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Abstract

Hyperchaos of chaotic systems, Yin-Yang chaos, new fuzzy model, new fuzzy
logic controllers, generalized chaos synchronization via GYC partial region stability
theory and pragmatical asymptotically stability theorem are studied in this thesis. The
main points in the researches are shown as follow:

1. Analyzing Yin chaos of the classical Lorenz system and comparing it with Yang
chaos.

2. Hyperchaos in a new Mathieu-van der Pol system is identified by phase portraits,
power spectrum, Lyapunov exponents and 2-D and 3-D parameters diagrams.
Three positive Lyapunov exponents are found for system with four states.

3. Chaotic control and synchronization for a system by GYC partial region theory.

4. New fuzzy model is proposed to simulate the complicated chaotic behaviors via
only two linear subsystems and used to carry out synchronization of complicated
chaotic systems and different chaotic systems.

5. Simplified fuzzy logic constant controller (FLCC) is presented to achieve

generalized synchronization.
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Chapter 1
Introduction

Nonlinear dynamics, commonly called the chaos theory, changes the scientific
way of looking at the dynamics of natural and social systems, which has been
intensively studied over the past several decades. The phenomenon of chaos has
attracted widespread attention amongst mathematicians, physicists and engineers.
Chaos has also been extensively studied in many fields, such as chemical reactions,
power converters, biological systems, information processing, secure communications,
etc. [1-6]. Whilst many researchers analyze complicated, physically motivated
configurations, there is also a need to investigate simple equations which may capture
the essence of chaos in a less involved setting, thereby aiding the understanding of
essential ~ characteristics. The - original ~investigation of an extraordinary
three-dimensional nonlinear system by~ the mathematical meteorologist E.N. Lorenz
who discovered chaos in a simple system of three autonomous ordinary differential
equations in order to describe the simplified Rayleigh - Benard problem [7] (which is
called Yang Lorenz system in this paper) is the most popular system for studying.

There are tremendous amount of articles in studying Yang Lorenz and other
systems [8-12]. Although these systems have been analyzed in detail, there are no
articles in looking into these systems, such as Lorenz system
with x(—t), y(—t),z(—t)and — t (which is called Yin Lorenz system in this article). Since
Lorenz discovered chaos on 1963, all studies of chaos concentrated when time went
forward i.e.t: 0 — ooin the last 47 years. Physically backward time,t:0 — —oo, has
not discovered up to now, but mathematically it can be easily performed and must be

studied for complete understanding of the property of chaos. In this Chapter, we find



out that there are rich dynamics in such Yin Lorenz system.

In Chinese philosophy, Yin is the negative, historical or feminine category in
nature, while Yang is the positive, comtemporary or masculine category in nature. Yin
and Yan are two fundamental opposites in Chinese philosophy. In Chapter 2, the Yin
Lorenz system is introduced and the chaotic behavior with Yin parameters is
investigated by phase portrait, Lyapunov exponents and bifurcation in the following
simulation results. We use positive, i.e. Yang, parameters for the Yang Lorenz system,
and negative, i.e. Yin, parameters for the Yin Lorenz system.

Chaotic systems are characterized by one positive Lyapunov exponent (PLE) in
the Lyapunov spectrum [2-9]. The one PLE just indicates that the dynamics of the
underlying chaotic attractor expands only in one direction. If a chaotic attractor is
characterized by more than one positive' Lyapunov exponent, it is termed hyperchaos.
In this case, the dynamics of the chaotic attractor expands in more than one direction
giving rise to a “thick™ chaotic attractor [10-14]. There are both theoretical and
practical interests in hyperchaos. Hyperchaos was first reported from computer
simulations of hypothetical ordinary differential equations in [15-17]. The first
observation of hyperchaos from a real physical system, a fourth-order electrical circuit,
was later reported in [18]. Very few hyperchaos generators have been reported since
then [19-22].

As the numerical example, recently developed new Mathieu-van der pol
autonomous oscillator with four state variables is used. For this new system four
Lyapunov exponents are not zero. Although by traditional theory [23], for
four-dimensional continuous-time systems, there must be a zero Lyapunov exponent,
however, on the history of science, as said by T. S. Kuhn in his book “The Structure
of Scientific Revolution”, the unexpected discovery or anomality (counterinstance) is

not simply factual in its import and the scientist’s world is qualitatively transformed
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as well as quantitatively enriched by fundamental novelties of either fact or theory.
“Conversion as a feature of revolutions in science” is the conclusion of the book
“Revolution in Science” written by 1. B. Cohen [24]. One of the patterns of the
evolution of science is: current paradigm — normal science — anomality
(counterinstance) — crisis — emergence of scientific theories — new paradigm.

Recently, Ott and Yorke [25] show that the existence of Lyapunov exponents is a
subtle question for systems that are not conservative. They describe a simple
continuous-time flow such that Lyapunov exponents fail to exist at nearly every point
in the phase space. Ge and Yang [26] firstly find out the simulation results of 3PLES
in Quantum Cellular Neuro Network autonomous system with four state variables. As
a consequence, in Chapter 3, Mathieu-van der pol autonomous system with four state
variables is introduced, and the hyperchaos: for 3PLEs are investigated by phase
portrait, power spectrum, Lyapunov exponents- and parameter diagram in the
following simulation results.

In our natural world, plenty of chaotic systems describing natural phenomenon
are found that they have some states always positive. It means these states are always
in the first quadrant. Such as the three species prey-predator system [36], double
Mackey-Glass systems [37-38], energy communication system in biological research
[39] and virus-immune system [40]. In Chapter 4, a new strategy to achieve chaos
control by GYC partial region stability theory is proposed [32-33]. Via using the GYC
partial region stability theory, the new Lyapunov function is a simple linear
homogeneous function of error states and the lower order controllers are much more
simple and introduce less simulation error.

In Chapter 5, a new chaos generalized synchronization strategy by GYC partial
region stability theory is proposed [20-21]. It means that there exists a given

functional relationship between the states of the master and that of the slave. Via using
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the GYC partial region stability theory, the new Lyapunov function is a simple linear
homogeneous function of states and the lower order controllers are much more simple
and introduce less simulation error.

In current scheme of adaptive synchronization, traditional Lyapunov stability
theorem and Barbalat lemma are used to prove that the error vector approaches zero
as time approaches infinity, but the question that why those estimated parameters also
approach the uncertain values remains no answer. In this article, pragmatical
asymptotically stability theorem and an assumption of equal probability for ergodic
initial conditions [50-51] are used to prove strictly that those estimated parameters
approach the uncertain values. Moreover, traditional adaptive chaos synchronization
in general is limited for the same system. Therefore, In Chapter 6, a new adaptive
synchronizing strategy - pragmatical adaptive synchronization by GYC partial region
stability theory is proposed as well. Via using this-new approach, the new Lyapunov
function is a simple linear homogeneous function of states and the lower order
controllers and parametric update laws are much simpler and introduce less
simulation error.

In recent years, some chaos synchronizations based on fuzzy systems have been
proposed [41-44]. The fuzzy set theory was initiated by Zadeh [45]. Fuzzy concept
has received much attention as a powerful tool for the nonlinear control. Among
various kinds of fuzzy methods, Takagi-Sugeno fuzzy system is widely accepted as a
tool for design and analysis of fuzzy control system [46]. A well-known approach to
control and synchronize chaos via LMI-based fuzzy control system design is
suggested in [47-49], where the idea is to use the Takagi-Sugeno (T-S) fuzzy model to
represent typical chaotic models and then apply some effective fuzzy techniques.

Although Takagi-Sugeno fuzzy system is widely accepted as a powerful tool for

design and analysis of fuzzy control system, its number of fuzzy rules is based on the
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number of nonlinear terms. It means that if there are N nonlinear terms in a chaotic
system, there will be 2™ fuzzy rules in its fuzzy model, and then there will be 2™ linear
system to simulate only one chaotic system. Therefore when there are lots of
nonlinear terms in a chaotic system, the problem is going to be more complicated.
Consequently, in Chapters 7, a new fuzzy model is provided to model and
synchronize two different and complicated chaotic systems with lots of nonlinear
terms. By using this new fuzzy model, it becomes much simpler to synchronize two
different, complicated chaotic systems.

On the other hand, the fuzzy logic control (FLC) scheme has been widely
developed for almost 40 years and has been successfully applied to many applications
[21]. Recently, Yau and Shieh [22] proposed an amazing new idea in designing fuzzy
logic controllers - constructing fuzzy rules subject to a common Lyapunov function
such that the master-slave chaos systems satisfy stability in the Lyapunov sense. In
[22], there are two main controllers in their slave system. One is used in elimination
of nonlinear terms and the other is built by fuzzy rules subject to a common Lyapunov
function. Therefore, the resulting controllers are nonlinear form. In [22], the regular
form is necessary. In order to carry out the new method, the original system must to
be transformed into their regular form.

In Chapter 8, we propose a new strategy, fuzzy logic constant controller (FLCC),
which is also constructing fuzzy rules subject to a Lyapunov direct method. Error
derivatives are used to be upper bound and lower bound. Through this new approach,
a simplest controller, i.e. constant controller, can be obtained and the difficulty in
realization of complicated controllers in chaos synchronization by Lyapunov direct
method can be also coped. Unlike conventional approaches, the resulting control law
has less maximum magnitude of the instantaneous control command and it can reduce

the actuator saturation phenomenon in real physic system.
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The layout of this thesis can be organized as follow: In Chapter 2, the Yang
Lorenz system is reviewed and the Yin Lorenz system is introduced. Three simulation
cases of Yin and Yang Lorenz systems are given for comparing and observation. In
Chapter 3, a new system, Mathieu-van der Pol autonomous system, with four state
variables will be introduced, and the hyperchaos for 3PLEs is investigated by phase
portrait, power spectrum, Lyapunov exponents and parameter diagram in simulation
results. In Chapter 4, chaos control scheme by GYC partial region stability theory is
proposed and new Mathieu-Van der pol system and new Mathieu -Duffing system are
presented. Three simulation examples are given. In Chapter 5, generalized chaos
synchronization strategy by GYC partial region stability theory is proposed. Six
simulation examples are given. In Chapter 6, a new and high-performance strategy,
pragmatical adaptive synchronization by GYC partial region stability theory, on
synchronization is proposed. Yin and Yang Lorenz system are introduced and used for
simulation as well. In Chapters 7, .a new fuzzy model is provided to model and
synchronize two different and complicated chaotic systems. Q-CNN and Qi systems
are introduced for examples. In Chapter 8, a new controller - fuzzy logic constant
controller (FLCC) is given for efficiently synchronizing different chaotic systems. In

Chapter 9, conclusions are drawn.



Chapter 2

Yin-Yang Chaos

2.1 Preliminaries

The Yang and Yin parameters of Lorenz system are firstly presented in this
Chapter. When the transformation from (x(t),y(t),z(t),t) to(x(-t),y(-t),z(—t),—t)is
made, simulation results show that chaos of the new Lorenz system (which is called
Yin Lorenz system in this article) can be generated via using “Yin” parameters, i.c.
(o,r,b)to(—o,—1,—b) . To our best knowledge, most characters of Lorenz system are
studied in detail, but there are no articles in making a thorough inquiry about the yin
Lorenz system. As a result, this Yin Lorenz system with “Yin parameters” and its
one-parameter family are introduced in this paper, and various kinds of phenomena in
such systems are investigated by Lyapunoy exponents, phase portraits and bifurcation
diagrams. An adaptive Yin-Yang synchronization from Yin to Yang Lorenz chaos are

achieved by using pragmatical asymptotically stability theorem.

2.2 Yang Lorenz system with Yang parameters
Before introducing the Yin Lorenz equation, the Yang Lorenz system with Yang

parameters [7] can be recalled as follows:

E=G(Y—X)

dy

=L —x-xz— 2-2-1
dt XZ—-y ( )
dz

= —xy-b

dt Xy Z

When initial condition(x,,y,,z,)= (-0.1, 0.2, 0.3) and Yang parametersc =10,

b=8/3 and r=28, chaos of the Lorenz system in Eq. (2-2-1) appears. The chaotic



behavior is shown in Fig 2-1.

2.3 Yin Lorenz system with Yin parameters
Replacing (x(t), y(t), z(t),t) via (x(-t), y(-t),z(—t),—t) in system (2-2-1), a new

Lorenz system can be obtained as follows:

dx(-t) B

FTER R

dy(-v) _ .
Ty =IX—XZ—Yy (2-3-1)
dz(-t) _

ATy =Xxy—bz

It is clear that in the left hand sides of Eq. (2-3-1), the derivative are taken with
the back-time. It means Eq. (2-3-1) aims to find out the behavior of the Yin Lorenz
system and to comprehend the relation'between systems (2-2-1) and (2-3-1). The

simulation results are arranged in Table 2-1.

Table 2 - 1 Dynamic behaviors of Yin Lorenz system for different signs of

parameters

c b r states

- + + Approach to infinite
+ - + Approach to infinite
T + - periodic

- - + Approach to infinite
- + - Approach to infinite
- - - Chaos and periodic

Table 2-1 shows the dynamic behaviors of Yin Lorenz system for different signs

of parameters. An awe-inspiring phenomenon is discovered. For initial
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condition (x,,y,,z,)= (-0.1, 0.2, 0.3) and parametersc =—-10, b=-8/3 and r=-28,
chaos of the Yin Lorenz system appears. Therefore, we call these parameters Yin
parameters. In Chinese philosophy, Yin is the negative, past or feminine category in
nature, while Yang is the positive, present or masculine category in nature. Yin and
Yang are two fundamental opposites in Chinese philosophy. Consequently, the
positive value of parameters,c =10, b=8/3 and r=28, in Yang Lorenz system can be
called Yang parameters. The chaotic behavior of Eq. (2-3-1) is shown in Fig 2-2.

As a consequence, system (2-3-1) can be regarded as being carried over into

system (2-2-1) by the transformation as follows:

(x(t),y(t),z(t),t,0,1,b) > (x(-t), y(-t),z(-t),~-t,—c,—1,-b) (2-3-2)

2.4 Comparison between Yin and‘Yang Lorenz systems

In order to study the difference and similarity between Yang and Yin Lorenz
system, the bifurcation and Lyapunov exponents are used. The simulation results are
divided into three parts:
Partl: Parameter r is varied and o, b are fixed, the simulation results are shown in

Fig 2-3 and Fig 2-4, Table 2-2 and Table 2-3.

Table 2 - 2 Range of parameter r of Yang Lorenz system

20.0~24.1 Converges to a fixed point

24.1~70.0 Chaos

Table 2 - 3 Range of parameter r of Yin Lorenz system

-20.0~-46.8 Chaos

-46.8~-47.7 Periodic trajectory




-47.7~-51.3 Chaos
-51.3~-52.4 Periodic trajectory
-52.4~-59.5 Chaos
-59.5~-59.8 Periodic trajectory
-59.8~-68.3 Chaos
-68.3~-69.6 Periodic trajectory
After -69.6 Chaos

Table 2-2 and Table 2-3 show the different dynamics between Yang and Yin
Lorenz systems with different ranges of parameter r. In Table 2-2, the behaviors of
Yang Lorenz system are varied with parameter c. It becomes either chaos or converges
to a fixed point. When 20.0 <r < 24.1, Yang Lorenz system is going to converge to a
fixed point. When24.1<r, chaos appears. Table 2-3 shows that when parameter c
takes -20.0~-46.8, -47.7~-51.3, -52.4~-59.5, -59.8~-68.3 and-69.6 <, the chaotic
behavior is shown in Yin Lorenz system. When parameter r takes -46.8~-47.7,
-51.3~-52.4, -59.5~-59.8 and -68.3~-69.6, the behaviors of Yin Lorenz system are
periodic trajectories. Comparing Table 2-2 and 2-3, it can be found out that there are
only two cases, chaos and fixed point, in Yang Lorenz system for parameter r in range
20 to 70, but there exist chaotic behavior and periodic trajectory in Yin Lorenz system
with parameter c in range 20 to 70.

Part2: Parameter b is varied and o, r are fixed, the simulation results are shown in

Fig 2-5 and Fig 2-6, Table 2-4 and Table 2-5.

Table 2 - 4 Range of parameter b of Yang Lorenz system

Before 0.592 Converges to a fixed point

0.592~0.648 Chaos
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0.648~0.720 Periodic trajectory

0.720~3.448 Chaos

After 3.448 Converge to a fixed point

Table 2 - 5 Range of parameter b of Yin Lorenz system

Before -0.568 Converges to a fixed point
-0.568~-0.728 Chaos
-0.728~-0.792 Periodic trajectory
-0.792~-4.000 Chaos

Table 2-4 and Table 2-5 show that the behaviors of Yang and Yin Lorenz systems

are similar but not the same.

