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Abstract

The liquid crystal (LC) director profile is an important property for a variety of LC
applications. In this study, we combine simulation and experimental measurement of
the optical responses of hybrid alignment liguid crystal cells to demonstrate the
functionality of LC director profile retrieval. Our simulation invokes the Q-tensor
formalism of liquid crystal director calculation and Berreman matrix method for the
optical response of LC. An electron-multiplying eharge coupled device and a delay
time generator were combined to capture the dynamic optical image of the liquid
crystal cells. We discovered that by including a hybrid alignment region into an OCB
cell, the warm up time of the LC cell can be effectively eliminated. The relaxation
time was unfortunately also increased. We also study the inverse problem of LC to
retrieve the director profile of liquid crystal cell directly from the measured optical
transmittance data. To retrieve the director profile from the inverse problem technique,
we proposed a regularization matrix based on a priori knowledge of LC. We found our
method can yield LC director profile reliably from the measured optical data covering
a wide range of incident angle and 10% noise level. We further demonstrated the
functionality by retrieving the liquid crystal director profiles of LC cells with applied

voltage from the experimentally measured data.
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Chapter 1

Thesis Motivation and the Introduction to the

Physical and Optical Properties of LC

Liquid Crystal (LC) is an intermediate state of a matter between the isotropic
liquid and the crystal. In the LC state, several phases with different molecular
alignment orders can be found. LC molecules have typical shapes of rod-like,

F..';.' ":-.'?. .
discotic-like, and bend-shape. Figure 1-1 illustrates the different phases and shapes of

LC molecules. For simplicity OfthISthESIISSI'de,Wé will focus only on the rod-like

i e -
. b =l

LC molecules in the nematic phase, Tk A
(a) _ _ _
1" @B A
Rod-like Discotic-like Bend-shape
W/ ¢ 1 l'
5 ATIIT {1
/I//;, / i n ‘lll n
Smectic C phase Smectic A phase Nematic phase
>

Temperature

Figure 1-1 (a) Different shapes of liquid crystal molecules. (b) The molecular

alignments in the SmC, SmA, and the nematic phases.
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1.1 Motivation

Liquid crystal display (LCD) has been widely used in the flat panel display (FLD)

industry. To satisfy the ever-increasing need for information flow and display, the next

generation LC display will demand accurate control of LC configuration in each LC

pixels. The static and dynamic alignment structures of liquid crystal molecules are

important factors for the optical properties and response of a LC device. To probe the

response of a LC device, a variety of optical techniques can be used to yield useful

insight. However, the optical data.are usually resulted from the entire liquid crystal

layer along the propagation direction of the-optical beam used. To offer the detailed

information of LC director profiles and allow for-the further progress of LC devices,

we developed in this thesis two techniques to retrieve the LC director profiles of LC

devices. We termed the first approach with a name of the model extraction. The

method iteratively compares the simulation result with the measured data and

retrieves the LC director profile. The second method invokes the inverse problem

technique by way of optical transmittance measurement of a LC device and retrieving

the LC director profile directly from the measured data. We demonstrate these two

methods as in Chapters 3 and 4. However, to fulfill the objective, in the flowing we

will first depict the physical and optical properties of LC materials in chapter 1 and



then in chapter 2 illustrate the models developed to simulate the LC alignment

structure and the resulting optical response.

1.2 The Physics of Liquid Crystal

Arigid rod-shaped molecule is the simplest picture to be used for the description
of the nematic LC. For an elongated molecule, the alignment status and the positions
of the centers of mass of the molecules determine the state of matter. We can first
define the averaged molecular orientation of a nematic LC, which is called

director (), as shown in Figure 1-2

D J']

LC molecules

Figure 1-2. An example to describe nematic LC with an averaged molecular

direction picture.

