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國立交通大學機械工程學系 

 
 
 

摘要 

 
 

本論文探討渾沌系統之超渾沌現象，首次提出並研究陰陽渾沌。採用新模糊

模型、新模糊控制器、 GYC 部份區域穩定理論以及實用漸進穩定理論來達到廣

義渾沌同步。主要研究重點如下： 

1. 分析經典 Lorenz 系統的陰渾沌，並與其系統的陽渾沌做對比研究。 

2. 新 Mathieu-van der Pol 系統超渾沌現象的研究。運用相圖、功率頻譜圖、李

亞普諾夫指數以及二維和三維參數圖來分析其渾沌行為。就四狀態變量系

統，發現三個正李亞普諾夫指數。 

3. 運用 GYC 部份穩定理論以達到系統之渾沌控制和適應性渾沌同步。 

4. 提出只須兩個線性子系統即能表達複雜渾沌行為的新模糊模型，並用以達成

複雜系統以及不同系統之渾沌同步。 

5. 提出常數模糊控制器的簡化概念，運用其完滿達成廣義同步。 
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Hyperchaos, Intelligent Fuzzy Logic Control, Generalized 

Synchronizations of New Chaotic System and Yin-Yang Chaos 

 
Student：Shih-Yu Li               Advisor：Zheng-Ming Ge 

 
Department of Mechanical Engineering 

National Chiao Tung University 
 

 

Abstract 

 

Hyperchaos of chaotic systems, Yin-Yang chaos, new fuzzy model, new fuzzy 

logic controllers, generalized chaos synchronization via GYC partial region stability 

theory and pragmatical asymptotically stability theorem are studied in this thesis. The 

main points in the researches are shown as follow: 

1. Analyzing Yin chaos of the classical Lorenz system and comparing it with Yang 

chaos. 

2. Hyperchaos in a new Mathieu-van der Pol system is identified by phase portraits, 

power spectrum, Lyapunov exponents and 2-D and 3-D parameters diagrams. 

Three positive Lyapunov exponents are found for system with four states. 

3. Chaotic control and synchronization for a system by GYC partial region theory. 

4. New fuzzy model is proposed to simulate the complicated chaotic behaviors via 

only two linear subsystems and used to carry out synchronization of complicated 

chaotic systems and different chaotic systems. 

5. Simplified fuzzy logic constant controller (FLCC) is presented to achieve 

generalized synchronization.  
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Chapter 1 

Introduction 

Nonlinear dynamics, commonly called the chaos theory, changes the scientific 

way of looking at the dynamics of natural and social systems, which has been 

intensively studied over the past several decades. The phenomenon of chaos has 

attracted widespread attention amongst mathematicians, physicists and engineers. 

Chaos has also been extensively studied in many fields, such as chemical reactions, 

power converters, biological systems, information processing, secure communications, 

etc. [1-6]. Whilst many researchers analyze complicated, physically motivated 

configurations, there is also a need to investigate simple equations which may capture 

the essence of chaos in a less involved setting, thereby aiding the understanding of 

essential characteristics. The original investigation of an extraordinary 

three-dimensional nonlinear system by the mathematical meteorologist E.N. Lorenz 

who discovered chaos in a simple system of three autonomous ordinary differential 

equations in order to describe the simplified Rayleigh–Benard problem [7] (which is 

called Yang Lorenz system in this paper) is the most popular system for studying.  

There are tremendous amount of articles in studying Yang Lorenz and other 

systems [8-12]. Although these systems have been analyzed in detail, there are no 

articles in looking into these systems, such as Lorenz system 

with tand)t(z),t(y),t(x −−−− (which is called Yin Lorenz system in this article). Since 

Lorenz discovered chaos on 1963, all studies of chaos concentrated when time went 

forward i.e. ∞→0:t in the last 47 years. Physically backward time, −∞→0:t , has 

not discovered up to now, but mathematically it can be easily performed and must be 

studied for complete understanding of the property of chaos. In this Chapter, we find 
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out that there are rich dynamics in such Yin Lorenz system. 

In Chinese philosophy, Yin is the negative, historical or feminine category in 

nature, while Yang is the positive, comtemporary or masculine category in nature. Yin 

and Yan are two fundamental opposites in Chinese philosophy. In Chapter 2, the Yin 

Lorenz system is introduced and the chaotic behavior with Yin parameters is 

investigated by phase portrait, Lyapunov exponents and bifurcation in the following 

simulation results. We use positive, i.e. Yang, parameters for the Yang Lorenz system, 

and negative, i.e. Yin, parameters for the Yin Lorenz system. 

Chaotic systems are characterized by one positive Lyapunov exponent (PLE) in 

the Lyapunov spectrum [2-9]. The one PLE just indicates that the dynamics of the 

underlying chaotic attractor expands only in one direction. If a chaotic attractor is 

characterized by more than one positive Lyapunov exponent, it is termed hyperchaos. 

In this case, the dynamics of the chaotic attractor expands in more than one direction 

giving rise to a ‘‘thick’’ chaotic attractor [10-14]. There are both theoretical and 

practical interests in hyperchaos. Hyperchaos was first reported from computer 

simulations of hypothetical ordinary differential equations in [15-17]. The first 

observation of hyperchaos from a real physical system, a fourth-order electrical circuit, 

was later reported in [18]. Very few hyperchaos generators have been reported since 

then [19-22].            

As the numerical example, recently developed new Mathieu-van der pol 

autonomous oscillator with four state variables is used. For this new system four 

Lyapunov exponents are not zero. Although by traditional theory [23], for 

four-dimensional continuous-time systems, there must be a zero Lyapunov exponent, 

however, on the history of science, as said by T. S. Kuhn in his book ‘‘The Structure 

of Scientific Revolution’’, the unexpected discovery or anomality (counterinstance) is 

not simply factual in its import and the scientist’s world is qualitatively transformed 
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as well as quantitatively enriched by fundamental novelties of either fact or theory. 

“Conversion as a feature of revolutions in science” is the conclusion of the book 

“Revolution in Science” written by I. B. Cohen [24]. One of the patterns of the 

evolution of science is: current paradigm →  normal science →  anomality 

(counterinstance) → crisis → emergence of scientific theories → new paradigm.  

Recently, Ott and Yorke [25] show that the existence of Lyapunov exponents is a 

subtle question for systems that are not conservative. They describe a simple 

continuous-time flow such that Lyapunov exponents fail to exist at nearly every point 

in the phase space. Ge and Yang [26] firstly find out the simulation results of 3PLES 

in Quantum Cellular Neuro Network autonomous system with four state variables. As 

a consequence, in Chapter 3, Mathieu-van der pol autonomous system with four state 

variables is introduced, and the hyperchaos for 3PLEs are investigated by phase 

portrait, power spectrum, Lyapunov exponents and parameter diagram in the 

following simulation results. 

In our natural world, plenty of chaotic systems describing natural phenomenon 

are found that they have some states always positive. It means these states are always 

in the first quadrant. Such as the three species prey-predator system [36], double 

Mackey-Glass systems [37-38], energy communication system in biological research 

[39] and virus-immune system [40]. In Chapter 4, a new strategy to achieve chaos 

control by GYC partial region stability theory is proposed [32-33]. Via using the GYC 

partial region stability theory, the new Lyapunov function is a simple linear 

homogeneous function of error states and the lower order controllers are much more 

simple and introduce less simulation error. 

In Chapter 5, a new chaos generalized synchronization strategy by GYC partial 

region stability theory is proposed [20-21]. It means that there exists a given 

functional relationship between the states of the master and that of the slave. Via using 
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the GYC partial region stability theory, the new Lyapunov function is a simple linear 

homogeneous function of states and the lower order controllers are much more simple 

and introduce less simulation error. 

In current scheme of adaptive synchronization, traditional Lyapunov stability 

theorem and Barbalat lemma are used to prove that the error vector approaches zero 

as time approaches infinity, but the question that why those estimated parameters also 

approach the uncertain values remains no answer. In this article, pragmatical 

asymptotically stability theorem and an assumption of equal probability for ergodic 

initial conditions [50-51] are used to prove strictly that those estimated parameters 

approach the uncertain values. Moreover, traditional adaptive chaos synchronization 

in general is limited for the same system. Therefore, In Chapter 6, a new adaptive 

synchronizing strategy - pragmatical adaptive synchronization by GYC partial region 

stability theory is proposed as well. Via using this new approach, the new Lyapunov 

function is a simple linear homogeneous function of states and the lower order 

controllers and parametric update laws are much simpler and introduce less 

simulation error. 

 In recent years, some chaos synchronizations based on fuzzy systems have been 

proposed [41-44]. The fuzzy set theory was initiated by Zadeh [45]. Fuzzy concept 

has received much attention as a powerful tool for the nonlinear control. Among 

various kinds of fuzzy methods, Takagi-Sugeno fuzzy system is widely accepted as a 

tool for design and analysis of fuzzy control system [46]. A well-known approach to 

control and synchronize chaos via LMI-based fuzzy control system design is 

suggested in [47-49], where the idea is to use the Takagi-Sugeno (T-S) fuzzy model to 

represent typical chaotic models and then apply some effective fuzzy techniques. 

Although Takagi-Sugeno fuzzy system is widely accepted as a powerful tool for 

design and analysis of fuzzy control system, its number of fuzzy rules is based on the 
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number of nonlinear terms. It means that if there are N nonlinear terms in a chaotic 

system, there will be N2 fuzzy rules in its fuzzy model, and then there will be N2 linear 

system to simulate only one chaotic system. Therefore when there are lots of 

nonlinear terms in a chaotic system, the problem is going to be more complicated. 

Consequently, in Chapters 7, a new fuzzy model is provided to model and 

synchronize two different and complicated chaotic systems with lots of nonlinear 

terms. By using this new fuzzy model, it becomes much simpler to synchronize two 

different, complicated chaotic systems.  

On the other hand, the fuzzy logic control (FLC) scheme has been widely 

developed for almost 40 years and has been successfully applied to many applications 

[21]. Recently, Yau and Shieh [22] proposed an amazing new idea in designing fuzzy 

logic controllers - constructing fuzzy rules subject to a common Lyapunov function 

such that the master-slave chaos systems satisfy stability in the Lyapunov sense. In 

[22], there are two main controllers in their slave system. One is used in elimination 

of nonlinear terms and the other is built by fuzzy rules subject to a common Lyapunov 

function. Therefore, the resulting controllers are nonlinear form. In [22], the regular 

form is necessary. In order to carry out the new method, the original system must to 

be transformed into their regular form. 

In Chapter 8, we propose a new strategy, fuzzy logic constant controller (FLCC), 

which is also constructing fuzzy rules subject to a Lyapunov direct method. Error 

derivatives are used to be upper bound and lower bound. Through this new approach, 

a simplest controller, i.e. constant controller, can be obtained and the difficulty in 

realization of complicated controllers in chaos synchronization by Lyapunov direct 

method can be also coped. Unlike conventional approaches, the resulting control law 

has less maximum magnitude of the instantaneous control command and it can reduce 

the actuator saturation phenomenon in real physic system. 
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The layout of this thesis can be organized as follow: In Chapter 2, the Yang 

Lorenz system is reviewed and the Yin Lorenz system is introduced. Three simulation 

cases of Yin and Yang Lorenz systems are given for comparing and observation. In 

Chapter 3, a new system, Mathieu-van der Pol autonomous system, with four state 

variables will be introduced, and the hyperchaos for 3PLEs is investigated by phase 

portrait, power spectrum, Lyapunov exponents and parameter diagram in simulation 

results. In Chapter 4, chaos control scheme by GYC partial region stability theory is 

proposed and new Mathieu-Van der pol system and new Mathieu -Duffing system are 

presented. Three simulation examples are given. In Chapter 5, generalized chaos 

synchronization strategy by GYC partial region stability theory is proposed. Six 

simulation examples are given. In Chapter 6, a new and high-performance strategy, 

pragmatical adaptive synchronization by GYC partial region stability theory, on 

synchronization is proposed. Yin and Yang Lorenz system are introduced and used for 

simulation as well. In Chapters 7, a new fuzzy model is provided to model and 

synchronize two different and complicated chaotic systems. Q-CNN and Qi systems 

are introduced for examples. In Chapter 8, a new controller - fuzzy logic constant 

controller (FLCC) is given for efficiently synchronizing different chaotic systems. In 

Chapter 9, conclusions are drawn. 
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Chapter 2 

Yin-Yang Chaos 
2.1 Preliminaries 

The Yang and Yin parameters of Lorenz system are firstly presented in this 

Chapter. When the transformation from )t),t(z),t(y),t(x( to )t),t(z),t(y),t(x( −−−− is 

made, simulation results show that chaos of the new Lorenz system (which is called 

Yin Lorenz system in this article) can be generated via using “Yin” parameters, i.e. 

)b,r,(σ to )b,r,( −−σ− . To our best knowledge, most characters of Lorenz system are 

studied in detail, but there are no articles in making a thorough inquiry about the yin 

Lorenz system. As a result, this Yin Lorenz system with “Yin parameters” and its 

one-parameter family are introduced in this paper, and various kinds of phenomena in 

such systems are investigated by Lyapunov exponents, phase portraits and bifurcation 

diagrams. An adaptive Yin-Yang synchronization from Yin to Yang Lorenz chaos are 

achieved by using pragmatical asymptotically stability theorem. 

 

2.2 Yang Lorenz system with Yang parameters 

Before introducing the Yin Lorenz equation, the Yang Lorenz system with Yang 

parameters [7] can be recalled as follows: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=

−−=

−σ=

bzxy
dt
dz

yxzrx
dt
dy

)xy(
dt
dx

                                            (2-2-1)               

When initial condition )z,y,x( 000 = (-0.1, 0.2, 0.3) and Yang parameters 10=σ , 

b=8/3 and r=28, chaos of the Lorenz system in Eq. (2-2-1) appears. The chaotic 
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behavior is shown in Fig 2-1. 

 

2.3 Yin Lorenz system with Yin parameters 

Replacing )t),t(z),t(y),t(x( via )t),t(z),t(y),t(x( −−−− in system (2-2-1), a new 

Lorenz system can be obtained as follows: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=
−
−

−−=
−
−

−σ=
−
−

bzxy
)t(d
)t(dz

yxzrx
)t(d
)t(dy

)xy(
)t(d
)t(dx

                                         (2-3-1) 

It is clear that in the left hand sides of Eq. (2-3-1), the derivative are taken with 

the back-time. It means Eq. (2-3-1) aims to find out the behavior of the Yin Lorenz 

system and to comprehend the relation between systems (2-2-1) and (2-3-1). The 

simulation results are arranged in Table 2-1. 

 

Table 2 - 1 Dynamic behaviors of Yin Lorenz system for different signs of 

parameters 

σ  b r states 

- + + Approach to infinite 

+ - + Approach to infinite 

+ + - periodic 

- - + Approach to infinite 

- + - Approach to infinite 

- - - Chaos and periodic 

 

Table 2-1 shows the dynamic behaviors of Yin Lorenz system for different signs 

of parameters. An awe-inspiring phenomenon is discovered. For initial 
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condition )z,y,x( 000 = (-0.1, 0.2, 0.3) and parameters 10−=σ , b=-8/3 and r=-28, 

chaos of the Yin Lorenz system appears. Therefore, we call these parameters Yin 

parameters. In Chinese philosophy, Yin is the negative, past or feminine category in 

nature, while Yang is the positive, present or masculine category in nature. Yin and 

Yang are two fundamental opposites in Chinese philosophy. Consequently, the 

positive value of parameters, 10=σ , b=8/3 and r=28, in Yang Lorenz system can be 

called Yang parameters. The chaotic behavior of Eq. (2-3-1) is shown in Fig 2-2. 