Part3: Parameter o is varied and b, r are fixed, the simulation results are shown in
Fig 2-7 and Fig 2-8, Table 2-6 and Table 2-7.

Table 2 - 6 Range of parameter o of Yang Lorenz system

5.000~5.760 Converges to a fixed point
5.760~18.368 Chaos
18.368~20.000 Converges to a fixed point

Table 2 - 7 Range of parameter ¢ of Yin Lorenz system

Periodic trajectory

-5.00~-5.45

(one attractor or two attractors)
-5.45~-5.60 Chaos
-5.60~-6.05 Periodic trajectory

-6.05~-6.17 Chaos

11



-6.17~-6.35 Periodic trajectory

-6.35~-7.58 Chaos
-7.58~-7.76 Periodic trajectory
-7.76~-20 Chaos

In Table 2-6 and Table 2-7, the behaviors of Yang and Yin Lorenz system are very
different. In Table 2-6, chaotic behavior only exists in Yang Lorenz system in range
0f5.760 < 6 <18.368 . In Table 2-7, chaos and periodic trajectory appear alternatively
in Yin Lorenz system for different a.

By numerical evidence, all trajectories of system (2-3-1) enter a fixed ball (the
same ball for trajectories) and remain there. This implies already the existence of

compact global attractor.

2.5 Family of Yin Lorenz system
In this Section, furthermore, one-parameter family of system (2-3-1) is presented

as well and can be described as follows:

dx(-t) B

Gy ~ov )

dy(=t) _ 5-
FTay =TIX —XZ— Ny (2-5-1)
dz(-t) _

—d(—t) =Xxy—bz

wherep €[-1,1]. We choose initial condition(x,,y,,z,)= (-0.1, 0.2, 0.3) and Yin
parametersc = —6, b=-8/3 and r=-28, the projection of phase portraits, bifurcation
diagrams and Lyapunov exponents withp € [-1,1] are shown in Figs 2-9 and 2-10. By

observation of Figs 2-5 and 2-6, it is clear that there are periodic and chaotic motions

in such a family system when pis varying.
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2.6 Pragmatical Adaptive Synchronization Scheme

There are two identical nonlinear dynamical systems, and the master system

controls the slave system. The master system is given by

X = Ax+ f(x,B) (2-6-1)

where X=[X,X,,--X |' €R" denotes a state vector, A is an Nxn uncertain

constant coefficient matrix, f is a nonlinear vector function, and B is a vector of
uncertain constant coefficients in f.
The slave system is given by

y=Ay+ f(y,B)+u(t) (2-6-2)

A

where y=[y,,¥,,+Y,]" € R" denotes a state. vector, A is an nxn estimated

A

coefficient matrix, B is a vector of estimated coefficients in f, and
u(t) =[u, (t),u,(t),---u )" eR" is a control input vector.

Our goal is to design a controller u(t) so that the state vector of the chaotic
system (2-6-1) asymptotically approaches the state vector of the master system
(2-6-2).

The chaos synchronization can be accomplished in the sense that the limit of the

error vector e(t)=[e,e,,---,€, ]T approaches zero:

lime =0 (2-6-3)
where

e=Xx-Yy (2-6-4)

From Eq. (2-6-4) we have

E=%—Yy (2-6-5)
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e =Ax— Ay + f(x,B)— f(y,B)—u(t) (2-6-6)

A Lyapnuov function V (g, Z\C , I§C) is chosen as a positive definite function

Ve, A,B )=%eTe+%ATA +%I§T§ (2-6-7)

~ A~ ~

where A=A-A, B=B-B, R and gc are two column matrices whose elements

are all the elements of matrix A and of matrix B, respectively.

Its derivative along any solution of the differential equation system consisting

of Eq. (2-6-6) and update parameter differential equations for R and I§C is
V(e A.,B,)=¢e' [Ax— Ay + Bf (x) - Bf (y) - u(t)]+ AA +B.B, (2-6-8)

where u(t), KC, and I§c are chosen so that V =e'Ce, C is a diagonal negative
definite matrix, and V is a negative semi-definite function of e and parameter
differences A,and B,. In current scheme of adaptive control of chaotic motion

[18-20], traditional Lyapunov stability theorem and Babalat lemma are used to prove
that the error vector approaches zero, as time approaches infinity. But the question,
why the estimated or given parameters also approach to the uncertain or goal
parameters, remains no answer. By pragmatical asymptotical stability theorem [50-51],

the question can be answered strictly.

2.7 Adaptive Yin-Yang synchronization of Yin chaos and Yang chaos
In this Section, adaptive synchronization from Yin Lorenz chaos to Yang Lorenz

chaos is proposed. The Yin Lorenz system is consider as slave system and the Yang

Lorenz system is regarded as master system. These two equations are shown below:

Master system- Yang Lorenz system:

14



dX(;t(t) =a(x,(t)—x,(1))

dx(it(t) =X (1) —x; ()x;3(t) —x, (1) @70
d

%(t) =X, (t)X2 (t)— bX3 (t)

Slave system- Yin Lorenz system:

dy, (- A

%)t) =-a(y,(-t) -y, (-t) +u,

dy. (= .

% ==y, (-) -y, (-Dy;(-t) —y,(-t) +u, (2-7-2)
dv.(— .

% =—(y,(-t)y,(-t) = by;(-t)) + u;

where X; (t) stands for states variables of the master system and y; (-t)that of the slave

system, respectively. Parameters, a, b and ¢ are uncertain parameters of master system.
a,band ¢ are estimated parameters. u, , uy.and u; are nonlinear controller to

synchronize the slave Lorenz system to master one,i.e.,

lime =0 (2-7-3)

t—>w

where the error vectore = [el (1) e,(t) e, (t)] and

e (t) =x,(t) -y, (-t)
e, (1) =X, (1) -y, (-t) (2-7-4)
e3(t) =x;5(t) —y5(-t)

From Eq. (2-7-4), we have the following error dynamics:

de, () _dx, () _dy, (=) _dx,(  dy, (=D
dt dt dt dt d(-t)

de, () _ dx,(t) dy,(-t) _ dx, (t) n dy,(-t)
dt dt dt dt d(-t)

de; () _ dx;(t) dy;(-t) _ dx;(t) + dy;(-t)
dt dt dt dt d(—t)

¢ =a(x, —x)+(-a(y, —y;) +u)
&, =CX; —X;X3 =X, +(—(Cy; ~y, Y3 —¥,) +U,) (2-7-5)
€3 = XX, —bx; +(=(y,y, —by;) +u3)
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These two systems will be synchronized for any initial condition by appropriate
controllers and update laws for those estimated parameters. As a result, the following
controllers and update laws are designed by pragmatical asymptotical stability
theorem as follows:

Choosing Lyapunov function as:

V:%(ef+e§+e§+§2+gz+52) (2-7-6)

wherea =a-—a, b=b-b and T=c-¢.

Its time derivative is:

V =e,&, +6,6, +¢,¢; +3ad +bb+TC
=e (a(x, —x)) +(-a(y, —y;) +uy))
+e,(cx) —X1X3 =X, +(=(Cy; —y1¥; —¥2) +1y)) (2-7-7)
+e3(X X, —bx; +(=(y,y, —bys) +u3))
+3(a—4)+b(b-b)+c(c—9)

We choose the update laws for those uncertain parameters as:

¢ =—C=—(x,)e, +Ce, (2-7-8)
g = b= (x3)e; + 563

Through Egs. (2-7-8) and (2-7-9), the appropriate controllers can be designed as:
U =-a(x; —X; —y; "'}’1)_52 —©
Uy =—8(X, =y +X X5 + X, + Y, Y3 +Y, —CC —e, (2-7-9)
u3 =b(x; —y3) = XX, —y1¥ - b’ —€3

We obtain

V=—e—ej—e;<0 (2-7-10)

which is negative semi-definite function ofe,,e,,e;,a, band¢ . The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin of

error dynamics (2-7-5) and parameter dynamics (2-7-8) is asymptotically stable. By
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pragmatical asymptotically stability theorem, D is a 6-manifold, n =6 and the number
of error state variablesp=3. When e, =¢,=e;=0and a, b ¢ take arbitrary

values,V =0,s0 X is of 3 dimensions, m=n -p=6-3=3, m+1<n is satisfied.
According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown

in Figs. 2-11~ 2-14.
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Fig.2- 1 Projections of phase portrait of chaotic Yang Lorenz system with o =10,

Y

z(-t)

-40

50

-B0

b=8/3and r=28

15| A

Fig.2- 2 Projections of phase portrait of chaotic Yin Lorenz system with Yin

parameters ¢ =-10, b=-8/3 and r=-28.
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Fig.2- 3 Bifurcation diagram and Lyapunov exponents of chaotic Yang Lorenz system
with b=8/3 and ¢ =10.
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Fig.2- 4 Bifurcation diagram and Lyapunov exponents of chaotic Yin Lorenz system
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Fig.2- 5 Bifurcation and Lyapunov exponents of chaotic Yang Lorenz system with
6 =28 and r=10.
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Fig.2- 6 Bifurcation and Lyapunov exponents of chaotic Yin Lorenz system
withc =-28 and r=-10.
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Fig.2- 7 Bifurcation and Lyapunov exponents of chaotic Yang Lorenz system
with b=8/3 and r=28.
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Fig.2- 8 Bifurcation and Lyapunov exponents of chaotic Yin Lorenz system
with b=-8/3 and c=-28.
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Chapter 3

Hyperchaos of New Mathieu-van der Pol system with Three

Positive Lyapunov Exponents

3.1 Preliminaries

This Chapter gives another illustration of three positive Lyapunov exponents
(3PLES) in numerical simulations of a new system, Mathieu-van der pol autonomous
system, with four state variables. As we know, two positive Lyapunov exponents
confirm hyperchaotic nature of its dynamics and means that system can present more
complicated behavior than ordinary chaos. We further generate three positive
Lyapunov exponents in a new coupled nonlinear system and anticipate the advanced
application in secure communication. Not only a new chaotic system with three
Lyapunov exponents is proposed, -but also its implementation of electronic circuit is
putting into practice in this article. "The phase portrait, electronic circuit, power
spectrum, Lyapunov exponents and 2-D and 3-D parameter diagram with three

positive Lyapunov exponents of the new system will be showed in this Chapter.

3.2 Differential equations for Mathieu-van der Pol system and phase
protraits
Mathieu equation and van der Pol equation are two typical nonlinear

non-autonomous systems:

{Xl - (3-2-1)

X, = —(a+bsin wt)x, — (a+bsinwt)x,’ —cx, +dsin wt

{X3 s (3-2-2)

X, = —eX; + f(1—X3)X, + gsin ot
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Exchanging sinmt in Eq. (3-2-1) by X; and sinot in Eq. (3-2-2) by X;, we obtain the

autonomous new Mathieu -van der Pol system:
X; =X, (3-2-3)

X, = —(a+bx;)x, —(a+bx;)x,” —cx, +dx,
X3 =Xy

X, =—eX; + F(1-X;7)X, + g,
where X, y, z and w are four stats of the system, a, b, c, d, e, f and g are parameters of
the Mathieu-van der Pol system.

It is well-known that the phase portrait presents the evolution of a set of
trajectories emanating from various initial conditions. When the solution becomes
stable, the asymptotic behaviors of the phase trajectories are particularly interested
and the transient behaviors in the system are neglected. As a result, the phase portrait
projections of the Mathieu-van der Pol system, Eq. (3-2-3), is plotted in Fig. 3-1. In
this numerical studies, the parametric values are taken to be a=91.7, b=5.023,
c=-0.001, d=91, e=87.001, f=0.0180 and g=9.5072 for plotting the hyperchaotic

phase portrait projections.

3.3 Power spectrum
The power spectrum analysis of the nonlinear dynamical system, Eq. (3-2-3) is
shown in Fig. 3-2. The noise-like spectrum is the characteristics of chaotic dynamical

system.

3.4 Lyapunov exponents
The Lyapunov exponents of Mathieu-van der Pol system with 3PLEs are plotted
in Figs. 3-3~3-8. These figures show that there exits at least one PLE in the Lyapunov

spectrum for our new system, and the Lyapunov exponents of Mathieu-van der Pol
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system are varied with parameters a, b, d and e.

3.5 Parameter diagrams

A system with more than one positive Lyapunov exponent can be classified as a
hyperchaotic system. In this study, the parameter values, b, d, g, and f, are varied to
observe the regions of chaos of our new system. The enriched information of chaotic
behaviors of the system can be obtained from the Figs 3-9~3-14.

In Figs 3-9~3-14, the regions of 3PLEs are yellow, 2PLEs green and 1PLEs
purple. It can be realized that the Mathieu-van der pol system is chaotic in several
different region, especially hyperchaos with 3 PLEs are found in many regions

between hyperchaos with 2 PLE and chaos with 1 PLE.

3.6 Phase portraits and its implementation of electronic circuits

It is well-known that the phase space can present the evolution of a set of
trajectories emanating from various initial conditions. When the solution becomes
stable, the asymptotic behaviors of the phase trajectories are particularly interested
and the transient behaviors in the system are neglected. As a result, the phase portrait
of the Mathieu-van der pol system, equation (3-1-1), is plotted in Fig. 3-1. In this
numerical studies, the parametric values are taken to be a=91.7, b=5.023, ¢=0.01,
d=91, e=87.001, f=0.0180 and g=9.5072 for plotting the tri-chaotic phase portrait.
The new system can be represented as an electronic oscillator circuit and projection of
phase portraits outputs shown in Figs. 3-15~16. We have implemented it using an
electronics simulation package Multisim (previously called Electronic Workbench,
EWB) and the approximated nonlinear electronic circuits are presented to realize the
disordered behavior in the new chaotic system. The voltage outputs have been

normalized to 1 V and the operational amplifiers are considered to be ideal. The phase
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diagrams are plotted within the time interval 500 s. The time step is 0.001 s. Due to
the limit of the scope of implementation of electronic circuits, the phase portraits can
be only shown in two dimensions. In Fig. 3, the configuration of electronic circuits is

also given.

3.7 Summary

In this Chapter, we have shown that the autonomous continuous-time
Mathieu-van der pol autonomous system with four state variables as described by Eq.
(3-2-3) can exhibit hyperchaos with three positive Lyapunov exponents. The
simulation results have been investigated in phase portraits, power spectrum,

parameter diagrams and Lyapunov exponents.
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Fig.3- 1 Phase portrait projections of four state Mathieu-van der Pol system with
a=91.17, b=5.023, c=-0.001,.d=91,e=87.001, f=0.0180and g=9.5072.
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Fig.3- 2 Power spectrum of X for Mathieu-van der Pol system with a=91.17, b=5.023,
€=-0.001, d=91, e=87.001, =0.018and g=9.5072.
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Fig.3- 4 Lyapunov exponents of Mathieu-van der Pol system with b=5.023, ¢=-0.001,
d=25, e=87.001, f=0.018and g=9.5072.
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Fig.3- 6 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680,
b=5.023, c=-0.001, e=87.001, f=0.018and g=9.5072.
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Fig.3- 8 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680,
b=5.023, c=-0.001, d=25, =0.018and g=9.5072.
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Fig.3- 9 Parameter diagrams of Mathieu-van der Pol system with a=96.326680,
b=5.023, c=-0.001, e=87.001and f=0.018.
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0.05

Fig.3- 11 2D Parameter diagrams varied with f. a=96.326680, b=5.023, c=-0.001and
e=87.001. Part C are shown in Fig. 8.
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Fig.3- 12 3D Parameter diagrams of Mathieu-van der Pol system with a=96.326680,
b=5.023, c=-0.001 and e=87.001.
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Fig.3- 13 3D Parameter diagrams of Mathieu-van der Pol system with a=96.326680,
b=5.023, c=-0.001 and e=87.001.
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b=5.023, c=-0.001, e=87.001and g=9.5072.
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Chapter 4

Chaos Control of New Mathieu-van der Pol Systems with
New Mathieu -Duffing Systems as Goal System by GYC
Partial Region Stability Theory

4.1 Preliminaries

In this Chapter, a new strategy by using GYC partial region stability theory is
proposed to achieve chaos control. Via using the GYC partial region stability theory,
the new Lyapunov function used is a simple linear homogeneous function of error
states and the lower order controllers are much simpler and introduce less simulation
error. Numerical simulations are given for new Mathieu-van der Pol system and new

Mathieu-Duffing system to show the effectiveness of this strategy.

