —m, cos yl)_l_z y,]-u, + Fwcoswt}
+(X, — Y, —U, + Fwcos wt) + (—An” sin X, + A;p” sin y, —u, + Fwcos wt
4 4 3 3 3 4
Choose
U =X,—-Y,+Fwcoswt+e
u, = o, [(m, —m,)n’ cos X, sin X,
1 ) ) k
_I_(g —17"%,)(M, sin X, —M, cos Xl)_l_zxz]
T [(m, — m2)772 cosy, siny, (3-18)
1 2
1 ) ) k
—I—(g —1"Y,;)(M, sin Y, —'m, cos yl)—l—2 Yy, ]+ Fwcoswt +e,
U, =X, — Yy, + Fwcoswt +¢;
u, =—An’ sin X, + Ap’ sin y, +FWcos Wt+€;
which are added at 50s.
We obtain
V=-e-¢e-6-¢<0 (3-19)

which is negative definite function in first quadrant. Error states versus time and time

histories of X, —Y; +20 and —Fsinwt are shown in Fig. 3.7 and Fig. 3.8.

CASE 1. The  generalized  synchronization  error  function  is
e :%Xiz -V, +20,(=1,2,3,4).
. 1, . . 1o, :
Our goal is Y, =§Xi +20, i.e. ¥1mei = Pm(gxi -y, +20)=0, (i=12,3,4)

The error dynamics becomes
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él = Xlxl _yl =XX Y, U

éz :X2X2 _yz =X,

[(m, —m,)5” cos X, sin X,

m, +m,

1 ) k
_T(g _772X3)(m1 sin X1 - mz Cos Xl)_l_zxz]

1
+m

[(ml —m, )772 cosy, sin Yi (3-20)

m

1 2

— (@Y sin Y, M cosY)— 1 YT,
& =XX Y, =XX, —Y,—U
&, =X, X, =Y, = X,(—Ap’ sin ;) + Aip’ sin y, - U,

Let initial states be (X, X,, X;, X,)=(0, 0, 2, 2), (Y,, ¥,, Y;, ¥,)=(2,2,0,0), the
error dynamics always exists in first quadrant as shown in Fig. 3.9. By GYC partial
region asymptotical stability theorem, one can choose a Lyapunov function in the
form of a positive definite function in first quadrant:

V =g +e,+€,4¢€, (3-21)

Its time derivative is

V =¢+6 +6€ +¢,

2 .
=(XX, =Y, —U)+{X, [((m, =m,)77 cos X, sin X,

| h
1 ) ) k
_T(g —n"%;)(M, sin X, —M, cos X1)_|_2X2]

1 (3-22)

m, +m,

[(m] —m, )772 cos 'y, sin Y|

1 . k
—7 (@7 Ya)(msin Y, —m, cos ) =5y, 1 -y
+ (%X, = Y, —U) +[X,(—Ap’ sin ;) + Ay’ sin y; —u, ]

Choose

19



u =XX,-Y, t€
1

U, = X
2 P m+m,

[(m, —m,)n” cos X, sin X,

1 ) k
_T(g _772X3)(m1 s X, —M, cos X1)_|_2X2]

1
m, +m,

[(ml —-m, )772 cosy, sin Yi (3-23)

1 ) k
_T(g _772y3)(m1 sin 'y, —Mm, cos Y1)_|_2 y,]+e,
U; = XX, — Y, +&
u, = X, (A’ sinx,)+ A’ sin y, +e,
which are added at 50s.

We obtain
V=-¢-e-6-¢<0 (3-24)
which is negative definite function infirst'quadrant. Error states versus time and time
histories of %Xiz +20 and Y, qare shown in Fig.3:10 and in Fig. 3.11.

CASE IV. The generalized synchronization error function is €, =X, — Y, +z,+ 50,
where 7, (i=1,2,3,4) are chaotic states of thenew Mathieu-Van der Pol system.

The functional system for synchronization is new Mathieu-Van der Pol system
and initial states are (z,2,,,2,,2,)=(0.1, -0.5, 0.1, -0.5), system parameters a, =10,
b =3, c=04, d =70, ¢=1, f =5, g =0.1.

,=1,
2,=—(a,+bz,)z,—(a,+bz,)z’ —c;z, +d,z
(3-25)

:Z4

. 2
2,=-ez,+f(1-27)z,+ 9,

We have lime =lim(X—Yy+2z+50)=0. The error dynamics becomes

t—oo t
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é,:X]—yl+21:x2—y2+zz—ul

€, =X—-Y,+12,=

[(m, —m,)n” cos X, sin X,
1 2

1 ) k
_T(g _772X3)(m1 sin X, —M, cos X1)_|_2X2]

m. —m,)n’ cos V, sin 3
m +m, [(m; —m,)n y,smy, (3-26)

~ (@7 y M sin Y, M cos )~ 1.1
—(a,+bz,)z, - (a+bz,)z’ ¢z, +d,z, —u,
& =X—Y,+Z,=X,—Y,+Z,—-U,
&, =X, —Y,+2,=—Ap’sinx, + Ap’siny, —ez, + f,(1-2,°)z, + 9,2, —u,

Let initial states be (X, X,, X;, X,)= (0, 0, 2, 2), (Y,, ¥,, ¥s> Y.)= (2, 2, 0, 0)
and the error dynamics always exists in first quadrant as shown in Fig. 3.12. By GYC
partial region asymptotical stability theorem, one can choose a Lyapunov function in
the form of a positive definite function in first quadrant:

V=¢+e,+6+¢€, (3-27)

Its time derivative is

V =¢+6€,+6, +8¢,
1

m, +m,

2 .
=(X% =Y, +2,-U)+{ [(M, —m,)n" cos X, sin X,

1 . k
—T(g —17°%,)(M, sin X, —m, cos Xl)_l_zxz]

m, —m,)n’ cos V, sin -
m +m, [(m, —m,)7 yismy, (3-28)

1 ) k
_T(g _772y3)(m1 sin 'y, —Mm, cos y1)_|_2 Y]
_(al +b123)21 —(a+bz3)zl3 -Gz, +d123 _uz}

+(X4—y4+Z4—U3)

+[-Ap’sinx, + A’ siny, —ez, + f,(1-2,)z, + 9,2, - U,]

Choose
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u=Xx-Yy,+z,+¢

[(m, —m,)n* cos X, sin X,

u, =

m, +m,

1 . k
_T(g —77°X,)(M, sin X, —m, cos X1)_|_2X2]

m, —m,)n’ cos Y, sin )
m, +m, [(m, —m,)7 yi sy, (3-29)

1 ) k
_T(g _772y3)(m1 sin 'y, —Mm, cos yl)_l_z Y]

3
—(a,+bz,)z, - (a+bz,)z” —cz,+d,z, +e,
U; = Xy =Y, + 2, + &

u, =—Ap’sinx, + Ap’siny, —ez, + f,(1-2,")z, + 9,2, +¢,
which are added at 50s.

We obtain
V=-=g-e-6-6€<0 (3-30)

which is negative definite function in first)quadrant.. Error states versus time and time

histories of X, —y, +50 are shownin Fig. 3:13 and Fig. 3.14.
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Fig. 3.1 Phase portraits of new Mathieu-Van der Pol system.
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Fig. 3.2 Time histories of the four states of new Mathieu-van der Pol system.
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Fig. 3.3 Phase portraits of four errors dynamics for Case 1.