As a consequence, system (2-3-1) can be regarded as being carried over into 

system (2-2-1) by the transformation as follows: 

)b,r,,t),t(z),t(y),t(x()b,r,,t),t(z),t(y),t(x( −−σ−−−−−→σ            (2-3-2) 

 

2.4  Comparison between Yin and Yang Lorenz systems 

In order to study the difference and similarity between Yang and Yin Lorenz 

system, the bifurcation and Lyapunov exponents are used. The simulation results are 

divided into three parts: 

Part1: Parameter r is varied and σ , b are fixed, the simulation results are shown in 

Fig 2-3 and Fig 2-4, Table 2-2 and Table 2-3. 

 

Table 2 - 2 Range of parameter r of Yang Lorenz system 

20.0~24.1 Converges to a fixed point 

24.1~70.0 Chaos 

 

Table 2 - 3 Range of parameter r of Yin Lorenz system 

-20.0~-46.8 Chaos 

-46.8~-47.7 Periodic trajectory 
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-47.7~-51.3 Chaos 

-51.3~-52.4 Periodic trajectory 

-52.4~-59.5 Chaos 

-59.5~-59.8 Periodic trajectory 

-59.8~-68.3 Chaos 

-68.3~-69.6 Periodic trajectory 

After -69.6 Chaos 

Table 2-2 and Table 2-3 show the different dynamics between Yang and Yin 

Lorenz systems with different ranges of parameter r. In Table 2-2, the behaviors of 

Yang Lorenz system are varied with parameter c. It becomes either chaos or converges 

to a fixed point. When 1.24r0.20 ≤≤ , Yang Lorenz system is going to converge to a 

fixed point. When r1.24 ≤ , chaos appears. Table 2-3 shows that when parameter c 

takes -20.0~-46.8, -47.7~-51.3, -52.4~-59.5, -59.8~-68.3 and ≤69.6- , the chaotic 

behavior is shown in Yin Lorenz system. When parameter r takes -46.8~-47.7, 

-51.3~-52.4, -59.5~-59.8 and -68.3~-69.6, the behaviors of Yin Lorenz system are 

periodic trajectories. Comparing Table 2-2 and 2-3, it can be found out that there are 

only two cases, chaos and fixed point, in Yang Lorenz system for parameter r in range 

20 to 70, but there exist chaotic behavior and periodic trajectory in Yin Lorenz system 

with parameter c in range 20 to 70. 

Part2: Parameter b is varied and σ , r are fixed, the simulation results are shown in 

Fig 2-5 and Fig 2-6, Table 2-4 and Table 2-5. 

 

Table 2 - 4 Range of parameter b of Yang Lorenz system 

Before 0.592 Converges to a fixed point 

0.592~0.648 Chaos 
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0.648~0.720 Periodic trajectory 

0.720~3.448 Chaos 

After 3.448 Converge to a fixed point 

 

Table 2 - 5 Range of parameter b of Yin Lorenz system 

Before -0.568 Converges to a fixed point 

-0.568~-0.728 Chaos 

-0.728~-0.792 Periodic trajectory 

-0.792~-4.000 Chaos 

 

Table 2-4 and Table 2-5 show that the behaviors of Yang and Yin Lorenz systems 

are similar but not the same. 

Part3: Parameter σ  is varied and b, r are fixed, the simulation results are shown in 

Fig 2-7 and Fig 2-8, Table 2-6 and Table 2-7. 

Table 2 - 6 Range of parameter σ  of Yang Lorenz system 

5.000~5.760 Converges to a fixed point 

5.760~18.368 Chaos 

18.368~20.000 Converges to a fixed point 

 

Table 2 - 7 Range of parameter σ  of Yin Lorenz system 

-5.00~-5.45 
Periodic trajectory 

(one attractor or two attractors) 

-5.45~-5.60 Chaos 

-5.60~-6.05 Periodic trajectory 

-6.05~-6.17 Chaos 
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-6.17~-6.35 Periodic trajectory 

-6.35~-7.58 Chaos 

-7.58~-7.76 Periodic trajectory 

-7.76~-20 Chaos 

 

In Table 2-6 and Table 2-7, the behaviors of Yang and Yin Lorenz system are very 

different. In Table 2-6, chaotic behavior only exists in Yang Lorenz system in range 

of 18.3685.760 ≤σ≤ . In Table 2-7, chaos and periodic trajectory appear alternatively 

in Yin Lorenz system for different a. 

    By numerical evidence, all trajectories of system (2-3-1) enter a fixed ball (the 

same ball for trajectories) and remain there. This implies already the existence of 

compact global attractor. 

 

2.5  Family of Yin Lorenz system 

In this Section, furthermore, one-parameter family of system (2-3-1) is presented 

as well and can be described as follows: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=
−
−

μ−−=
−
−

−σ=
−
−

bzxy
)t(d
)t(dz

yxzrx
)t(d
)t(dy

)xy(
)t(d
)t(dx

                                        (2-5-1) 

where ]1,1[−∈μ . We choose initial condition )z,y,x( 000 = (-0.1, 0.2, 0.3) and Yin 

parameters 6−=σ , b=-8/3 and r=-28, the projection of phase portraits, bifurcation 

diagrams and Lyapunov exponents with ]1,1[−∈μ  are shown in Figs 2-9 and 2-10. By 

observation of Figs 2-5 and 2-6, it is clear that there are periodic and chaotic motions 

in such a family system whenμ is varying. 
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2.6  Pragmatical Adaptive Synchronization Scheme 

There are two identical nonlinear dynamical systems, and the master system 

controls the slave system. The master system is given by 

( , )x Ax f x B= +&                                              (2-6-1) 

where 1 2[ , , ]T n
nx x x x R= ∈L  denotes a state vector, A is an n n×  uncertain 

constant coefficient matrix, f is a nonlinear vector function, and B is a vector of 

uncertain constant coefficients in f.  

The slave system is given by 

ˆ ˆ( , ) ( )y Ay f y B u t= + +&                                         (2-6-2) 

where 1 2[ , , ]T n
ny y y y R= ∈L  denotes a state vector, Â  is an n n×  estimated 

coefficient matrix, B̂  is a vector of estimated  coefficients  in  f, and 

1 2( ) [ ( ), ( ), ( )]T n
nu t u t u t u t R= ∈L  is a control input vector. 

Our goal is to design a controller u(t) so that the state vector of the chaotic 

system (2-6-1) asymptotically approaches the state vector of the master system 

(2-6-2).  

The chaos synchronization can be accomplished in the sense that the limit of the 

error vector [ ]1 2( ) , , , T
ne t e e e= L  approaches zero: 

lim 0
t

e
→∞

=                                                    (2-6-3) 

where 

yxe −=                                                   (2-6-4) 

From Eq. (2-6-4) we have 

yxe &&& −=                                                   (2-6-5) 
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)()ˆ,(),(ˆ tuByfBxfyAAxe −−+−=&                            (2-6-6)                

A Lyapnuov function )~,~,( cc BAeV  is chosen as a positive definite function 

1 1 1( , , )
2 2 2

T T TV e A B e e A A B B= + +% % %% % %                            (2-6-7) 

where ˆA A A= −% , ˆB B B= −% , cA~ and cB~ are two column matrices whose elements 

are all the elements of matrix Â  and of matrix B̂ , respectively.  

Its derivative along any solution of the differential equation system consisting 

of Eq. (2-6-6) and update parameter differential equations for cA~ and cB~  is            

[ ] cccc
t

cc BBAAtuyfBxBfyAAxeBAeV &&& ~~~~)()(ˆ)(ˆ)~,~,( ++−−+−=       (2-6-8) 

where u(t), cA&~ , and cB&~  are chosen so that ,TV e Ce=&  C is a diagonal negative 

definite matrix, and V&  is a negative semi-definite function of e and parameter 

differences cA~ and cB~ .  In current scheme of adaptive control of chaotic motion 

[18-20], traditional Lyapunov stability theorem and Babalat lemma are used to prove 

that the error vector approaches zero, as time approaches infinity. But the question, 

why the estimated or given parameters also approach to the uncertain or goal 

parameters, remains no answer. By pragmatical asymptotical stability theorem [50-51], 

the question can be answered strictly.  

 

2.7  Adaptive Yin-Yang synchronization of Yin chaos and Yang chaos 

In this Section, adaptive synchronization from Yin Lorenz chaos to Yang Lorenz 

chaos is proposed. The Yin Lorenz system is consider as slave system and the Yang 

Lorenz system is regarded as master system. These two equations are shown below: 

Master system- Yang Lorenz system: 
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⎪
⎪
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                             (2-7-1) 

    Slave system- Yin Lorenz system: 

    

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+−−−−−=
−

+−−−−−−−=
−
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u))t(y)t(y)t(y)t(yĉ(
)t(d

)t(dy

u))t(y)t(y(â
)t(d

)t(dy

                (2-7-2) 

where ix (t) stands for states variables of the master system and iy (-t)that of the slave 

system, respectively. Parameters, a, b and c are uncertain parameters of master system. 

â , b̂ and ĉ are estimated parameters. 1u , 2u and 3u are nonlinear controller to 

synchronize the slave Lorenz system to master one, i.e., 

0lim =
∞→

e
t

                                                   (2-7-3) 

where the error vector e [ ])t(e)t(e)t(e 321=  and 

⎪
⎩

⎪
⎨

⎧

−−=
−−=
−−=

)t(y)t(x)t(e
)t(y)t(x)t(e

)t(y)t(x)t(e

333
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111

                                        (2-7-4) 

From Eq. (2-7-4), we have the following error dynamics: 
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dt
)t(dy
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                   (2-7-5) 
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    These two systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 

controllers and update laws are designed by pragmatical asymptotical stability 

theorem as follows: 

    Choosing Lyapunov function as: 

    )c~b~a~eee(
2
1V 2222

3
2
2

2
1 +++++=                                (2-7-6) 

where âaa~ −= , b̂bb~ −=  and ĉcc~ −= . 

    Its time derivative is: 

    

)ĉc(c~)b̂b(b~)âa(a~
))u)yb̂yy((bxxx(e

))u)yyyyĉ((xxxcx(e
))u)yy(â()xx(a(e

c~c~b~b~a~a~eeeeeeV

33213213

2231123112

112121

332211

−+−+−+

+−−+−+

+−−−+−−+
+−−+−=
+++++=

&&&

&&&&&&&

                (2-7-7) 

We choose the update laws for those uncertain parameters as: 

    

⎪
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⎩
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&&
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                                   (2-7-8) 

Through Eqs. (2-7-8) and (2-7-9), the appropriate controllers can be designed as: 

    

⎪
⎪
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⎧

−−−−−=
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                (2-7-9) 

We obtain 

0eeeV 2
3

2
2

2
1 <−−−=&                                          (2-7-10) 

which is negative semi-definite function of 321 e,e,e , a~ , b~ and c~ . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of 

error dynamics (2-7-5) and parameter dynamics (2-7-8) is asymptotically stable. By 
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pragmatical asymptotically stability theorem, D is a 6-manifold, 6n = and the number 

of error state variables 3p = . When 0eee 321 === and a~ , b~  c~ take arbitrary 

values, 0V =& ,so X is of 3 dimensions, 336pnm =−=−= , n1m <+  is satisfied. 

According to the pragmatical asymptotically stability theorem, error vector e 

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. Under the assumption of 

equal probability, it is actually asymptotically stable. The simulation results are shown 

in Figs. 2-11~ 2-14. 

 

 

 

 

 

 

 

 



18 18

 

Fig.2- 1 Projections of phase portrait of chaotic Yang Lorenz system withσ=10, 
b=8/3and r=28 

 

Fig.2- 2 Projections of phase portrait of chaotic Yin Lorenz system with Yin 
parametersσ=-10, b=-8/3 and r=-28. 
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Fig.2- 3 Bifurcation diagram and Lyapunov exponents of chaotic Yang Lorenz system 
with b=8/3 andσ=10. 
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Fig.2- 4 Bifurcation diagram and Lyapunov exponents of chaotic Yin Lorenz system 
with b=-8/3 andσ=-10. 
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Fig.2- 5 Bifurcation and Lyapunov exponents of chaotic Yang Lorenz system with 
σ=28 and r=10. 

 



22 22

 

 

Fig.2- 6 Bifurcation and Lyapunov exponents of chaotic Yin Lorenz system 
withσ=-28 and r=-10. 
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Fig.2- 7 Bifurcation and Lyapunov exponents of chaotic Yang Lorenz system 
with b=8/3 and r=28. 
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Fig.2- 8 Bifurcation and Lyapunov exponents of chaotic Yin Lorenz system 
with b=-8/3 and c=-28. 
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                 1=μ                            99.0=μ  

 

                98.0=μ                          7.0=μ  

Fig.2- 9 Projections of phase portraits of family of Yin Lorenz system withσ=-6, 

b=-8/3 and r=-28. 
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Fig.2- 10 Bifurcation diagram and Lyapunov exponents of family of Yin Lorenz 
systemwithσ=-6, b=-8/3 and r=-28.(varied byμ ) 
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Fig.2- 11 Time histories of errors for Yin and Yang Lorenz chaotic systems. 

 

Fig.2- 12 Time histories of parametric errors for Yin and Yang Lorenz chaotic systems. 



28 28

 

Fig.2- 13 Time histories of states of Yin and Yang Lorenz chaotic systems. 
 

 

Fig.2- 14 Phase portraits of synchronization of Yin and Yang Lorenz 
chaotic systems. 
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Chapter 3 

Hyperchaos of New Mathieu-van der Pol system with Three 

Positive Lyapunov Exponents 

3.1 Preliminaries 
This Chapter gives another illustration of three positive Lyapunov exponents 

(3PLES) in numerical simulations of a new system, Mathieu-van der pol autonomous 

system, with four state variables. As we know, two positive Lyapunov exponents 

confirm hyperchaotic nature of its dynamics and means that system can present more 

complicated behavior than ordinary chaos. We further generate three positive 

Lyapunov exponents in a new coupled nonlinear system and anticipate the advanced 

application in secure communication. Not only a new chaotic system with three 

Lyapunov exponents is proposed, but also its implementation of electronic circuit is 

putting into practice in this article. The phase portrait, electronic circuit, power 

spectrum, Lyapunov exponents and 2-D and 3-D parameter diagram with three 

positive Lyapunov exponents of the new system will be showed in this Chapter. 

 

3.2 Differential equations for Mathieu-van der Pol system and phase 

protraits 

Mathieu equation and van der Pol equation are two typical nonlinear 

non-autonomous systems: 
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Exchanging sinωt in Eq. (3-2-1) by 3x  and sinωt in Eq. (3-2-2) by 1x , we obtain the 

autonomous new Mathieu -van der Pol system: 
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&                             (3-2-3)               

where x, y, z and w are four stats of the system, a, b, c, d, e, f and g are parameters of 

the Mathieu-van der Pol system.  