4.2 Chaos Control Scheme
Consider the following chaotic system
x =f(t, x) (4-2-1)
where X :[Xl,xz,n-,xn]T eR" is a the state vector, f:R,xR" > R" is a vector
function.

The goal system which can be either chaotic or regular, is
y=9(ty) (4-2-2)
where y=[y,Y,,-,Y, ]T eR" is a state vector, g:R, xR"—>R" is a vector

function.
In order to make the chaos state X approaching the goal state y, define

€=X-Y as the state error. The chaos control is accomplished in the sense that
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[13-22]:

lime = lim(x—y) = 0 (4-2-3)

In this Chapter, we will use examples in which the error dynamics always
happens in the first quadrant of coordinate system and use GYC partial region
stability theory [43-44]. The Lyapunov function is a simple linear homogeneous
function of error states and the controllers are simpler because they are in lower order

than that of traditional controllers

4.3 New Chaotic Mathieu- Duffing System

Mathieu equation and Duffing equation are two typical nonlinear

non-autonomous systems:

,=1

b . (4-3-1)
z, =—(a, + b, sinmt)z, —(a, +bysinmt)z;” —c,z, +d, sinot
1, =1

o | (4-3-2)

Exchanging sinot in Eq. (4-3-1) by 7z, andsinwt in Eq. (4-3-2) by 7 > we obtain the

autonomous master new Mathieu-Duffing system:

. 3

2,=-2,-12; —€2,+ f,7,

where a,, b, c;, d,, e and f are uncertain parameters. This system exhibits
chaos when the parameters of system area, =20.30, b, =0.5970, c, =0.005,
d, =-24.441, e, =0.002, f, =14.63 and initial states is (-2, 10, -2, 10). Its phase

portraits are shown in Fig. 4-1.

4.4 Numerical Simulations
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The following chaotic system

X, = X, —200
X, = —(a+b(x; —200))(X, —200) — (& +b(x; —200))(x, —200)°

— (X, —200) +d(x; —200) (4-4-1)
X, = (X, —200)
X, = —€(X; —200) + f (1—(X; —200)*)(x, —200) + g(X, —200)

is the new Mathieu-van der Pol system of which the old origin is translated

to (X;,X,,X3,X,) =(200,200,200,200) in order that the error dynamics happens always
in the first quadrant of error state coordinate system. This translated new Mathieu-van
der Pol system presents chaotic motion when initial conditions is (X;q, X0, X309, X49) =
(210.1, 209.5, 210.1, 209.5) and the parameters area=10, b=3, ¢=0.4, d=70,
e=1, f=5, g=0.1.

In order to lead (X;,X,,X;,X,4) totheé goal, we add control terms U;, Uy, U3 and U,
to each equation of Eq. (4-4-1), respectively.

X =X, —200+u,
X, = —(@+b(x; —200))(x, —200)=(@+b(x; —200))(x, —200)°
—C(X, —200) +d (X, —200) +u, (4-4-2)
X3 = (X4 —200) + Uy
X, = —€(X; —200)+ f (1—(X; —200)*)(x, —200)+ g(X, —200)+Uu,

CASE I. Control the chaotic motion to zero.

In this case we will control the chaotic motion of the new Mathieu-van der Pol
system (4-4-1) to zero. The goal is y = 0. The state error ise; = X; — y; = X;, (I=1, 2, 3,
4) and error dynamics becomes

—c(Xx, —200)+d(x; —200)+u, (4-4-3)
€, =X, =—€(X; —200)+ f (1—-(x4 —200)2)(x4 —200)+ g(X, —200)+u,
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In Fig. 4-2, we can see that the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a
Lyapunov function in the form of a positive definite function in first quadrant as:
V=g +e,+e,+¢, (4-4-4)

Its time derivative through error dynamics (4-4-3) is

V=¢+6,+6,+¢€,
= (X, —200+U,) + (—(a+b(x; —200))(x, —200)
— (a+b(x; —200))(x, —200)° —c(X, —200) + d(X; —200) + U, ) (4-4-5)
+(Xg =200+ U3) + (—e(X; —200) + f(1—(X5 —200)2)(x4 —200)
+9g(x, —200)+uy,)

Choose

u, =—(x, —200)—e¢,

U, = (—(a+b(x; —200))(x, —200) - (a+ b(x; —200))(x, — 200)°
—C(X, —200)+d(x; —200))—e,

Uy =—(X, —200)—e,

Uy = (—e(X; —200) + f(1—(X;=200)%)(x;—200)
+g(x, —200))—e,

(4-4-6)

We obtain

V=-e-¢e,-€;—¢,<0
which is negative definite function in first quadrant. The numerical results are shown
in Fig.4-3. After 10 sec, the error trajectories approach the origin.

CASE 1. Control the chaotic motion to a regular function.

In this case we will control the chaotic motion of the new Mathieu-van der Pol
system (4-4-1) to regular function of time. The goal is y; = F.e™"*", (i=1, 2, 3, 4). The
error equation

e =% -y =% -Fe"  (i=1,2,3,4) (4-4-7)
lime; = lim(x; - Fe™®)y=0 ,(i=1,2,3,4)
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where F,=F,=F =F,=F=10and ©=0.5

The error dynamics is

&, = —(a+b(x; —200))(x, —200) — (a+b(x; —200))(x, —200)’
— (X, —200) + d(X; —200) +u, — F,0e""* (cos ot)

é; = (X, —200) +u; — F;0e"" " (cos ot)

€, = —e(X; —200) + f(1—(x; —200)%)(x, —200) + g(x, —200)

+u, — F,0e""* (cos ot)

(4-4-8)

In Fig. 4-4, the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a
Lyapunov function in the form of a positive definite function in first quadrant as:
V=¢+e,+e;,+e,
Its time derivative is

V =6 +6, +6 +8, = (X, — 200 +u; = F e (cos ot))
+(—(a+b(x; —200))(x, = 200) —(a+ b(x5 — 200))(x, — 200)°
— (X, —200) + d(X; —200)+ U, —Fr0e™ " (cos ot))

. (4-4-9)
+((X4 —200) + U, — F;0e™ " (cosot))
+(—e(x3——200)+-f(l—(x3——200)2xx4-—200)+-g(x1—-200)
+u, — F,we™ (cos ot))

Choose
U, = —(X, — 200 — F,0e"" ' (cos ot)) — ¢,
U, = —(—(a+b(x; —200))(x, —200) — (a +b(x; —200))(x, — 200)°
— (X, —200) + d(x; —200) — F,we™* (cosmt)) — e, (4-4-10)

Uy = —((X, —200) — F;0e™" ™ (cos mt)) — &,

Uy, :-—(—e(x3——200)+-f(l—(x3-—200)2)(x4——200)+-g(x1——200)

sin ot

- F,me (cosmt))—e,

We obtain

which is a negative definite function in first quadrant. The numerical results are
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shown in Fig.4-5 and Fig. 4-6. After 10 sec., the errors approach zero and the chaotic
trajectories approach to regular motion.

CASE Ill. Control the chaotic motion of the new Mathieu-van der Pol system to
chaotic motion of the new Mathieu-Duffing system.

In this case we will control chaotic motion of the new Mathieu-van der Pol
system (4-4-1) to that of following goal system, i.e. the new chaotic Mathieu-Duffing
system with initial states (-2, 10, -2, 10), system parameters @, = 20.30, b, =0.5970,
c, =0.005, d, =-24.441, ¢, =0.002and f, =14.63.
2,=1,

2, =—(a, +b,2;)z, - (& +b;23)2,° —¢,2, +d, 7,

. (4-4-11)

2,=-1,-15; —ez,+ f,7,

The error equation is€; = X; —z;, (I=1,2, 3, 4). Our aim is[ime; =0 (i=1, 2, 3, 4).

t—>o0

The error dynamics becomes

€ =X —%;,=(X, —200-2,) +,

&, = X, — 2, = (—(a+b(x; —200))(x, —200) — (a+b(x; —200))(x, —200)°
—c(X, —200)+d(x; —200) - (—(a, +b,z;)z, —(a, +b,z5)z,’
—C,Z, +d,Z5))+U,

€y =X3—2;=(X, —200-2,) +U,4

€, = X, — 2, = (—e(X; —200) + f (1—(X; —200)?)(X, —200) + g(X, —200)

3
—(-z3-23 —ez, + fiz)))+uy

(4-4-12)
In Fig. 4-7, the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a
Lyapunov function in the form of a positive definite function in first quadrant as:
V=¢+e,+e;,+e,

Its time derivative is
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V=¢+6 +& +¢&, =((X, —200-2,)+U,)
+((—(a+b(x; —200))(x, —200) — (a + b(x; —200))(x, —200)°
—c(X, —200) +d(X; —200) — (=(a, +b,z,)z, — (a, +b,2;)z,’
—C1Z; +0,23)) +Uy) + (X4 —200—Z,) +Us)
+((—e(X; —200) + f (1= (X; —200))(x, —200) + g(X, —200)

3
—(-23-23 —e;z,+ fiz)))+uy)

(4-4-13)

U, =—(X, —200-2,)—e,
Uy = —(—(@+b(X; —200))(x, —200) — (@ +b(x; — 200))(x, — 200)?
—c(X, —200)+d(x; —200) - (—(a, +b,z;)z, - (a, +b,z;)z,’
—C,2, +d,z3)) e, (4-4-14)
Uy =—(X, —200—-2,)—¢e,
Uy = —(—e(X; —200) + T (1= (X5 —200))(X, —200) + g(X, — 200)

3
—(-23-23 —e;z, + f,z))) e,
We obtain

which is negative definite function in first quadrant. The numerical results are shown
in Fig.4-8 and Fig. 4-9. After 10 sec., the errors approach zero and the chaotic
trajectories of the new Mathieu-van der Pol system approach to that of the new

Mathieu-Duffing system.
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Fig. 4-1 Chaotic phase portrait projections for new Mathieu-Duffing system.
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Fig. 4-2 Phase portrait projections of error dynamics for Case I.
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Fig. 4-3 Time histories of errors for Case I.
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Fig. 4-4 Phase portrait projections of error dynamics for Case II.
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Chapter 5
Generalized Chaos Synchronization of New Mathieu-van
der Pol Systems with New Duffing-van der Pol systems as

Functional system by GYC Partial Region Stability Theory

5.1 Preliminaries

In this Chapter, a new strategy by using GYC partial region stability theory is
proposed to achieve generalized chaos synchronization. Via using the GYC partial
region stability theory, the new Lyapunov function used is a simple linear
homogeneous function of states and the lower order controllers are much more simple
and introduce less simulation error. Numerical simulations are given for new
Mathieu-van der Pol system and.new. Duffing-van der Pol system to show the

effectiveness of this strategy.

5.2 Generalized Chaos Synchronization Strategy

Consider the following unidirectional coupled chaotic systems
x=f(t, x
0 (521
y=h(t,y)+u

where X=[X1,X2,-~,X ]T eR", y=[yl,y2,~-,yn]T € R" denote the master state

n

vector and slave state vector respectively, f and h are nonlinear vector functions,

T . .
and U=[u,u,,---,u,] €R" isa control input vector.

n
The generalized synchronization can be accomplished when t — oo, the limit of

T
the error vector e=[e,e,,---,e,] approaches zero:

lime =0 (5-2-2)

t—oo

where
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e=G(X)-y (5-2-3)

G(x) isa given function of X.
By using the partial region stability theory [50-51], the Lyapunov function is
easier to find, since the linear homogenous terms of the entries of e can be used to
construct the definite Lyapunov function and the controllers can be designed in lower

order.

5.3 New Chaotic Duffing-van der Pol System
Duffing equation and van der Pol equation are two typical nonlinear
non-autonomous systems:

{Zl B (5-3-1)

2, =—1,—1; —hz, +isinwt

{23 :Z“ (5-3-2)

2, =—jz; —k(1-23)z, +Isinot
Exchanging sinot in Eq. (5-3-1) by z, andsmot in Eq. (5-3-2) by 2 o we obtain the

autonomous master new Duffing-van der Pol system:

2,=1, (5-3-3)

2, =—jz; +k(1-2.")z, +1z,

where h, 1, J, k, | are uncertain parameter. This system exhibits chaos when the
parameters of system areh=0.0006, j=1, k=5, i=0.67and |=0.05and initial
states is (2, 2.4, 5, 6), its phase portraits projections and Lyapunov exponents as

shown in Fig. 5-1 and 5-2.

5.4 Numerical Simulations

The two unidirectional coupled new chaotic Mathieu-van der pol systems are
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shown as follows:

X, = —(a+bX:)X —(a+bx: )X, —cxX, +dx
% ( 3% = ( 3)X 5 X (5-4-1)

X, = —€%; + T (1= %)X, + 0%,

Yy =Y, +U
Y, =—(a+hys)y, —(a"‘b§/3)y13 —Cy, +dy; +U,
Y3 =Y4+U;

Vo =—eys + 1=y )Y, + 9y, +U,
CASE I. The generalized synchronization error function is€; = (X; — Y; +100), (i=1, 2,
3,4.).
The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is y; = x; +100, i.e.

lime, = lim(x, — y; +100) =0 (i=1,2,3,4) (5-4-2)

t—o0 t—o0
The error dynamics becomes:

& =X =Y =X —Y, U

€ =%, =¥, = ~((@+bxy)x, —(@+by;)y)) = ((@+bx;)x’ —(@+by;)y,)

—C(X, = Y,)+d(X; —y3) U,
€5 =X = Y3 =Xy — Yy —Us
€ =Xy — Y4 =—€(X; —y3) + F((1=X")%, (1= y37)Y,) + 9 (X —y,) - U,
(5-4-3)

System parameters are chosen as a=10, b=3, ¢c=04, d=70, e=1, f =5,
g=0.1 and initial states are (X;y,Xy9,X30,Xs) =(0.1, -0.5, 0.1, -0.5),
(Y105 Y205 Y305 Yao) =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics
always happens in first quadrant as shown in Fig. 5-3. By GYC partial region stability,
one can choose a Lyapunov function in the form of a positive definite function in first
quadrant:
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Its time derivative through Eq. (5-4-2) is

V=¢+6€, +6&;+¢,
= (X, = ¥, —U) +(~((@+bx;)X, = (@a-+by;)y,) — ((@+bx;)x’
—(@+by)Y’) —C(Xy = ¥) +d(Xg = Y3) —Uy) + (X, = Y4 —Uy)
+(—e(Xs —Y3)+ (A=%D — (1= y5)ya) + 90X = yp) —u,)

(5-4-5)

Choose

U =(X—Y,)+¢
Uy = (—((@+bxy)X, —(@+by;)y,) - (@+bx;)x* —(@+by;)y,")

—C(Xy, = Y,)+d(X; = y3)) +¢&, (5-4-6)
Uy = (X4 —Y4)+6;

Uy = (—e(Xs = ¥3) + F(L=%57)%, = (1= Y57y + 9% — Y))) +&y

We obtain

which is negative definite function:in the first quadrant. Four state errors versus time
and time histories of states are shown in Fig. 5-4 and Fig. 5-5.
CASE . The generalized synchronization error function is
e, =(X —Y; + Fsinot+100), (i=1, 2, 3, 4).