Fig. 3.4. Time histories of errors for Case 1.
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Fig. 3.6 Phase portraits of error dynamics for Case II.
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Fig. 3.9 Phase portraits of error dynamics for Case III.
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Fig. 3.10 Time histories of error for Case III.
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Chapter 4
Chaos Control of an Inertial Tachometer System by

GYC Partial Region Stability Theory

4.1 Preliminaries

In this Chapter, a new technique to achieve chaos control by using GYC partial
region stability theory is proposed. By using the GYC partial region stability theory,
the new Lyapunov function becomes a simple linear homogeneous function of error
states and the controllers are of lower degree with less simulation error. In simulation

examples, an inertial tachometer system-anda Mathieu-Van der Pol system are used.

4.2 Chaos Control Scheme

Consider the following chaotic systems

s =f(t, x) (4-1)
where x:[xl,xz,...’xn]T €R" is a the state vector, f:R xR" —>R" is a vector

function.

The goal system which can be either chaotic or regular, is
y=g(ty) (4-2)
where Y =[Y,,Y,,, Y, ]T €R" is a state vector, g:R, xR"—>R" is a vector

function.
In order to make the chaotic state X approaching the goal state y, define error

e =X—Y as the state error. The chaos control is accomplished in the sense that :

lime =lim(x~y) =0 (4-3)
In this Chapter, we will use examples in which the error dynamics happens in the
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first quadrant of coordinate system and use the partial region stability theory. The
Lyapunov function is a simple linear homogeneous function of error states and the
controllers are simpler because they are in lower degree than that of traditional

controllers.

4.3 Numerical Simulations

The following chaotic system

% = (X, —20)

X, = o i - [(m, —m,)7* cos(X, —20)sin(x, —20)
—Il(g —177(X, —20))(m, sin(x, —20)—m, cos(X, — 20)) (4-4)
_%(Xz —20)]

%, = (X, —20)

X, =—An’ sin(x, —20)

is the 1nertial tachometer System.  of“which+ old origin is translated to
(X}, X5, X3, %,) =(20,20,20,20) in order:that the error dynamics always happens in
first quadrant. This system is presented as simulated examples where initial conditions

are (X5, Xp05 X305 X49) = (20,20,22,22) and the parameters are m =9, m,=1,

102 77202 30
A=105, n=1, 1=03, k=05, g=9.81.

In order to lead the states (X;,X,,X;,X,) to the goal, we add control terms Uy, Uy,

Us and Ug4 to each equation of Eq. (4-4), respectively.
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X =(X,—20)+uy,
1

[(m, —m,)7> cos(X, —20)sin(x, —20)
m, +m,

X, =

1 2 .
—I—(g — 177 (X, —20))(m, sin(X, —20) —m , cos(X, —20)) 4-5)

k
_|_2(X2 -20)]+u,

X; = (X, —20) +u,
X, =—Ar’ sin(x, —20) +u,

CASE |. Control the chaotic motion to zero.

In this case we will control the chaotic motion of the inertial tachometer system

(2.3) to zero. The goal is y, =0, (i=1,2,3,4). The state error is € =X; —Y; = X;,

lime, = lim(x ~0)=0, (i=12,3,4). (4-6)

t—wo

The error dynamics becomes

€ =X =(X,—20)+uy,

-

[(m, —my)r’” cos(X=20)sin(x, — 20)

2 2
m, +m,

1 ) .
_T(g =17 (X; =20))(m,; sin(X; = 20) —m , cos(X, —20)) (4-7)

k
—I—z(x2 -20)]+u,

& =X =(X,—20)+u,
&, =X, = —Ay’sin(x, —20) +U,

In Fig. 4.1, we can see that the error dynamics always exists in first quadrant.
By GYC partial region stability, one can easily choose a Lyapunov function in
the form of a positive definite function in first quadrant as:
V=g +e,+e,+e, (4-8)

Its time derivative through error dynamics (4-7) is
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V =¢+6€,+€ +¢,

=(X,—=204+u,)+¢{ [(m, —m,)7’ cos(X, —20)sin(X, —20)

~ (917X, = 20)(m;sin( ~20)~m ,cos(x, ~20)) (4-9)

—%(x2—20>]+u2}

+(X, —20+U;) +[—An’ sin(X, —20) + U, ]

Choose
U, =—(x,-20)-¢
u, =-— [(m, —m,)7r* cos(X, — 20)sin(x, — 20)
m, +m,
1 .
_I_(g - 772 (X3 - 20))(m1 Sm(xl —20)-m 2 COS(Xl —20)) (4-10)
k
—I—z(Xz —20)]-¢,
Uy =—(x, —20) g,
u, = —[-Ay’ sin(x, — 20)] - g,
which are added at 50s.
We obtain

V=¢+6 +6;+¢,<0

which is negative definite function in first quadrant. The time histories of error states
are shown in Fig. 4.2. After 50 sec, the trajectories approach the origin.
CASE Il.  Control the chaotic motion to a regular function.

In this case we will control the chaotic motion of the inertial tachometer system
(2-3) to regular function of time. The goal is y, =F sinwt, (i=1,2,3,4). The error
equation

e =X-Y,=%—-Fsinwt, (i=12,3,4) (4-11)

lime, =lim(x, —F sinwt)=0, (i=1,2,3,4)

t—0 t
where F=F,=F=F =5 and w,=0.1, w,=0.2, w,=03, w,=04.

The error dynamics is
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g =X —Y, =(X,—20)+u, —w,F coswt

[(m, —m,)7” cos(X, —20)sin(x, —20)

6 =% —y,=
2 mam

1 2

1 ) .
=@ =17 (% = 20)(m; sin(x, = 20) —=m , cos(x, ~20)) 4-12)

k
—I—z(x2 —20)]+u, —w,F, cosw,t
& =X, —Y; =(X, —20)+u; —w;F; cos w;t
&, =X, — Y, =—Anp’sin(X, —20) +u, —w,F, cosw,t
In Fig. 4.3, the error dynamics always exists in first quadrant.
By GYC partial region stability, one can easily choose a Lyapunov function in
the form of a positive definite function in first quadrant as:
Its time derivative is

V =¢ +6€,+6€ +¢,
=(X,—=20+u,)—w,F, coswt

+{ [(m, —m,)r*cos(X, —20)sin(x, — 20)
m, +m,

—Il(g - 772(X3 —20))(m, sin(X;=20) —m cos(X, —20)) (4-13)
k

—I—z(x2 -20)]+u,} —w,F, cosw,t

+(X, —20+u;)—w,F, cosw;t

+[—An? sin(x, —20) +u,]—W,F, cos w,t
Choose

u, =—{(X, —20)—w,F coswt]—e¢,
1
+m

u, =—{ [(m, —m,)7r” cos(X, —20)sin(x, —20)

1 2

1 ) .
= (9 =7 (= 20))(m, sin(x, ~20) M, cos(x, ~20)) 414

—Ihz(x2 —-20)]-w,F, cosw,t} —e,
u, =—[(x, —20) - w,F, cosw,t]—e,
u, =—{—An’ sin(x, —20) - w,F, cosw,t]—e,
which are added at 50s.
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We obtain

which is negative definite function in first quadrant. The numerical results are shown
in Fig. 4.4 and Fig. 4.5. After 50 sec., the errors approach zero and the chaotic
trajectories approach to regular functions of time.
CASE Ill. Control the chaotic motion of the inertial tachometer system to chaotic
motion of the new Mathieu-Van der pol system.