It is well-known that the phase portrait presents the evolution of a set of 

trajectories emanating from various initial conditions. When the solution becomes 

stable, the asymptotic behaviors of the phase trajectories are particularly interested 

and the transient behaviors in the system are neglected. As a result, the phase portrait 

projections of the Mathieu-van der Pol system, Eq. (3-2-3), is plotted in Fig. 3-1. In 

this numerical studies, the parametric values are taken to be a=91.7, b=5.023, 

c=-0.001, d=91, e=87.001, f=0.0180 and g=9.5072 for plotting the hyperchaotic 

phase portrait projections. 

 

3.3 Power spectrum 

The power spectrum analysis of the nonlinear dynamical system, Eq. (3-2-3) is 

shown in Fig. 3-2. The noise-like spectrum is the characteristics of chaotic dynamical 

system. 

 

3.4 Lyapunov exponents 

The Lyapunov exponents of Mathieu-van der Pol system with 3PLEs are plotted 

in Figs. 3-3~3-8. These figures show that there exits at least one PLE in the Lyapunov 

spectrum for our new system, and the Lyapunov exponents of Mathieu-van der Pol 
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system are varied with parameters a, b, d and e.  

 

3.5 Parameter diagrams 

A system with more than one positive Lyapunov exponent can be classified as a 

hyperchaotic system. In this study, the parameter values, b, d, g, and f, are varied to 

observe the regions of chaos of our new system. The enriched information of chaotic 

behaviors of the system can be obtained from the Figs 3-9~3-14. 

In Figs 3-9~3-14, the regions of 3PLEs are yellow, 2PLEs green and 1PLEs 

purple. It can be realized that the Mathieu-van der pol system is chaotic in several 

different region, especially hyperchaos with 3 PLEs are found in many regions 

between hyperchaos with 2 PLE and chaos with 1 PLE.  

 

3.6 Phase portraits and its implementation of electronic circuits 

It is well-known that the phase space can present the evolution of a set of 

trajectories emanating from various initial conditions. When the solution becomes 

stable, the asymptotic behaviors of the phase trajectories are particularly interested 

and the transient behaviors in the system are neglected. As a result, the phase portrait 

of the Mathieu-van der pol system, equation (3-1-1), is plotted in Fig. 3-1. In this 

numerical studies, the parametric values are taken to be a=91.7, b=5.023, c=0.01, 

d=91, e=87.001, f=0.0180 and g=9.5072 for plotting the tri-chaotic phase portrait. 

The new system can be represented as an electronic oscillator circuit and projection of 

phase portraits outputs shown in Figs. 3-15~16. We have implemented it using an 

electronics simulation package Multisim (previously called Electronic Workbench, 

EWB) and the approximated nonlinear electronic circuits are presented to realize the 

disordered behavior in the new chaotic system. The voltage outputs have been 

normalized to 1 V and the operational amplifiers are considered to be ideal. The phase 
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diagrams are plotted within the time interval 500 s. The time step is 0.001 s. Due to 

the limit of the scope of implementation of electronic circuits, the phase portraits can 

be only shown in two dimensions. In Fig. 3, the configuration of electronic circuits is 

also given. 

 

3.7 Summary 

In this Chapter, we have shown that the autonomous continuous-time 

Mathieu-van der pol autonomous system with four state variables as described by Eq.  

(3-2-3) can exhibit hyperchaos with three positive Lyapunov exponents. The 

simulation results have been investigated in phase portraits, power spectrum, 

parameter diagrams and Lyapunov exponents. 
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Fig.3- 1 Phase portrait projections of four state Mathieu-van der Pol system with 
a=91.17, b=5.023, c=-0.001, d=91, e=87.001, f=0.0180and g=9.5072. 

 

 

Fig.3- 2 Power spectrum of x for Mathieu-van der Pol system with a=91.17, b=5.023, 
c=-0.001, d=91, e=87.001, f=0.018and g=9.5072. 
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Fig.3- 3 Lyapunov exponents of Mathieu-van der Pol system with b=5.023, c=-0.001, 
d=91, e=87.001, f=0.018and g=9.5072. 

 
 
 
 

 

Fig.3- 4 Lyapunov exponents of Mathieu-van der Pol system with b=5.023, c=-0.001, 
d=25, e=87.001, f=0.018and g=9.5072. 
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Fig.3- 5 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, 

c=-0.001, d=25, e=87.001, f=0.018and g=9.5072. 
 
 
 
 
 

 

Fig.3- 6 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, 
b=5.023, c=-0.001, e=87.001, f=0.018and g=9.5072. 
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Fig.3- 7 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, 
b=5.023, c=-0.001, e=87.001, f=0.018and g=9.5072. 

 

 

 

Fig.3- 8 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, 
b=5.023, c=-0.001, d=25, f=0.018and g=9.5072. 
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Fig.3- 9 Parameter diagrams of Mathieu-van der Pol system with a=96.326680, 
b=5.023, c=-0.001, e=87.001and f=0.018. 
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Fig.3- 10 2D Parameter diagrams varied with f. a=96.326680, b=5.023, c=-0.001and 
e=87.001. Part A and B are shown in Fig.7. 

 
 
 
 

 
Fig.3- 11 2D Parameter diagrams varied with f. a=96.326680, b=5.023, c=-0.001and 

e=87.001. Part C are shown in Fig. 8. 

Fig. 3-11 
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Fig.3- 12 3D Parameter diagrams of Mathieu-van der Pol system with a=96.326680, 
b=5.023, c=-0.001 and e=87.001. 

  
Fig.3- 13 3D Parameter diagrams of Mathieu-van der Pol system with a=96.326680, 

b=5.023, c=-0.001 and e=87.001. 
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Fig.3- 14 Parameter diagrams of Mathieu-van der Pol system with a=96.326680, 
b=5.023, c=-0.001, e=87.001and g=9.5072. 

 

 

 

Fig.3- 15 Projection of phase portraits outputs in electronic circuit for Mathieu-van 
der Pol system. 
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Fig.3- 16 The configuration of electronic circuit for chaotic Mathieu-van der Pol 

system. 
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Chapter 4 

Chaos Control of New Mathieu-van der Pol Systems with 

New Mathieu -Duffing Systems as Goal System by GYC 

Partial Region Stability Theory 

4.1 Preliminaries 

In this Chapter, a new strategy by using GYC partial region stability theory is 

proposed to achieve chaos control. Via using the GYC partial region stability theory, 

the new Lyapunov function used is a simple linear homogeneous function of error 

states and the lower order controllers are much simpler and introduce less simulation 

error. Numerical simulations are given for new Mathieu-van der Pol system and new 

Mathieu-Duffing system to show the effectiveness of this strategy. 

. 

4.2  Chaos Control Scheme 

Consider the following chaotic system 

( , )t=x f x&      (4-2-1) 

where [ ]1 2, , , T n
nx x x R= ∈x L  is a the state vector, : n nR R R+ × →f  is a vector 

function.  

The goal system which can be either chaotic or regular, is  

( , )t=y g y&    (4-2-2) 

where [ ]1 2, , , T n
ny y y R= ∈y L  is a state vector, : n nR R R+ × →g  is a vector 

function. 

In order to make the chaos state x  approaching the goal state y , define 

= −e x y  as the state error. The chaos control is accomplished in the sense that 
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[13-22]: 

lim lim( ) 0
t t→∞ →∞

= − =e x y   (4-2-3) 

In this Chapter, we will use examples in which the error dynamics always 

happens in the first quadrant of coordinate system and use GYC partial region 

stability theory [43-44]. The Lyapunov function is a simple linear homogeneous 

function of error states and the controllers are simpler because they are in lower order 

than that of traditional controllers 

 

4.3 New Chaotic Mathieu- Duffing System 
Mathieu equation and Duffing equation are two typical nonlinear 

non-autonomous systems: 

⎪⎩

⎪
⎨
⎧

ω+−ω+−ω+−=

=

tdzcztbaztbaz

zz

sin)sin()sin( 121
3

1111112

21

&

&
         (4-3-1) 

⎩
⎨
⎧

ω+−−−=

=

tfzezzz

zz

sin141
3
334

43

&

&
                               (4-3-2) 

Exchanging sinωt in Eq. (4-3-1) by 3z  and sinωt in Eq. (4-3-2) by 
1z , we obtain the 

autonomous master new Mathieu-Duffing system: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−−−=

=
+−+−+−=

=

1141
3

334

43

3121
3

131113112

21

)()(

zfzezzz

zz
zdzczzbazzbaz

zz

&

&

&

&                     (4-3-3) 

where 1a , 1b , 1c , 1d , 1e and 1f are uncertain parameters. This system exhibits 

chaos when the parameters of system are 30.201 =a , 5970.01 =b , 005.01 =c , 

-24.4411 =d , 002.01 =e , 14.631 =f and initial states is (-2, 10, -2, 10). Its phase 

portraits are shown in Fig. 4-1. 

 

4.4 Numerical Simulations 
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The following chaotic system  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−+−−−+−−=

−=
−+−−
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)200(
)200()200(

)200))(200(()200))(200((

200

14
2

334

43

32

3
13132

21

xgxxfxex

xx
xdxc

xxbaxxbax

xx
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       (4-4-1) 

is the new Mathieu-van der Pol system of which the old origin is translated 

to )200,200,200,200(),,,( 4321 =xxxx in order that the error dynamics happens always 

in the first quadrant of error state coordinate system. This translated new Mathieu-van 

der Pol system presents chaotic motion when initial conditions is ),,,( 40302010 xxxx = 

(210.1, 209.5, 210.1, 209.5) and the parameters are 10=a , 3=b , 4.0=c , 70=d , 

1=e , 5=f , 1.0=g . 

In order to lead ),,,( 4321 xxxx  to the goal, we add control terms u1, u2, u3 and u4 

to each equation of Eq. (4-4-1), respectively. 
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 (4-4-2) 

 

CASE I. Control the chaotic motion to zero. 

In this case we will control the chaotic motion of the new Mathieu-van der Pol 

system (4-4-1) to zero. The goal is 0=y . The state error is iiii xyxe =−= , (i=1, 2, 3, 

4) and error dynamics becomes 
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In Fig. 4-2, we can see that the error dynamics always exists in first quadrant.  

By GYC partial region asymptotical stability theorem, one can easily choose a 

Lyapunov function in the form of a positive definite function in first quadrant as: 

4321 eeeeV +++=  (4-4-4) 

Its time derivative through error dynamics (4-4-3) is 

))200(
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41

4
2

334

343

232

3
13132

121

))200(
)200)()200(1()200((

)200(
))200()200(

)200))(200(()200))(200(((

)200(

exg
xxfxeu

exu
exdxc

xxbaxxbau

exu

−−+
−−−+−−=

−−−=
−−+−−

−−+−−−+−=

−−−=

 (4-4-6) 

We obtain 

0eeeeV 4321 <−−−−=&   

which is negative definite function in first quadrant. The numerical results are shown 

in Fig.4-3. After 10 sec, the error trajectories approach the origin. 

CASE II. Control the chaotic motion to a regular function. 

In this case we will control the chaotic motion of the new Mathieu-van der Pol 

system (4-4-1) to regular function of time. The goal is t
ii eFy ω= sin , (i=1, 2, 3, 4). The 

error equation  

t
iiiii eFxyxe ω−=−= sin  , (i=1, 2, 3, 4) (4-4-7) 

0)(limlim sin =−= ω

∞→∞→

t
iitit
eFxe  , (i=1, 2, 3, 4)  
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where 104321 ===== FFFFF and 5.0=ω  

The error dynamics is 
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 (4-4-8) 

In Fig. 4-4, the error dynamics always exists in first quadrant. 

By GYC partial region asymptotical stability theorem, one can easily choose a 

Lyapunov function in the form of a positive definite function in first quadrant as: 

4321 eeeeV +++=   

Its time derivative is 
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We obtain 

04321 <−−−−= eeeeV&   

which is a negative definite function in first quadrant. The numerical results are 



47 47

shown in Fig.4-5 and Fig. 4-6. After 10 sec., the errors approach zero and the chaotic 

trajectories approach to regular motion. 

CASE III. Control the chaotic motion of the new Mathieu-van der Pol system to 

chaotic motion of the new Mathieu-Duffing system. 

In this case we will control chaotic motion of the new Mathieu-van der Pol 

system (4-4-1) to that of following goal system, i.e. the new chaotic Mathieu-Duffing 

system with initial states (-2, 10, -2, 10), system parameters 30.201 =a , 5970.01 =b , 

005.01 =c , -24.4411 =d , 002.01 =e and 14.631 =f . 
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The error equation is iii zxe −= , (i=1, 2, 3, 4). Our aim is 0lim =
∞→

i
t

e  (i=1, 2, 3, 4).  

The error dynamics becomes 
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In Fig. 4-7, the error dynamics always exists in first quadrant. 

By GYC partial region asymptotical stability theorem, one can easily choose a 

Lyapunov function in the form of a positive definite function in first quadrant as: 

4321 eeeeV +++=   

Its time derivative is 
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We obtain 

04321 <−−−−= eeeeV&   

which is negative definite function in first quadrant. The numerical results are shown 

in Fig.4-8 and Fig. 4-9. After 10 sec., the errors approach zero and the chaotic 

trajectories of the new Mathieu-van der Pol system approach to that of the new 

Mathieu-Duffing system. 
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Fig. 4-1 Chaotic phase portrait projections for new Mathieu-Duffing system. 
 
 
 
 
 

 

Fig. 4-2 Phase portrait projections of error dynamics for Case I. 
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Fig. 4-3 Time histories of errors for Case I. 

 

 

 

 

Fig. 4-4 Phase portrait projections of error dynamics for Case II. 
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Fig. 4-5 Time histories of errors for Case II. 

 

 

 

 

Fig. 4-6 Time histories of x1, x2, x3, x4 for Case II. 
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Fig. 4-7 Phase portrait projections of error dynamics for Case III. 

 

 

 

 

 

Fig. 4-8 Time histories of errors for Case III. 
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Fig. 4-9 Time histories of x1, x2, x3, x4 and z1, z2, z3, z4for Case III. 
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Chapter 5 

Generalized Chaos Synchronization of New Mathieu-van 

der Pol Systems with New Duffing-van der Pol systems as 

Functional system by GYC Partial Region Stability Theory 

5.1 Preliminaries 
    In this Chapter, a new strategy by using GYC partial region stability theory is 

proposed to achieve generalized chaos synchronization. Via using the GYC partial 

region stability theory, the new Lyapunov function used is a simple linear 

homogeneous function of states and the lower order controllers are much more simple 

and introduce less simulation error. Numerical simulations are given for new 

Mathieu-van der Pol system and new Duffing-van der Pol system to show the 

effectiveness of this strategy. 

 

5.2 Generalized Chaos Synchronization Strategy 

Consider the following unidirectional coupled chaotic systems  

( , )
( , )
t
t

=
= +

x f x
y h y u
&

&
 (5-2-1) 

where [ ]1 2, , , T n
nx x x R= ∈x L , [ ]1 2, , , T n

ny y y R= ∈y L  denote the master state 

vector and slave state vector respectively, f  and h  are nonlinear vector functions, 

and [ ]1 2, , , T n
nu u u R= ∈u L  is a control input vector. 

The generalized synchronization can be accomplished when t →∞ , the limit of 

the error vector [ ]1 2, , , T
ne e e=e L  approaches zero: 

lim 0
t→∞

=e   (5-2-2) 

where 
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( )= −e G x y  (5-2-3) 

)(xG  is a given function of x . 