The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is y; = X; + F;sinot +100, i.e.

lime, = lim(x, — y; + F, sinot +100) =0 (i=1,2, 3, 4). (5-4-8)
t—w

t—>o0
where F=F,=F=F,=F =10, ®=05.
The error dynamics becomes
€ =X, —Y, —U +Fsinat

¢, =~((@+bx;)x —(@+bys)y,) ~((@+bxy)x,’ —(@+by;)y,’)
—C(X, —¥,)+d(X; —y;)—U, + Fsinaot (5-4-9)
€y =Xy — Y4 —U; + Fsinot

€y =—€(X;—Y;)+ f((l—X32)X4 _(I_Y32)y4)+g(xl —Y)—Uy +Fsinaot
System parameters are chosen as a=10, b=3, ¢c=04, d=70, e=1, f=5,
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g=0.1 and initial states are (X;y,Xy9,X30,Xs0) =(0.1, -0.5, 0.1, -0.5),
(Y105 Yaos Yo Yao) =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics
always happens in first quadrant as shown in Fig. 5-6. By GYC partial region stability,
one can choose a Lyapunov function in the form of a positive definite function in first
quadrant:
V=g +e,+e, +e, (5-4-10)
Its time derivative through Eq. (5-4-8) is

= (X, =Y, —U; + Focosat) + (=((@a+bx;)X —(a+by3)y1)—((a+bx3)x13
_(a+bY3)Y13)—C(X2 —Y,)+d(X; = Y3)—U, + Focoswt) + (X, =y, —Us

+Farcosat) +(—e(X; — y3) + F(1=%37)%, = (1= y37)Y) + 90 = ¥;)
—U, + Focosat)

(5-4-11)
Choose

U, =(X, = y,)+Facosat +e,

Uy = (=((@-+bx;)x —(@-+by;)y,) “(@+bx;)x,” - (@-+by,)y,")
—C(X, —Y,)+d(X; —Y;))+ Focosat +¢,
Uy =(X4 = Yy4)+ Forcosat +e,

Uy = (—e(X3 — y3)+ F((1=%7)X, = (1= Y37)Ys) + 9(x — ¥))) + Focosat +e,
(5-4-12)
We obtain
V=-e-6-6-¢€<0 (5-4-13)
which is a negative definite function in the first quadrant. Four state errors versus time
and time histories of X, —Y; +100 and — F sinwt are shown in Fig. 5-7 and Fig.
5-8.
CASE I1. The  generalized  synchronization  error  function  is

e =% —y; + Fe™ +100, (i=1, 2, 3, 4).
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The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is y; = X; + F.e™' +100, i.e.

lime; = lim(x, — y; + Fe™ +100) =0 (i=1,2, 3, 4). (5-4-14)

t—o0 t—w

The error dynamics becomes

sin wt

€ =X-Y,—-Uu +Fe
6, =~((@+bx;)x, —(@+by;)y)) ~((@+bxy)x’ ~(@+by;)y;’)
—C(X, = ¥,)+d(X; = Y5)—u, + Fe"
€, =X, — Y, —U; + Fe™"
&y ==Xy = y5)+ F(L=%")Xy = (1= Y3 )ya) +9(x — 1) —u, + Fe™*

(5-4-15)

System parameters are chosen as a=10, b=3, ¢c=04, d=70, e=1, f =5,

9g=01 , F=FK=K=F=F=10 , ®=05 and initial states are

(X105 X205 X305 Xa0) =(0.1, -0.5, 0.1,570.5), (V10 Y50 Y30> Ya0) =(0.3, -0.1, 0.3, -0.1).

Before control action, the error dynamics-always happens in first quadrant as shown

in Fig. 5-9. By GYC partial region stability,-one can choose a Lyapunov function in

the form of a positive definite function in first quadrant:

Its time derivative through Eq. (5-4-14) is

V=6 +6€, +6é;+¢,
sinet cos at) + (—((a+bx; )X, —(@+bys)y,) — ((@+bx;)x,
—(a+by3)y13)—c(x2 -Y,)+d(X;—Yy;)—u, + Fae

sin ot Cosa)t)+(_e(X3 _ y3)+ f((l—X32)X4 —(1— y32)y4)+ g(Xl - yl)

sin wt

=(X; =Y, —Uu +Fae
SN cos @t) + (X, — Yy —Us
+ Fae

—Uy +Fae™ ™ cosat)

(5-4-17)

Choose
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sin wt

Uy =(X, —y,)+Fae

U, = (—((@+bx;)x, —(@+by;)y,) —((@+bx;)x’ —(a+by;)y,’)
—C(X, — ¥,) +d(X; — y3)) + Foe™ coswt + e,

sin wt

cosat + ¢,

Uy =(X4 —Y4)+ Fae cosat +e;

u, =(—e(x; —y;)+ f(1- X32)X4 -(- Y32)Y4) +9(% —Yy))+ Fae™ cos at +€
(5-4-18)
We obtain

V=-—g-e-6-€<0 (5-4-19)

which is a negative definite function in the first quadrant. Four state errors versus time

sinwt

and time histories of X, —Yy,+100 and —Fe are shown in Fig. 5-10 and Fig.

5-11.
CASE IV. The generalized synchronization.error function is €; = %Xi2 —-y; +100, (i=1,

2,3,4).
The addition of 100 makes the error dynamics always happens in first quadrant.

Our goal is y; = %Xi2 +100, i.e.

lime, = lim(% X — Yy, +100) (i=1,2, 3, 4) (5-4-20)

t—wo t—ow
The error dynamics becomes

€ = XX =Y = XX =Y, — U

& = Xo¥y = ¥, =~((@+b%;)X, X, —(@+by;)y) = (@+bx%)x, %"~ (@-+by;)y,’)

—C(X; = ¥,) +d(XX; — ¥3)— U,
€ = X3X3 = Y3 = X3X4 — Y4 — U3
€, = XX — Yy =—€(X X5 — y3)+ F((1=X7)X] = (1= y57)y ) + 9% % — ) - U,
(5-4-21)

System parameters are chosen as a=10, b=3, ¢c=04, d=70, e=1, f=5,

g=0.1 and initial states are (X;,X5,X30,Xs0) =(0.1, -0.5, 0.1, -0.5),

(Y105 Yaos Yo Yao) =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics
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always happens in first quadrant as shown in Fig. 5-12. By GYC partial region
stability, one can choose a Lyapunov function in the form of a positive definite
function in first quadrant:
Its time derivative through Eq. (5-4-20) is
V=6 +6, +6 +6,
= (XX, = Y, —Up) +(=((@+DX;)X, X —(@+by;)y)) = (@+bx;)%, X’ (5-423)
—(@+by;)y, )= C(X3 = ¥,)+d(XyXs = Y3) —Uy) + (X3 Xy — Yy —Us)
(0% = Y3)+ F(A=%7)% = (1= Y3)Y) + (%X = Y1) —Uy)
Choose
Uy =X X, =Y, +6
U, =—((a+bx3)x, X, —(@+by;)y) - (@+bx;)X, %’ = (@a+by;)y,’)

—C(X; = ¥,) +d(XyX; — Y3) + €5 (5-4-24)
Us = X3Xg — Y4 +6;

Uy =—e(XgXs = y3)+ F (LXK ==Yy + 903X — Vi) +ey
We obtain
V=-e-6-6-€<0 (5-4-25)

which is a negative definite function in the first quadrant. Three state errors versus
time is shown in Fig. 5-13.
CASE V. The generalized synchronization error function is €, zéxf —y; +10000
(i=1,2,3,4).

The addition of 10000 makes the error dynamics always happens in first

quadrant.

Our goal is Y, =%xi3 +10000, i.e.
1nnei:1nnc1xﬁ-yi+10000) (i=1,2,3,4) (5-4-26)
tow too 3

The error dynamics becomes
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& = X% — Y, = X[ X, — Y, —U,

€, =X3%, — ¥, =—((@a+bx;)X3X, _(a+bY3)Y1)_((a+bX3)X22X13 _(a+bY3)Y13)
—C(X3 = ¥5) +d(X3 X5 — Y3) — U,

€ = X% — V5 = X3 X, — Y,y —Us
€4 = Xa Xy = V4 = =0 X = ¥3) + F(1=%7)X5 —(1=Y57)Ya) + 906X = ¥,) — Uy
(5-4-27)
System parameters are chosen as a=10, b=3, ¢c=04, d=70, e=1, f =5,
g=0.1 and initial states are (X;y,Xy9,X30,Xg) =(0.1, -0.5, 0.1, -0.5),
(Y105 Yaos Yo Yao) =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics
always happens in first quadrant as shown in Fig. 5-14. By GYC partial region

stability, one can choose a Lyapunov function in the form of a positive definite

function in first quadrant:

Its time derivative through Eq. (5-4-26) is

V=¢ +6€, +6&;+¢,
= (X7 X, = Y, —Up) + (=((@+ D)% = (a+by; )y, ) - ((a+bx;) X3,
—(@+by3)Y,’) = €063 = ¥2) + (X3 Xy = Y3) —Uy) + (X3 X, = Y, —Uy)
+(—e(X3Xs = ¥3)+ F(A=%7)%; (1= y5P)y) + g(xi% — ) —Uy))
(5-4-29)
Choose
u; :X12X2—Y2+e1
U, =—((@+bx)X5 %, —(@+by;)y,) - (@+bx;)X3 %" —(a+by;)y,”)
—C(X5 = ¥2) +d(X3X; — ¥3) +e, (5-4-30)
Uy = XX, — Yy +8
Uy ==X = Y3) + F((1=X7)x3 = (1= y57)Y, ) + 906X, — y)) +¢,

We obtain
which is a negative definite function in the first quadrant. Three state errors versus
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time is shown in Fig. 5-15.
CASE VI. The generalized synchronization error function is €; =X; —Y; +z; +100,
z; (=1, 2, 3, 4) is the states of new chaotic Duffing-van der Pol system.

The functional system for synchronization is a new Duffing-van der pol system

and initial states is (2, 2.4, 5, 6), system parameters h=0.0006, j=1, k=35,

i=0.67and 1=0.05.
2,=1,
. 3 .
7,=—2,—-12, —hz, +iz
.2 174 2 3 (5-4-32)
2,=1,
We have tlime = tlim(xi -y, +z;+100)=0 (i=1,2,3,4) (5-4-33)
—>0 —>0

The error dynamics becomes
€ =X =Y =X +Z, =Y, —Y
€, =%, — ¥, =—((@+bxy)X; ~(@+hy5)y)) 7 ((@+bxy)x” ~(@-+by)y,)
—C(X, — Y,) +0(Xy = Y3)* (<2, — 2,° —hz, +iz;) - U,
B3 =X -Y3 =X+ 24— Y4~ Us
€ =Xy~ Yy =—(X3—Y3)+ f((l—X32)X4 _(I_Y32)y4)+g(xl Y1) Uy
+(—jz; +k(1-23°)z, +1z))

(5-4-34)
System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5,
g=0.1 and initial states are (X;y,Xy9,X30,Xsg0) =(0.1, -0.5, 0.1, -0.5),
(Y105 Yaos Yo Yao) =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics
always happens in first quadrant as shown in Fig. 5-16. By GYC partial region
stability, one can choose a Lyapunov function in the form of a positive definite
function in first quadrant:
V=g +e,+6;+¢€, (5-4-35)

Its time derivative through Eq. (5-4-33) is
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V=6 +6,+6;+¢,
= (X, +2, = ¥, —U) +(=((@+bx;)X, = (a+by;)y,) — ((@+bx;)x’
—(@+byy)y,’ ) —c(X, = ¥)) +d(Xs = ¥5) + (-2, — 2, —hz, +iz;)
—Uy)+(Xg +2Z4 = Y4 —Uy) +(—€(X; —Y3) + f((l—X32)X4 -(1- Y32)Y4)

+9(X = Y;) =Uy +(=jz5 +k(1=2")z, +1z,))

(5-4-36)
Choose

U =X,+2, -y, +€

U, = —((@+bx;)x, —(@+by;)y,) —((@+bx;)x’ —(@+by;)y,’)

. :;:(rzz;j/;zi(i:& —y;)+(=2,—-2, —hz, +iz;) +e, (5.4-37)

Uy =—e(X; = ¥3) + F(1=%x")% —(A=y52)y) +9(x -y +e,

+—(—jz3—rk(l——z32)z4-+lzl)
We obtain
V=-—-6-6-6<0 (5-4-38)

which is a negative definite function in the first quadrant. Four state errors versus time

and time histories of X, —Y, +100 and —z;are shown in Fig. 5-17 and Fig. 5-18.
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Fig. 5-1 Phase portrait projections of new chaotic Duffing-van der Pol System.
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Fig. 5-2 Lyapunov exponents of new chaotic Duffing-van der Pol System.
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Fig. 5-3 Phase portrait projections of error dynamics for Case I.

Fig. 5-4 Time histories of errors for Case I.
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Fig. 5-5 Time histories of X, X2, X3, X4, Y1, ¥2, ¥3, 4 for Case L.

a0 | l
[ 90

| 1
108 il 115

Fig. 5-6 Phase portrait projections of error dynamics for Case II.
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Fig. 5-7 Time histories of errors for Case II.

Fig. 5-8 Time histories of X, —Yy; +100 and —Fsinwt for Case II
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Fig. 5-9 Phase portrait projections of error dynamics for Case III.

150

0 20 40 &0 =] jLu]

150

i 2 10 ] ] 100 o i) 40 il il 100

Fig. 5-10 Time histories of errors for Case II1.
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Fig. 5-11 Time histories of X, —y, +100 and —Fe™™ for Case III.

Fig. 5-12 Phase portrait projections of error dymanics for Case I'V.
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Fig. 5-13 Time histories of errors for Case IV.
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Fig. 5-14 Phase portrait projections of error dymanics for Case V.
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Fig. 5-15 Time histories of errors for Case V.

Fig. 5-16 Phase portrait projections of error dymanics for Case VI.
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Fig. 5-17 Time histories of errors for Case VI.

Fig. 5-18 Time histories of X, —y, +100 and —z; for Case VL.
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Chapter 6

Pragmatical Adaptive Yin-Yang Synchronization of Chaos
by G-Y-C Partial Region Stability Theory

6.1 Preliminaries

The Yin and Yang Lorenz systems are used in this Chapter. A new effective
approach to achieve pragmatical adaptive Yin-Yang synchronization is proposed. Via
using Ge-Yao-Chen (GYC) partial region stability theory, in the numerical simulation
results, the states errors and parametric errors approach zero much more exactly and
efficiently. In this Chapter, two cases are presented in pragmatical adaptive Yin-Yang

synchronization and the simulation results are listed in table for comparison.

6.2 GYC Pragmatical Adaptive Synchronization Scheme
There are two identical nonlinear.dynamical systems, and the master system

controls the slave system. The master system is given by
x=Ax+ f(x,B) (6-2-1)
where X =[X,X,,~--X ] €R" denotes a state vector, A is an Nnxn uncertain

constant coefficient matrix, f is a nonlinear vector function, and B is a vector of
uncertain constant coefficients in f.

The slave system is given by

y=Ay+ f(y,B)+u(t) (6-2-2)

~

where y=[Y,,¥,,-Y,]' € R" denotes a state vector, A is an nxn estimated

A

coefficient matrix, B is a vector of estimated coefficients in f, and
u(t) =[u,(t),u,(t),---u (t)]" €R" is a control input vector.
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Our goal is to design a controller u(t) so that the state vector of the chaotic
system (6-2-1) asymptotically approaches the state vector of the master system
(6-2-2).

The chaos synchronization can be accomplished in the sense that the limit of the

error vector e(t)=[e,e,,---,€, ]T approaches zero:
yme =0 (6-2-3)
where
e=Xx-y+K (6-2-4)

where K is a positive constant by which the error dynamics occurs in the first
quadrant of state space of e.
From Eq. (6-2-4) we have

E=X-Y (6-2-5)
e = Ax— Ay + f (x,B)— f(y, B)—u(t) (6-2-6)
A Lyapnuov function V(e,g, B) is chosen as a positive definite function in first

quadrant of state space of e, A , B.

We have
V(e,A,B)=e+A+B (6-2-7)

where A= A- A, B=B-B, Aand Bare two column matrices whose elements
are all the elements of matrix A and of matrix B , respectively.

Its derivative along any solution of the differential equation system consisting

of Eq. (6-2-6) and update parameter differential equations for Aand B is

Ve, A B) = [Ax— Ay + Bf (x) - Bf (y)—u(t)|+ A+ B (6-2-8)

where u(t), A,and B are chosen so that V =Ce, Cis a diagonal negative definite
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matrix, and V is a negative semi-definite function of e and parameter differences
Aand B. In current scheme of adaptive control of chaotic motion [22-24], traditional
Lyapunov stability theorem and Babalat lemma are used to prove the error vector
approaches zero, as time approaches infinity. But the question, why the estimated or
given parameters also approach to the uncertain or goal parameters, remains no
answer. By pragmatical asymptotical stability theorem, the question can be answered

strictly.

6.3 Yin and Yang Lorenz system

The Yang Lorenz system [10] can be recalled firstly as follow:

% — a(xy (1)~ %, (1))
20 _ o, 1) %, 0%, - 3500 (6-3-1)
20— %, 0 -bx, 0

when initial condition (X,,, X5, X39) = (-0.1, 0.2, 0.3) and parameters a=10, b=8/3 and
c=28,chaos of the Yang Lorenz system appears. The chaotic behavior of Eq. (6-3-1) is
shown in Fig 6-1.