In this case we will control chaotic motion of the inertial tachometer system (2-3)
to that of the new Mathieu-Van der pol system. The goal system for control is new
Mathieu-Van der pol system and initial states are (0.1, -0.5, 0.1, -0.5), system

parameters a, =10, b =3, ¢, =04, d, =70, ¢ =1, f =5, ¢g,=0.1.

7,=1,
2,=—(a,+bz,)z, —(a+hz )z’ —cz+d 2
. (4-15)
2, =1,
2, =-ez,+f,(1-2)2,%9,2,
The error equation 1s e=X-2 , (=L234) Our goal is
%imei = %im(xi -7)=0(i=1,2,3,4)
The error dynamics become
€ =X—-2=(X,-50)+u, -2,
6, =X —2,= ! [(m, —m,)7n’ cos(X, —50)sin(X, —50)
m, +m,
~ (g =17 (X, = S0)(m; sin(x, - 50) -, cos( ~50)
k
_F(Xz ~50)]+u, (4-16)

_[_(al + b] 23)21 - (al + blz3)212 —Cz, + d123]
& =X -2, =(X,—50)+u, -z,
&, =X, —2,=—-Ap’sin(x, —50)+u, -[-e,z, + f,(1-2,)z, + 9,2,]
By Fig. 4.6, we know that the error dynamics always exists in first quadrant.
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By GYC partial region stability, one can easily choose a Lyapunov function in
the form of a positive definite function in first quadrant as:
V=e +e,+e;+6€,
Its time derivative is

V=6 +€,+6€ +§€,
=(X,=50+u,)-z,

+{ [(m, —m,)7’ cos(X, —50)sin(X, —50)
1 + m2
1 :
—T(g — 177 (X, —50))(m, sin(X, —50) —m , cos(X, — 50)) 4-17)
K
—F{x2—50ﬂ+ug
_[_(al +b123)21 _(al + blz3)212 —Cz, + dIZS]
+(X, —=50+u,)—1z,
+[—An® sin(X, —50) + U, ]-[-€,zs b f; (1 2,7)Z, + 9,2,
Choose
u =-(x,=50)-z,]-¢
u,=-— [(m, —m,)77*cos(X =50)sin(x, =50)
m, +m,
—Il(g —17%(X, = 50))(m, sin(x, —50) ='m , cos(X, —50))
k
—I—z(x2 ~50)] (4-18)

+[—(a +bz,)z, — (8, +bz,)z’ ~cz, +d,2,] ¢,
u, =—(x, —=50)—z,]—e¢,
u, = Ay’ sin(x, —50) +[-e,z, + f,(1-2,")z, + 9,2,] ¢,

which are added at 50s.
We obtain

which is negative definite function in first quadrant. The numerical results are shown
in Fig. 4.7 and Fig. 4.8. After 50 sec., the errors approach zero and the chaotic
trajectories of an inertial tachometer system approach to that of the new Mathieu-Van

der pol system.
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Fig. 4.4 Time histories of errors for Case II.
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Fig. 4.8 Time histories of x;, Xz, X3, X4 for Case III.

Chapter 5
Boids Control of Chaos for an Inertial Tachometer

System

5.1 Preliminaries

The aggregate motion of a flock of birds or a herd of land animals is a beautiful
and familiar part of the natural world. They exhibit complex and emergent behaviors
such as flocking behavior, separation behavior, and obstacle avoiding behavior. This
Chapter explores an approach based,efi'simulation as an alternative to scripting the
paths of each bird individually. Flock centering and separation, obstacle avoidance are

studied. A nonautonomous inertial tachometer system'is used for simulation example.

5.2 Boids Nonlinear Control

Many nonlinear systems which are known to present chaotic behavior are

modeled by a set of nonlinear nonautonomous differential equations:

dx
E: f. (X, Xy, 5 X

where X =(X(t), X, (1),---, X, (1)) is state variable vector, and f(x,t) = (f,(x,t), f,(X,1),

) (i=1,2,--n) (5-1)

n?o

-, f.(x,t)) is anonlinear vector function of X and t. Given initial state x(0) at t=0,

the state X of each isolated boid B, is assumed to evolve for all t>0 via state

equations:

dx.”
d—;:: fi(xla,xza’_..,xna’t) (i=1’2,...,n) (5'2)
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We will assume for simplicity that all boids are identical and each boid is
coupled locally only to those neighbor boids whose trajectories lie inside a prescribed

sphere S, ofradius ¢:

S,(&,1)= {Bﬁ Vap U \/i(xf” ) —x’ (1)’ < 8}, (5-3)

at time t, where y, , indicates the distance between the boids B, and B,. We will

usually delete ¢ and t from S_(&,t) and simply write S to avoid clutter. Then
the dynamics of the locally coupled chaotic nonlinear networks, namely, the dynamics
of boids nonlinear networks is defined by

B xx DG, (" %7 %/t

F_ i(Xl 7X2 7'”7Xn ’ )+ Z i gi(xl 7X2 9“'7Xn 9 )

BseS,
(i=1,2,--,n, a=125-M) (5-4)

where Diﬁ (i=12,---,n) are eoupling coefficients, and

g(x,t) =(9,(x,t),9,(X,1),---, g,(X1)) dsranmoniinear vector function of X and t.

Case I Flock Centering: Boids attempt to move toward the average position of

nearby flockmates.

The center of nearby flockmates is defined by

> xl(®

N e —
P (1) Y (5-5)

a

where N, indicates the number of nearby flockmates. The boids can move toward

the center X' by using chaotic synchronization [36]. Therefore, flock centering is

implemented here by imposing the control dynamics

dx.“ N
d—lt: fi(Xla, Xzaa'uaxn{ZDt)-i_dia(Xia _Xla) (5-6)
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where d“ >0.

Case I Separation of Flocks: Boids keep a distance from different kinds of flocks.

A flock may attempt to go away from other kinds of flocks. If a flock gets close

enough to a different groups of flocks, that is, if the distance between the centers of

two flocks becomes less than &, >0, boids attempt to scatter. Separation of flocks is

implemented by the dynamics of chaotic desynchronization

dx.* N3
—dlt = FO X% X " D)+ 8T (T = X) (5-7)

where s <0 and X indicates a center of nearby flockmates.

Case III Obstacle Avoidance: Boids attempt to.dodge static obstacles.

Assume that a static obstacle is defined-by-the equation
h(x,X,,"-X,)=b (F=42,---,n) (5-8)
where h is a scalar function of x=(X,X,,---,x,) and b is a constant. The normal
vector at X =(X,X,, -+, X,) ona surface h(X,X,, -, X,,t)=Db is given by
ON(X;, X5+, X, ) ON(X, Xy 54, X))
X, ’ X, ’
On(X;, Xy, X,)
" - ).

n

Vh(X,, Xy, X, 1) U (

(5-9)

If a boid gets close enough to a static obstacle, that is, if the distance between a

boid and a static obstacle is less than &, the boids must attempt to dodge the static

obstacle. Obstacle avoidance can be implemented by switching over to a new vector

field:

dXi :(l_ui)fi(X1a9X2a9"'>Xnaat)+ui7/ah(xpxz’“.,xn)

dt OX.