By using the partial region stability theory [50-51], the Lyapunov function is 

easier to find, since the linear homogenous terms of the entries of e  can be used to 

construct the definite Lyapunov function and the controllers can be designed in lower 

order. 

 

5.3 New Chaotic Duffing-van der Pol System 

Duffing equation and van der Pol equation are two typical nonlinear 

non-autonomous systems: 
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Exchanging sinωt in Eq. (5-3-1) by 3z  and sinωt in Eq. (5-3-2) by 
1z , we obtain the 

autonomous master new Duffing-van der Pol system: 
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where h, i, j, k, l are uncertain parameter. This system exhibits chaos when the 

parameters of system are 0006.0=h , 1=j , 5=k , 67.0=i and 05.0=l and initial 

states is (2, 2.4, 5, 6), its phase portraits projections and Lyapunov exponents as 

shown in Fig. 5-1 and 5-2.  

 
5.4 Numerical Simulations  

The two unidirectional coupled new chaotic Mathieu-van der pol systems are 
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shown as follows: 
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CASE I. The generalized synchronization error function is )100( +−= iii yxe , (i=1, 2, 

3, 4.). 

    The addition of 100 makes the error dynamics always happens in first quadrant. 

Our goal is 100+= ii xy , i.e.  

0)100(limlim =+−=
→∞→∞

iitit
yxe  (i=1, 2, 3, 4) (5-4-2) 

The error dynamics becomes: 
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System parameters are chosen as 10=a , 3=b , 4.0=c , 70=d , 1=e , 5=f , 

1.0=g  and initial states are ),,,( 40302010 xxxx =(0.1, -0.5, 0.1, -0.5), 

),,,( 40302010 yyyy =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics 

always happens in first quadrant as shown in Fig. 5-3. By GYC partial region stability, 

one can choose a Lyapunov function in the form of a positive definite function in first 

quadrant: 

4321 eeeeV +++=  (5-4-4) 
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Its time derivative through Eq. (5-4-2) is 
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We obtain 

04321 <−−−−= eeeeV&  (5-4-7) 

which is negative definite function in the first quadrant. Four state errors versus time 

and time histories of states are shown in Fig. 5-4 and Fig. 5-5.  

CASE II. The generalized synchronization error function is 

)100sin( +ω+−= tFyxe iiii , (i=1, 2, 3, 4).           

The addition of 100 makes the error dynamics always happens in first quadrant. 

Our goal is 100sin +ω+= tFxy iii , i.e.  

0)100sin(limlim =+ω+−=
∞→∞→

tFyxe iiitit
 (i=1, 2, 3, 4).              (5-4-8) 

where 5.0,104321 =ω===== FFFFF . 

The error dynamics becomes 
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System parameters are chosen as 10=a , 3=b , 4.0=c , 70=d , 1=e , 5=f , 
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1.0=g  and initial states are ),,,( 40302010 xxxx =(0.1, -0.5, 0.1, -0.5), 

),,,( 40302010 yyyy =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics 

always happens in first quadrant as shown in Fig. 5-6. By GYC partial region stability, 

one can choose a Lyapunov function in the form of a positive definite function in first 

quadrant: 

4321 eeeeV +++=  (5-4-10) 

Its time derivative through Eq. (5-4-8) is 
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 (5-4-12) 

We obtain 

04321 <−−−−= eeeeV&  (5-4-13) 

which is a negative definite function in the first quadrant. Four state errors versus time 

and time histories of 100i ix y− +  and wtFi sin−  are shown in Fig. 5-7 and Fig. 

5-8. 

CASE III. The generalized synchronization error function is 

100sin ++−= ωt
iiii eFyxe , (i=1, 2, 3, 4). 
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The addition of 100 makes the error dynamics always happens in first quadrant. 

Our goal is 100sin ++= ωt
iii eFxy , i.e.  

0)100(limlim sin =++−= ω

→∞→∞

t
iiitit
eFyxe  (i=1, 2, 3, 4).            (5-4-14) 

The error dynamics becomes 
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 (5-4-15) 

System parameters are chosen as 10=a , 3=b , 4.0=c , 70=d , 1=e , 5=f , 

1.0=g , 104321 ===== FFFFF , 5.0=ω and initial states are 

),,,( 40302010 xxxx =(0.1, -0.5, 0.1, -0.5), ),,,( 40302010 yyyy =(0.3, -0.1, 0.3, -0.1). 

Before control action, the error dynamics always happens in first quadrant as shown 

in Fig. 5-9. By GYC partial region stability, one can choose a Lyapunov function in 

the form of a positive definite function in first quadrant: 

4321 eeeeV +++=  (5-4-16) 

Its time derivative through Eq. (5-4-14) is 
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Choose  
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We obtain 

04321 <−−−−= eeeeV&  (5-4-19) 

which is a negative definite function in the first quadrant. Four state errors versus time 

and time histories of 100i ix y− +  and wt
ieF sin−  are shown in Fig. 5-10 and Fig. 

5-11. 

CASE IV. The generalized synchronization error function is 100
2
1 2 +−= iii yxe , (i=1, 

2, 3, 4). 

    The addition of 100 makes the error dynamics always happens in first quadrant. 

Our goal is 100
2
1 2 += ii xy , i.e.  

)100
2
1(limlim 2 +−=

→∞→∞
iitit

yxe  (i=1, 2, 3, 4)                     (5-4-20) 

The error dynamics becomes 

41144
2

3
2
4

2
33344444

34433333

23322
2
2

3
13

3
123131232222

12211111

)())1()1(()(

)()(

))()(())()((

uyxxgyyxxfyxxeyxxe

uyxxyxxe
uyxxdyxc

ybyaxxbxaybyaxxbxayxxe

uyxxyxxe

−−+−−−+−−=−=

−−=−=
−−+−−

+−+−+−+−=−=

−−=−=

&&&

&&&

&&&

&&&

 (5-4-21) 

System parameters are chosen as 10=a , 3=b , 4.0=c , 70=d , 1=e , 5=f , 

1.0=g and initial states are ),,,( 40302010 xxxx =(0.1, -0.5, 0.1, -0.5), 

),,,( 40302010 yyyy =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics 
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always happens in first quadrant as shown in Fig. 5-12. By GYC partial region 

stability, one can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

4321 eeeeV +++=  (5-4-22) 

Its time derivative through Eq. (5-4-20) is 
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We obtain 

04321 <−−−−= eeeeV&  (5-4-25) 

which is a negative definite function in the first quadrant. Three state errors versus 

time is shown in Fig. 5-13. 

CASE V. The generalized synchronization error function is 10000
3
1 3 +−= iii yxe  

(i=1, 2, 3, 4). 

    The addition of 10000 makes the error dynamics always happens in first 

quadrant.  

Our goal is 10000
3
1 3 += ii xy , i.e.  

)10000
3
1(limlim 3 +−=

∞→∞→
iitit

yxe  (i=1, 2, 3, 4)                   (5-4-26) 

The error dynamics becomes 
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System parameters are chosen as 10=a , 3=b , 4.0=c , 70=d , 1=e , 5=f , 

1.0=g  and initial states are ),,,( 40302010 xxxx =(0.1, -0.5, 0.1, -0.5), 

),,,( 40302010 yyyy =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics 

always happens in first quadrant as shown in Fig. 5-14. By GYC partial region 

stability, one can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

4321 eeeeV +++=  (5-4-28) 

Its time derivative through Eq. (5-4-26) is 
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 (5-4-30) 

We obtain 

04321 <−−−−= eeeeV&  (5-4-31) 

which is a negative definite function in the first quadrant. Three state errors versus 
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time is shown in Fig. 5-15. 

CASE VI. The generalized synchronization error function is 100++−= iiii zyxe , 

iz (i=1, 2, 3, 4) is the states of new chaotic Duffing-van der Pol system. 

The functional system for synchronization is a new Duffing-van der pol system 

and initial states is (2, 2.4, 5, 6), system parameters 0006.0=h , 1=j , 5=k , 

67.0=i and 05.0=l . 
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                 (5-4-32) 

We have 0)100(limlim =++−=
∞→∞→

iiitt
zyxe  (i=1, 2, 3, 4)                (5-4-33) 

The error dynamics becomes 
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System parameters are chosen as 10=a , 3=b , 4.0=c , 70=d , 1=e , 5=f , 

1.0=g  and initial states are ),,,( 40302010 xxxx =(0.1, -0.5, 0.1, -0.5), 

),,,( 40302010 yyyy =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics 

always happens in first quadrant as shown in Fig. 5-16. By GYC partial region 

stability, one can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

4321 eeeeV +++=  (5-4-35) 

Its time derivative through Eq. (5-4-33) is 



64 64

)))1(()(

))1()1(()(()()

)()()())(

)(())()((()(

14
2

33411

4
2

34
2

33334442

32
3

113322
3

13

3
1313131222

4321

lzzzkjzuyxg

yyxxfyxeuyzxu

izhzzzyxdyxcybya

xbxaybyaxbxauyzx

eeeeV

+−+−+−−+

−−−+−−+−−++−

+−−−+−+−−+−

+−+−+−+−−+=

+++= &&&&&

 (5-4-36) 

Choose  
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We obtain 

04321 <−−−−= eeeeV&  (5-4-38) 

which is a negative definite function in the first quadrant. Four state errors versus time 

and time histories of 100i ix y− +  and iz− are shown in Fig. 5-17 and Fig. 5-18.  
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Fig. 5-1 Phase portrait projections of new chaotic Duffing-van der Pol System. 

 

 

 

 

 

Fig. 5-2 Lyapunov exponents of new chaotic Duffing-van der Pol System. 
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Fig. 5-3 Phase portrait projections of error dynamics for Case I. 

 

 

 

 

Fig. 5-4 Time histories of errors for Case I. 
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Fig. 5-5 Time histories of x1, x2, x3, x4, y1, y2, y3, y4 for Case I. 

 

 

 

 

Fig. 5-6 Phase portrait projections of error dynamics for Case II. 
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Fig. 5-7 Time histories of errors for Case II. 

 

 

 

 

Fig. 5-8 Time histories of 100i ix y− +  and sinF tω−  for Case II. 
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Fig. 5-9 Phase portrait projections of error dynamics for Case III. 

 

 

 

 

Fig. 5-10 Time histories of errors for Case III. 
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Fig. 5-11 Time histories of 100i ix y− +  and )sin(wtFe−  for Case III. 

 

 

 

 

Fig. 5-12 Phase portrait projections of error dymanics for Case IV. 
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Fig. 5-13 Time histories of errors for Case IV. 

 

 

 

 

Fig. 5-14 Phase portrait projections of error dymanics for Case V. 
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Fig. 5-15 Time histories of errors for Case V. 

 

 

 

 

Fig. 5-16 Phase portrait projections of error dymanics for Case VI. 
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Fig. 5-17 Time histories of errors for Case VI. 

 

 

 

 

Fig. 5-18 Time histories of 100i ix y− +  and iz−  for Case VI. 
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Chapter 6 

Pragmatical Adaptive Yin-Yang Synchronization of Chaos 

by G-Y-C Partial Region Stability Theory  

6.1 Preliminaries 

The Yin and Yang Lorenz systems are used in this Chapter. A new effective 

approach to achieve pragmatical adaptive Yin-Yang synchronization is proposed. Via 

using Ge-Yao-Chen (GYC) partial region stability theory, in the numerical simulation 

results, the states errors and parametric errors approach zero much more exactly and 

efficiently. In this Chapter, two cases are presented in pragmatical adaptive Yin-Yang 

synchronization and the simulation results are listed in table for comparison. 

 

6.2 GYC Pragmatical Adaptive Synchronization Scheme 

There are two identical nonlinear dynamical systems, and the master system 

controls the slave system. The master system is given by 

( , )x Ax f x B= +&                                              (6-2-1) 

where 1 2[ , , ]T n
nx x x x R= ∈L  denotes a state vector, A is an n n×  uncertain 

constant coefficient matrix, f is a nonlinear vector function, and B is a vector of 

uncertain constant coefficients in f.  

The slave system is given by 

ˆ ˆ( , ) ( )y Ay f y B u t= + +&                                         (6-2-2) 

where 1 2[ , , ]T n
ny y y y R= ∈L  denotes a state vector, Â  is an n n×  estimated 

coefficient matrix, B̂  is a vector of estimated  coefficients  in  f, and 

1 2( ) [ ( ), ( ), ( )]T n
nu t u t u t u t R= ∈L  is a control input vector. 
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Our goal is to design a controller u(t) so that the state vector of the chaotic 

system (6-2-1) asymptotically approaches the state vector of the master system 

(6-2-2).  

The chaos synchronization can be accomplished in the sense that the limit of the 

error vector [ ]1 2( ) , , , T
ne t e e e= L  approaches zero: 

lim 0
t

e
→∞

=                                                    (6-2-3) 

where 

Kyxe +−=                                                (6-2-4) 

where K is a positive constant by which the error dynamics occurs in the first 

quadrant of state space of e. 

From Eq. (6-2-4) we have 

yxe &&& −=                                                   (6-2-5) 

)()ˆ,(),(ˆ tuByfBxfyAAxe −−+−=&                            (6-2-6)                

A Lyapnuov function )B~,A~,e(V  is chosen as a positive definite function in first 

quadrant of state space of e, A~ , B~ . 

We have 

BAeBAeV ~~)~,~,( ++=&                                         (6-2-7) 

where ˆA A A= −% , ˆB B B= −% , A~ and B~ are two column matrices whose elements 

are all the elements of matrix Â  and of matrix B̂ , respectively.  

Its derivative along any solution of the differential equation system consisting 

of Eq. (6-2-6) and update parameter differential equations for A~ and B~  is            

[ ] BAtuyfBxBfyAAxBAeV &&& ~~)()(ˆ)(ˆ)~,~,( ++−−+−=                (6-2-8) 

where u(t), A&~ , and B&~  are chosen so that CeV =& , C is a diagonal negative definite 



76 76

matrix, and V&  is a negative semi-definite function of e and parameter differences 

A~ and B~ . In current scheme of adaptive control of chaotic motion [22-24], traditional 

Lyapunov stability theorem and Babalat lemma are used to prove the error vector 

approaches zero, as time approaches infinity. But the question, why the estimated or 

given parameters also approach to the uncertain or goal parameters, remains no 

answer. By pragmatical asymptotical stability theorem, the question can be answered 

strictly. 

 

6.3 Yin and Yang Lorenz system 

The Yang Lorenz system [10] can be recalled firstly as follow: 

⎪
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                              (6-3-1)               

when initial condition ),,( 302010 xxx = (-0.1, 0.2, 0.3) and parameters a=10, b=8/3 and 

c=28,chaos of the Yang Lorenz system appears. The chaotic behavior of Eq. (6-3-1) is 

shown in Fig 6-1. 