Yin Lorenz equations are:

dx, (-t) N
T a(%, (=) = x; (-1))

d —

;(2( E t )t) = X, (=t) = X, (=) X3 (=) = X, (1) (6-3-2)
dx; (1) _

= X, (=1)%, (=t) —bx; (-1)

d(-t)
It is clear that in the left hand sides of Eq. (6-3-2), the derivative are taken with

the back-time. When initial condition (X, X5,X30)= (0.1, 0.2, 0.3) and parameters

a=-10, b=-8/3 and c=-28, the chaotic behavior of Eq. (6-3-2) is shown in Fig 6-2.
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6.4 Adaptive Yin-Yang synchronization by GYC partial region
stability theory

In this section, there are two Cases in simulation results. In Case 1, originally
adaptive synchronization from Yin Lorenz chaos to Yang Lorenz chaos is proposed. In
Case 2, adaptive synchronization by GYC partial region stability theory is presented to
synchronize the Yin and Yang Lorenz chaos. The Yin Lorenz system is considered as
slave system and the Yang Lorenz system is regarded as master system. These two
equations are shown below:

Master system- Yang Lorenz system:

O at,0-x 1)
220~ o, )%, 0%, - 5,0 (6-4-1)
20—y 0, 0 -bx, 0

Slave system- Yin Lorenz system:

dy, (-t A

% =—a(y, () -y, (-D) +u,

dy, (= A

J%%Q:—@meﬂ—meﬂweﬂ—yx4n+% (6-4-2)
dy, (-t 3

%)) = —(y, ()Y, (-t) — by, (-t)) + U,

where X; (t) stands for states variables of the master system and y; (-t)the slave system,

respectively. Parameters, a, b and ¢ are positive uncertain parameters of master system.

A

a,b and € are estimated parameters. U, , U, and U; are nonlinear controller to

synchronize the slave Lorenz system to master one, i.¢.,

lime =0 (6-4-3)

t—>w

where the error vectore = [e1 (1) e,(t) e (t)].
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CASE 1: Adaptive synchronization from Yin to Yang Lorenz chaos.

The error vectore = [e1 (t) e, (t) e, (t)] and

€ ()= X t- Yi (-9
e, (1) =X, () -y, (-1
€3 (t) = X3 (1) — y3(-1)

From Eq. (6-4-4), we have the following error dynamics:

de, (t) _ dx,(t) _dy,(=t) _dx (1) 4 dy, (-t)
dt dt dt dt d(-t)

de, (t) _ dx, (1) dy,(-t) _ dx, (t) + dy, (-t)
dt dt dt dt d(-t)

de; (1) _ dx;(t)  dy;(-t) _ dx; (1) + dy;(-t)
dt dt dt dt d(-t)

& =a(X, —X)+(=a(y, —y;)+u))
&) =CX; = X X3 =X, +(=(Cy; = Y, ¥3 = ¥,) +U,)

&; = XX, —bX; +(=(y, Y, _6y3)+u3)

(6-4-4)

(6-4-5)

The two systems will be synchronized for any initial condition by appropriate

controllers and update laws for those estimated parameters. As a result, the following

controllers and update laws are designed by pragmatical asymptotical stability

theorem as follows:
Choosing Lyapunov function as:
1 ~2 T2~
% :E(el2 +e; +e; +a+b*+C?)

~

wherea=a—4, b=b—b and T=c—¢.
Its time derivative is:
V =g +6e,6,+e,6,+aa+bb +¢C
= e (a(X, — X ) +(=a(y, —y;) +u))
+€,(CX; — X X3 = Xy +(=(CY; = ¥, Y3 = ¥,) +U,))
+e3(X Xy =X +(=(y; Y, —by;) +U3))

+E(a-a)+b(b-b)+E(c—¢)

We choose the update laws for those uncertain parameters as:
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a

=—4=—(X, - X,)e, +ae,
C=—=—(x)e, +Ce, (6-4-8)

Through Egs. (6-4-7) and (6-4-8), the appropriate controllers can be designed as:
U =—a(X, =X — Y, +Y,)-&" —¢
Uy = —€(X = Y)) + XX + X + Y, Y3 + Y, —C — & (6-4-9)
Uy =B(X; = ¥3) = XX, — Y1y, —b* —e;

We obtain

V=-—e —e —&]<0 (6-4-10)

which is negative semi-definite function ofe,,e,,e;,a ,Bandé. The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (6-4-5) and parameter'dynamics (6-4-8) is asymptotically stable. By

pragmatical asymptotically stability theorem. (see Appendix A), D is a 6-manifold,

n=06and the number of error ‘state variablesp=3. When e, =e, =e;=0and
a ,B ,Ctake arbitrary values,V =0,s0 X is of 3 dimensions, m=n -p=6-3=3,

m+1<n is satisfied. According to the pragmatical asymptotically stability theorem,
error vector e approaches zero and the estimated parameters also approach the
uncertain parameters. The equilibrium point is pragmatically asymptotically stable.
Under the assumption of equal probability, it is actually asymptotically stable. The

simulation results are shown in Figs. 6-3, 6- 4 and 6-5.

CASE 2: Adaptive synchronization from Yin to Yang Lorenz chaos by GYC partial
region stability theory.
In order to obtain more simple controllers and achieve high efficiency in

adaptive synchronization, GYC partial region stability theory is used here
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We choose error vectore = [e1 (t) e, (t) e (t)] and

e®=x0-y-H+K
&M =X10)-Yy,(-)+K (6-4-11)
e =x1)—-y;(-1)+K

where K is a constant and choose as 200 so that the error dynamics occurs in the first

quadrant of state space of e. From Eq. (6-4-11), we have the following error

dynamics:
de,(t) _ dx® _dy,(=) _dx ()  dy, (D)
dt dt dt dt d(-t)
de, () _ dx, (1) _dy,(-t) _dx,(t) + dy, (-t)
dt dt dt dt d(-t)
de, (t) _ dx; (1)  dy;(-t) _ dx, (t) N dy;(-t)
dt dt dt dt d(-t)

& =a(x, —x;)+(=a(y, - y;)+uy)
8) =CX; — X X3 — X, +(=(CY, — Yi¥5 — ¥p) 4 Us3) (6-4-12)

&5 =X, Xy —bX; +(=(¥, Y, —byz)*u3)

The two systems will be synchronized for any initial condition by appropriate
controllers and update laws for those estimated parameters. As a result, the following
controllers and update laws are designed by pragmatical asymptotical stability
theorem and GYC partial region stability theory as follows:

Choosing Lyapunov function as:

V=e+e,+e,+a+b+¢C (6-4-13)

~

whered =a—-4,b =b—-b and C=c-C.a, band c are positive uncertain parameters
anda ,bandc are estimated parameters in negative initial values. V is a positive

definite function in the first of the state space ofe,,e,,e;,a, b and€ .

Its time derivative is:
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V=€ +6, +6 1 5+b+¢
= (a(Xy —%)+(-a(y, —y;)+Uup))
+(CX =X X3 =Xy +(=(CY; = ¥1¥3 = ¥2) +Uyp)) (6-4-14)
+ (XX, —bX; +(=(y;Y, —by;) +U5))
+(@-8)+(b-b)+(c—¢)

We choose the update laws for those uncertain parameters as:
T =—€=—(x)T -Ce, (6-4-15)

Through Eqgs. (6-4-14) and (6-4-15), the appropriate controllers can be designed as:

U =aX, =X +Y, -y +e
Uy =C(X +Y) =X X3 =X, — Y1 Y3 =Y, +€ (6-4-16)

Us =X X, +Y1Ys —6(X3 +Y;)+e€;

We obtain

V=-e —-e-6<0 (6-4-17)
which is negative semi-definite function ofey,e,,e;,a, b and € in the first quadrant of

state space of el,ez,e3,5,5and5. The Lyapunov asymptotical stability theorem is

not satisfied. We cannot obtain that common origin of error dynamics (6-4-12) and
parameter dynamics (6-4-15) is asymptotically stable. By pragmatical asymptotically

stability theorem (see Appendix A), D is a 6-manifold, n = 6and the number of error

A

state variables p=3 . When e, =¢,=¢;=0 and a , b , ¢ take arbitrary

values,V =0,s0 X is of 3 dimensions, m=n -p=6-3=3, m+1<n is satisfied.
According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of

equal probability, it is actually asymptotically stable. The simulation results are shown
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in Figs. 6-6 and 6-7.

6.5 Discussion

In this Section, we are going to show the efficiency and effectiveness of our new
approach via comparing Figs and numerical data. There are two main topics here: (1)
Errors of states, (2) Errors of parameters.

(1). Errors of states:

The simulation results in Fig. 6-3 and Fig. 6-6 can be clearly found out that the
errors in Case 2 (in Fig. 6-6) are reaching original point much faster than the errors in
Case 1 (in Fig. 6-3). Further, the data of numerical results in Case 1 and Case 2 are
also provided for comparing, which are listed in Table 6-2.

Table 6-2 shows that the errors in'Case 2 are faster converging to original point
than the errors in Case 1. When time is going to achieve 20s, the data of errors in Case

2 are approaching to4.1x 10" and are greatly less than the data of errors in Case 1,
e, ~8.1x107° e, ~1.3x10 3ande, ~1.8x107*.

(2). Errors of parameters:

In Fig. 6-4 (Case 1), the time of achieving parametric terminal value is about 16s.
In Fig. 6-7 (Case 2), the time of achieving parametric terminal value is only about
0.1s. It can be found out when GYC partial region stability theory is used in
pragmatical adaptive synchronization, the efficiency of parametric synchronization
can be hugely raised up.

On the other hand, the numerical data of parametric errors in Case 1 and 2 are
listed in Table 6-3. In Table 6-3, the parametric errors for Case 2 are completely
converging to the original point before 10.00s. Through our new strategy, the

Yin-parameters of Yin Lorenz system can exactly approach to the Yang-parameters of
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Yang Lorenz system via pragmatical asymptotically stability theorem. The numerical
results are marvelously satisfactory.

Through the comparison of figures and tables in simulation results, our new
approach — pragmatical adaptive synchronization via GYC partial region stability
theory is demonstrated as an effective and powerful tool. It is not only increasing the
converging speed to our goal enormously (for errors of states and errors of parameters,

the goal is original point), but also reducing the simulation errors.
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Fig. 6-1. Projections of phase portrait of chaotic Yang Lorenz system with a=10,

h=8/3 and ¢c=28.
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Fig. 6-2. Projections of phase portrait of chaotic Yin Lorenz system with Yin

parameters a=-10, b=-8/3 and c=-28.
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Fig. 6-4. Time histories of parametric errors for Yin and Yang Lorenz chaotic systems

for Case 1
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Time histories of errors for Yin and Yang Lorenz chaotic systems for Case 2
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Fig. 6-9 Time histories of errors in 20s for Case 2
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Table 6-1 Comparison between errors data at 19.96s, 19.97s, 19.98s, 19.99s and
20.00s after the action of controllers

Time Errors for Case 2 Errors for Case 1
€1 €1
19.96s 0.00000043256 0.00011282000
19.97s 0.00000042826 0.00010565000
19.98s 0.00000042399 0.00009795500
19.99s 0.00000041978 0.00008996100
20.00s 0.00000041560 0.00008187800
€2 €2
19.96s 0.00000043266 -0.00210000000
19.97s 0.00000042836 -0.00110000000
19.98s 0.00000042410 -0.00020560000
19.99s 0.00000041988 0.00061179000
20.00s 0.00000041570 0.00130000000
€3 €3
19.96s 0.00000043378 0.00009716000
19.97s 0.00000042947 0.00001637300
19.98s 0.00000042519 -0.00006358000
19.99s 0.00000042096 -0.00013330000

20.00s

0.00000041677

-0.00018590000
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Table 6-2 Comparison between parametric errors at 9.96s, 9.97s, 9.98s, 9.99s and

10.00s after the action of controllers

Time Errors for Case 2 Errors for Case 1
a a
9.96s 0 0.00075110
9.97s 0 0.00075450
9.98s 0 0.00076372
9.99s 0 0.00077850
10.00s 0 0.00079843
b b
9.96s 0 -0.01620000
9.97s 0 -0.00630000
9.98s 0 0.00430000
9.99s 0 0.01440000
10.00s 0 0.02310000
C C
9.96s 0 1.10510000
9.97s 0 0.93560000
9.98s 0 0.75750000
9.99s 0 0.57490000
10.00s 0 0.39130000
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Chapter 7
Fuzzy Modeling and Synchronization of Complicated
Nonlinear Systems via Novel Fuzzy Model and Its

Implementation on Electronic Circuits

7.1 Preliminaries

In this Chapter, a new fuzzy model is presented to simulate complicated
nonlinear systems, such as Quantum cellular neural networks nano system (called
Quantum-CNN system) and Qi system. Quantum-CNN system is a complicated
nonlinear system. There are too more nonlinear terms in its mathematical equations,
such as radical terms, square terms, sin and cos terms, etc. If the traditional T-S fuzzy
model is used here, there will be 16 fuzzy rules and even 64 linear equations for
modeling such a complex system.-It'is definitely an inefficient work. As a result, by
using the new fuzzy model, the numbers of fuzzy rules can be reduced
from 2™ to2x N (where N is the number of nonlinear terms) and only two subsystems
will be existed. The fuzzy equations become much simpler. Moreover, the LMI-based
fuzzy synchronization of two identical or totally different fuzzy chaotic systems,
Q-CNN and Qi systems, and its related new theorem are proposed as well. Via using
the new fuzzy model, only two feedback gains are needed in the fuzzy controllers.
There are two examples in numerical simulation results to show the effectiveness and
feasibility of our new model. Finally, via using Taylor’s expansion, the complicated
nonlinear terms can be expanded to series form, and then the simplified Q-CNN
system can be implemented on electronic circuits for secure communication.
Simulation results in MATLAB and implementation of electronic circuits are given to

show the effectiveness and feasibility of the new fuzzy model and the new
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approaches.

7.2 New fuzzy model theory

In system analysis and design, it is important to select an appropriate model
representing a real system. As an expression model of a real plant, the fuzzy
implications and the fuzzy reasoning method suggested by Takagi and Sugeno are
traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules.
The core of the new fuzzy model is to express each nonlinear equation in two linear
sub-equations by fuzzy IF-THEN rules and then take all the first linear sub-equations
to form one linear subsystem and all the second linear sub-equations to form another
linear subsystem. The overall fuzzy model of the system is achieved by fuzzy
blending of this two linear subsystem models.. Consider a continuous-time nonlinear
dynamic system as follows:
Equation i:
rule 1:

IF z;(t) is My

THEN x;(t)=A;;x(t) + B;u(t),
rule 2:

IF z;(t) is M;,

THEN x;(t)=A;,x(t) + Bj,u(t), (7-2-1)

where

x(1) = [x1 (£), X2 (0, X, (O]

u(t) = [uy (1), up (s u, (O]
1=12..n(n is the number of nonlinear terms). M;;,M;,are fuzzy sets, A;,B;are
column vectors and  X;(t) = Ayx(t) + Bju(t), j=12, is the output from the first and

92



the second IF-THEN rules. Given a pair of (X(t), u(t)) and take all the first linear
sub-equations to form one linear subsystem and all the second linear sub-equations to

form another linear subsystem, the final output of the fuzzy system is inferred as

follows:
Ay x(t) +Byu(t) A x(t)+Bpu(t)
()= M, :AZIX(t) +Byu(t) M, :Azzx(t) +Byu(t) (7-2-2)
A x(t) + Bju(t) Apx(t) +Bju(t)

where M, and M, are diagonal matrices as following:
dia(M)=[M;; My .. Myl.dia(My)=[Mp, My o M)
Note that for each equation i:
2
Z;,Mij (zi (1) =1,
i=

M;(z;(1))20,i=1,2,...,nand j=1,2.

Via the new fuzzy model, the final form of the fuzzy model becomes very simple.
The new model provides a much more convenient approach for fuzzy model research
and fuzzy application. The simulation results of complicated chaotic systems are

discussed in next Section.

7.3 New Fuzzy model of complicated chaotic systems

In this section, the new fuzzy models of two different chaotic systems, two-cell
Quantum-CNN system and Qi system, are shown in Model 1 and Model 2. In order to
investigate the convenience and effectiveness of the new fuzzy model, original T-S
fuzzy model is given for comparison.

Model 1: New fuzzy model of Quantum-CNN system

For a two-cell Quantum-CNN, the following differential equations are obtained
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[26]:

Xy = =W (X —x3) +2a,

3

. X

(7-3-1)

where x; and x3 are polarizations, x, and x4 are quantum phase displacements, a; and
a, are proportional to the inter-dot energy inside each cell and ®; and w, are
parameters that weigh effects on the cell of the difference of the polarization of
neighboring cells, like the cloning templates in traditional ~CNNs.
Whena, =-0.83,a, =-0.53,w, =0.5and w, = 0.5 (assume two balanced cells) and
initial states chosen as (0.001, 0.005, 0.001,,0.005), the nano system is chaotic which
is shown in Fig. 7-1.