(5-10)

where 0<u, <1 and y >0.
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5.3 Chaos of an Inertial Tachometer

In this section, an inertial tachometer system is studied. The physical model of
the inertial tachometer system is shown in Fig.5.1. There exists viscous damping in

bent rod bearing (O point). The mass of bent rod is neglected and the balls m, and

m, are considered as two particles.
We can write the kinetic and potential energies of the system as follow :

1 . 1 . 1.
T=—m (1’9’ +1°0’ sin” @) +—m, (I’9* +1°6° cos” ) +— 1’
IT=-gl(m, cosp+m,sing)
where

m,,m, - the mass of ballsand m, >m,,
J ! the moment of inertia of the shaft about vertical center axis,
| : the length of rod,

@ - the angle between the shaftand the rod;

@ : the angular velocity of the shaft,

g - gravity acceleration,
The Lagrangianis L =T —II, the corresponding Lagrange equations are

(M, +m)I?@—(m, —m,)I’6” sin @ cos ¢ + gl(m, sin @ —m, cos @) = —k¢ (5-12)
(m1”sin® @ +m,1° cos® @+ J)@ +(m, —m,)2I* sin pcos p& = 0

where K is damping coefficient in bent rod bearing.

The state equation can be written as :

o=y

V= [(m, —m, ) cos @sin pw’
m, +m,

. k 5-13
_%(mlsln¢_mzcos¢)_l_2‘//] ( )

e (M, —m,)2I° singcos ¢

: e
m,1?sin® ¢ +m,I? cos® o+ J

where w=0.
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We assume that the inertial tachometer is subjected to an external vertical
vibration to basement Asin(nt) . The Lagrange equation now are given in a
noninertial vibrating reference frame, which is fixed with the basement. Due to the

inertial force appearing in the noninertial frame, the gravity acceleration in the

noninertial frame becomes ¢+ Ap’sin(nt) . Let ¢=X, w=X, @=X , the
equation (5-13) is rewritten in the form
X =X,
. 1 . )
X, = {(m, —m,)cos X, sin XX,
m, +m,
(5-14)

1 . . y
_I—[g + Anp® sin(77t)](m, sin X, — M, cos X,) —I—zxz}

2 .
« (m, —m,)2l" sin X, cos, X
3 12 5in2 2 2 273
m,1” sin” X, + m,1” cos” X, +J

where x,,x,,X, are state variables and|-m,m,s A;7,l,k,g,Jare parameters. This
system exhibits chaos when thé-parametets of system are m =9, m, =1, A=10.7,
J=9, n=1, 1=03, k=0.5, 'g=9.81 and the initial condition is (X, X,, X;) =
(0, 0, 2). Its phase portraits as shown in Fig. 5.2 and Fig. 5.3. The Lyapunov
exponents and the bifurcation diagram of the inertial tachometer are shown in Fig. 5.4

and Fig. 5.5 for A between 9.1 and 10.9.

5.4 Numerical Simulations of Boids Control

The inertial tachometer system is the master system:
X =X
1

. . 2
X, = m, —m, )cos X, sin X, X
2 ml +m2 {( 1 2) 1 13

1 s i k (5-15)
_I—[g + An” sin(z7t)](m, sin X, —m, cos X,) — X,}

(m, —m,)21? sin X, cos X,
m,1”sin® X, + m,1 cos® X, +J

X3 == X, Xy
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The slave system is

Y=Y,
1
ml+m2

yz = {(m] - mz)COS Y sin Y| y32

1 2 - k (5-16)
_I—[g + An” sin(nt)](m, siny, —m, cos y,) NE Y,

2 .
(m, —m,)2l" sin y, cos Y,
2 102 2 2
m,1”°sin” y, + m,1"cos” y, +J

Y3 == Y>Y;

Case I Flock Centering: Boids attempt to move toward the average position of

nearby flockmates.
Flock centering is implemented here by imposing the control dynamics:

dx.”

= F(X7 %% X )+ A (X —Xx) where  d“ >0 (5-17)
The slave system is rewritten as follows:
: X, + X, + X
Y=Y, +d(#_ y])
. 1 :
Vo= {(m,—m,)cos Y, Sin y, Vs~
1 2
1 ) . ) k
_T[g + Arp” sin(77t)J(m, sin Y, —m, cos )/1)—|—2 Yat (5-18)
+d(Xl+X2+X3 v
) m, —m,)21*sin y, cos X, + X, + X
y3 - _ ( 1 2) yl y] y2y3+d( 1 2 3 _y3)

m|*sin® y, + m,1% cos® y, +J

where d=0.000001.The simulations of flocking behavior of tachometer systems are
shown in Figs. 5.6~5.8. The flocking of two tachometer systems are illustrated in Fig.
5.6. The distance between two systems is given in Fig. 5.7. The synchronization

behavior of two tachometer systems is given in Fig. 5.8.

Case Il  Separation of Flocks: Boids keep a distance from different kinds of flocks.

Separation of flocks 1is implemented by the dynamics of chaotic
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desynchronization:

dzi(;: - fi(Xlaaxzaa"'s Xna)+sia(g_xia) ,  Where Sia <0 (5-19)

The slave system is rewritten as follows:

X+ X, + X

yl =Y, +d( - y])
) 1 )
y, = o {(m, —m,)cos Yy, sin y1y32
1 2
1 : ) k
—jlo+ An* sin(nt)](m, sin y, —m, cos y,) Y (5-20)
+d(m_y2)
: (m, —m,)2I%sin y, cos Y, X, + X, + X%,
= — +d 1 "2 73
Ys m1|2 sin’ y, + m2|2 cos’ y, +J Y2¥s ( ya)

where d=-0.00002. The simulations of flocking behavior of tachometer systems are
shown in Figs. 5.9~5.11. The separation-of two tachometer systems is illustrated in
Fig. 5.9. The distance between two Systems -is given in Fig. 5.10. The

desynchronization behavior of two tachometer-systems is given in Fig. 5.11.

Case III Obstacle Avoidance: Boids attempt to dodge static obstacles.

Obstacle avoidance can be implemented by switching over to a new vector field:

dx.” on(X;, Xy, X))
L= (1-u) (X%, %%, X *)+U P22 2om 5-21
dt ( |) |( 1 2 n ) |7/ 8Xi ( )
Define a sphere of radius 1, centered at (X,Y,,Z) by
(X=X +(y=y) +(z2-2)" =x (5-22)
and its normal vector n=(n,,n,,n,) atthe point (X, y, z) by
(nxany:nz):(Z(X_Xl)az(y_yl)az(z_Zl)) (5_23)
Define a cylinder of radius r, centered at (X,,Yy,) by
(X— X1)2 +(y- yl)2 = r22 (5-24)
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and its normal vector n=(n,,n,,n,) atthe point (X, y, z) by

(n,,Ny,n,) = (2(X=%),2(Y ~ ¥,),0) (3-25)

Therefore, the “sphere” and the “cylinder” obstacles are specified by the parameters:

(X, Y,,2,,5) and (X,,Y,,I,) respectively.