Because the director is an averaged vector over a small local volume, we need to
further specify how the LC molecules angularly spread about the direction. A
convenient measure of the amount of order is the scalar order parameter, denoted by

S . This is a weighted average of the molecular alignment angles 6., between the long

3



molecular axes and the director. Eq. (1.1) describes how to calculate the scalar order
parameter:
S =1<30032 0 —1> (1.1)
2 " ’ '
where < > denotes the thermal or statistical average. Therefore, Eq. (1.1) can be
rewritten as:
1 2

S =§L(3cos 0,-1)f (6,)dv, (1.2)
where B denotes the volume of integration and f (6, ) is the distribution function
of the molecular angle @,,. Figure 1-3 presents two cases of the distribution function
f(Hm) with a high and a low orientational order. As we can see in the Figure 1-3,
because of the symmetry of molecule, f (6.9 shall:be even with f(4,)=f(-6,)
and periodic f (6, +7)= f (6,). We can-easily calculate a perfect crystal to have

S=1 and S=0 foran isotropic fluid.

0 0

Figure 1-3 Two cases of the distribution function of molecular orientation

6,, with (a) high orientational order, (b) low orientational order.

According to the Frank-Oseen theory, the Gibbs free energy density of a nematic

4



LC medium can be expressed as

fo="Fpg+f + f

elastic electric surface

1

:EKM(V-ﬁ)Z +%K22(ﬁ-Vxﬁ)2 +%K33(ﬁxVxﬁ)2

_%(Kzz—f- Ky )V-[A(V-1)+nx(Vx)]

(1.3)

by taking the elastic, the electric and the surface energy density into account. Each
term can be explained as follows:

The expression at the first line, which describes the elastic deformation energy of the
LC medium, is comprised of -three terms representing the most important elastic
distortion energies in LC: splay(Kll(V-ﬁ)z), twist (Kzz(ﬁ-Vxﬁ)z) , and bend
(K33 (NxVx ﬁ)z) with three corresponding elastic constants. K,, at the second line
is related to the surface anchoring energy and q, at the third line is the chirality of
the LC. Figure 1-4 shows the LC molecular alignment with the three different elastic
deformations. In fact, the elastic constants in a typical LC material are very small in
the order of pN, implying that LC material is quite easy to be influenced by an

external force field.



N M\

7 Zl V)

Splay Twist Bend

Figure 1-4. Three kinds of deformation commonly existing in a liquid crystal

medium.

The expression at the fourth line describes how the LC molecules interact with an

electric field. This is the foundgli'c'ih' of'Lé:l'apglications. For LC with dielectric
constants, &, (parallel to the '-molecular_‘zlgng a_xis)-: and ¢, (perpendicular to the

; =]
| -
| b ]

—

molecular long axis), we can relate"the efectric_energy f,,,,;.to the LC director by

electric

using

forie =—=(D-E)

electric
2

14
1 (1.4)
= —E(goe VV-VV),

where & is the dielectric tensor of LC, and can be conveniently expressed as
g =¢€,0;+Aenn; (i,j=xy,z), with As=¢g -¢ and &; the Kronecker delta,
which is 1 if i equals j, and O otherwise.

The expression at the fifth line is the surface energy or called surface anchoring

energy, where n, denotes the prefer alignment direction of LC molecules on surface



and W is the surface anchoring strength. A useful model of surface anchoring energy
is Rapini-Papoular form [2].

In a physical system, the equilibrium stable state tends to have a structure with
minimum free energy. Thus, we can use this property to calculate the director
configuration by minimizing the free energy density of LC. We can use the functional
minimization technique to yield the result that the target functionals shall satisfy the

Euler-Lagrange equations:

%_i g _i g _i ot =0, and
dn, dx{dn, ) dy{dn, | dz{dn,

o d [t b f ot | ot |_,
dv  dx{dv ) dy(fdv, | wdzdv, |

where f; is the Gibbs free energy density describing by Eq. (1.3).