Yin Lorenz equations are:  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−−−=
−
−

−−−−−−=
−
−

−−−=
−
−

)()()(
)(
)(

)()()()(
)(
)(

))()((
)(
)(

321
3

2311
2

12
1

tbxtxtx
td
tdx

txtxtxtcx
td
tdx

txtxa
td
tdx

                        (6-3-2) 

It is clear that in the left hand sides of Eq. (6-3-2), the derivative are taken with 

the back-time. When initial condition ),,( 302010 xxx = (-0.1, 0.2, 0.3) and parameters 

a=-10, b=-8/3 and c=-28, the chaotic behavior of Eq. (6-3-2) is shown in Fig 6-2.  
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6.4 Adaptive Yin-Yang synchronization by GYC partial region 

stability theory 

In this section, there are two Cases in simulation results. In Case 1, originally 

adaptive synchronization from Yin Lorenz chaos to Yang Lorenz chaos is proposed. In 

Case 2, adaptive synchronization by GYC partial region stability theory is presented to 

synchronize the Yin and Yang Lorenz chaos. The Yin Lorenz system is considered as 

slave system and the Yang Lorenz system is regarded as master system. These two 

equations are shown below: 

Master system- Yang Lorenz system: 
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                               (6-4-1) 

    Slave system- Yin Lorenz system: 
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                 (6-4-2) 

where ix (t) stands for states variables of the master system and iy (-t)the slave system, 

respectively. Parameters, a, b and c are positive uncertain parameters of master system. 

â , b̂ and ĉ are estimated parameters. 1u , 2u and 3u are nonlinear controller to 

synchronize the slave Lorenz system to master one, i.e., 

0lim =
∞→

e
t

                                                   (6-4-3) 

where the error vector e [ ])()()( 321 tetete= . 
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CASE 1: Adaptive synchronization from Yin to Yang Lorenz chaos. 

The error vector e [ ])()()( 321 tetete=  and 

⎪
⎩

⎪
⎨

⎧

−−=
−−=
−−=

)()()(
)()()(

)()()(

333

222

111

tytxte
tytxte

tytxte
                                        (6-4-4) 

From Eq. (6-4-4), we have the following error dynamics: 
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                      (6-4-5) 

    The two systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 

controllers and update laws are designed by pragmatical asymptotical stability 

theorem as follows: 

    Choosing Lyapunov function as: 

    )~~~(
2
1 2222

3
2
2

2
1 cbaeeeV +++++=                               (6-4-6) 

where âaa~ −= , b̂bb~ −=  and ĉcc~ −= . 

    Its time derivative is: 
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We choose the update laws for those uncertain parameters as: 
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                                    (6-4-8) 

Through Eqs. (6-4-7) and (6-4-8), the appropriate controllers can be designed as: 
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We obtain 

02
3

2
2

2
1 <−−−= eeeV&                                         (6-4-10) 

which is negative semi-definite function of 321 e,e,e , â , b̂ and ĉ . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin 

of error dynamics (6-4-5) and parameter dynamics (6-4-8) is asymptotically stable. By 

pragmatical asymptotically stability theorem (see Appendix A), D is a 6-manifold, 

6n = and the number of error state variables 3p = . When 0eee 321 === and 

â , b̂ , ĉ take arbitrary values, 0=V& ,so X is of 3 dimensions, 336pnm =−=−= , 

n1m <+  is satisfied. According to the pragmatical asymptotically stability theorem, 

error vector e approaches zero and the estimated parameters also approach the 

uncertain parameters. The equilibrium point is pragmatically asymptotically stable. 

Under the assumption of equal probability, it is actually asymptotically stable. The 

simulation results are shown in Figs. 6-3, 6- 4 and 6-5. 

 

CASE 2: Adaptive synchronization from Yin to Yang Lorenz chaos by GYC partial 

region stability theory. 

In order to obtain more simple controllers and achieve high efficiency in 

adaptive synchronization, GYC partial region stability theory is used here 
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We choose error vector e [ ])()()( 321 tetete=  and 
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                                    (6-4-11) 

where K is a constant and choose as 200 so that the error dynamics occurs in the first 

quadrant of state space of e. From Eq. (6-4-11), we have the following error 

dynamics: 
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                     (6-4-12) 

    The two systems will be synchronized for any initial condition by appropriate 

controllers and update laws for those estimated parameters. As a result, the following 

controllers and update laws are designed by pragmatical asymptotical stability 

theorem and GYC partial region stability theory as follows: 

    Choosing Lyapunov function as: 

    cbaeeeV ~~~
321 +++++=                                     (6-4-13) 

where aaa ˆ~ −= , bbb ˆ~
−=  and ccc ˆ~ −= .a, b and c are positive uncertain parameters 

and â , b̂ and ĉ are estimated parameters in negative initial values. V is a positive 

definite function in the first of the state space of 321 e,e,e , a~ ,b~ and c~ . 

    Its time derivative is: 
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We choose the update laws for those uncertain parameters as: 
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Through Eqs. (6-4-14) and (6-4-15), the appropriate controllers can be designed as: 
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We obtain 

0321 <−−−= eeeV&                                          (6-4-17) 

which is negative semi-definite function of 321 e,e,e , a~ ,b~ and c~ in the first quadrant of 

state space of 321 e,e,e , a~ ,b~ and c~ . The Lyapunov asymptotical stability theorem is 

not satisfied. We cannot obtain that common origin of error dynamics (6-4-12) and 

parameter dynamics (6-4-15) is asymptotically stable. By pragmatical asymptotically 

stability theorem (see Appendix A), D is a 6-manifold, 6n = and the number of error 

state variables 3p = . When 0eee 321 === and â , b̂ , ĉ take arbitrary 

values, 0V =& ,so X is of 3 dimensions, 336pnm =−=−= , n1m <+  is satisfied. 

According to the pragmatical asymptotically stability theorem, error vector e 

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. Under the assumption of 

equal probability, it is actually asymptotically stable. The simulation results are shown 
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in Figs. 6-6 and 6-7. 

 

6.5 Discussion 

In this Section, we are going to show the efficiency and effectiveness of our new 

approach via comparing Figs and numerical data. There are two main topics here: (1) 

Errors of states, (2) Errors of parameters. 

(1). Errors of states:  

The simulation results in Fig. 6-3 and Fig. 6-6 can be clearly found out that the 

errors in Case 2 (in Fig. 6-6) are reaching original point much faster than the errors in 

Case 1 (in Fig. 6-3). Further, the data of numerical results in Case 1 and Case 2 are 

also provided for comparing, which are listed in Table 6-2. 

 Table 6-2 shows that the errors in Case 2 are faster converging to original point 

than the errors in Case 1. When time is going to achieve 20s, the data of errors in Case 

2 are approaching to 71014 −×. and are greatly less than the data of errors in Case 1, 

5
1 1018e −×≈ . , 3

2 1031e −×≈ . and 4
3 1081e −×≈ . . 

(2). Errors of parameters:  

.   In Fig. 6-4 (Case 1), the time of achieving parametric terminal value is about 16s. 

In Fig. 6-7 (Case 2), the time of achieving parametric terminal value is only about 

0.1s. It can be found out when GYC partial region stability theory is used in 

pragmatical adaptive synchronization, the efficiency of parametric synchronization 

can be hugely raised up.  

On the other hand, the numerical data of parametric errors in Case 1 and 2 are 

listed in Table 6-3. In Table 6-3, the parametric errors for Case 2 are completely 

converging to the original point before 10.00s. Through our new strategy, the 

Yin-parameters of Yin Lorenz system can exactly approach to the Yang-parameters of 
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Yang Lorenz system via pragmatical asymptotically stability theorem. The numerical 

results are marvelously satisfactory. 

Through the comparison of figures and tables in simulation results, our new 

approach – pragmatical adaptive synchronization via GYC partial region stability 

theory is demonstrated as an effective and powerful tool. It is not only increasing the 

converging speed to our goal enormously (for errors of states and errors of parameters, 

the goal is original point), but also reducing the simulation errors. 
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Fig. 6-1. Projections of phase portrait of chaotic Yang Lorenz system with a=10, 

b=8/3 and c=28. 

 

Fig. 6-2. Projections of phase portrait of chaotic Yin Lorenz system with Yin 

parameters a=-10, b=-8/3 and c=-28. 
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Fig. 6-3. Time histories of errors for Yin and Yang Lorenz chaotic systems for Case 1 

 

Fig. 6-4. Time histories of parametric errors for Yin and Yang Lorenz chaotic systems 

for Case 1 
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Fig. 6-5. Phase portraits of synchronization of Yin and Yang Lorenz chaotic systems for 

Case 1 

 

 

Fig. 6-6. Time histories of errors for Yin and Yang Lorenz chaotic systems for Case 2 
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Fig. 6-7. Time histories of parametric errors for Yin and Yang Lorenz chaotic systems 

for Case 2 
 

 

 
Fig. 6-8. Time histories of errors in 20s for Case 1 

 



88 88

 
Fig. 6-9 Time histories of errors in 20s for Case 2 
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Table 6-1 Comparison between errors data at 19.96s, 19.97s, 19.98s, 19.99s and 
20.00s after the action of controllers 

Time Errors for Case 2 Errors for Case 1 
 e1 e1 

19.96s 
19.97s 
19.98s 
19.99s 
20.00s 

0.00000043256 
0.00000042826 
0.00000042399 
0.00000041978 
0.00000041560 

 0.00011282000 
 0.00010565000 
 0.00009795500 
 0.00008996100 
 0.00008187800 

 e2 e2 
19.96s 
19.97s 
19.98s 
19.99s 
20.00s 

0.00000043266 
0.00000042836 
0.00000042410 
0.00000041988 
0.00000041570 

-0.00210000000 
-0.00110000000 
-0.00020560000 
 0.00061179000 
 0.00130000000 

 e3 e3 
19.96s 
19.97s 
19.98s 
19.99s 
20.00s 

0.00000043378 
0.00000042947 
0.00000042519 
0.00000042096 
0.00000041677 

0.00009716000 
 0.00001637300 
-0.00006358000 
-0.00013330000 
-0.00018590000 
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Table 6-2 Comparison between parametric errors at 9.96s, 9.97s, 9.98s, 9.99s and 
10.00s after the action of controllers 

Time Errors for Case 2 Errors for Case 1 
 a~  a~  

9.96s 
9.97s 
9.98s 
9.99s 

10.00s 

0 
0 
0 
0 
0 

 0.00075110 
 0.00075450 
 0.00076372 
 0.00077850 
 0.00079843 

 b~  b~  
9.96s 
9.97s 
9.98s 
9.99s 

10.00s 

0 
0 
0 
0 
0 

-0.01620000 
-0.00630000 
 0.00430000 
 0.01440000 
 0.02310000 

 c~  c~  
9.96s 
9.97s 
9.98s 
9.99s 

10.00s 

0 
0 
0 
0 
0 

 1.10510000 
 0.93560000 
 0.75750000 
 0.57490000 
 0.39130000 
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Chapter 7 

Fuzzy Modeling and Synchronization of Complicated 

Nonlinear Systems via Novel Fuzzy Model and Its 

Implementation on Electronic Circuits 

7.1 Preliminaries 
In this Chapter, a new fuzzy model is presented to simulate complicated 

nonlinear systems, such as Quantum cellular neural networks nano system (called 

Quantum-CNN system) and Qi system. Quantum-CNN system is a complicated 

nonlinear system. There are too more nonlinear terms in its mathematical equations, 

such as radical terms, square terms, sin and cos terms, etc. If the traditional T-S fuzzy 

model is used here, there will be 16 fuzzy rules and even 64 linear equations for 

modeling such a complex system. It is definitely an inefficient work. As a result, by 

using the new fuzzy model, the numbers of fuzzy rules can be reduced 

from N2 to N2× (where N is the number of nonlinear terms) and only two subsystems 

will be existed. The fuzzy equations become much simpler. Moreover, the LMI-based 

fuzzy synchronization of two identical or totally different fuzzy chaotic systems, 

Q-CNN and Qi systems, and its related new theorem are proposed as well. Via using 

the new fuzzy model, only two feedback gains are needed in the fuzzy controllers. 

There are two examples in numerical simulation results to show the effectiveness and 

feasibility of our new model. Finally, via using Taylor’s expansion, the complicated 

nonlinear terms can be expanded to series form, and then the simplified Q-CNN 

system can be implemented on electronic circuits for secure communication. 

Simulation results in MATLAB and implementation of electronic circuits are given to 

show the effectiveness and feasibility of the new fuzzy model and the new 
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approaches. 

 

7.2 New fuzzy model theory 

In system analysis and design, it is important to select an appropriate model 

representing a real system. As an expression model of a real plant, the fuzzy 

implications and the fuzzy reasoning method suggested by Takagi and Sugeno are 

traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules. 

The core of the new fuzzy model is to express each nonlinear equation in two linear 

sub-equations by fuzzy IF-THEN rules and then take all the first linear sub-equations 

to form one linear subsystem and all the second linear sub-equations to form another 

linear subsystem. The overall fuzzy model of the system is achieved by fuzzy 

blending of this two linear subsystem models. Consider a continuous-time nonlinear 

dynamic system as follows:  

Equation i:  

rule 1: 

IF )t(zi  is 1iM  

THEN )t(uB)t(xA)t(x 1i1ii +=& , 

rule 2: 

IF )t(zi  is 2iM  

THEN )t(uB)t(xA)t(x 2i2ii +=& ,                               (7-2-1) 

where 

    T
n21 )]t(x),...,t(x),t(x[)t(x = , 

    T
n21 )]t(u),...,t(u),t(u[)t(u = , 

n...2,1i = (n is the number of nonlinear terms). 2i1i M,M are fuzzy sets, ii B,A are 

column vectors and )t(uB)t(xA)t(x ijiji +=& , 2,1j = , is the output from the first and 
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the second IF-THEN rules. Given a pair of (x(t), u(t)) and take all the first linear 

sub-equations to form one linear subsystem and all the second linear sub-equations to 

form another linear subsystem, the final output of the fuzzy system is inferred as 

follows: 
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&               (7-2-2) 

where 1M and 2M are diagonal matrices as following: 

dia [ ]1i21111 M...MM)M( = , dia [ ]2i22122 M...MM)M( =  

Note that for each equation i: 

    ∑
=

=
2

1j
iij 1))t(z(M , 

    0))t(z(M iij ≥ , i = 1, 2,…, n and j=1,2. 

    Via the new fuzzy model, the final form of the fuzzy model becomes very simple. 

The new model provides a much more convenient approach for fuzzy model research 

and fuzzy application. The simulation results of complicated chaotic systems are 

discussed in next Section. 

 

7.3 New Fuzzy model of complicated chaotic systems 

In this section, the new fuzzy models of two different chaotic systems, two-cell 

Quantum-CNN system and Qi system, are shown in Model 1 and Model 2. In order to 

investigate the convenience and effectiveness of the new fuzzy model, original T-S 

fuzzy model is given for comparison.  

Model 1: New fuzzy model of Quantum-CNN system 

For a two-cell Quantum-CNN, the following differential equations are obtained 
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                      (7-3-1) 

where x1 and x3 are polarizations, x2 and x4 are quantum phase displacements, a1 and 

a2 are proportional to the inter-dot energy inside each cell and ω1 and ω2 are 

parameters that weigh effects on the cell of the difference of the polarization of 

neighboring cells, like the cloning templates in traditional CNNs. 

When 83.0a1 −= , 53.0a 2 −= , 5.0w1 = and 5.0w 2 = (assume two balanced cells) and 

initial states chosen as (0.001, 0.005, 0.001, 0.005), the nano system is chaotic which 

is shown in Fig. 7-1. 

    If T-S fuzzy model is used for representing local linear models of Quantum-CNN 

nano system, there are going to be 16 fuzzy rules, 16 linear subsystems and 64 

equations. The process of modeling is shown as follow: 

    T-S fuzzy model: 

Assume that: 

(1) ]Z,Z[xsinx1 112
2
1 −∈−  and 0Z1 > ,  

(2) ]Z1,Z1[x1xcos 22
2
12 −+∈−  and 0Z2 > ,  

(3) ]Z,Z[xsinx1 334
2
3 −∈−  and 0Z3 > ,  

(4) ]Z1,Z1[x1xcos 44
2
34 −+∈−  and 0Z4 >  

Then we have the following T-S fuzzy rules: 

    Rule 1: IF 2
2
1 xsinx1− is 11M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 
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2
34 x1xcos − is 41M , THEN XAX 1=& . 