CASE III-1: Obstacle Avoidance-sphere

The inertial tachometer system is rewritten as follows:

X =(=u)x, +2u7(x — X))

X, = {(m, —m,)cos X, sin X X,

m, +m,

1 , . . k (5-26)
—T[g + An” sin(n7t)](m, sin X, —Mm, cos X, ) —I—sz} +2U,7(X, =Y,)

) m, —m,)2l%sin X, cos X
X3 == (2 1. 2 2) 2 1 2 . X2X3+2u37(x3_zl)
m,1” sin” X, + m,1” cos” X+ J

where y=0.001, u, =0.2, u;=02, u,=0.1, X, =65, Y, =0, Z, =0.1, =2,
The simulations of the obstacle aveidance'behavior for sphere are illustrated in

Figs. 5.12~5.13.
CASE III-2: Obstacle Avoidance-cylinder

The inertial tachometer system is rewritten as follows:

% =1=u)x, +2u7(x, — X,)
, 1 .
X, = —— {(m, —m,)cos X, sin X, X,’

1 ) . : k (5-27)

—T[g + Ar” sin(z77t)](m, sin X, —m, cos Xl)—l—zxz} +2U,7(X, —=Y,)
m, —m,)2I* si

%, =— (21. ! ,) s1§1chzosX] X,X,

m,1” sin” X, + m,1” cos” X, +J

where y=0.0001, u =04, u,=0.2, u,=0, X =151, Y, =0, Z =1.385,
r, = 0.3, The simulations of the obstacle avoidance behavior for cylinder are

illustrated in Figs.5.14~5.15.
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Fig. 5.1 Mechani¢al model of-an inertial tachometer.

Fig . 5.2 Chaotic phase portrait for inertial tachometer system.
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Fig. 5.5 Bifurcation diagram of X, .forA between 9.1 and 10.9.
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Fig. 5.6 Flocking of two inertial tachometer systems.
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Fig. 5.8 Synchronization of two inertial tachometer systems.
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Fig .5.9 Separation of two inettial tachometer systems.
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Fig. 5.10 Distance between two inertial tachometer systems.
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Fig. 5.11 Desynchronization of two inertial tachometer systems.

Fig. 5.12 Obstacle avoidance for inertial tachometer system (sphere).
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Chapter 6
Hyperchaos of a Lorenz System with Bessel Function
Parameters

6.1 Preliminaries

The chaotic behaviors of a Lorenz system with Bessel function parameters is
firstly studied numerically by time histories of states, phase portraits, Poincaré maps,
bifurcation diagram, Lyapunov exponents and parameter diagram. It is found that
hyperchaos and chaos exist. The hyperchaos is identified by the existence of two

positive Lyapunov exponents and gives more security for secret communication.

6.2 Lorenz System with Bessel Function Parameters

The Lorenz system

X=c(y—X)
y=rx-xz-y (6-1)
z=xy-bz

with parameters o(t), (1), as given functions of time is a nonautonomous system,
which is equivalent to a four-dimensional autonomous system.

o, y, b aregivenas :

o =10+kJ, (1)

y =k, +Y,(t+0.01) (6-2)
b=8/3
where Kk, k,, b are constant parameters, and
0 l)n t
J, (1) = 6-3
o) ;n, T2 (6-3)
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cos urd ,(t+0.01)-J_,(t+0.01)

sin umw

Y, (t+0.01) =lim (6-4)
1>

where J; is Bessel function of first kind, Y, is Bessel function of the second kind

and I' is Gamma function. The time histories of 10+J,(t), Y,(t+0.01) are shown

in Figs 6.1-6.2. The numerical simulations are carried out by MATLAB using the

fractional operator in the Simulink environment.

6.3 Numerical Simulations

This system exhibits periodic motion when the parameters of system (6-1) are

oc=10+J,(t) , y=202+Y,(t+0.01) , b=8/3 and the initial condition is
(X,y,z) =(0.1, 10, 0.5) . When the parameters are o=10+J,(t) ,

y=25+Y,(t+0.01), b=8/3, the. motion becomes chaotic. The time histories of
three states, phase portraits, Poincaré maps, .and bifurcation diagrams of the system
are shown in Fig. 6.3~Fig 6.8.

Lyapunov exponents and parametric. diagram are also given to certify the

existence of hyperchaos. Let us assume Lyapunov exponents 4 (i=1,2,3,4)

satisfying A, >4, > A,, and 4, =0. Then the dynamics of system (6-1) can be

characterized as follows:

(1) When 4,,,<0 and A4, =0, system (6-2) is periodic.
(2) When 4, >0, 4,;<0,and 4, =0, system (6-2) exhibits chaotic motion.

(3) When 4,,>0, 4,<0,and 4, =0, system (6-2) exhibits hyperchaotic motion.

Four cases are studied as follows.
Case |
Fix k;, b, vary k,. The Lyapunov exponents of the system (6-1) for k =1,

and b=8/3 are shown in Fig. 6.9. The parametric diagram of system (6-1) for
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varying k; and k, with b=8/3 isshown in Fig. 6.10. The white area corresponds
to periodic motion. By simulation, system is periodic when 0.01<k, <20.62. The
blue area corresponds to chaotic motion. And the green area corresponds to
hyperchaotic motion, which is identified by the existence of two positive Lyapunov
exponents, as clearly shown in Fig. 6.9. As k, increases to 20.63<k, <40, the
system displays complex behavior, with an interweaving between chaotic and
hyperchaotic motions. The hyperchaotic motion becomes more and more as K,
increases. Just like Monet’s picture , Fig 6.10 gives a beautiful scene. White area is
the bank of a river, blue area is the water of the river and green area is the duckweed

in the river.

Case Il

Fix b=8/3,vary k;, k, =K, lincreases intermittently for increment of 10. And
k, varies slowly for increment of 0.0}.-Some typical values of k, and k, that
generate hyperchaos with two positive Lyapunoy @xponents are shown in Tables 1~3,
respectively. Comparing Table 1~3, a particular phenomenon appears when K,
increases. As K, increases, the value of Lyapunov exponent A, becomes larger. It

means that larger k;, can arouse hyperchaotic motion. In other words, hyperchaos is

aroused with enlarged Bessel function of first kind.

Table 1 Typical values of parameter Kk, that generate hyperchaos for k =1

andb=8/3.

k2 ﬂ'l ﬂ? ﬂ3 /14
28.94 0.82575 0.00139 -13.82725 0
29.47 0.84172 0.00127 -13.84311 0
29.74 0.84484 0.00129 -13.84625 0
30.01 0.85157 0.00115 -13.85283 0
30.58 0.86341 0.00117 -13.86471 0
33.42 0.91705 0.00162 -13.91877 0
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35.74 0.95094 0.00126 -13.95231 0

Table 2 Typical values of parameter Kk, that generate hyperchaos for k, =10

andb =8/3.

K, A 4 4 A
23.99 0.73925 0.00221 -13.74337 0
28.44 0.82189 0.00202 -13.82582 0
30.74 0.86354 0.00223 -13.86768 0
33.16 0.90872 0.00231 -13.91294 0
41.74 1.05732 0.00254 -14.06177 0
434 1.08819 0.00262 -14.09272 0

Table 3 Typical values of parameter

k, that generate hyperchaos for k, =30 and

b=8/3.
k2 /11 ﬂ? ﬂ3 ;1’4
36.42 0.95411 0.00268 -13.96268 0
56.09 1.30776 0.00260 -14.31622 0
59.49 1.35049 0.00266 -14.35902 0
59.56 1.34414 0.00354 -14.35356 0
60.11 1.36281 0.00490 -14.42031 0

Case 11

Fix k, =30, k, =28 and vary b. Fig. 6.11 shows the Lyapunov exponents as
a function of b to classify the chaotic or periodic motions. With increasing b, the
motion of system (6-1) becomes periodic when 0.01<b<0.5. Periodic motions
occur again with b>3.2. As b increases to 0.51<b<3.19, system displays

chaotic behavior. In this case, hyperchaotic motion was not found.
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Chapter 7
Symplectic Symchronization of Different Order

Nonautonomous Systems via Nonlinear Control

7.1 Preliminaries

In this chapter, a new symplectic synchronization*
y=F(Xy,1) (7-1)
is studied, where X, Yy are state vectors of the “master” and of the “slave” ,
respectively, F(X,y,t) is a given, . function of X , y and time.
When F(X,y,t)= F(X,t), Eq. (7-1) reduces. to"the generalized synchronization
y = F(X,t). Therefore the generalized synchronization is a special case of symplectic
synchronization.