If T-S fuzzy model is used for representing local linear models of Quantum-CNN
nano system, there are going to be 16 fuzzy rules, 16 linear subsystems and 64
equations. The process of modeling is shown as follow:

T-S fuzzy model:

Assume that:
(1) {1-x2sinx, €[-Z,,Z,] and Z, >0,
@) cosx,/\1-x? €[14+Z,1-Z,] and Z, >0,
(3) 1-xsinx, €[-Z,.Z,] and Z, >0,

(4) cosx,/\1-x3 €[1+Z,1-2,] and Z, >0

Then we have the following T-S fuzzy rules:
Rule 1: IFy/1-x; sinxzisMH,cosxz/qll—xl2 is M, ,/1—x3 sinx,is M, and
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Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

cosx4/\/1—x‘72, isM,,, THEN X=A X.

. 2 . . 2 . 2 . .
VIR & s1nlesM“,cosxz/q/l—x1 isM,,,+/1—x5 sinx, is M5, and

cosx4/\/1—x‘72, isM,,, THEN X =A,X.

X 2 . . 2 . 2 . .
HIVIES & s1nlesM“,cosxz/q/l—x1 isM,,,+/1—x5 sinx, is M3, and

cosx4/\/1—x‘72, isM,,, THEN X =A,X.

. 2 . . 2 . 2 . .
N IVIES & s1nlesM“,cosxz/q/l—x1 isM,,,+/1—x5 sinx, is M3, and

cosx4/\/l—x§ isM,,, THEN X=A,X.

. 2 . . 2. 2 . .
N IVIES & s1nlesM”,cosxz/\/l—x1 1IsM,, ,4/1—-xj5 sinx,isM;, and

cosx4/\/1—x‘72, isM,,, THEN, X = A X.

: IF1-x] sinxzisM“,cosxz/qll—xl2 is M, ,4/1—x3 sinx,is M, and

cosx4/\/1—x‘72, isM,,, THEN_ X = A X.

. 2 . . 2. 2 . .
N IVIES & s1nlesM”,cosxz/wll—x1 1IsM,, ,4/1-xj5 sinx,isM 5, and

cosx4/\/1—x‘72, isM,,, THEN X =A,X.

. 2 . . 2. 2 . .
HEIVIES & s1nlesM”,cosxz/wll—x1 isM,, ,4/1—x3 sinx,isM;,and

cosx4/\/l—x§ isM,,, THEN X =A.X.

. 2 . . 2. 2 . .
: IF 4 1-x] s1nlesM12,cosxz/wll—x1 1IsM,,,4/1—-x5 sinx,i1sM;, and

cosx4/\/1—x‘72, isM,,, THEN X =A,X.

Rule 10: IF/1—x; sinx2ileZ,cosx2/w/1—X]2 is M, ,~/1—x3 sinx,is M, and

cosx4/\/1—x‘72, isM,,, THEN X =A,,X.
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Rule 11: IF{1-x; sinxzilez,cosxz/Mis MZI,ﬁsinxnsMnand
cosx,/\1-xZ isM,,, THEN X=A,X.

Rule 12: IFy1-x; sinxzilez,cosxz/Mis MZI,ﬁsinxnsMnand
cosx, /\1-x2 isM,,, THEN X =A,,X.

Rule 13: IF/1-x;} sinxzilez,cosxz/ﬁis Mzz,ﬁsinxnstand
cosx, /\1-xZ isM,,, THEN X =A,X.

Rule 14: IF\/1-x; sinxzilez,cosxz/ﬁis Mzz,ﬁsinxnstand
cosx, /\1-x2 isM,,, THEN X =A,,X.

Rule 15: IF4/1-x; sinxzilez,cosxz/ﬁis Mzz,ﬁsinxnsMnand
cosx4/MisM4l,THEN X=A,X.

Rule 16: IF A/1-x; sinxzilez,cosxz/His MZZ,MSinx“isMnand

cosx4/\/l—x§ isM,,, THEN X =A,X.

Then the final output of the two cells Quantum-CNN system can be composed
by fuzzy linear subsystems mentioned above. It is obviously an inefficient and

complicated work.

New fuzzy model:

By using the new fuzzy model, Quantum-CNN system can be linearized as
simple linear equations. The steps of fuzzy modeling are shown as follow:
Step of fuzzy modeling:

Step 1:
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Assume that /1 -x] sinx, €[~Z,,Z,]and Z, >0, then the first equation of

(7-3-1) can be exactly represented by new fuzzy model as following:

where
1 J1-x; sinx, 1 J1-x{ sinx,
Mllz_(1+— > M12:_(1_—)5
2 Z, 2 Z,

and Z, =0.01 . M,, and M,, are fuzzy sets of the first equation of (7-3-1) and
Step 2:

Assume that cosxz/qll—xl2 e[l=Z,1+Z,] and Z, >0, then the second

equation of (8-3-1) can be exactly represented by new fuzzy model as following:

Rule 1: IF cosx, /- x? is M, s THEN

Rule 2: IFcosx, /- x? isM,, , THEN

Xy =-wi(X; =X3)—2a;x,Z, (7-3-5)
where
1 cosxz/qll—xl2 1 cosxz/wll—xl2
My ==+ ), My =—(1- )s
andZ, =0.01. M,,andM,, are fuzzy sets of the second equation of (8-3-1) and
M,, +M,, =1.
Step 3:

Assume that/1-x3 sinx, €[~Z;,Z;]and Z, >0, then the third equation of
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(7-3-1) can be exactly represented by new fuzzy model as following:

Rule 1: IF \1-x2sinx, isM,, THEN %, =—2a,Z,, (7-3-6)

Rule 2: IF /1-xj3sinx, isM,, THEN %, =2a,Z, (7-3-7)
where

1 MSin Xy 1 MSin Xy

M;, :E(I+Z—3)’ M3, 25(1_2—3),
and Z; =0.01. M;, and M5, are fuzzy sets of the third equation of (7-3-1) and
M;, + M3, =1.
Step 4:

Assume that cosx4/w/1—x§ e(l-Z,1+Z,] and Z, >0, then the fourth

equation of (7-3-1) can be exactly represented by new fuzzy model as following:

Rule 1: IFcosx4/\/1—X§ isM,;; THEN

Rule 2: IFcosx4/1/1—x§ isM,,, THEN

Xy =Wy (X5 =%)) = 22,X3Z, (7-3-9)
where
1 cosx4/\/1—x§ 1 cosx4/ 1-x3
My ==+ ), My ==(1- )s
2 Z, 2 Z,

andZ, =0.01. M,, andM,, are fuzzy sets of the fourth equation of (7-3-1) and
M, +M, =1.

Here, we call (7-3-2), (7-3-4), (7-3-6) and (7-3-8) the first liner subsystem under
the fuzzy rules and (7-3-3), (7-3-5), (7-3-7) and (7-3-9) the second liner subsystem
under the fuzzy rules.

The first linear subsystem is
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X, = =W (x] —X;3)+22a,X,Z,

7-3-10
Xy =Wy (X3 =%)) +23,X37,
The second linear subsystem is
Xy = =W (X —X3) = 23,x,Z, (7-3-11)

Xy ==W, (X3 —X)—2a,X37Z,4

The final output of the fuzzy Quantum-CNN system is inferred as follows and

the chaotic behavior of fuzzy system is shown in Fig. 7-2.

X, M, O 0 0 (-2a,Z
0 10 0 My 0227,
X 0 0 0 M - W, (X; —X,)+2a,Xx,7Z
4 41 2 (X3 1) 2X34y4 (7-3-12)
0 0 M, 0 |I2a,Z,
Eq. (7-3-12) can be rewritten as a simple mathematical expression:
) 2
X)) =Y, (A X(t)+b,) (7-3-13)
i=1

where ¥, are diagonal matrices as follows:

dia(LPl):[Mn M, My, M41], dia(Tz):[Mn My My, M42]

0 0 0 0 ~2a,Z,
: 0 0 0 0” ' | -2a,Z,
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0 0 0 0 2a,7,
2 0 0 0 0" * |2a,Z,

Via using new fuzzy model, the number of fuzzy rules in fuzzy Quantum-CNN
system can be reduced from2*t02x4 and only two subsystems can express such
complex chaotic behaviors. The simulation results are perfectly the same to the

original chaotic behavior of the Quantum-CNN system.

Model 2: New fuzzy model of Qi system

The four-order autonomous Qi system:

Vi=2a3(Y2 - Y1)+ Y2Y3Y4
Y2 =b3(y1 +¥2) = ¥1Y3Y4

Y3 =—C3¥3+Y1Y2Y4
Vo =—d3y, +y1Y,2Y3

(7-3-14)

where Y1, Y2, Y3 and Y, are the state variables-of the system and as, bs, 3 and dzare all
positive real parameters. This Qi system in Eq. (7-3-14) was recently introduced by
Qi et al. [20] and it has been shown complex dynamical behavior including the
familiar period-doubling route to chaos as well as Hopf bifurcations. For the system
parameters: az=35, b3=10, c3=1, d3=10 and initial conditions (Y10, Y20, Y30, Y40) = (2, 5,
2, 5), the Qi model exhibits chaotic motion which is shown in Fig. 7-3

First of all, T-S fuzzy model is used for representing local linear models of Qi
system. The process of modeling is shown as follow:

T-S fuzzy model:

Assume that:
(1) y3y4 €[=Z5,Z5]and Z5 >0,

100



Then we have the following T-S fuzzy rules:

Rule 1: IFy,y,isN,,andy,y,isN,,,THEN Y =C,Y .
Rule 2: IFy,y,isN,,andy,y,isN,,, THEN Y =C,Y.

Rule 4: IFy,y,isN,andy,y,isN,, ,THEN Y =C,Y.

Then the final output of the Qi system can be composed by fuzzy linear
subsystems mentioned above. There are 4 linear subsystems and 16 equations in this

T-S fuzzy Qi system.

Novel fuzzy model:

Assume that:
(1) y3y4 €[=Z5,Z5]and Z5 >0,
2) vy, €l-Z¢,Zg] andZ; >0,

then we have the following T-S fuzzy rules:

yi=a3(y, —y))+(c+Zs)y,

Rule 1: IFy,y,isN,, ,THEN ° , (7-3-15)
4 ! Yo =bs(y; +y,)—(c+Zs)y,
y, =a -y +(c—2Z5)Z
Rule 2: IFy,y,isN,, THEN 71~ 32 =¥ +(e=Z9)Zsy, (7-3-16)
Yo =bs(y, +y,)—(c—Zs)y,
where
1 Y3Y4 —C 1 Y3Y4 =€
N,=—1+—=—-—+—), N,=—(1-—-—) and ¢c=20
11 2( ZS ) 12 2( ZS )
and
V1 = —C +7Z
Rule 1: IFy,y,isN, ,THEN >3 3737 “6%4 (7-3-17)
V4 =—d3y, +Zgys
Y3 =—C3y; —Z
Rule 2: Fy,y,isN, ,THEN 3 3737 Y4 (7-3-18)

V4 =—d3y, —Zgys ’

where
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1
YIYZ), N (I_YIYZ).

6 220 76
in Egs. (7-3-15) ~ (7-3-18),Z; =80andZ, =50. N,;,N,,N,,and N,,are fuzzy

1

Here, we call (7-3-15) and (7-3-17) the first liner subsystem under the fuzzy
rules and (7-3-16) and (7-3-18) the second liner subsystem under the fuzzy rules.

The first linear subsystem is

Vi=a3(y, —y))+t(c+Zs)y,
Y2 =bs(y; +y,) —(c+Zs)y,

: (7-3-19)
Y3 =—C3Y3+Zgy,
Yo =—d3y4 +Zgy;
The second linear subsystem is
Vi =a3(y, —y)) +(c-Zs)y,
y, =b + —(c-Z
Y2 3(Y1 +y2)—( s)Yi (7-3-20)

V3 =—C3Y3 —Z6Y4
Vo =-d3y, —Zgys;

The final output of the fuzzy Qi system is inferred as follows and the chaotic

behavior of fuzzy system is shown in Fig. 7-4.

Y1 Ny, 0 0 o] as(y, —y))+(c+Zs)y,
) _ 0 N, 0 0 by (y; +y,)—(c+Zs)y,
V3 0 0 Ny 0 —C3Y3+ZgY,
y 0 0 0 N -dyy, +Z2
4 21 ! 3Y4 6Y3 (7-3-21)
N, 0 0 0 as(y, —y)+(c—Z5)Zsy,
N 0 N, 0 0 by (y, +¥,)—(c=Zs)y,
0 0 Ny 0 —C3¥3 = Z6Y4
0 0 0 Ny [—d3ys —Zgy;
Eq. (7-3-21) can be rewritten as a simple mathematical expression:
. 2
Y(t)=2XT(C,Y(t)+¢<) (7-3-22)
i=1

where
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dia(F1)=[N11 Ny Ny Nzl]a dia(F2)=[N12 N, Ny sz]

—a, c+Zs;+a; 0 0 0
—c—Zs+b, b, 0 0 - |0
e 0 0 ey Ze | T o
0 0 Z, —d, 0

—a, c—Zs;+a; 0 0 0
—Cc+Zs+b, b, 0 0 0
2= 0 0 ey -z 2 o
0 0 —Zs —dy 0

Via using new fuzzy model, two linear subsystems are enough to express such
complex chaotic behaviors. The simulation results are perfectly the same to the

original chaotic behavior of the Qi system.

7.4 Fuzzy synchronization scheme

In this Section, we are going to derive the new fuzzy synchronization scheme for
two identical and totally different chaotic systems based on our new fuzzy model.
For two identical chaotic systems:

Given the following fuzzy systems as the master and slave systems,

master system:
X() = SW,(AX(0+5) (7-4-1)
slave system:
Y(t) = Zz: P.(A,Y(t)+b,)+BU(t) (7-4-2)
i

Eq. (7-4-1) and Eq. 7-4-2) represent the same chaotic Quantum-CNN systems
with different initial conditions, and Eq. (7-4-2) has control input U(t). Define the

error signal ase(t) = X(t) - Y(t), we have:

81 = X() - V(1) = WA X1 + b))~ S B (A, Y (1) +b) ~BU(t)  (7-4-3)
i=1 i=l
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The fuzzy controllers are designed as follow:
Ut =u, (1) +u,(t) (7-4-4)

Where
2 2 -
u(t)= ZilPiFiX(t) - Zi\PiFiY(t)
i= i=
2 ~ ~ ~
u, () = ZiEi(\Pi:LPi)bi , Ei(F, ) =Y -,
1=
such that”e(t)” — O0ast — oo. The design is to determine the feedback gains F;. By

substituting U(t) into (7-4-3), we obtain:

(0 = SW{A, ~BE)X(0}- X, (A, - BE)Y() (7-4-5)

i=1

Theorem 7-1: The error system in Eq. (7-4-5) is asymptotically stable and the
slave system in Eq. (7-4-2) can synchronize the master system in Eq. (7-4-1) under
the fuzzy controller in Eq. (7-4-4) if the following conditions can be satisfied:

H=(A,-BF)=(A;, -BF)<0, I1=1~-2. (7-4-6)
Proof:

The errors in Eq. (7-4-5) can be exactly linearized via the fuzzy controllers in Eq.
(7-4-4) if there exist the feedback gains F; such that

(A, -BF,)=(A, -BF,)<0. (7-4-7)
Then the overall control system is linearized as

e(t) = Ge(t), (7-4-8)
whereG = (A, -BF)) = (A, -BF,) <0.

As a consequence, the error system (7-4-5) via the fuzzy controller (7-4-4) can
be asymptotically stable.

For two totally different chaotic systems:
Given the following fuzzy systems as the master and slave systems,

master system:
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X(t) = 3 W, (A, X (1) + b,) (7-4-9)
i=l1
slave system:
Y(t) = iri (C,)Y(t)+¢)+BU(t) (7-4-10)
i=1

Eq. (7-4-9) and Eq. (7-4-10) represent the two different chaotic systems, and Eq.

