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Monte Carlo calculation of the above-threshold ionization of 
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Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, Republic 
of China 
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Abstract. We presenl a systematic study on the above-threshold ionization of the hydrogen 
atom using an adaptive Monte Carlo algorithm. The ionizations from both the ground 
state and the excited states are discussed in the weak-field regime. It is found that the 
Monte Carlo approach is quite efficient and may be useful to treat the high-order multi- 
ohoton ionization of other atoms. 

1. Introduction 

During the past few years, many calculations have been performed to study the 
above-threshold ionization (ATI) of atoms, particularly for the hydrogen atom where 
the analytic Coulomb wavefunctions can be obtained and the atomic Green function 
can be constructed in terms of the regular and irregular Coulomb wavefunctions 
(Karule 1978, Fainshtein et a1 1984, Chu and Cooper 1985, Shakeshaft 1986a). The 
problem of calculating the multiphoton ionization cross section (in lowest-order per- 
turbation) reduces to that of evaluating a multidimensional integral. Recently, Edwards 
et a1 (1986) have taken advantage of the fact that the atomic Green function can be 
split into a product of functions of  only a single variable. Using this property the 
N-dimensional integral is expressible as a'sum of N !  integrals, each of which is a 
product of N one-dimensional integrals. The shortcoming of this approach is that N! 
grows very rapidly with N, and the computational time grows exponentially. The 
question naturally arises as to whether the Monte Carlo scheme is an appropriate 
method to be used to evaluate this multidimensional integral. In order to investigate 
this point, a preliminary calculation (Han and Shakeshaft 1989) has been performed 
for multiphoton ionization matrix elements of hydrogen as a testing example for the 
case of absorbing only one photon above threshold. It was found that the computing 
time for integral evaluations is reduced a considerable amount, with the total computa- 
tional time increasing with N only as (roughly) N2. In this paper, we present a 
systematic study on the above-threshold ionization of hydrogen using an adaptive 
Monte Carlo algorithm. The ionizations from both the ground state and several excited 
states will be discussed. 

2. Method 

Consider an atom, initially in state li), irradiated by a monochromatic radiation field 
of frequency w and intensity I .  We adopt the length gauge for the electromagnetic 
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field. Using the dipole approximation for the interaction between atom and field, the 
generalized cross section for the atom to absorb N photons, in lowest-order perturbation 
theory, is 
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(1) 

wnerc a = r'ijlc ==A is i h e  fine siruciure constant, ii is the wavevector of the outgoing 
photoelectron, and the integration is over all angles of propagation of the photoelectron. 
L and M, are the angular momentum quantum numbers of the final state, 6 and mj 
are the allowed intermediate angular momentum quantum numbers, and 

~~. , . -~~-  

. . .) is a geometrical factor given as 

where E* is the polarization vector of the radiation field, r the position operator of the 
electron and I ,  = L, mN = M,. The transition matrix element M"' is given by 

(3) 
M"'=jomdrN. . .  jo'-drl U Y N ( r N ) r N g Y N . , ( r N . r N - l ) . . .  + r , u d r l )  

where U. = (E , , ,  /,,), E,, = E; + nhw;  E, is the energy of the electron in the initial state. 
u i ( r )  and u , , N ( r )  are, respectively, the initial and final radial wavefunctions normalized 
on the energy scale. The quantity g:(r, r' )  is the radial Green function, for the hydrogen 
atom, it can be expressed analytically in terms of hypergeometric functions as follows: 

where W and M are the Whittaker functions, r ,  ( r < )  denotes the larger (smaller) of 
r and r', and yn = Z e'mlh'k, with k. given by  

..n k =i7 , /k2 ) ' /2 ( . i+"h") ' /2 .  ,-. . . , . . ( 5 )  

For the above-threshold ionization, where the atom absorbs more photons than 
the minimum number No of photons required to ionize, it can be shown that M'" 
satisfies the following relation so that the divergent part of the integral involving the 
continuum wavefunction can be circumvented (Shakeshaft 1986b), 

N-No 

( 6 a )  

J J " = [ ( u : , l r g ~ , . , r . .  . g:N.,+,rluYN.,)l* ( 6 b )  