(1.5)

1.3 The Optical Properties of Liquid Crystal
LC has been widely used in fat panel display industry due to its attractive
visco-elastic and electro-optical characteristics. To reveal its unique properties, we
will study in this section the electro-optical behavior of LC under an electric field.
Nematic LC is an optical uniaxial medium with birefringence characterizing by
two principal refractive indices. The refractive index, which is given by n:%, IS
inverse proportional to the velocity of light, v, traveling in the medium, and ¢

denoting for the velocity of light in vacuum. So, when an optical beam is incident at a

7



nematic LC film, it would experience two different velocities inside the LC, which we

called ordinary-ray and extraordinary-ray. Therefore, a phase retardation will be

experienced between the o-ray and e-ray in the LC film. Figure 1-5 illustrates how we

can convert a unpolarized light into a polarized light by using a LC cell.

LC

O-ray
> KT] > (Polarized)

Incident light ‘l' > E-ray
(Unpolarized) 4”7 (Polarized)

Figure 1-5 A diagram showing ordinary and extraordinary rays in a LC medium.

We can introduce ordinary-and extraordinary refractive indices and birefringence
as:
N, =&, N =4/g, An=n,—n,. (1.6)
From Eq. (1.4) and Eq. (1.6), we found that the dielectric constants and refractive
indexes can be affected by electric field. Figure 1-6 describes a general operational

principle of LC applications.



Polarizer

LC

Analyzer

—
>

Bright Dark

Figure 1-6. Schematic showing the way to generate on and off state with a

positive Ae LC material.

The propagation of a polarized optical beam in a LC cell can be properly
described with Jones matix formalism [3]. For an analysis, we first introduce a
coordinate system with x- and y-axis Iyiljgé qln'.,'l:he’ plléne of the LC cell. A Jones vector

is used to describe the state df 'polar*i;aﬂ_dnroi Iighil with a complex envelope that

represents the amplitude and phase of the optical field:

' (Vj bt @)
Vy VyO ei(py . .
The resulting intensity is given by:
=W =N, [+, [ (1.8)

By the description, we can construct a Jones matrix to connect the incoming and the

outgoing wave in a vector form:

J, J
Vout = ‘]\/ln = ( " . Jvin ! (19)
21 ‘]22

When calculating light propagation through a birefringent slab with thickness d and

9



refractive indices n, and n,, inserted between crossed polarizers. By taking into
account the optical axis of the LC cell relative to the laboratory frame, we can derive
an expression for the system in Jones matrix representation:

Voo =P,R(-0) 4R (9) PV, (1.10)
where P, (i=x,y) denotes the polarizer, R(¢) is the rotation matrix, and ¢ is
the angle of the optical axis of the birefringent slab relative to the x-axis of the

laboratory frame. By substituting each matrix into Eq. (1.10), the result becomes:

27i

(VX"“‘] 0 Oj(cow —sin(pJ e - 0 [COS(p sin(p](l O][VX‘”J
v 0 1){(sing cose ef%np —sing cosg {0 0)|V,

0 . (L11)

0

= iVXineff(”ﬁ”z)d sin (2¢)sin(7[(nl ;nz)d ] !

From Eqg. (1.8) and Eqg. (1.11), we-can further obtain the output light intensity:

| =|vx|2+\vy\2

iVX"‘efj(”””Z)d sin(2¢)sin [—ﬂ(nl ;nz )d J

2

(1.12)

_ (in”)zsin2 (2¢)sin’ (MJ

Eq. (1.12) is useful to analyze the light propagation through a LC slab (Figure 1-7(a)).
For a planar aligned LC with a pretilt angle & with respect to the cell surface, the
optical plane wave traveling through the LC cell will experience an effective

refractive index of

10



neno
N == — (1.13)
\/ne sin® @+n; cos” &

By substituting n, =n, and n, =n, into Eq. (1.12), it becomes:

N2 . d nn
I =(V)") sin®(2¢)sin®| — e 0 -n, || (1.14)
(V) sin’ (29) [ A (\/nfsinzéwng cos’ & ]J