In Eq. (7-1), the final desired state: 'y of the “slave” system not only depends
upon the “master” system state X but also depends upon the “slave” system state
y itself. Therefore the “slave” system is not traditional pure slave obeying the

“master” system completely but plays a role to determine the final desired state of

the “slave” system. In other words, it plays an “interwined” role, so we call this
kind of synchronization “symplectic synchronization” , and call the “master”

system partner A, the “slave” system partner B.

There exists great potential of the application of the symplectic synchronization.
For instance, when the symplectically synchronized chaotic signal is used as a signal
carrier, the secure communication is more difficult to be deciphered. There are many

control techniques to synchronize chaotic systems, such as linear error feedback

*The term  “symplectic” comes the Greek for “interwined” . H. Weyl first introduced in 1939 in this book “The Classical
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Groups” (P. 165 in both the first edition, 1939, and second edition, 1946, Princeton University Press).

control, adaptive control, active control , fuzzy control, impulsive control [6-15].

This chapter proposes a new symplectic synchronization algorithm based on
nonlinear control and Barbalat Lemma [34], which noticeably expanded the
application ranges of generalized synchronization.

This chapter is organized as follow. In Section 2, symplectic synchronization
scheme is proposed. In Section 3, Duffing system, Van der Pol system and Chen-Lee

system [35] are used as simulated examples.

7.2 Symplectic Synchronization Scheme of Different Order

Nonautonomous Chaotic Systems

Consider the nonautonomofis master:system.:

X = f,(X,t) (7-2)
where X =[X,,...,X,]" € R"is the State vector of partner A, f(-) is a continuous

vector function.
The nonautonomous slave system is given by the following equation:
y=Ct)y+D®)f,(y,H)+u (7-3)
where y=[Y,,...,¥,]' € R"is the state vector of partner B, Cand D are system

matrices with proper dimensions, f,(-)is a continuous vector function, and U is the

controller.

Function f,(z,t) is globally Lipschitz continuous; i.e., the following condition

1s satisfied:

For function f,(z,t), there exists constant L >0, for any two different z,,

z, € R", such that
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” fz(zlat)_ fz(zzat)

|<Lljz, -2, (7-4)

for any t.

Our goal is to design the controller U so that the state vector Y of the partner B
asymptotically approaches F(X,Y,t). Define error vector e(t)=[e,,e,,....e,]" and the

synchronization errors are defined as

€= y_F(Xa y:t) (7_5)
We want
%ime = ym[y -F(x,y,0)]=0 (7-6)

From Eq. (7-5), it is obtained that

oF (X, y,t)

P (7-7)

e= y_ DxF(X’ y’t)x_ DyF(XJ yat)y_

Let the controller u is desigued as
u=D,F(x, Yst)f; (1) + DyFE(X; y,D[C(t)y + D(t) f,(y,1)]

+ TR byl Rogy - DO LFXoY0. (79

—C(OF (X, y.1)
where F(X,Y,t) corresponds to z, in Eq. (7-4), n=diag(#,,...,7,)- M»--»7,, are

all positive, where

min(ﬂi)
+|[C(t)

7-9
L|D(t) 79)

max max

Introducing Egs. (7-3), (7-8), into Eq. (7-7), it becomes

e=CH)y+DMOf,(y,)-nly-F(xy,1)]
—D() f,[F(x, y,t),t]-C()F (x,y,t) (7-10)

:C(t)e —ne+ D(t){ fz(Yat) - fz[F(Xa yat)at]}
Construct a Lyapunov error function of the following form

1 |
V(t)=—ee=—|e 7-11
©=1ee=1]e a1
Evaluating the time derivative of V() along the trajectory of Eq. (7-10) and
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using the Lipschitz condition, we have
V(t)=e'C(t)e—e"ne+e" D(t){f,(y,t)— f,[F(x,y,1),t]}
<|c®).__ [ —minGz)|e +[e[D®)].. [ (v, FLIF(x, y,0).t]
<[cw e’
—min(z)][e]” <0

max

. ) (7-12)
e[| —min(,)|je|” + L||D(t)

max

=llc],.. +L[o®

max

max

Let G =min(r;)—|C(t) >0, then V <-G|je||’. Thus, it is obtained

~L|D)

max max

that
V() <V, e~ (7-13)
From Eq. (7-13), we can know that %EE J?V (t)dt is bounded. Moreover, V(t)
is uniformly continuous. According to the Barbalat Lemma [34], if f(t) is
uniformly continuous, and %1_23'[:| f (z')|dr is bounded, then f(t)—>0 when
t >, we can get %Lrgv (t)=0. Namely, %EE”eH:O Therefore, the error system

(7-10) is asymptotically stablesThe!partner-A,and the partner B are in symplectic

synchronization.

7.3 Numerical Results
Two illustrative examples are given to demonstrate the validity of the proposed
scheme.
Case | Symplectic synchronization of Duffing system and van der Pol system.
Consider the following Duffing system :

X, =X,
. 2 3 . (7_14)
X, =—aX, —@®," X, — X+ P sinat

where X, X,, are state variables and o, a)02 , B, P, @ are constant parameters.

This system exhibits chaos when the parameters of system are a =0.7, @,”=-1,
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B=1, P=0.8, w =1, and the initial condition is (X,X,)=(0.5,0.2). Its phase
portrait and time histories are shown in Fig. 7.1 and Fig. 7.2.

The van der Pol system is adopted as the partner B, which is

{Y1 =Y, ty (7-15)

y, =—¢(1- y12)yz — Y, + P cosa,t+u,
where Yy, ,Yy,, are state variables and ¢, P,, ®,, are constant parameters.
u=(u,u,)" is the controller. This system exhibits chaos without controller when the

parameters of system are ¢=5, P,=125, w,=4.2, and the initial condition

is(y,,¥,)=(0.01,0.5). Its phase portrait and time histories are shown in Fig. 7.3 and

Fig. 7.4.

C,Dand f, inEq.(7-3) are now ;
0 1 0 1 0 0
C = = , D — 8
-1 ¢ -1 5 O=

0 0
f = = .
? {—gylzy2 + P, cos a)zt} {—Sylzy2 +1.25cos 4.2t}

_=C]|,, = [A (CTC)"* =5.1926 and

max

It can be easily verified that ||C

O], =[Pl =14, (DD =1.
Let L=1 and select the matrix 7 as:
10 0
0]
then we can get min(7,) =9

G =min() - |C(V)

—L|D@)|  =9-5.1926-1>1.