M"' = 2  Re{Mt("}-27ri I ,  cN)M(N-j) 
j=,  

with 

(6C) 
., w >  - .  I I 

J ; ' . '  = ~ ( u ; , v ~ r ~ u ~ N . , j j *  

where U: is the outgoing wave component of the continuum wavefunction and MtlN) 
is obtained from MI" by replacing u v w ( r )  by u:,(r). Therefore, the problem reduces 
to that of evaluating the multidimensional integrals of MtIN' and I:.". 
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3. Results and discussion 

To evaluate the integrals of Mtlv' and J:", an adaptive Monte Carlo method (Lepage 
1978) is used. We first rotate the integration contour into the upper right quadrants of 
the complex plane, that is, we replace r by s e" where Os s %CO and O < O <  ~ / 2 .  This 
ensures the integrand being damped exponentially along this path. We chose 9 = 71/4 
in our calculation. We then convert the range of integration from [0, CO] to [0,1] via 

l / ( l k H - , l + l k n / ) ,  which will roughly cover the most significant range of integration over 
r,. As shown in (4) the Green function is factorized as a product of Coulomb functions, 
thus we set up  two tables for the Whittaker functions W and M ,  respectively, for the 
smaller region of r, with l2k,rl< 2( /, + 1 + / y n l ) .  Then the Green function gt( r, r') can 
be evaluated by interpolation between the tabulated points. For the larger region of 
r. we can calculate the Coulomb functions very rapidly using the asymptotic expansions. 

I n  the adaptive Monte Carlo algorithm for calculating the multi-dimensional 
integrals, an iterative scheme is used. The distribution of the integration points is varied 
that will give a non-uniform probability density function, which weights the region 
where the integrand is largest in magnitude. The grid points are selected at random 
in the first calculation, then the iterative procedure is repeated until the optimal grid 
is achieved. Table 1 gives the results of the multiphoton ionization cross section of 
hydrogen in the ground state by circularly polarized light. For each wavelength of the 
radiation field, we have calculated several ATI cross sections, up to seven-photon 
ionization for A = 5063 A .  In table 1,  the previous results are also listed for comparison. 

Table 1. Generalirea cross sections for N-photon ionization of ground-state hydrogen 
by circularly polarized light or wavelength A. No represents the  minimum of photons 

calculation. The numbers in brackets represent powers or IO. 

the transformation ra=ar.yJ(1-yn): The sca!ing factor Q" is chosen as /e,l= 

reqoircd CGF..r iGl?iZZtiO". ", is  the r.l?mber of in!cgr.!ior! poi=!: ??red I!! th. M O I t C  Czr!o 

A ( A )  N" N 

700 

1400 

2650 

3200 

4339 

5063 

I 1 
2 
3 

2 2 
3 
4 

3 3 
4 
5 

4 4 
5 

5 5 
6 

b 6 

Previous work 

n, Present wort a b c 

6000 3.1 (-18)  3 . 1  (-18) 3.1 (-18) 2.4(-18) 
l 5 0 U O  2.2(-52)  2.2 ( - 5 2 )  1.1 (-52) 1.3 (-52) 
25 000 9.1 (-87) 8.7 (-87) 3.9 (-87) 4.1 (-87) 

15000 1.8-50) 13-50)  1.8 (-50) 5.3 (-52) 
25 000 4.7 (-84) 4 . S - 8 4 )  2.8 (-84) 1.7 ( - 8 5 )  
50000 7.3(-118) 7 4 - 1 1 8 )  3.9(-118) 2.4(--119) 

25 000 2.1 (-83) 2.1 (-83) 2.1 (-83) 1.3 (-87) 
50000 4 . 4 ( - I l 6 )  4 S - - 1 1 6 )  2.1 (-116) 2.6(-118) 
80000 3 2 - 1 4 9 )  3 .2 -149)  1 3 - 1 4 9 )  2 S - 1 5 1 )  

50000 3 . 6 - 1 1 6 )  4.0(--116) 4.0(-116) 4.21-119)  
80000 8.0(-149) 8 . 8 - 1 4 9 )  4.9(-149) 3 4 - 1 5 1 )  