For a hybrid LC cell (see Figure 1.7(b)) with a LC director profile a linear variation of

distance, we can derive the output light intensity to be

| = (VY sin? (20)sin| Z| | e, dz—dn, ||. 1.15
(') sin (2)sin [/1[!\/njsin20(2)+n§cosze(z) ’ noﬂ (-39

(@) 5 Els N 5
1 IL — I
L T T
>
- -
|4|
Planar Hybrid

Figure 1-7. Shcematic showing two kinds of LC alignment: (a) planar, (b) hybrid.
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Chapter 2

Models of the LC Alignment Structure and the

Optical Response

Over the past several years, liquid crystal has been widely used for information
display applications. As the technology becomes more and more sophisticated,
computer simulation on LC devices becomes more important. Simulation can help
researchers probing into the staticvand dynamic behaviors of LC and the optical
properties thereafter. By calculating the director configuration and optical response of
LC, we can predict what kinds of defects might.develop and what optical responses
could be yielded. To compute the director profile, it is required to express the free
energy density of LC as shown in Eqg. (1.3). By minimizing the free energy density,
the LC alignment configuration can be obtained.

We found in Eq. (1.3) that it does not include the order parameter, S, which is
one of the important parameters of nematic LC. By including the order parameter S
into the free energy density, the defect formation can be described with the solution in
a more intuitive way. In addition, we also discover that Eq. (1.3) is in the vector

representation. The free energy density expression may have different values for n
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and —n [4]. However, for a real nematic LC, n and —n shall be equivalent and
possess the same free energy based on the symmetry argument. By using the
Landau-de Gennes’s Q-tensor representation of free energies [5, 6] to calculate the LC
director configuration, the above-mentioned difficulty can be avoided. The
equivalence between the Frank-Oseen’s vector representation and Landau-de
Gennes’s Q-tensor representation has been proved by Dickman [7].

Once we have retrieved the director profile of a nematic LC, we can analyze its
optical response to reveal more useful information for its application properties. In the
chapter 1, we have introduced the,Jones matrix:method which is a powerful tool to
analyze the optical properties of ajlayer-stacked medium at normal incidence. But to
calculate the optical properties of-a layer-stacked-medium at high incident angle with
multiple reflections, the Jones matrix method does not give a precise result. For this
reason, we choose the Berreman4x4 matrix method [8], which is based on the

assumption of plane wave propagation in a stratified medium.

2.1 The Q-Tensor Formalism

Consider the 3x3 matrix,
M=S(n®n), (2.1)

where S is the scalar order parameter, and the operator ® indicates a

13



mathematical operation on the director vector = (nx, n,,n, )With the rule

nn, nn, o nn
n®n=nn, nn, nn,| (2.2)
nn, nn, nn,

We note that the director vector is an unit vector with |ﬁ| =1 and this makes the trace
of M tobe S.The other property of the matrix M is the symmetric property. We
can then define Q-tensor as
1
Q=S(n®n—glj, (2.3)
which is symmetric and traceless. With the definition, we can derive the Q-tensor
formalism of free energy from the Frank-Oseen free energy density.
We first define some elasticifree energy density parameters, corresponding to

each terms present in Eq. (1.3):

F =(V-n)’

F,=(0-Vxii)’

F, = (AxVxi)? (2.4)
F,=V-[n(V-n)+nx(Vxn)]

F,=n-Vxn

and then construct the following vectors:

F :[F17 sz Fa’ I:4’ Fs]T

:[Kn Ko Kg _K22+K24 —q,K ]T. (2.5)
F 2 g g 2 1T Ho ™22

By using Eqg. (2.4) and Eg. (2.5), we can rewrite the elastic free energy density in an

inner product of row and column matrices by

f..=K'-F. (2.6)

elastic
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In the next step, some convenient parameters, which are bilinear forms of the elastic
free energy density parameters defined in Eq. (2.4), can be defined
2
fl :(n“) ! f2 - nJvknivk’ f3 = ninknlyjnj,k’ f4 = I']j,kr'k,j’ fs = njnl,kejklv (2-7)
where Einstein summation convention is invokes, e, is the Levi-Civita symbol

defined by e, =¢, =€, =1e, =€, =

w =L &y =8, =€, =-1 and all other e;, =0, and n,,

is defined as:

on. .
n"'k:a_kj’ ike{xy z}. (2.8)