(7-4-10) has control input U(t). Define the error signal ase(t) = X(t) — Y(t), we have:
e(t) =X(t) - Y(t) = i} ¥.(AX(t)+b,) - il [ (C,Y(t)+¢)-BU(t) (7-4-11)
The fuzzy controllers are designed as follow:
U(t) =u,(t) +u,(t) (7-4-12)

Where

u(t) = i\{’iFiX(t) - iriPiY(t) )
i=1 i=1

u, (t) = il\PiBi - iriai
such that||e(t)|| — 0ast — . The design 1s to determine the feedback gains F; and P;.
By substituting U(t) into (7-4-11), we obtain:

&(t) = il ¥ {(A; - BE)X(1)} - il [{(C; -BP)Y(1)} (7-4-13)

Theorem 7-2: The error system in Eq. (7-4-13) is asymptotically stable and the
slave system in Eq. (7-4-10) can synchronize the master system in Eq. (7-4-9) under
the fuzzy controller in Eq. (7-4-12) if the following conditions below can be satisfied:

G=(A,-BF)=(A, -BF,)=(C, -BP,) <0, i=1~2. (7-4-14)
Proof:

The errors in Eq. (9-3-5) can be exactly linearized via the fuzzy controllers in Eq.
(7-4-12) if there exist the feedback gains F; such that

(A, -BF)=(A, -BF,)=(C, -BP,)=(C, -BP,)<0. (7-4-15)

Then the overall control system is linearized as
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e(t) = Ge(t), (7-4-16)
As a consequence, the error system (7-4-13) linearized via the fuzzy controller

(7-4-12) can be asymptotically stable.

7.5 Simulation results

In this section, we are going to achieve fuzzy synchronization of two chaotic
Quantum-CNN systems and two totally different chaotic system, Quantum-CNN and
Qi systems, via using the new scheme which is given in section 7.4.

For two identical chaotic systems:
Eq. (7-3-13) is chosen as the master system and the following fuzzy controlled

Quantum-CNN system is the slave system with different initial conditions (1, 5, 1, 5).

. 2
i=1
where P, are diagonal matrices as follows:

dia(\ﬁ):[l\w/[u 1\7121 1\7[31 1\7141]’ dia(‘i’2):[l\7[12 I\7[22 1\N/I32 M42]

0 0 0 0 ~2a,Z,
b 0 0 0 0” ' | -2a,z,
0 0 0 0 2a,Z,
0 0 0 0 2a,Z,

The error and error dynamics are:
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_el_ _Xl -y
C, _ X, —Y,
C; X3 7Y ’
14 ] [Xs—Y4
_91_ _5(1 -¥i
¢, X, =Y, 2 2 ~
= =X (A X() +by) = X W (A Y (1) + b)) - BU(Y) (7-5-2)
3 X3=Y3 | il i=l
€] [X4—Vy4

B is chosen as identity matrix and the fuzzy controllers in Eq. (7-4-4) are used:

€ X1 X

e X, X,
2= P [Al —BE, ]4><4 +Y¥, [Az - BF, ]4><4

€3 X3 3

Y1 Yi

~ Y2 i Yo

- \Pl [Al - BFI ]4><4 = LPz [Az / BFz ]4><4 (7'5'3)
&) Y;
Ya Y4

as:
-1 0
0 -1 0 0
H= (7-5-4)
0 0 -1 0
0 0 0 -I

Thus, the feedback gains F; and F, can be determined by the following equation:

1.0000 0 0 0
4 -0.5166 1.0000 0.5000 0
F,=B'[A, -H]=
0 0  1.0000 0
0.5000 0  -0.5106 1.0000
1.0000 0 0 0
4 -0.4834 1.0000 0.5000 0
F,=B'[A, -H]= (7-5-5)
0 0  1.0000 0

0.5000 0 -0.4894 1.0000
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The synchronization errors are shown in Fig. 7-5. It is clear that the error
dynamics system has already achieved asymptotically stable.
For two totally different chaotic systems:

Via T-S fuzzy model, different chaotic systems may be transformed into different
fuzzy chaotic systems with different number of subsystems. However, when it comes
to synchronization of two totally different chaotic systems, the traditional method -
employing the idea of PDC to design the fuzzy control law for stabilization of the
error dynamics is not work. This is due to different number of subsystems. As a
result, through the new fuzzy model, there are only two subsystems in fuzzy Qi
system and fuzzy Quantum-CNN system and the idea of PDC and LMI-based
synchronization can be applied to. .

The fuzzy Quantum-CNN system in-Eq..(7-3-13) is chosen as the master system

and the fuzzy slave system, Qi system, with fuzzy controllers is as follow:
: 2
Y(t) =X T,C;Y(t) + BU(t) (7-5-6)
i=1

where I’ are diagonal matrices

dia(F1)=[N11 Ny Ny Nzl]a dia(F2)=[N12 N Ny sz]

and
—a, c+Zs+a; O 0
—c—Zs+b, b, 0 0
C = ;
0 0 —c3  Zg
0 0 Zs —dj
—a, c—Zs+a; 0 0
—c+Zs+b, b, 0 0
27 0 0 —ey —Z|
0 0 ~Zs —dj

Therefore, the error and error dynamics are:
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_el_ _Xl -y
€, _ X, 7Y,
S, X37Ys ’
1€4 ] [X47 Y4
_él_ _Xl _SII
€, X, =¥ z ~ 2
=T T =2 (AX(D) +by) - X C Y () - BU(Y) (7-5-7)
3 X3=Y3 | il i=I
(€4 ] [X4—Vy4

B is chosen as identity matrix and the fuzzy controllers in Eq. (7-4-12) are used:

€ X1 X
e X, X,
2= P [Al —BE, ]4><4 +Y¥, [Az - BF, ]4><4
e, X5 X5
Y1 Y1
Y2 Y2
- Fl [Cl - BFI ]4><4 - Fz [Cz = BFz ]4><4 (7'5'8)
3 3
Y4 Ya

According to Theorem 1, we have G =[A, —-BF|=[A, -BF,]=[C, - BE]

- [C2 —BF2]< 0. G is chosen as:

-1 0 0 0
0 -1 0 0

G= (7-5-9)
0 0 -1 0
0 0 0 -1

Thus, the feedback gains F;, F», P; and P, can be determined by the following

equation:
1.0000 0 0 0
4 22.500 1.0000 4.7000 0
F,=B [Al - G] =
0 0 1.0000 0

3.9000 0 9.0000 1.0000
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1.0000 0 0 0
-31.90 1.0000 4.7000 0

F, =B7'[A, -G|= 7-5-10
2 [A, =] 0 0 1.0000 0 ( )
3.9 0 -16.80 1.0000

~34 135 0 0
. 90 11 0 0

P, =B'[C,-G]=
0 0 0 50

0. 0 50 -9

-34 25 0 0
70 11 O 0
0 0 0 =50
0. 0 -50 -9

The synchronization errors are shown in Fig. 7-6. It is clear that the error dynamics

system has already achieved asymptotically stable.

7.6 Implementation of electronic:circuits by series expansion method

In this section, the implementations of chaotic Quantum-CNN systems on
electronic circuits are presented. While Quantum-CNN system is a complicated
nonlinear system, there are too more nonlinear terms in its mathematical equations,
such as radical terms, square terms, sin and cos terms, etc. Implementing such a
complicated system in electronic circuits without any simplified process is really
impossible. The Quantum-CNN system is definitely simplified to a simpler form via
our new fuzzy model, but there are still some nonlinear terms, especially the radical
terms, contained in the membership functions (The same problems are also existed in
T-S fuzzy model). As a result, a new approach (which is called series expansion form)
is given in this section to approximately implement the Quantum-CNN systems on
electronic circuits.

Eq. (7-3-1) is rewritten as:
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X, =—2a;m,
X, =-W,(X; —X3)+2a,xm, (7-6-1)
X5 =—2a,m,;

Xy ==Wy(X3 —x)+2a,x;m,

where m;, mp, m3 and my are the nonlinear terms in Q-CNN system which are shown

in Eq. (7-6-2) as follow:

m, [ \1-x] sinx, |
m, | cosxz/wll—xl2 (7-6-2)
mj J1-x3 sinx,

my _cosx4/w/1—x§_

In order to approximately simulate the complicated Quantum-CNN system, we

expand the right-hand sides of Eq. (7-6-2) into power series:

-1 2 2.3 4 3 1 5 ]
i 1 5
2] _ 2 24 8 (7-6-3)
m -1 2 2.3 4 1 3 5
m
4
1 4 3 1 3.2 5

It is well-known [27] that necessary and sufficient condition for the convergence
of the infinite series:

U, +u, +..+u, +... (7-6-4)
is that for any previously assigned positive €, there exists an N such that, for any n >

N and for positive p,

Upy FUpp ot U, 1<E (7-6-5)
From Fig. 1, we know that
x| <1, i=1~4, (7-6-6)

therefore, series in Eq. (7-6-3) which satisfy condition in Eq. 7-6-5), are convergent

and has a bounded sum.
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Due to the values of the states in Quantum-CNN nano systems and the behaviors
of nonlinear terms are smaller then 1, the high order terms can be ignored reasonably.
In order to show the feasibility of the series expansion form with neglecting high
order terms, three cases are proposed to investigate the accuracy of our method.

Case 1: Considering the order of the term < 6. Then the nonlinear terms are:

-1 2 2.3 4 3 1 5
m
! 1 4 3 3.2 5 5
A 1 1 (7-6-7)
3 —X3X, +—X3X) X3X4 + X, ——X) >
3X4 3%X4 3%y 4 4 4
m, | | 2 6 * 120
1 4 3 1 3.2 5

By Substituting Eq. (7-6-7) into Eq. (7-6-1), an approximate series expansion
form of chaotic Quantum-CNN system is obtained. The simulation results in
MATLAB are shown in Fig. 7-7. Fig:;7-7 gives the projections of phase portraits of

Quantum-CNN system in Case 1.

Case 2: Considering the order of the term < 3. Then the nonlinear terms are:

-1 1 3
m 2 6
! 1
2 3
I e o, (7-6-8)
my
2 3

By Substituting Eq. (7-6-8) into Eq. (7-6-1), an approximate series expansion
form of chaotic Quantum-CNN system is obtained. The simulation results in
MATLAB are shown in Fig. 7-8. Fig. 7-8 gives the projections of phase portraits of

Quantum-CNN system in Case 2.
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Case 3: Considering the order of the term < 1. Then the nonlinear terms are:

m, Xy

m X

2 1
_ (7-6-9)

By Substituting Eq. (7-6-9) into Eq. (7-6-1), an approximate series expansion
form of chaotic Quantum-CNN system is obtained. The simulation results in
MATLAB are shown in Fig. 7-9. Fig. 7-9 gives the projections of phase portraits of
Quantum-CNN system in Case 3.

Through observing Case 1, Case 2 and Case 3, it is clear that using the series
expansion form can approximately realize the original chaotic motion of
Quantum-CNN nano system with acceptable errors via ignoring the order of the terms
> 1 as well. As a consequence,-the model-in Case 3 is decided to use for
implementation of electronic circuits of chaotic Quantum-CNN nano system. The
chaotic motion of Quantum-CNN system and _the configuration of electronic circuits

are shown in Fig. 7-10 and Fig. 7-11.
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Fig. 7-6. Time histories of errors for Case I.
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120



Chapter 8

Generalized Synchronization of Different Chaotic Systems

by Fuzzy Logic Constant Controller

8.1 Preliminaries

The fuzzy logic constant controller (FLCC) is introduced in this Chapter. Unlike
traditional method, a simplest controller is proposed via fuzzy logic design and
Lyapunov direct method. Controllers in traditional method by Lyapunov direct
method are always complicated or the functions of errors. We propose a new idea to
design constant numbers as controllers, while the constant numbers are decided by the
upper bound and the lower bound of the error derivatives. Via fuzzy logic rules, the
strength of controllers in our new. approach can be adjusted according to the error
derivatives. Consequently, the ‘slave system' becomes exactly and efficiently
synchronized to the trajectory of ‘master system through FLCC. Two examples,
Lorenz system and four order Chen-Lee system, are presented to illustrate the

effectiveness of the new controllers in chaos generalized synchronization.

8.2 Generalized Synchronization by FLCC Scheme
8.2.1 Generalized Synchronization Scheme
There are two nonlinear dynamical systems, while the master system controls the

slave system. The master system is given by
X = Ax+ f(X) (8-2-1)
where X =[X,X,,--X,]' € R" denotes a state vector, A is an nxn constant

coefficient matrix and f is a nonlinear vector function.
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The slave system is given by
y=By+g(y)+u (8-2-2)

where y=[Y,V,,--Y,]' €R" denotes a state vector, B is an nxn constant

coefficient matrix, g is a nonlinear vector function., and U = [ul,uz,---,un]T e R"is

a constant control input vector.

Our goal is to design appropriate fuzzy rules and corresponding constant
controllers U so that the state vector of the chaotic system (8-2-1) asymptotically
approaches the state vector of the master system (8-2-2).

The generalized chaos synchronization can be accomplished in the sense that

the limit of the error vector e(t)=[e,e,, -, €, ]T approaches zero:
lime =0 (8-2-3)
where
e=HX) -y (3-2-4)

where H (X) is a given vector function of X. From Eq. (8-2-4) we have

é:aH(x)),(_y

x (8-2-5)
¢ = aHiX) [Ax +f(x)]- By - G(y) —u (8-2-6)

A Lyapnuov function V(e) is chosen as a positive definite function
V(e)= %eT e (8-2-7)

Its derivative along any solution of the differential equation system consisting

of Eq. (8-2-6) is

V(@) = [ (Ax + £x) - By - () -] (3-2-8)

If fuzzy constant controllers u can be appropriately chosen so that V =Ce'e, Cis a

diagonal negative definite matrix, and V is a negative definite function of e. By
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Lyapunov theorem of asymptotical stability:

lime = 0 (8-2-9)

to0
The generalized synchronization is obtained. The design process of FLCC is
introduced in the following section.
8.2.2 Fuzzy logic constant controller design process
The basic configuration of the fuzzy logic system is shown in Fig. 8-1. It is
composed of five function blocks [23]:
1. A rule base contains a number of fuzzy if-then rules.
2. A database defines the membership functions of the fuzzy sets used in fuzzy rules.
3. A decision-making unit performs the inference operations on the rules.
4. A fuzzification interface transforms the crisp inputs into degrees of match with
linguistic value.
5. A defuzzification interface transforms the fuzzy results of the inference into a
crisp output.
The fuzzy rules base consists of collection of fuzzy if-then rules expressed as the
form if a is A then b is B, where a and b denote linguistic variables, A and B represent
linguistic values which are characterized by membership functions. All of the fuzzy

rules can be used to construct the fuzzy associated memory.
We wuse two signals, e(t)= [el,e2 €, ]T in Eq. (8-2-4) and

e(t) = [él ,€y €, €, ]T in Eq. (8-2-5), as the antecedent part of the proposed FLCC

to design the control inputu in Eq. (8-2-8) that will be used in the consequent part of

the proposed FLCC as follows:
U=[ug, Uy tpy,u, (8-2-10)

where U is a constant column vector and the FLCC accomplishes the objective to
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stabilize the error dynamics (8-2-6). In this Section, we are not going to use the
original fuzzy rule base, but using it in each error dynamics separately. In order to
obtain the simplest controllers, the ith if—then rule of the fuzzy rule base of the FLCC
is of the following form:

Rulei: if enis X; then é_is Y;and um =constant (8-2-11)
where X; is the input fuzzy sets of en, m=1~n, Y;is the output fuzzy sets ofé, and
Uy 1s the i-rd output ofé,, which is a constant controller. For given input sign of the

process variables en, then the output sign ofé, would be decided and its degree of

membershippy, , i= 1~3 called rule-antecedent weights are calculated. The centriod

defuzzifier evaluates the output of all rules as follows:

3
Zuxi X umi
i=1
3
DMy
i=1

The fuzzy rule base is listed in Table 8-1, in which the input variables in the

(8-2-12)

antecedent part of the rules are ey and the output variable - in the consequent part

are€ and U .
Table 8-1 Rule-table of FLCC
Rule Antecedent Consequent Part 1~ Consequent Part 2
€m €m Upi
1 Positive (P) Negative (N) Un1
2 Negative (N) Positive (P) U2
3 Zero (Z) Zero (Z) Uns

The membership function is obtained via the method shown in Fig. 8-2. After
designing appropriate fuzzy logic constant controllers, a negative definite of V in Eq.
(8-2-9) can be obtained and the asymptotically stability of Lyapunov theorem can be

achieved.
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8.3 Simulation Results

10.3.1 Example 1-Synchronization of Master and Slave Lorenz system

The master Lorenz system [24] is:

O a0,0-x 1)
20~ o, )%, 0x,0- 5,0 (8-3-1)
20—y 0, 0 -bx, 0

When initial condition (X,,, X5, X30)= (-0.1, 0.2, 0.3) and parameters a=10, b=8/3 and
c=28, chaos of the Lorenz system appears. The chaotic behavior of Eq. (8-3-1) is
shown in Fig 8-3.