    Rule 2: IF 2
2
1 xsinx1− is 11M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 42M , THEN XAX 2=& . 

Rule 3: IF 2
2
1 xsinx1− is 11M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 41M , THEN XAX 3=& . 

    Rule 4: IF 2
2
1 xsinx1− is 11M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 42M , THEN XAX 4=& . 

Rule 5: IF 2
2
1 xsinx1− is 11M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 41M , THEN XAX 5=& . 

Rule 6: IF 2
2
1 xsinx1− is 11M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 42M , THEN XAX 6=& . 

Rule 7: IF 2
2
1 xsinx1− is 11M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 41M , THEN XAX 7=& . 

    Rule 8: IF 2
2
1 xsinx1− is 11M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 42M , THEN XAX 8=& . 

    Rule 9: IF 2
2
1 xsinx1− is 12M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 41M , THEN XAX 9=& . 

    Rule 10: IF 2
2
1 xsinx1− is 12M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 42M , THEN XAX 10=& . 
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Rule 11: IF 2
2
1 xsinx1− is 12M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 41M , THEN XAX 11=& . 

    Rule 12: IF 2
2
1 xsinx1− is 12M , 21

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 42M , THEN XAX 12=& . 

Rule 13: IF 2
2
1 xsinx1− is 12M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 41M , THEN XAX 13=& . 

Rule 14: IF 2
2
1 xsinx1− is 12M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 31M and 

2
34 x1xcos − is 42M , THEN XAX 14=& . 

Rule 15: IF 2
2
1 xsinx1− is 12M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 41M , THEN XAX 15=& . 

    Rule 16: IF 2
2
1 xsinx1− is 12M , 22

2
12 M isx1xcos − , 4

2
3 xsinx1− is 32M and 

2
34 x1xcos − is 42M , THEN XAX 16=& . 

    Then the final output of the two cells Quantum-CNN system can be composed 

by fuzzy linear subsystems mentioned above. It is obviously an inefficient and 

complicated work.  

     

    New fuzzy model: 

    By using the new fuzzy model, Quantum-CNN system can be linearized as 

simple linear equations. The steps of fuzzy modeling are shown as follow: 

Step of fuzzy modeling:  

Step 1: 
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Assume that ]Z,Z[xsinx1 112
2
1 −∈− and 0Z1 > , then the first equation of 

(7-3-1) can be exactly represented by new fuzzy model as following: 

    Rule 1: IF 2
2
1 xsinx1− is 11M , THEN 111 Za2x −=& ,               (7-3-2) 

    Rule 2: IF 2
2
1 xsinx1− is 12M , THEN 111 Za2x =&                  (7-3-3) 

where 

    )
Z

xsinx1
1(

2
1M

1

2
2
1

11
−

+= ,  )
Z

xsinx1
1(

2
1M

1

2
2
1

12
−

−= , 

and 01.0Z1 = . 11M and 12M are fuzzy sets of the first equation of (7-3-1) and 

1MM 1211 =+ .  

Step 2: 

Assume that ]1,1[1cos 22
2
12 ZZxx +−∈− and 0Z2 > , then the second 

equation of (8-3-1) can be exactly represented by new fuzzy model as following: 

    Rule 1: IF 2
12 x1xcos − is 21M , THEN  

2113112 Zxa2)xx(wx +−−=&                           (7-3-4) 

    Rule 2: IF 2
12 x1xcos − is 22M , THEN  

2113112 Zxa2)xx(wx −−−=&                           (7-3-5) 

where 

    )
Z

x1xcos
1(

2
1M

2

2
12

21
−

+= ,  )
Z

x1xcos
1(

2
1M

2

2
12

22
−

−= , 

and 01.0Z2 = . 21M and 22M are fuzzy sets of the second equation of (8-3-1) and 

1MM 2221 =+ . 

Step 3: 

Assume that ]Z,Z[xsinx1 334
2
3 −∈− and 0Z3 > , then the third equation of 
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(7-3-1) can be exactly represented by new fuzzy model as following: 

    Rule 1: IF 4
2
3 xsinx1−  is 31M , THEN 323 Za2x −=& ,              (7-3-6) 

    Rule 2: IF 4
2
3 xsinx1−  is 32M , THEN 323 Za2x =&                (7-3-7) 

where 

    )
Z

xsinx1
1(

2
1M

3

4
2
3

31
−

+= ,  )
Z

xsinx1
1(

2
1M

3

4
2
3

32
−

−= , 

and 01.0Z3 = . 31M and 32M are fuzzy sets of the third equation of (7-3-1) and 

1MM 3231 =+ . 

Step 4: 

Assume that ]Z1,Z1[x1xcos 44
2
34 +−∈− and 0Z4 > , then the fourth 

equation of (7-3-1) can be exactly represented by new fuzzy model as following: 

    Rule 1: IF 2
34 x1xcos − is 41M , THEN  

4321324 Zxa2)xx(wx +−−=&                          (7-3-8) 

    Rule 2: IF 2
34 x1xcos − is 42M , THEN  

4321324 Zxa2)xx(wx −−−=&                          (7-3-9) 

where 

    )
Z

x1xcos
1(

2
1M

4

2
34

41
−

+= ,  )
Z

x1xcos
1(

2
1M

4

2
34

42
−

−= , 

and 01.0Z4 = . 41M and 42M are fuzzy sets of the fourth equation of (7-3-1) and 

1MM 4241 =+ . 

Here, we call (7-3-2), (7-3-4), (7-3-6) and (7-3-8) the first liner subsystem under 

the fuzzy rules and (7-3-3), (7-3-5), (7-3-7) and (7-3-9) the second liner subsystem 

under the fuzzy rules. 

The first linear subsystem is 
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                                (7-3-10) 

The second linear subsystem is 

    

⎪
⎪
⎩

⎪
⎪
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⎧

−−−=
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=

4321324
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                                (7-3-11) 

The final output of the fuzzy Quantum-CNN system is inferred as follows and 

the chaotic behavior of fuzzy system is shown in Fig. 7-2. 
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       (7-3-12) 

Eq. (7-3-12) can be rewritten as a simple mathematical expression: 

)b)t(XA()t(X i
2

1i
ii +∑Ψ=

=

&                                      (7-3-13) 

where iΨ are diagonal matrices as follows: 

[ ]413121111 MMMM)(dia =Ψ , [ ]423222122 MMMM)(dia =Ψ  
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Via using new fuzzy model, the number of fuzzy rules in fuzzy Quantum-CNN 

system can be reduced from 42 to 42×  and only two subsystems can express such 

complex chaotic behaviors. The simulation results are perfectly the same to the 

original chaotic behavior of the Quantum-CNN system. 

 

Model 2: New fuzzy model of Qi system 

The four-order autonomous Qi system: 

    

⎪
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                                   (7-3-14) 

where y1, y2, y3 and y4 are the state variables of the system and a3, b3, c3 and d3 are all 

positive real parameters. This Qi system in Eq. (7-3-14) was recently introduced by 

Qi et al. [20] and it has been shown complex dynamical behavior including the 

familiar period-doubling route to chaos as well as Hopf bifurcations. For the system 

parameters: a3=35, b3=10, c3=1, d3=10 and initial conditions (y10, y20, y30, y40) = (2, 5, 

2, 5), the Qi model exhibits chaotic motion which is shown in Fig. 7-3 

First of all, T-S fuzzy model is used for representing local linear models of Qi 

system. The process of modeling is shown as follow: 

T-S fuzzy model: 

Assume that: 

(1) ]Z,Z[yy 5543 −∈ and 05 >Z ,  

(2) ]Z,Z[yy 6621 −∈  and 06 >Z ,  
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Then we have the following T-S fuzzy rules: 

    Rule 1: IF 43yy is 11N and 21yy is 21N ,THEN YCY 1=& . 

Rule 2: IF 43yy is 11N and 21yy is 22N ,THEN YCY 2=& . 

Rule 3: IF 43yy is 12N and 21yy is 21N ,THEN YCY 3=& . 

Rule 4: IF 43yy is 12N and 21yy is 22N ,THEN YCY 4=& . 

Then the final output of the Qi system can be composed by fuzzy linear 

subsystems mentioned above. There are 4 linear subsystems and 16 equations in this 

T-S fuzzy Qi system. 

 

Novel fuzzy model: 

Assume that: 

(1) ]Z,Z[yy 5543 −∈ and 05 >Z ,  

(2) ]Z,Z[yy 6621 −∈  and 06 >Z ,  

then we have the following T-S fuzzy rules: 

    Rule 1: IF 43yy is 11N ,THEN 
152132

251231

y)Zc()yy(by
y)Zc()yy(ay

+−+=
++−=

&

&
,         (7-3-15) 

    Rule 2: IF 43yy is 12N ,THEN 
152132

2551231

y)Zc()yy(by
yZ)Zc()yy(ay

−−+=
−+−=

&

&
,       (7-3-16) 

where 

    )
5Z

cyy
1(

2
1N 43

11
−

+= ,  )
5Z

cyy
1(

2
1N 43

12
−

−=  and 20c =  

and 

    Rule 1: IF 21yy is 21N ,THEN 
36434

46333

yZydy
yZycy

+−=
+−=

&

&
,                 (7-3-17) 

    Rule 2: IF 21yy is 22N ,THEN 
36434

46333

yZydy
yZycy

−−=
−−=

&

&
,                 (7-3-18) 

where 
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    )
6Z
yy

1(
2
1N 21

21 += ,  )
6Z
yy

1(
2
1N 21

22 −= . 

in Eqs. (7-3-15) ~ (7-3-18), 80Z5 = and 50Z6 = . 11N , 12N , 21N and 22N are fuzzy 

sets and 1NN 1211 =+ , 1NN 2221 =+ . 

Here, we call (7-3-15) and (7-3-17) the first liner subsystem under the fuzzy 

rules and (7-3-16) and (7-3-18) the second liner subsystem under the fuzzy rules. 

The first linear subsystem is 
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                                (7-3-19) 

The second linear subsystem is 
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                                (7-3-20) 

The final output of the fuzzy Qi system is inferred as follows and the chaotic 

behavior of fuzzy system is shown in Fig. 7-4. 
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      (7-3-21) 

Eq. (7-3-21) can be rewritten as a simple mathematical expression: 

)c~)t(YC()t(Y i
2

1i
ii +∑Γ=

=

&                                       (7-3-22) 

where  
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[ ]212111111 NNNN)(dia =Γ , [ ]222212122 NNNN)(dia =Γ  
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Via using new fuzzy model, two linear subsystems are enough to express such 

complex chaotic behaviors. The simulation results are perfectly the same to the 

original chaotic behavior of the Qi system. 

 

7.4 Fuzzy synchronization scheme  

In this Section, we are going to derive the new fuzzy synchronization scheme for 

two identical and totally different chaotic systems based on our new fuzzy model. 

For two identical chaotic systems: 

Given the following fuzzy systems as the master and slave systems, 

master system: 

)b~)t(XA()t(X i
2

1i
ii +∑Ψ=

=

&                                       (7-4-1)  

slave system: 

)t(BU)b)t(YA(~)t(Y i

2

1i
ii ++Ψ= ∑

=

&                                (7-4-2) 

Eq. (7-4-1) and Eq. 7-4-2) represent the same chaotic Quantum-CNN systems 

with different initial conditions, and Eq. (7-4-2) has control input U(t). Define the 

error signal as )t(Y)t(X)t(e −= , we have: 

)t(BU)b)t(YA(~)b)t(XA()t(Y)t(X)t(e i
2

1i
iii

2

1i
ii −+∑Ψ−+∑Ψ=−=

==

&&&     (7-4-3) 



104 104

The fuzzy controllers are designed as follow: 

)t(u)t(u)t(U 21 +=                                            (7-4-4) 

Where  

    ∑Ψ−∑Ψ=
==

2

1i
ii

2

1i
ii1 )t(YF~)t(XF)t(u  

    ∑ ΨΨ=
=

2

1i
iiii2 b)~,(E)t(u , iiiii

~)~,(E Ψ−Ψ=ΨΨ  

such that 0)t(e → as ∞→t . The design is to determine the feedback gains Fi. By 

substituting U(t) into (7-4-3), we obtain: 

{ } { }∑ −Ψ−∑ −Ψ=
==

2

1i
iii

2

1i
iii )t(Y)BFA(~)t(X)BFA()t(e&                  (7-4-5) 

Theorem 7-1: The error system in Eq. (7-4-5) is asymptotically stable and the 

slave system in Eq. (7-4-2) can synchronize the master system in Eq. (7-4-1) under 

the fuzzy controller in Eq. (7-4-4) if the following conditions can be satisfied: 

0)BFA()BFA(H ii11 <−=−= , i=1~2.                          (7-4-6) 

Proof: 

The errors in Eq. (7-4-5) can be exactly linearized via the fuzzy controllers in Eq. 

(7-4-4) if there exist the feedback gains Fi such that 

0)BFA()BFA( 2211 <−=− .                                   (7-4-7) 

Then the overall control system is linearized as 

)t(Ge)t(e =& ,                                                 (7-4-8) 

where 0)BFA()BFA(G 2211 <−=−= . 

As a consequence, the error system (7-4-5) via the fuzzy controller (7-4-4) can 

be asymptotically stable. 

For two totally different chaotic systems: 

Given the following fuzzy systems as the master and slave systems, 

master system: 
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)b~)t(XA()t(X i
2

1i
ii +∑Ψ=

=

&                                       (7-4-9) 

slave system:  

)t(BU)c~)t(YC()t(Y i
2

1i
ii ++∑Γ=

=

&                                (7-4-10) 

Eq. (7-4-9) and Eq. (7-4-10) represent the two different chaotic systems, and Eq. 

(7-4-10) has control input U(t). Define the error signal as )t(Y)t(X)t(e −= , we have: 

)t(BU)c~)t(YC()b~)t(XA()t(Y)t(X)t(e i
2

1i
iii

2

1i
ii −+∑Γ−+∑Ψ=−=

==

&&&     (7-4-11) 

The fuzzy controllers are designed as follow: 

)t(u)t(u)t(U 21 +=                                           (7-4-12) 

Where  

    ∑Γ−∑Ψ=
==

2

1i
ii

2

1i
ii1 )t(YP)t(XF)t(u , 

    ∑Γ−∑Ψ=
==

2

1i
ii

2

1i
ii2 c~b~)t(u  

such that 0)t(e → as ∞→t . The design is to determine the feedback gains Fi and Pi. 

By substituting U(t) into (7-4-11), we obtain: 

{ } { }∑ −Γ−∑ −Ψ=
==

2

1i
iii

2

1i
iii )t(Y)BPC()t(X)BFA()t(e&                 (7-4-13) 

Theorem 7-2: The error system in Eq. (7-4-13) is asymptotically stable and the 

slave system in Eq. (7-4-10) can synchronize the master system in Eq. (7-4-9) under 

the fuzzy controller in Eq. (7-4-12) if the following conditions below can be satisfied: 

0)BPC()BFA()BFA(G iiii11 <−=−=−= , i=1~2.               (7-4-14) 

Proof: 

The errors in Eq. (9-3-5) can be exactly linearized via the fuzzy controllers in Eq. 