We prepared a vector f that possesses the components of Eq. (2.7):

f=ff,, f, ff] . (2.9)

The relationship between the twio vectors F.-and “f -can be found

F=Af, (2.10)
with
1 0 0 0 O]
01 -1 -1 0
A=/0 0 1 0 O (2.11)
1 0 0 10
00 0 0 1

After the necessary preparation, the elastic free energy density in Eq. (1.3) can be

expressed as a linear combination of the vector f and an elastic constant vector K;:
f. =K ;F =K Af = K]T. (2.12)

Here K, can be obtained by:
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K,=A"K,
— { Ku—Kp—Kyu Ky Kiu-Ky K

T
I I ] 24 y K .
2 5 5 2 Qo 22}

(2.13)

We can define bilinear Q-tensor terms by using the same approach detailed in Eq.

2.7):

G = ij,Iij,I’

G, :ij,iju’

G, :ij,IQjI,k’ (2.14)
G4 = ejkIQijkm,I’ and

Gs = ijQIm,jQIm,k

5.
where Qj, :S[njnk—?’kj, 0, is Kronecker’s delta, and S is the scalar order

parameter. We then define a vector in terms of the bilinear Q-tensor components as:

Cu e Cc G=1
g:[s—;s—gs—gs—;‘s—i} : (2.15)

The relationship between f and g is now clear to be

g =Bf (2.16)
with
0 2 0 0 O]
1 0 1 0 O
B=|2 % 11 0/ (2.17)
0 0 00 -1
0 -1 3 0 0

By defining a new elastic constant vector K, for vector g, the elastic free energy

density can be rewritten as:
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f,=K!g=K!Bf =K!BA"F. (2.18)

Comparing Eq. (2.6), Eq. (2.12) and Eqg. (2.18), we obtain
K, =B"AK, =B'K, (2.19)

T -1 . .
where B =(B") =(B") . By using Eq. (2.13) and Eq. (2.17), we can also find

that

(2.20)

Finally, by substituting Eqg. (2.15).and“Eqg. (2.20) into Eq. (2.18), the Q tensor

representation of the elastic free energy. density -becomes

1 G 1 G, 1 G
f __(Kss_K11+3K22)S_;+E(K11_K22_3K24)S_§+§K24S_§

s —

(2.21)

G, 1
+quzzS—§+g(K33 - KM)S—S

To include the electric free energy density of Eq. (1.4) into Eq. (2.21), we can express

it in terms of the Q-tensor representation by following the Einstein summation

convention
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1 Q.
felectric = ESO (EVJZ + A&‘V jV,k ?Jk],

- 26, +¢
3 ' (2.22)
Ae=¢, —&p
v -
)] aJ

For the surface free energy density, the Q-tensor representation is

W 2
f =2 (Q-Q.Y, 2.23
surface 2832 ( s) ( )

where S, is the preferred surface order parameter. Thus, by combining Eq. (2.21), Eq.

(2.22), and Eq. (2.23) together, we finally obtain the Euler-Lagrange equation in the

Q-tensor representation

o _d [ dggodf ot ) w( ot ),
dQ, dx{dQy, ) idy{dQ, | dz|dQ,, ’

and (2.24)
o _dfof | dfiar)id fof |_
dv dx\dv, | dyldv, | dz{dv, ]

We can calculate the director profile of LC with the Q-tensor formalism. For example,

by solving the eigen-modes of Eq. (2.24) we can produce the static LC director
profiles for our LC design. The LC dynamic response is also an important issue for
LC application. By using Erickson-Leslie theory and neglecting the inertial
momentum of LC molecules, the dynamic visco-elastic behaviors of nematic LC can

be analyzed with a modified version of Eq. (2.24) shown below
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yank__ ofg df ofg | df ofy | d[ o

ot dQ, dx|dQ,, | dyldQ,, ) dz{dQ,, /|
ofg dfof | dfofe | dfaf|_,
dv dx(dv, ) dyldv, ) dz{dv,) ~

where » denotes the rotational viscosity of nematic LC.