YO000 2.2(-1491 2 S - 1 4 9 )  
120000 2 .3( -181)  2.3i-181) 

1 2 0 U O O  4.2(-182)  5.0 (-182) 
I60000 5.0(-214)  5.7(-214) 
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The results in columns a, b and c are obtained from (exact) lowest-order perturbation 
theory by representing the Coulomb Green function on a Sturmian basis (Grontier et 
a /  1986, Shakeshaft 1986b), from a non-perturbative approximation method (Shake- 
shaft and Potvliege 1987) and from a Reiss approximation (Reiss 1980), respectively. 
It is clear to see that the present results are in satisfactory agreement with the exact 
ones and those obtained by the non-perturbative theory. However, the Reiss approxima- 
tion yields results which are generally much smaller than the others. It is also interesting 
to note that, as shown in table 1, the integration points n,  used in our calculations for 
the multidimensional integrals are very small, even for N = 6 ( 7 ) ,  we used only 1 . 2 ~  
10’ ( 1 . 6 ~  lo5) points corresponding to only about seven points per dimension. Another 
advantage of the adaptive Monte Carlo scheme is that the convergence for the iterative 
procedure is quite good. The optimal grid can generally be reached within ten iterations. 
Table 2 illustrates the variation in the values of the integrals M+”’ from one iteration 
to the next,, which shows the general behaviour of convergence is fast and stable. The 
last row shows the cumulative siandard deviation (defined by equation ( 5 )  of Lepage 
(1978)), which is, in general, less than 8% of the calculated results. 

C S Han and J C I Yaung 

Table 2. Values of  MI”’  at the ith iteration of the Monte Carlo calculation. n, is the 
number of integration points used. The numbers in brackets represent powers of I O .  

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

A = 3 2 0 0 A  A=4339A 

N = 4  N = 5  N = 5  N = 6  
(n,=SOOOO) (n ,=80000)  (n ,=90000)  (n ,=120000)  

1.92 ( 5 )  0.22 ( 0 )  0.16(8) 0.88 (9) 
0.75 (5) 0.99 (6) 0.14 (8) 0.89 (9) 
0.69 (5) 0.12 (7) 0.53 (7) 0.71 (9) 
0.64 ( 5 )  0.14(7) 0.53 (7) 0.72 (8)  
0.62 (5) 0.13 (7) 0.53 (7 )  0.13 (9) 

0.66 (5) 0.13 (7) 0.53 ( 7 )  0.12(9) 

0.65 ( 5 )  0.13 (7) 0.51 (7) 0.13 (9) 
0.65 (5) 0.13 (7) 0.51 ( 7 )  0.13 (9) 

0.65 (5) 0.14 (7) 0.52 ( 7 )  0.11 (9) 

0.65 ( 5 )  0.13 (7) 0.52 ( 7 )  0.12 (9) 

Cumulative standard 0.20 (4) 0.47 (5) 0.39 (6) 0.97 (7) 
deviations 

We have also calculated the ATI cross sections of the hydrogen atom from the ns 
excited states with 2 s  n < 6. Two-photon ionization cross sections of hydrogen in ns 
states have been studied by Aymar and Crance (1980) using a method based on 
numerical computations in the framework of the central field approximation, and by 
Karule (1985) employing above threshold analytic continuation of the Sturmian 
expansion for the transition matrix elements. Table 3 shows our results and the previous 
ones. The agreement between the values computed by us and others is quite good. In 
those previous studies, only two-photon ionization of the hydrogen in ns states with 
one photon above threshold is calculated. We have extended the calculation for the 
case of three-photon ionization with two photons above threshold. The results are also 
listed in table 3. 
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The method used in this work can be generalized for the case of non-hydrogen 
atoms, such as alkali-metal atoms where the Green function can still be constructed 
in a factorized form by using quantum defect theory. Therefore, our method is 
applicable for this case. A detailed calculation will be reported later. 

In conclusion, we have applied an adaptive Monte Carlo algorithm to study the 
above-threshold ionization of the hydrogen atom from both the ground state and 
excited states. It is found that the Monte Carlo approach is quite efficient and may be 
useful in treating the high-order multiphoton ionization of non-hydrogen atoms. 
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