(7-4-12) if there exist the feedback gains Fi such that 

0)BPC()BPC()BFA()BFA( 22112211 <−=−=−=− .            (7-4-15) 

Then the overall control system is linearized as 
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)t(Ge)t(e =& ,                                               (7-4-16) 

where 0)BPC()BPC()BFA()BFA(G 22112211 <−=−=−=−= . 

As a consequence, the error system (7-4-13) linearized via the fuzzy controller 

(7-4-12) can be asymptotically stable. 

 

7.5 Simulation results 

In this section, we are going to achieve fuzzy synchronization of two chaotic 

Quantum-CNN systems and two totally different chaotic system, Quantum-CNN and 

Qi systems, via using the new scheme which is given in section 7.4.  

For two identical chaotic systems: 

Eq. (7-3-13) is chosen as the master system and the following fuzzy controlled 

Quantum-CNN system is the slave system with different initial conditions (1, 5, 1, 5). 

)t(BU)b)t(YA(~)t(Y i
2

1i
ii ++∑Ψ=

=

&                                (7-5-1) 

where i
~Ψ are diagonal matrices as follows:  

[ ]413121111 M~M~M~M~)~(dia =Ψ , [ ]423222122 M~M~M~M~)~(dia =Ψ  
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    The error and error dynamics are: 
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B is chosen as identity matrix and the fuzzy controllers in Eq. (7-4-4) are used: 
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According to Theorem 1, we have [ ] [ ] 0BFABFAH 2211 <−=−= . H is chosen 

as: 
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Thus, the feedback gains F1 and F2 can be determined by the following equation: 
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The synchronization errors are shown in Fig. 7-5. It is clear that the error 

dynamics system has already achieved asymptotically stable. 

For two totally different chaotic systems: 

Via T-S fuzzy model, different chaotic systems may be transformed into different 

fuzzy chaotic systems with different number of subsystems. However, when it comes 

to synchronization of two totally different chaotic systems, the traditional method - 

employing the idea of PDC to design the fuzzy control law for stabilization of the 

error dynamics is not work. This is due to different number of subsystems. As a 

result, through the new fuzzy model, there are only two subsystems in fuzzy Qi 

system and fuzzy Quantum-CNN system and the idea of PDC and LMI-based 

synchronization can be applied to. . 

The fuzzy Quantum-CNN system in Eq. (7-3-13) is chosen as the master system 

and the fuzzy slave system, Qi system, with fuzzy controllers is as follow: 

)t(BU)t(YC)t(Y
2

1i
ii +∑Γ=

=

&                                      (7-5-6) 

where iΓ are diagonal matrices  

[ ]212111111 NNNN)(dia =Γ , [ ]222212122 NNNN)(dia =Γ  

and 
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Therefore, the error and error dynamics are: 
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B is chosen as identity matrix and the fuzzy controllers in Eq. (7-4-12) are used: 
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According to Theorem 1, we have [ ] [ ] [ ]112211 BFCBFABFAG −=−=−=  

[ ] 0BFC 22 <−= . G is chosen as: 
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Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 
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The synchronization errors are shown in Fig. 7-6. It is clear that the error dynamics 

system has already achieved asymptotically stable. 

 

7.6 Implementation of electronic circuits by series expansion method 

In this section, the implementations of chaotic Quantum-CNN systems on 

electronic circuits are presented. While Quantum-CNN system is a complicated 

nonlinear system, there are too more nonlinear terms in its mathematical equations, 

such as radical terms, square terms, sin and cos terms, etc. Implementing such a 

complicated system in electronic circuits without any simplified process is really 

impossible. The Quantum-CNN system is definitely simplified to a simpler form via 

our new fuzzy model, but there are still some nonlinear terms, especially the radical 

terms, contained in the membership functions (The same problems are also existed in 

T-S fuzzy model). As a result, a new approach (which is called series expansion form) 

is given in this section to approximately implement the Quantum-CNN systems on 

electronic circuits.  

    Eq. (7-3-1) is rewritten as:  
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where m1, m2, m3 and m4 are the nonlinear terms in Q-CNN system which are shown 

in Eq. (7-6-2) as follow: 
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                                      (7-6-2) 

    In order to approximately simulate the complicated Quantum-CNN system, we 

expand the right-hand sides of Eq. (7-6-2) into power series: 

    

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−++−

++−+−+
−

++−++−

++−+−+
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

...x
8
5xx

4
1x

2
1xx

24
1xx

2
1x

...x
120

1x
6
1xxx

8
1xx

12
1xx

2
1

...x
8
5xx

4
1x

2
1xx

24
1xx

2
1x

...x
120

1x
6
1xxx

8
1xx

12
1xx

2
1

m
m
m
m

5
3

2
4

3
3

3
3

4
43

2
433

5
4

3
444

4
3

3
4

2
34

2
3

5
1

2
2

3
1

3
1

4
21

2
211

5
2

3
222

4
1

3
2

2
12

2
1

4

3

2

1

       (7-6-3) 

It is well-known [27] that necessary and sufficient condition for the convergence 

of the infinite series: 

...u...uu n21 ++++                                           (7-6-4) 

is that for any previously assigned positiveε , there exists an N such that, for any n > 

N and for positive p, 

    ε<+++ +++ pn2n1n u...uu                                      (7-6-5) 

From Fig. 1, we know that  

1x i < , i=1~4,                                               (7-6-6) 

therefore, series in Eq. (7-6-3) which satisfy condition in Eq. 7-6-5), are convergent 

and has a bounded sum. 
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    Due to the values of the states in Quantum-CNN nano systems and the behaviors 

of nonlinear terms are smaller then 1, the high order terms can be ignored reasonably. 

In order to show the feasibility of the series expansion form with neglecting high 

order terms, three cases are proposed to investigate the accuracy of our method.  

    Case 1: Considering the order of the term ≤  6. Then the nonlinear terms are: 
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          (7-6-7) 

    By Substituting Eq. (7-6-7) into Eq. (7-6-1), an approximate series expansion 

form of chaotic Quantum-CNN system is obtained. The simulation results in 

MATLAB are shown in Fig. 7-7. Fig. 7-7 gives the projections of phase portraits of 

Quantum-CNN system in Case 1.  

 

    Case 2: Considering the order of the term ≤  3. Then the nonlinear terms are: 
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    By Substituting Eq. (7-6-8) into Eq. (7-6-1), an approximate series expansion 

form of chaotic Quantum-CNN system is obtained. The simulation results in 

MATLAB are shown in Fig. 7-8. Fig. 7-8 gives the projections of phase portraits of 

Quantum-CNN system in Case 2.  
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Case 3: Considering the order of the term ≤  1. Then the nonlinear terms are: 
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    By Substituting Eq. (7-6-9) into Eq. (7-6-1), an approximate series expansion 

form of chaotic Quantum-CNN system is obtained. The simulation results in 

MATLAB are shown in Fig. 7-9. Fig. 7-9 gives the projections of phase portraits of 

Quantum-CNN system in Case 3. 

    Through observing Case 1, Case 2 and Case 3, it is clear that using the series 

expansion form can approximately realize the original chaotic motion of 

Quantum-CNN nano system with acceptable errors via ignoring the order of the terms 

> 1 as well. As a consequence, the model in Case 3 is decided to use for 

implementation of electronic circuits of chaotic Quantum-CNN nano system. The 

chaotic motion of Quantum-CNN system and the configuration of electronic circuits 

are shown in Fig. 7-10 and Fig. 7-11. 
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Fig. 7-1. Chaotic behavior of Q-CNN system. 

 
 

 

 
Fig. 7-2. Chaotic behavior of new fuzzy Q-CNN system. 
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Fig. 7-3. Chaotic behavior of Qi system. 

 
 

 

 
Fig. 7-4. Chaotic behavior of new fuzzy Qi system. 
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Fig. 7-5 Time history of errors via fuzzy feedback gain.  

 

 

 
Fig. 7-6. Time histories of errors for Case I. 
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Fig. 7-7 Chaotic behavior in Case 1. 

 

 
Fig. 7-8 Chaotic behavior in Case 2. 
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Fig. 7-9 Chaotic behavior in Case 3. 
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Fig. 7-10 Implementation on electronic circuits of Chaotic Q-CNN system. 
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Fig. 7-11 Configuration of electronic circuits. 
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Chapter 8 

Generalized Synchronization of Different Chaotic Systems 

by Fuzzy Logic Constant Controller 

8.1 Preliminaries 

The fuzzy logic constant controller (FLCC) is introduced in this Chapter. Unlike 

traditional method, a simplest controller is proposed via fuzzy logic design and 

Lyapunov direct method. Controllers in traditional method by Lyapunov direct 

method are always complicated or the functions of errors. We propose a new idea to 

design constant numbers as controllers, while the constant numbers are decided by the 

upper bound and the lower bound of the error derivatives. Via fuzzy logic rules, the 

strength of controllers in our new approach can be adjusted according to the error 

derivatives. Consequently, the slave system becomes exactly and efficiently 

synchronized to the trajectory of master system through FLCC. Two examples, 

Lorenz system and four order Chen-Lee system, are presented to illustrate the 

effectiveness of the new controllers in chaos generalized synchronization. 

 

8.2 Generalized Synchronization by FLCC Scheme 

8.2.1 Generalized Synchronization Scheme 

There are two nonlinear dynamical systems, while the master system controls the 

slave system. The master system is given by 

)(xfAxx +=&                                               (8-2-1) 

where 1 2[ , , ]T n
nx x x x R= ∈L  denotes a state vector, A is an n n×  constant 

coefficient matrix and f is a nonlinear vector function.  
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The slave system is given by 

uygByy ++= )(&                                            (8-2-2) 

where 1 2[ , , ]T n
ny y y y R= ∈L  denotes a state vector, B is an n n×  constant 

coefficient matrix, g is a nonlinear vector function., and nT
n Ruuuu ∈= ],,,[ 21 L is 

a constant control input vector. 

Our goal is to design appropriate fuzzy rules and corresponding constant 

controllers u so that the state vector of the chaotic system (8-2-1) asymptotically 

approaches the state vector of the master system (8-2-2). 

The generalized chaos synchronization can be accomplished in the sense that 

the limit of the error vector [ ]1 2( ) , , , T
ne t e e e= L  approaches zero: 

lim 0
t

e
→∞

=                                                    (8-2-3) 

where 

yxHe −= )(                                                (8-2-4) 

where )(xH is a given vector function of x. From Eq. (8-2-4) we have 

yx
x
xHe &&& −

∂
∂

=
)(                                              (8-2-5) 

u)y(GBy)]x(fAx[
x

)x(He −−−+
∂

∂
=&                            (8-2-6)                

A Lyapnuov function )(eV  is chosen as a positive definite function 

eeeV T

2
1)( =                                                (8-2-7) 

Its derivative along any solution of the differential equation system consisting 

of Eq. (8-2-6) is            

)]u)y(gBy))x(fAx(
x

)x(H[(e)e(V T −−−+
∂

∂
=&                    (8-2-8) 

If fuzzy constant controllers u can be appropriately chosen so that eCeV T=& , C is a 

diagonal negative definite matrix, and V&  is a negative definite function of e. By 



123 123

Lyapunov theorem of asymptotical stability: 

    0lim =
∞→

e
t

                                                   (8-2-9) 

The generalized synchronization is obtained. The design process of FLCC is 

introduced in the following section. 

8.2.2 Fuzzy logic constant controller design process 

The basic configuration of the fuzzy logic system is shown in Fig. 8-1. It is 

composed of five function blocks [23]: 

1. A rule base contains a number of fuzzy if-then rules. 

2. A database defines the membership functions of the fuzzy sets used in fuzzy rules. 

3. A decision-making unit performs the inference operations on the rules. 

4. A fuzzification interface transforms the crisp inputs into degrees of match with 

linguistic value. 

5. A defuzzification interface transforms the fuzzy results of the inference into a 

crisp output. 

The fuzzy rules base consists of collection of fuzzy if-then rules expressed as the 

form if a is A then b is B, where a and b denote linguistic variables, A and B represent 

linguistic values which are characterized by membership functions. All of the fuzzy 

rules can be used to construct the fuzzy associated memory. 

We use two signals, [ ]Tnm21 eeeete LL ,,)( = in Eq. (8-2-4) and 

[ ]Tnm21 e,ee,e)t(e &L&L&&& = in Eq. (8-2-5), as the antecedent part of the proposed FLCC 

to design the control inputu in Eq. (8-2-8) that will be used in the consequent part of 

the proposed FLCC as follows: 

    [ ]Tnm21 uuuuu LL ,,=                                        (8-2-10) 

where u is a constant column vector and the FLCC accomplishes the objective to 
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stabilize the error dynamics (8-2-6). In this Section, we are not going to use the 

original fuzzy rule base, but using it in each error dynamics separately. In order to 

obtain the simplest controllers, the ith if–then rule of the fuzzy rule base of the FLCC 

is of the following form: 

    Rule i : if em is Xi  then me& is Yi and umi =constant                  (8-2-11) 

where Xi is the input fuzzy sets of em, m=1~n, Yi is the output fuzzy sets of me&  and 

miu  is the i-rd output of me& which is a constant controller. For given input sign of the 

process variables em, then the output sign of me& would be decided and its degree of 

membership iXμ , i= 1~3 called rule-antecedent weights are calculated. The centriod 

defuzzifier evaluates the output of all rules as follows: 
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miix

m

u
u                                            (8-2-12) 

    The fuzzy rule base is listed in Table 8-1, in which the input variables in the 

antecedent part of the rules are em and the output variable ，in the consequent part 

are me& and miu .  

Table 8-1 Rule-table of FLCC 

Rule Antecedent Consequent Part 1 Consequent Part 2

 em me&  miu  

1 Positive (P) Negative (N) 1mu  

2 Negative (N) Positive (P) 2mu  

3 Zero (Z) Zero (Z) 3mu  

The membership function is obtained via the method shown in Fig. 8-2. After 

designing appropriate fuzzy logic constant controllers, a negative definite of V& in Eq. 

(8-2-9) can be obtained and the asymptotically stability of Lyapunov theorem can be 

achieved. 
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8.3 Simulation Results 

10.3.1 Example 1-Synchronization of Master and Slave Lorenz system 

The master Lorenz system [24] is: 
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When initial condition ),,( 302010 xxx = (-0.1, 0.2, 0.3) and parameters a=10, b=8/3 and 

c=28, chaos of the Lorenz system appears. The chaotic behavior of Eq. (8-3-1) is 

shown in Fig 8-3. 

The slave Lorenz system is: 
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                         (8-3-2) 

When initial condition ),,( 302010 yyy = (0.5, 0.7, 1.5) and parameters are the same as 

that of Eq. (8-3-1), chaos of the slave Lorenz system appears as well. 1u , 2u and 3u are 

FLCC to synchronize the slave Lorenz system to master one, i.e., 

0lim =
∞→

e
t

                                                   (8-3-3) 

where the error vector 
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From Eq. (8-3-4), we have the following error dynamics:                      
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Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2
1V ++=                                           (8-3-6) 

Its time derivative is: 
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    In order to design FLCC, we divide Eq. (8-3-7) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2
1V ++=++= )( , then 321332211 VVVeeeeeeV &&&&&&& ++=++= , 

where 2
11 e

2
1V = , 2

22 e
2
1V = and 2

33 e
2
1V = . 