(2.25)

We examined Q tensor in Eq. (2.3) and found that it meets the following two

criteria: zero trace (ZQn =0) and a unit vector (Z n, =1) of LC director. Based on
i i

our experience of calculating the director profile under an electric field, we often

encountered that our solution cannot converge and LC director is not a unit vector

during iteration. These difficulties had also been reported in literature [9]. Therefore,

to solve Eq. (2.25), the conditions ofrzero'trace (an =0) and a unit vector

(Znii =1) of LC must be maintained at each time step. To meet the traceless
i

condition, we renew the diagonal terms of Q tensor with the replacing scheme

Trace(Q"™
QY =Q" _—:E ) (2.26)
For the normalization condition of LC director, it can be implemented simply as:
old
L S (2.27)

' 2 2 2
JN;+n5+n;

We also derive new off-diagonal components of Q tensor to be
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n.n.
Q' =S (5 7—)

n; +n; +n;
__ 1
(n +n; +n7)
Sl

12 2 2 1
S'(ny +ny+n; -1)+S

SI

! old )
S'+Trace(Q")

=S'(n;n;)x
(2.28)
=S'(nn;)x

— Qold (

For the diagonal components of Q tensor, the following normalization conditions can

be used

n2 1
v g M1
O =S e Y

2 2 2 2
n B n.+tn, +n,
2 2 2

3(n;+n) +n;)

£n? 1
i 3 (Mrnin’
(n; +ny +n;)

, 1 (ni#nZeni-1) g (2.29)
= S'(ni A ! )X 2 2 2
3 3 Sn, +n, +n;, -1)+S"

(i +n;+n; 1) . g
3 S'(nf +ni+nl-1)+8"

o L
= (S ~3) =S

Trace(Q") g
3 S'+ Trace(Q""l ))'

— (Qold _

The S' in Eq. (2.28) and Eq. (2.29) is not the same value as we use at the beginning
of simulation. To illustrate this problem, let us take a look at the Q tensor at the

beginning:
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_ . -
S(nxnx _5) S(nxny) S(nxnz)
1
Q=| S(nn,) S(nyn, _5) S(n,n,) (2.30)
san) S0 SN, —)
It is clear that Eq. (2.30) has the following eigenvalues
~S+3S(n?+n’+n?
ao|_S s | Mrm+m)l) | s S 28] )
3 3 3 3 3 3
The new S' therefore shall be evaluated with the eigenvalues of Q™ instead of
using the initial value at the beginning.
2.2 The Berreman Matrix Method
Based on the Maxwell’s equations
VXxE= —a—B,
ot
oD
VxH=-—, 2.32
P (2.32)
V-B=0, and
V-D=0,

we can describe the wave propagation in a layered medium in a matrix formalism.

This can be done by expressing curl and divergence operation as a matrix

g -9 @ 0
oz oy ox
vx=| £ 0 -9 vo| 2] (2.33)
0z OX oy
0 9 o
ay  oX oz

By substituting Eq. (2.33) into Eq. (2.32), the wave propagation of all field
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components can be properly described as follows:

a
o

oy

0 0 0
0 0 ﬁ
0z
0 0 —i
oy
9 _9
0z oy
9
OX
0 0
OX

Eq. (2.34) can be expressed in a matrix form as:

oG

wec

o

Qo

|

<

N

I T T m m m

oD
ot
oD
ot
oD

ot
oB
ot
oB
ot
oB
ot

(2.34)

(2.35)

In the absence of spatial dispersion and nonlinear-optical effects, the constitutive

relations D=¢eE and B = uH can be easily included in Eq. (2.34). For

simplicity, we use time harmonic optical fields, in which the e factor can be taken

out of the field components. Under the condition, Eq. (2.35) can be simplified as:

where M =

o1y
Eo€n

Eo€3

22

0
0
0

Hokths
Hotys
HoHss

oc-m%,
ot
O(e“ )T =M(iwe I, and
Or =ioMT,
€€ €oéi3 0 0
EoEr g€ 0 0
€03 o33 0 0
0 0 tomy  Hoth,
0 0 oty Moty
0 0 Hols  Hols,

(2.36)

and I is the spatial part



of G.