We take F(X,y,t)= % x’y, and F,(X,y,t)=X,y,. They are chaotic functions

of time. By Eq. (7-6) we have
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lime, = lim{y, - F (x,y,1)]=0, =12 (7-16)

t—o

With the parameters and initial conditions above, the controller u

u= DXF(X’ y’t) fl(x’t) + DyF(X9 y,t)[C(t)y + D(t) fz(Yat)]

oF(x,y,t
+%—n[y—F(x,y,tn—D(t)fz[F(x,y,t%t]
_C(t)F(Xayat)
o/ K " R oF ok
_[ox 0% |[x, . oy, oy, || Y, Lot et
axl axl 8y1 ayl ot ot
10 0} yl—%xlzyl [0 o} | 0
109 Y, = XY, 0 1 —8(5X12y1)2x2y2+chos(a)2'[)
0 1} lxlzy1
- 2
-1 ¢
- Xzyz
. L 5.
:|:le1')(1}+ Exlzyl {IOyl—lezyl}
Y. X, X, y2 9y2 _9X2 Y,
0 XY, (-17)

—5(%x12y1)2x2y2+1.25cos(4.2t) y —%x12y1+5x2y2

is designed according to Eq. (7-8). Fig. 7.5 and Fig. 7.6 show the time histories of
error functions e (t), e,(t), respectively. Exactly, partner A (7-14) and partner B

(7-15) achieve the symplectic synchronization.

Case Il Symplectic synchronization of Chen-Lee system [35] and Duffing system.

Consider the following partner A, Chen-Lee system :

X, =—X,X; +ax,

X, = X X; —bx, (7-18)
X; = (1/3)X X, —CX,

where X, X,,X, are state variables and a, b, C, are constant parameters. This

system exhibits chaos when the parameters of system are a=5, b=10, ¢=3.8,
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and the initial condition is (X, X,,X;)=(0.3,-0.02,0.2). Its phase portraits and time
histories as shown in Fig. 7.7 ~ Fig. 7.9.

The Duffing system is adopted as partner B :

{Sﬁ =Y, 4y (7_19)

. 2 3 .
Y, =-ay, -y, - By, +Rsingt+u,
where Y,,Y,, are state variables and «, a)oz, B, P, a, are constant parameters.

u=(u,,U,)" is the controller.

C,Dand f, inEq.(7-3) are now :
0 1 0 1 0 0
C = 2 = , D = ,
-0, —a 1 -0.7 0 1

0 0
f2 — 3 . = 3 . .
_Ib’yl + P1 sin a)lt =Y, +0.8sint

It can be easily verified that ||C 4 S ||C||i2 =[A . (CTC)]"* =1.4095 and

D], =[P, =[4...(D"D)I" =1.
Let L=1 and select the matrix 7 as:
4 0
!
then we can get min(n,) =4

G =min() - |C(V)

—L|D@)|  =4-1.4095-1>1.

We take F,(x,y,t)=xYy, and F,(X,y,t)=2x"y,”. They are chaotic functions
of time. By Eq. (7-6) we have
lime, = lim[y, - R (x,y,H)]=0, =12 (7-20)
With the parameters and initial conditions above, the controller u
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u=D,F(xy,Df(x0)+D/F(xy,DCMHY+DMOf,(y,0)]

OF(X,y,t
LDy - F(x y.0]- DO LIF (L.,
~COF (YD)
ok R oF K] [oR oR

_ X 0% || X + % |V + ot ot
(LS RNCIE | RON B LS RIS | DEY B G5 WL Y

X OX, oy, oy | ot ot
4 0l y,—xy, 0 0" 0
0 8] Y,—2%"y, 1o | —ﬂ(lel)3+Plsin(a)1t)

0 1 XY,

—w, —a || 2%y,
:{ yi% } { XY, } {43/1 4%,Y, }
4%Y, 7% | 4%,V | 48y, —16%%y,”

{ =Ly
-(xy,)’ +0.8s1n(t) Xy, — 1.4y,

is designed according to Eq. (7-8). Fig./7.10'and Fig. 7.11 show the time histories of
error functions e (t), e,(t), respectively. Exactly, partner A (7-18) and partner B

(7-19) are in symplectic synchronization.
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Fig. 7.2 Time histories of two states of Duffing system.

75



Yo

Y4¥s phase
8 T

4L

B

25

Fig. 7.3 Phase portrait'of van der Pol system.

¥y time history
3 T T T T

-

-3 | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
time(s)
¥, time history
10 T T T T
5 ’
0 ‘”
-5
-10 | | L | | | L
0 500 1000 1500 2000 2500 3000 3500 4000

time(s)
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Fig. 7.7 Phase portrait'of van der Pol system.
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Fig. 7.8 Phase portraits of Chen-Lee system.
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Chapter 8

Conclusions

Chaos and boids control, generalized, symplectic synchronization and htperchaos
of chaotic systems are studied in this thesis.

In Chapter 2, the chaotic behavior in an inertial tachometer system is studied by
phase portraits, time history, Poincaré maps, Lyapunov exponent, bifurcation
diagrams and parametric diagram.

In Chapter 3 and Chapter 4, a new strategy to achieve chaos generalized
synchronization and chaos control by GYC partial region stability theory are proposed.
By using the GYC partial region stability theory, the Lyapunov function is a simple
linear homogeneous function of'error states and. the controllers are more simple and
have less simulation error because they are in lower order than that of traditional
controllers.

In Chapter 5, boids control that is an interesting strategy for control is presented.
We have investigated several chaotic nonlinear networks controlled by several boids
rules. They exhibited complex and emergent behaviors. The ‘“synchronization”
phenomenon can only be achieved with the proposed model. In this Chapter, the
chaotic boids are controlled by using three state variables, and all boids are assumed
to be identical for simplicity.

In Chapter 6, Lorenz system with Bessel function parameters is studied firstly.
The results are verified by time histories of states, phase portraits, Poincaré maps,
bifurcation analysis, Lyapunov exponents and parametric diagram. Abundant
hyperchaos is found for this system. Especially enlarging the parameter with Bessel

function, the hyperchaos is more obvious.
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In Chapter 7, a new symplectic synchronization problems of nonautonomous
chaotic systems are investigated based on Barbalat lemma [34]. Traditional
generalized synchronizations are special cases of the symplectic synchronization. A
sufficient condition is derived to ensure the symplectic synchronization between two
different systems. The simulation results show that the proposed scheme can achieve
not only the symplectic synchronization of chaotic systems with same order, but also
the symplectic synchronization between chaotic systems with different orders.
Symplectic synchronization may be applied to the design of secret communication
with more security than generalized synchronization.

In Appendix A, GYC (Ge-Yao-Chen) partial region stability theory is given.
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Appendix A
GYC Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

dx,
dt

= X (X, -, X)), (s=1,---,n) (A-1)
where the function X, is defined on the intersection of the partial region Q
(shown in Fig. A-1) and

D x2<H (A-2)

and t>t,, where t, and H are certain positive constants. X which vanishes when
the variables X, are all zero, is-a real valued function of t, X,---, X, . It is assumed
that X, is smooth enough to ensure the existence, uniqueness of the solution of the
initial value problem. When X, does not contain t explicitly, the system is
autonomous.

Obviously, X, =0 (s=1,---n) is a solution of Eq.( A-1). We are interested to
the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. A.1).

Definition 1:

For any given number ¢ >0, if there exists a & >0, such that on the closed

given partial region Q when

> x4 <6, (s=L--,n) (A-3)

S

for all t=>t,, the inequality
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Y xi<e, (s=L--,n) (A-4)

is satisfied for the solutions of Eq.(A-27) on Q, then the disturbed motion

X, =0 (s=1,---n) is stable on the partial region Q.
Definition 2:

If the undisturbed motion is stable on the partial region 2, and there exists a

& >0, so that on the given partial region Q when

D x4 <S, (s=1---,0) (A-5)

The equality

lim(z xjj =0 (A-6)

t—w

is satisfied for the solutions of Eq.(A-1)-on, Q, then the undisturbed motion
X, =0 (s=1,---n) is asymptotically stable on the partial region Q.