Part 1: )))(()(( 112121111 uyyaxxaeeeV +−−−== &&  

Part 2: ))((( 2231123112222 uyyycyxxxcxeeeV +−−−−−== &&  

Part 3: )))((( 33213213333 ubyyybxxxeeeV +−−−== &&  

Part 1: 

    FLCC in Part 1 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as 

follows and the maxima value and minima value of 1e& (without any controller) can be 

observed in time history of error derivatives drawn in Fig 8-4. We choose f1 to be the 

upper bound value and g1 to be the lower bound value of 1e& (without any controller), 

they are satisfied with 111 )controllerany (without gef << & and f1, g1 are all constants. 

Rule 1: if e1 is P, then 1e& is N and we take u11 =f1 

Rule 2: if e1 is N, then 1e& is P and we take u12 = g1                           
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Rule 3: if e1 is Z, then 1e& is Z and we take u13 =0=e1 

where f1=-g1= constant=400 and we choose u13 =0=e1 when e1 approaches to zero. 

We take Rule 1~3 in Part 1, 111 eeV && = , for explaining: 

Rule 1: if e1 is P, then 1e& is N and we take u11 =f1: 

    ))()(( 112121111 fyyaxxaeeeV −−−−== &&  

where 0e1 > and 0fcontrollerwithoutefyyaxxa 1111212 <−=−−−− ))(())()(( & . 

Therefore, 0fyyaxxaeeeV 112121111 <−−−−== ))()((&&  and is going to approach 

asymptotically stable. 

Rule 2: if e1 is N, then 1e& is P and we take u12 = g1 

    ))()(( 112121111 gyyaxxaeeeV −−−−== &&  

where 0e1 < and 0))(())()(( 1111212 >−=−−−− gcontrollerwithoutegyyaxxa & . 

Therefore, 0))()(( 112121111 <−−−−== gyyaxxaeeeV &&  and is going to approach 

asymptotically stable. 

Rule 3: if e1 is Z, then 1e& is Z and we take u13 =0=e1 

    ))()(( 112121111 eyyaxxaeeeV −−−−== &&  

where 0e1 = and we don’t need any controller now. Therefore, 0eeV 111 == &&  and 

achieve asymptotically stable. 

As a results, FLCC in Part 1 can be obtained from Rule 1,2 and 3: 
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13Z12N11P
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μ+μ+μ
×μ+×μ+×μ

=                               (8-3-8) 

Part 2: 

FLCC in Part 2 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as 

follows and the maxima value and minima value of 2e& (without any controller) can be 

observed in time history of error derivatives drawn in Fig 8-4. We choose f2 to be the 

upper bound value and g2 to be the lower bound value of 2e& (without any controller), 

they are satisfied with 222 )controllerany (without gef << & and f2, g2 are all constants. 
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Rule 1: if e1 is P, then 1e& is N and we take u11 =f1 

Rule 1: if e2 is P, then 2e& is N and u21 = f2 

Rule 2: if e2 is N, then 2e& is P and u22 = g2                           

Rule 3: if e2 is Z, then 2e& is Z and u23 =0=e2 

where f2=-g2= constant=500 and we choose u23 =0=e2 when e2 approaches to zero. 

The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 2 

can be obtained from Rule 1,2 and 3 and are going to take 0eeV 222 <= && : 
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=                               (8-3-9) 

Part 3: 

FLCC in Part 3 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as 

follows and the maxima value and minima value of 3e& (without any controller) can be 

observed in time history of error derivatives drawn in Fig 8-4. We choose f3 to be the 

upper bound value and g3 to be the lower bound value of 3e& (without any controller), 

they are satisfied with 333 )controllerany (without gef << & and f3, g3 are all constants. 

Rule 1: if e3 is P, then 3e& is N and u31 = f3 

Rule 2: if e3 is N, then 3e& is P and u32 = g3                           

Rule 3: if e3 is Z, then 3e& is Z and u33 =0=e3 

where f3=-g3= constant=500 and we choose u33 =0=e3 when e3 approaches to zero. 

The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 3 

can be obtained from Rule 1,2 and 3 and are going to take 0eeV 333 <= && : 

    
ZNP

33Z32N31P
3

uuu
u

μ+μ+μ
×μ+×μ+×μ

=                              (8-3-10) 

    FLCC are proposed in Part 1,2 and 3 and are going to take 

0eeV 111 <= && , 0eeV 222 <= && and 0eeV 333 <= && . Hence, we have 0VVVV 321 <++= &&&& . 

It is clear that all of the rules in our FLC can lead the Lyapunov function to approach 
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asymptotically stable and the simulation results are shown in Fig. 8-5 and 8-6. 

 

8.3.2 Example 2-Generalized Synchronization of different order chaotic system- 

Lorenz and New Chen-Lee system 

Chen and Lee gave a new chaotic system [25] in 2004, which is now called the 

Chen–Lee system [26]. The system is described by the following nonlinear 

differential equations and is denoted as system (8-3-11): 
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                                (8-3-11)               

where z1, z2 and z3 are state variables, and a1, b1, and c1 are three system parameters. 

When (a1, b1, c1) = (5,-10,-3.8), system (8-3-11) is a chaotic attractor. The positive 

Lyapunov exponent of this attractor is 8801 .=λ , while the other ones are 02 =λ and 

57133 .−=λ , respectively. It is clear that the Chen-Lee system is a regular chaotic 

system. For more-detailed dynamics of the Chen-Lee system, see Ref. [25]. 

    It is known that in order to obtain hyper-chaos, there are two important requisites: 

(1) the minimal dimension of the phase space that embeds a hyper-chaotic attractor 

should be at least four, which requires a minimum of four couple first-order 

autonomous ordinary differential equations; and (2) the number of terms in the couple 

equations giving rise to instability should be at least two, of which at least one should 

be a nonlinear function. In [27], Chen and Lee introduce a nonlinear feedback 

controller to the third equation of system (8-3-11), the following dynamic system can 

be obtained: 
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                       (8-3-12) 

where d is a constant, determining the dynamic behaviors of the system (8-3-12) and 

a1, b1, and c1 are three system parameters. Thus, controller z4 causes chaotic system 

(8-3-11) to become a four-dimensional system, which has four Lyapunov exponents. 

This may lead to a hyper-chaotic system. When (a1, b1, c1) = (5,-10,-3.8) and we 

choose d=1.3, system (8-3-12) is a hyper-chaotic attractor. The projection of phase 

portraits of system (8-3-12) with hyper-chaotic behaviors is shown in Fig. 8-7.  

    Eq. (8-3-12) is chosen as slave system to be synchronized with the master system 

(8-3-12). Our goal is [ ] =e [ ] =)t(e),t(e),t(e 321 [ ),t(y)t(z),t(y)t(z 2311 −−  

])t(y)t(z 34 − . As a result, we get the following error dynamics: 
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Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2
1V ++=                                          (8-3-14) 

Its time derivative is: 
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    We divide Eq. (8-3-15) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2
1V ++=++= )( , then 321332211 VVVeeeeeeV &&&&&&& ++=++= , 

where 2
11 e

2
1V = , 2

22 e
2
1V = and 2

33 e
2
1V = . 

Part 1: )))((( 11211321111 uyyazazzeeeV +−−+−== &&  

Part 2: )))((
3
1( 2231131212222 uyyycyzczzeeeV +−−−+== &&  

Part 3: )))((
20
1

2
1( 3321432113333 ubyyyzzzzdeeeV +−−++== &&  

Part 1: 

    FLCC in Part 1 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as 

follows and the maxima value and minima value of 1e& (without any controller) can be 

observed in time history of error derivatives drawn in Fig 8-4. We choose f4 to be the 

upper bound value and g4 to be the lower bound value of 1e& (without any controller), 

they are satisfied with 414 )controllerany (without gef << & and f4, g4 are all constants. 

Rule 1: if e1 is P, then 1e& is N and we take u11 =f4 

Rule 2: if e1 is N, then 1e& is P and we take u12 = g4                           

Rule 3: if e1 is Z, then 1e& is Z and we take u13 =0=e1 

where f4=-g4= constant=2000 and we choose u13 =0=e1 when e1 approaches to zero. 

We take Rule 1~3 in Part 1, 111 eeV && = , for explaining: 

Rule 1: if e1 is P, then 1e& is N and we take u11 =f4: 

    ))(( 41211321111 fyyaxaxxeeeV −−−+−== &&  
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where 0e1 > and 0))(())(( 414121132 <−=−−−+− fcontrollerwithoutefyyazazz & . 

Therefore, 0))(( 41211321111 <−−−+−== fyyazazzeeeV &&  and is going to approach 

asymptotically stable. 

Rule 2: if e1 is N, then 1e& is P and we take u12 = g4 

    ))(( 41211321111 gyyaxaxxeeeV −−−+−== &&  

where 0e1 < and 0))(())(( 414121132 >−=−−−+− gcontrollerwithoutegyyaxaxx & . 

Therefore, 0))(( 41211321111 <−−−+−== gyyaxaxxeeeV &&  and is going to 

approach asymptotically stable. 

Rule 3: if e1 is Z, then 1e& is Z and we take u13 =0=e1 

    ))(( 11211321111 eyyaxaxxeeeV −−−+−== &&  

where 0e1 = and we don’t need any controller now. Therefore, 0eeV 111 == &&  and 

achieve asymptotically stable. 

As a results, FLCC in Part 1 can be obtained from Rule 1,2 and 3: 
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μ+μ+μ
×μ+×μ+×μ

=                              (8-3-16) 

Part 2: 

FLCC in Part 2 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as 

follows and the maxima value and minima value of 2e& (without any controller) can be 

observed in time history of error derivatives drawn in Fig 8-4. We choose f5 to be the 

upper bound value and g5 to be the lower bound value of 2e& (without any controller), 

they are satisfied with 525 )controllerany (without gef << & and f5, g5 are all constants. 

Rule 1: if e2 is P, then 2e& is N and u21 = f5 

Rule 2: if e2 is N, then 2e& is P and u22 = g5                           

Rule 3: if e2 is Z, then 2e& is Z and u23 =0=e2 

where f5=-g5= constant=1000 and we choose u23 =0=e2 when e2 approaches to zero. 
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The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 2 

can be obtained from Rule 1,2 and 3 and are going to take 0eeV 222 <= && : 
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=                              (8-3-17) 

Part 3: 

FLCC in Part 3 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as 

follows and the maxima value and minima value of 3e& (without any controller) can be 

observed in time history of error derivatives drawn in Fig 8-4. We choose f6 to be the 

upper bound value and g6 to be the lower bound value of 3e& (without any controller), 

they are satisfied with 636 )controllerany (without gef << & and f6, g6 are all constants. 

Rule 1: if e3 is P, then 3e& is N and u31 = f6 

Rule 2: if e3 is N, then 3e& is P and u32 = g6                           

Rule 3: if e3 is Z, then 3e& is Z and u33 =0=e3 

where f3=-g3= constant=2000 and we choose u33 =0=e3 when e3 approaches to zero. 

The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 3 

can be obtained from Rule 1,2 and 3 and are going to take 0eeV 333 <= && : 
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=                              (8-3-18) 

    FLCC are proposed in Eq. (8-3-16), (8-3-17) and (8-3-18) and are going to 

take 0eeV 111 <= && , 0eeV 222 <= && and 0eeV 333 <= && separately. Hence, we 

have 0VVVV 321 <++= &&&& . It is clear that all of the rules in our FLC can lead the 

Lyapunov function to approach asymptotically stable and the simulation results are 

shown in Figs. 8-9 and 8-10. 
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Fig.8-1. The configuration of fuzzy logic controller. 

 
 

 

Fig. 8-2. Membership function. 
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Fig. 8-3. Projections of phase portrait of chaotic Lorenz system with a=10, b=8/3 and 

c=28. 

 

Fig. 8-4. Time histories of error derivatives for master and slave Lorenz chaotic 

systems without controllers. 
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Fig. 8-5 Time histories of errors for Example 1- the FLCC is coming into after 30s. 

 

 

Fig. 8-6. Time histories of states for Example 1- the FLCC is coming into after 30s. 
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Fig. 8-7. Projections of phase portrait of chaotic Chen-Lee system. 

 

 
Fig. 8-8. Time histories of error derivatives for master and slave chaotic systems 

without controllers. 
 



138 138

 
Fig. 8-9. Time histories of errors for Example 2- the FLCC is coming into after 30s. 

 
 

 
Fig. 8-10. Time histories of states for Example 2- the FLCC is coming into after 30s. 
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Chapter 9 

Conclusions 

In this thesis, hyperchaos of new chaotic systems with three positive Lyapunov 

exponents, Yin-Yang chaos, new fuzzy model to simulate the complicated chaotic 

behaviors via only two linear subsystems, new fuzzy logic controllers, generalized 

chaos synchronization via GYC partial region stability theory and pragmatical 

asymptotically stability theorem are presented.  

In Chapter 2, 7 Tables and 14 Figs are proposed to investigate the Yin-Yang 

chaos of the Lorenz system. This topic, Yin-Yang chaos, explores another half battle 

field for chaos study, may have epoch-making significance in the future.  

In Chapter 3, the autonomous Mathieu-van der pol autonomous system with four 

state variables can exhibit hyperchaos with three positive Lyapunov exponents have 

been investigated in phase portraits, power spectrum, parameter diagrams and 

Lyapunov exponents.  

In Chapter 4 and 5, a new strategy by using GYC partial region stability theory is 

proposed to achieve chaos control and generalized synchronization. Via using the 

GYC partial region stability theory, the new Lyapunov function used is a simple linear 

homogeneous function of states and the lower order controllers are much more simple 

and introduce less simulation error. The new chaotic Mathieu-van der Pol system and 

new chaotic Mathieu-Duffing system system are used as simulation examples which 

confirm the scheme effectively.  

In Chapter 6, a new strategy, pragmatical asymptotically stability theorem via 

GYC partial region stability theory, are proposed to achieve adaptive Yin-Yang 

synchronization of Yin chaos and Yang chaos. Via comparison of numerical simulation 

results listed in Table 6-1 and 6-2, it is very obvious that there is high efficiency in 
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adaptive synchronization when using our new strategy.  

In Chapter 7, two totally different and complicated chaotic systems, 

Quantum-CNN system and Qi system is successfully and efficiently simulated and 

synchronized via the new fuzzy model. Through the new idea, not only a complicated 

nonlinear system can be linearized to a simple form – linear coupling of only two 

linear subsystems and the numbers of fuzzy rules can be reduced from N2 to N2× , but 

also the idea of PDC and LMI-based method can be applied to synchronize two totally 

different fuzzy systems. The asymptotical stability of the error dynamic systems can 

be achieved with only two feedback gains in the fuzzy controllers. 

In Chapter 8, a simplest controller – fuzzy logic constant controller (FLCC) is 

introduced. Based on Lyapunov direct method and the upper bound and lower bound 

of the error derivatives, we construct the fuzzy rules and the simplest corresponding 

constant controllers. Complicated and nonlinear controllers would no longer appear 

and are replaced with simple and constant controllers through our new strategy. 

Simulation results in synchronization show that FLCC is effective enough and give 

very satisfactory results. Through this new approach, not only all cases in chaos 

synchronization or control can be achieved, but also the implement or experimental 

application of chaos synchronization could be attained much more easily. 
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