The slave Lorenz system is:

% —a(y, () -y, (D) +u,

d

ygt(t) = oy, () — Vi O Y5 (D2 Y, )+ (8-3-2)
d

y;t(t) =y, ()Y, (1) by, (1) + U;

When initial condition (Y, Y,q, Y30) = (0.5, 0.7, 1.5) and parameters are the same as

that of Eq. (8-3-1), chaos of the slave Lorenz system appears as well.u, ,u, andu,are

FLCC to synchronize the slave Lorenz system to master one, i.e.,

lime =0 (8-3-3)

t—>w

where the error vector

e, ] [x (1) -y (t)
e]=]e,(0) |=] X (1) = Y, (D) (8-3-4)
e () X3 (1) —y;(t)

From Eq. (8-3-4), we have the following error dynamics:
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& =a(x, —X)—(@aly, -y +u)
€, =CX; — X; X3 =X, —((CY; = Y;¥3 = ¥,)+Uy) (8-3-5)
€3 = XX, —bX; —((y, Y, —by;)+U;)

Choosing Lyapunov function as:
V= %(ef +e5 +el) (8-3-6)

Its time derivative is:

V =e€; +6,6, +e5€,
= e (a(x; —x;) —(@aly; —yi)+Uuy))
+€,(CXy — Xy X3 —X; = ((CY1 = Y1Y3 — ¥2) +Uy)) (8-3-7)
+e3(X Xy —bX3 —((Y1Y, —by3) +U3))

In order to design FLCC, we divide Eq. (8-3-7) into three parts as follows:
1. 1. T2
whereV, = —e;,V, =—e;andV, = —ej.
17 5%V =50 35593
Part 1: V; =e;é; =e;(a(X, — X)) =(atyz = y1) +Uy))

Part 2: vz =€,6, =€,(CX — X1 X3 =X, —((Cy; — Y13 — Yp) +Uy)

Part 3: Vy =e;6; = ;(X;X, —bXg = ((Y1Y, —bys) +U3))

Part 1:

FLCC in Part 1 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as
follows and the maxima value and minima value of €, (without any controller) can be
observed in time history of error derivatives drawn in Fig 8-4. We choose f; to be the
upper bound value and g; to be the lower bound value of €, (without any controller),
they are satisfied with f; < &, (without any controller) < g, and f;, g; are all constants.

Rule 1: if e; is P, thené, is N and we take uy; =f;

Rule 2: if e; is N, thené, is P and we take ui;2 = g1
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Rule 3: if e1 is Z, thené, is Z and we take u;3 =0=e;
where f;=-g;= constant=400 and we choose U;3 =0=e; when e; approaches to zero.
We take Rule 1~3 in Part 1,V, =eé, , for explaining:

Rule 1: if e is P, thené, is N and we take uy; =fi.

Vi=eg =eax; —-x)-aly, —y)-f)
where e; >0 and (a(x, —x;)—a(y, — y;)— f;) = (é;(without controller)— f,;)<0 .
Therefore, V, =6, =e,(a(x, — X;)—a(y, —y,)— f;) <0 and is going to approach
asymptotically stable.

Rule 2: if e1 is N, thené, is P and we take u;> = g1

Vi=eeg =e@ax; —x)-aly, -y -9,
where e, <0 and (a(x, —x,)—a(y, —Y,)—0,) = (& (without controller)—g,)>0 .
Therefore, \/'1 =e6 =¢e/(a(X, —X)—aly,=Y¥;)—9,)<0 and is going to approach
asymptotically stable.

Rule 3: if e1 is Z, thené, is Z and we take ui3 =0=¢;

Vi =e€ =ej(a(x, —x)—aly, — ;) &)
wheree; =0and we don’t need any controller now. Therefore, \/'1 =e;,6, =0 and
achieve asymptotically stable.

As a results, FLCC in Part 1 can be obtained from Rule 1,2 and 3:

_ Hp XUgy + iy XUy + 1z XUys (8-3-8)
Hp T Uy +H7

U,

Part 2:

FLCC in Part 2 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as
follows and the maxima value and minima value of €, (without any controller) can be
observed in time history of error derivatives drawn in Fig 8-4. We choose f; to be the
upper bound value and gz to be the lower bound value of €, (without any controller),

they are satisfied with f, <&, (without any controller) < g, and f,, g, are all constants.
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Rule 1: if e; is P, thené, is N and we take uy =f;

Rule 1: if e is P, thené,is N and up; = f,

Rule 2: if e;is N, thené, is P and ux» = g»

Rule 3: if e is Z, thené, is Z and uy3 =0=e;
where f,=-g,= constant=500 and we choose U3 =0=€; when e, approaches to zero.
The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 2

can be obtained from Rule 1,2 and 3 and are going to takeV, =e,6, <0:

_ Hp XUy + Uy XUy + 1z XU
Hp T HN +H7

u,

(8-3-9)

Part 3:

FLCC in Part 3 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as
follows and the maxima value and minima value of €, (without any controller) can be
observed in time history of error derivatives drawn in Fig 8-4. We choose f3 to be the
upper bound value and g3 to be the lower bound value of €, (without any controller),
they are satisfied with f; < é;(without any controller) < g, and f3, g3 are all constants.

Rule 1: if ez is P, thené;is N and uz; = f3

Rule 2: if ez is N, thené; is P and usz; = g3

Rule 3: if ez is Z, thené; is Z and uszz =0=e3
where f3=-gz= constant=500 and we choose Us3 =0=€3 when e3 approaches to zero.

The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 3

can be obtained from Rule 1,2 and 3 and are going to takeV, = €56, <0

_ Hp XUz + Uy XUs + 17 XUss
Hp t Uy THy

Ug (8-3-10)

FLCC are proposed in Part 1,2 and 3 and are going to take
V, =e,& <0,V, =e,8, <0andV, = e;6; <0. Hence, we haveV =V, +V, +V, <0.

It is clear that all of the rules in our FLC can lead the Lyapunov function to approach
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asymptotically stable and the simulation results are shown in Fig. 8-5 and 8-6.

8.3.2 Example 2-Generalized Synchronization of different order chaotic system-
Lorenz and New Chen-Lee system

Chen and Lee gave a new chaotic system [25] in 2004, which is now called the

Chen—Lee system [26]. The system is described by the following nonlinear

differential equations and is denoted as system (8-3-11):

dz,(t)

b AOLAURLRAC
d
Z(jt(t) =2,(1)z5(t) +b,z, (1) (8310
dz;(t) 1
Zd3—t() :gzl(t)zz(t)+CZ3(t)

where 21, Z; and z3 are state variables, and ai3;'bs, and c; are three system parameters.
When (a;, by, ¢1) = (5,-10,-3.8), system (8-3-11)is a chaotic attractor. The positive
Lyapunov exponent of this attractor is Ay =0.88 ; while the other ones areA, =0 and
Ay =-13.57, respectively. It is clear that the Chen-Lee system is a regular chaotic
system. For more-detailed dynamics of the Chen-Lee system, see Ref. [25].

It is known that in order to obtain hyper-chaos, there are two important requisites:
(1) the minimal dimension of the phase space that embeds a hyper-chaotic attractor
should be at least four, which requires a minimum of four couple first-order
autonomous ordinary differential equations; and (2) the number of terms in the couple
equations giving rise to instability should be at least two, of which at least one should
be a nonlinear function. In [27], Chen and Lee introduce a nonlinear feedback
controller to the third equation of system (8-3-11), the following dynamic system can

be obtained:
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% = 7,25 (1) + 3,2, ()

% =2, (1)z5(t) + b, 2, (1)

M:Ezl(t)zz(t)+clz3(t)+£z4(t) o
dt 3 S

T 0,0) 2 2,020+ 52,0

where d is a constant, determining the dynamic behaviors of the system (8-3-12) and
a, b1, and c; are three system parameters. Thus, controller z4 causes chaotic system
(8-3-11) to become a four-dimensional system, which has four Lyapunov exponents.
This may lead to a hyper-chaotic system. When (ai, bi, ¢;) = (5,-10,-3.8) and we
choose d=1.3, system (8-3-12) is a hyper-chaotic attractor. The projection of phase
portraits of system (8-3-12) with hyper-chaotic behaviors is shown in Fig. 8-7.

Eq. (8-3-12) is chosen as slave system to be synchronized with the master system
(8-3-12). Our goal is [e]== [ei(®).es(0e5(0]= [2,() -y, (0,25 -y, ().

z,(t) -y, (t)]. As aresult, we get the following etror dynamics:

€ =—2,Z; +;Z) —(a(y, - yy) +up)

. 1
€ 252122 +CZ3 —((Cy; — Y13 —¥2)+Uy) (8-3-13)

. 1 1

e =d,z Jr52223 +%Z4 —((y1Y, —by;) +uy)

Choosing Lyapunov function as:

V= %(ef +e5 +el) (8-3-14)

Its time derivative is:
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=€ /(=2,Z; +a,Z) —(a(y, —y,) +Uy))

1
+ez(52122 +C1Z3 —((Cy; — Y1Y3 — ¥2) +Uy)) (8-3-15)

1 1
+e5(d,z, +52223 +%Z4 —((y;Y, —by;)+us))

We divide Eq. (8-3-15) into three parts as follows:

1. 1. 1.
whereV, =—e;,V, =—e,;andV, = —e;.
1= 58V =56 3=5%
Part1: V, =e =e(-2,2; + a2, —(a(y, — ¥;) +U;))
Part2: V, =e¢, = 92(52122 +CZ3 = ((CY, = Y1Y3 = ¥Y2) +Uy))
o 1 |
Part3: V; =e;€; =e;(d,z + 527 +2_OZ4 —((Y1Y, —by;) +U;3))

Part 1:

FLCC in Part 1 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as
follows and the maxima value and minima value of €, (without any controller) can be
observed in time history of error derivatives drawn in Fig 8-4. We choose f4 to be the
upper bound value and gsto be the lower bound value of €, (without any controller),
they are satisfied with f, < €, (without any controller) < g, and fs, g4 are all constants.

Rule 1: if e is P, thené, is N and we take u =fs

Rule 2: if e; is N, thené, is P and we take Ui, = g4

Rule 3: if e1 is Z, thené, is Z and we take u;3 =0=¢;
where f;=-g,= constant=2000 and we choose u;3 =0=e; when e; approaches to zero.
We take Rule 1~3 in Part 1,V, = e,€, , for explaining:

Rule 1: if e is P, thené, is N and we take uy; =fs.

Vi =e€ =e (=X X; +a;X; —a(y, - y;) - f,)
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wheree,; >0and(-z,z; +a,z, —a(y, —y,)— f,) = (& (without controller)— f,) <0.
Therefore,V, = €6, =€,(~2,2; +a,z, —a(y, — y,)— f,) <0 and is going to approach

asymptotically stable.

Rule 2: if e; is N, thené, is P and we take Ui, = g4

Vi =€ = (=X X3 +a;X;, —a(y, —y;)—04)

wheree; <0and(—X,X; +a,X —a(y, —Y,)—9,) = (& (without controller)—g,)>0.

Therefore, V, =¢,€ =¢, (=X, X; +a,;X, —a(y, -Y,)—9,)<0 and is going to

approach asymptotically stable.

Rule 3: if e1 is Z, thené, is Z and we take u;3 =0=¢;

Vi =€ =¢(=X; X3 +a;X —a(y, —y,)—€))

wheree; =0and we don’t need any controller-now. Therefore, V; =e;6, =0 and
achieve asymptotically stable.

As a results, FLCC in Part 1 can be obtained from Rule 1,2 and 3:

_ Hp XUy + Ry XUgp FHz XUyg
Hp tHN TH;

u, (8-3-16)

Part 2:

FLCC in Part 2 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as
follows and the maxima value and minima value of €, (without any controller) can be
observed in time history of error derivatives drawn in Fig 8-4. We choose f5 to be the
upper bound value and gsto be the lower bound value of €, (without any controller),
they are satisfied with f5 < &, (without any controller) < g5and fs, gs are all constants.

Rule 1: if e is P, thené,is N and u; = fs

Rule 2: if ez is N, thené,is P and ux; = gs

Rule 3: if e is Z, thené, is Z and uy3 =0=e;

where fs=-gs= constant=1000 and we choose Up3 =0=e, when €, approaches to zero.
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The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 2

can be obtained from Rule 1,2 and 3 and are going to takeV, = e,6, <0:

_ Hp XUy + Uy XUy + 1z XUss
Hp +HN THZ

u, (8-3-17)

Part 3:

FLCC in Part 3 can be obtained via the fuzzy rules in Table 8-1 and Table 8-2 as
follows and the maxima value and minima value of €, (without any controller) can be
observed in time history of error derivatives drawn in Fig 8-4. We choose fs to be the
upper bound value and gs to be the lower bound value of €, (without any controller),
they are satisfied with f, < &, (without any controller) < g, and fg, g¢ are all constants.

Rule 1: if ez is P, thené;is N and us; = fg

Rule 2: if ez is N, thené, is P and uz, = ge

Rule 3: if ez is Z, thené, is Z and usz =0=e3
where fz=-g;= constant=2000 and we choose Uz =0=e; when €3 approaches to zero.

The process of FLCC designing is the same as Part 1, as a results, FLCC in Part 3
can be obtained from Rule 1,2 and 3 and are going to takeV, = e,6, <0

_ Hp XUz + Uy XUs + 17 XUss
Hp tHN THy

FLCC are proposed in Eq. (8-3-16), (8-3-17) and (8-3-18) and are going to

Us

(8-3-18)

take V, =e;6, <0 , V,=6,6,<0 and V, =e,6, <0 separately. Hence, we

haveV =V, +V, +V, <0. It is clear that all of the rules in our FLC can lead the

Lyapunov function to approach asymptotically stable and the simulation results are

shown in Figs. 8-9 and 8-10.
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Fig. 8-3. Projections of phase portrait of chaotic Lorenz system with a=10, b=8/3 and
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Fig. 8-4. Time histories of error derivatives for master and slave Lorenz chaotic

systems without controllers.
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Chapter 9
Conclusions

In this thesis, hyperchaos of new chaotic systems with three positive Lyapunov
exponents, Yin-Yang chaos, new fuzzy model to simulate the complicated chaotic
behaviors via only two linear subsystems, new fuzzy logic controllers, generalized
chaos synchronization via GYC partial region stability theory and pragmatical
asymptotically stability theorem are presented.

In Chapter 2, 7 Tables and 14 Figs are proposed to investigate the Yin-Yang
chaos of the Lorenz system. This topic, Yin-Yang chaos, explores another half battle
field for chaos study, may have epoch-making significance in the future.

In Chapter 3, the autonomous Mathieu-van der pol autonomous system with four
state variables can exhibit hyperchaos with three positive Lyapunov exponents have
been investigated in phase portraits, power spectrum, parameter diagrams and
Lyapunov exponents.

In Chapter 4 and 5, a new strategy by using GYC partial region stability theory is
proposed to achieve chaos control and generalized synchronization. Via using the
GYC partial region stability theory, the new Lyapunov function used is a simple linear
homogeneous function of states and the lower order controllers are much more simple
and introduce less simulation error. The new chaotic Mathieu-van der Pol system and
new chaotic Mathieu-Duffing system system are used as simulation examples which
confirm the scheme effectively.

In Chapter 6, a new strategy, pragmatical asymptotically stability theorem via
GYC partial region stability theory, are proposed to achieve adaptive Yin-Yang
synchronization of Yin chaos and Yang chaos. Via comparison of numerical simulation

results listed in Table 6-1 and 6-2, it is very obvious that there is high efficiency in
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adaptive synchronization when using our new strategy.

In Chapter 7, two totally different and complicated chaotic systems,
Quantum-CNN system and Qi system is successfully and efficiently simulated and
synchronized via the new fuzzy model. Through the new idea, not only a complicated
nonlinear system can be linearized to a simple form — linear coupling of only two
linear subsystems and the numbers of fuzzy rules can be reduced from2™to2x N, but
also the idea of PDC and LMI-based method can be applied to synchronize two totally
different fuzzy systems. The asymptotical stability of the error dynamic systems can
be achieved with only two feedback gains in the fuzzy controllers.

In Chapter 8, a simplest controller — fuzzy logic constant controller (FLCC) is
introduced. Based on Lyapunov direct method and the upper bound and lower bound
of the error derivatives, we construct the fuzzy. rules and the simplest corresponding
constant controllers. Complicated -and nonlinear controllers would no longer appear
and are replaced with simple and constant controllers through our new strategy.
Simulation results in synchronization show that FLCC is effective enough and give
very satisfactory results. Through this new approach, not only all cases in chaos
synchronization or control can be achieved, but also the implement or experimental

application of chaos synchronization could be attained much more easily.
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