The intersection of Q and region.defined by Eq.(A-2) is called the region of
attraction.
Definition of Functions V(t,x,--,X,):

Let us consider the functions V(t,X,---,X,) given on the intersection Q, of

the partial region € and the region

Y xi<h, (s=1:--,n) (A-7)

for t>t, >0, where t, and h are positive constants. We suppose that the functions

are single-valued and have continuous partial derivatives and become zero when

Definition 3:
If there exists t, >0 and a sufficiently small h >0, so that on partial region

Q, and t>t,, V>0 (or <0), then V is a positive (or negative) semidefinite, in
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general semidefinite, function onthe €, and t>t;.
Definition 4:
If there exists a positive (negative) definitive function W(X,...X,) on Q,, so

that on the partial region €, and t>t;

V-W2>0(r-V-W=>0), (A-8)
then V(t,X,...,X,) 1is a positive definite function on the partial region €, and
t>t,.
Definition 5:

If V(t,X,...,X,) 1s neither definite nor semidefinite on €, and t>t;, then
V(t,X,...,X,) 1s an indefinite function on partial region €, and t>t,. That is, for
any small h>0 and any large t, >0, V(t,X,...,X,) can take either positive or
negative value on the partial region: €, and t=t;.

Definition 6: Bounded function-V

If there exist t, >0, h> 0, so thatonthe partial region Q,, we have

V(t,%,....x)| < L (B.9)
where L is a positive constant, then V is said to be bounded on Q, .

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, so that on €, when

ZXSZ <u,and t>t), we have
S

V(t,X,....%)| <A (A-10)
then V admits an infinitesimal upper bound on €, .

Theorem 1 [28, 29]
If there can be found for the differential equations of the disturbed motion

(Eq.(A-27)) a definite function V (t,X,...,X,) on the partial region, and for which the

derivative with respect to time based on these equations as given by the following :
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— = “X, (A-11)
dt ot 50X

dv. oV Gov
— +Z
is a semidefinite function on the paritial region whose sense is opposite to that of V, or
if it becomes zero identically, then the undisturbed motion is stable on the partial
region.

Proof:

Let us assume for the sake of definiteness that V is a positive definite function.

Consequently, there exists a sufficiently large number t, and a sufficiently small

number h < H, such that on the intersection Q, of partial region Q and

Y xi<h, (s=1,...,n) (A-12)

and t>t,, the following inequality is satisfied
V(t,X,....X ) ZW(X,...,X,) (A-13)
where W is a certain positive definite function which does not depend on t. Besides
that, Eq. (A-7) may assume only negative or zero value in this region.
Let ¢ be an arbitrarily small positive number. We shall suppose that in any case

&<h. Let us consider the aggregation of all possible values of the quantities

X,-.., X, , which are on the intersection @, of €, and

Y X =¢, (A-14)

S

and let us designate by | >0 the precise lower limit of the function W under this
condition. by virtue of Eq. (B.5), we shall have

V({,X,....,x,) =21 for (x,...,X,) on @,. (A-15)

We shall now consider the quantities X, as functions of time which satisfy the

differential equations of disturbed motion. We shall assume that the initial values X,

of these functions for t=t, lie on the intersection Q,of €, and the region

S <6, (A-16)
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where & is so small that
V (), Xgseens X)) < (A-17)
By virtue of the fact that V(t,,0,...,0) =0, such a selection of the number & is

obviously possible. We shall suppose that in any case the number § is smaller than

€ .Then the inequality

D x<e, (A-18)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently

small t—t,, since the functions X (t) very continuously with time. We shall show
that these inequalities will be satisfied for all values t>t,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant
t=T for which this inequality would become_an equality. In other words, we would

have

S M) =2, (A-19)

and consequently, on the basis of Eq. (A-9)
V(Taxl(T)a-'-axn(T))Zl (A_ZO)

On the other hand, since ¢ < h, the inequality (Eq.(A-4)) is satisfied in the entire

interval of time [to, T], and consequently, in this entire time interval (L—\t/ <0. This

yields
VT, X (M), s X, (T)) SV (), Xigse - X0 (A-21)
which contradicts Eq. (A-12) on the basis of Eq. (A-11). Thus, the inequality
(Eq.(A-1)) must be satisfied for all values of t>t,, hence follows that the motion is
stable.
Finally, we must point out that from the view-point of mathenatics, the stability
on partial region in general does not be related logically to the stability on whole

region. If an undisturbed solution is stable on a partial region, it may be either stable
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or unstable on the whole region and vice versa. From the viewpoint of dynamics, we

wre not interesting to the solution starting from €, and going out of Q.

Theorem 2 [28, 29]

If in satisfying the conditions of theorem 1, the derivative dd_\t/ is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that
dv . : : . .
consequently, e is negative definite. Thus on the intersection €, of Q and the

region defined by Eq. (A-4) and t >t;" there'will be satisfied not only the inequality

(Eq.(A-5)), but the following ingquality as will:

O('j—\: < -W(X5--- X)), (A-22)

where W, is a positive definite funetion on the partial region independent of t.

Let us consider the quantities X, as functions of time which satisfy the
differential equations of disturbed motion assuming that the initial values X, = X (t,)
of these quantities satisfy the inequalities (Eq. (A-10)). Since the undisturbed motion
is stable in any case, the magnitude 6 may be selected so small that for all values of

t>t, the quantities X, remain within Q,. Then, on the basis of Eq. (A-13) the

S

derivative of function V(t,X (t),...,x,(t)) will be negative at all times and,

consequently, this function will approach a certain limit, as t increases without limit,
remaining larger than this limit at all times. We shall show that this limit is equal to

some positive quantity different from zero. Then for all values of t>t, the following

inequality will be satisfied:

88



V(X (1),....,X, (1) >« (A-23)
where o >0.

Since V permits an infinitesimal upper limit, it follows from this inequality that

dYxM=4, (s=1...,n), (B.24)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity ZXS (t) were smaller than any preassigned
S

number no matter how small, then the magnitude V (t,X (t),...,X,(t)), as follows
from the definition of an infinitesimal upper limit, would also be arbitrarily small,
which contradicts (A-14).

If for all values of t>t, the inequality (Eq. (A-15)) is satisfied, then Eq. (A-13)

shows that the following inequality will be satisfied at all times:

dv

b AP
dt

1> (A-25)
where | is positive number different from zero which constitutes the precise lower
limit of the function W, (t, X, (t),...,%,(t)). under condition (Eq. (A-15)). Consequently,

for all values of t>t, we shall have:
tdV
V(t,xl(t),...,xn(t))=V(t0,x10,...,xn0)+_|‘toﬁdtSV(tO,xlo,...,xno)—ll(t—to),

which is, obviously, in contradiction with Eq.(A-14). The contradiction thus obtained
shows that the function V(t,X,(t),...,X,(t)) approached zero as t increase without
limit. Consequently, the same will be true for the function W (X (t),..., X (t)) as well,

from which it follows directly that

limx, () =0, (5=1,...,n), (A-26)

which proves the theorem.
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Fig. A.1. Partial regions €2 and €.
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