As shown in Figure 2-1, we consider a monochromatic plane wave obliquely

incident from an isotropic medium to a homogeneous anisotropic layer medium with

the surface normal along the z-axis.

incident plane

Do

N R

anisotropic y 7
, \ 4

isotropic n,

Figure 2-1. An optical beam incidents on a homogeneous anisotropic layer at an

angle ¢, .

The problem is invariant along the y-direction, so all derivatives along y can be set to

Zero

L (2.37)

oy

wt—kr)

The incident plane wave E = Eoei( must have the same spatial dependence on x.

The x-component of the wave vector k, in the ambient medium of index n, is:
&=k, sing,, (2.38)
where ¢, is the angle of incidence and k, =2 The variation of all fields in the
c

x-direction is proportional to e™'<*, so we can get:
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—=-ié. (2.39)
We assume that the magnetic permeability p of a nematic LC is isotropic and the
dielectric permittivity tensor can be related to the pretilt and azimuthal angle of the

LC director by

) ) (2.40)
N’ +Agcos’ @cos’ ¢ Aecos’ @singcosg  Aesin @cosdcos ¢

g=| Agcos’ @singcosg n2+Aegcos’ @sin’g  Agsindcossin g
Aesin@cosfcosg  Aesindcosdsin g nZ +Agsin® @

where & denotes the pretilt angle and ¢ denotes the azimuthal angle. Combining
Eqg. (2.38), Eq. (2.39) and Eq. (2:40) into-Eq. (2.36), we obtain the wave propagation

equations for all field components

lws g, w6, 10,8, 0 % 0
- H H a i EX
lwE e,y 1WEE), 1WEE _E 0 s Ey
ia)gog3l ia)80832 ia)80833 0 Ié/ 0 EZ =0 (2 41)
a . H —-V. .
0 = 0 iw 0 0 §
az IUOIU H y
2 0 i 0 o o |\H
pe Ho M
0 —iZ 0 0 0 Toyry7;

The third and the sixth row equations of Eq. (2.41) can be reduced to

E,=-—° H,-SE -%2E  and

EoEp® €33 Ea3 (2.42)
H, = 3 E,

Ho e

which show that the field components E, and H, are linearly dependent on the
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other field components. Replacing E, and H, of Eq. (2.41) with of Eq. (2.42), four
linear, first-order differential equations for the field componentsE,, E , —H,(minus

sign for convenience and simplicity), and H are obtained

EX
o Hy
oz| E,
—H,
2
ge. 3 Se
31 32
_ 5% Lot —— _ 5% 0 (2.43)
0&, O°EyEq, W&, E
X
EgEE. e, EgEE.
0613631 13 0613632
_ S~ €oé12 0 Hy
=-lw 33 Wéz 33 E I
y
0 0 0 Hok ||y
2 - X
08938 S €062383; 4
o691~ - €9€2 0
€33 Wéz3 €33 @

or in a matrix form
— Y ="ipllV. (2.44)
Here II denotes the differential propagation matrix. Eq. (2.44) can be solved to
yield an analytic solution of
Y(z+h)=e™"¥(z). (2.45)

This yields a generalized field vector ¥ at z+h if ¥ isknownat z Here h is
a finite propagation distance. For a multilayer structure with a total thickness of
d =2 h, we obtain

¥, (d)=e™mh e iy (Q), (2.46)
Berreman matrix method can also be used to yield Fresnel equations and the reflected

wave and transmitted wave. Figure 2-2 depicts the case with an anisotropic stratified
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medium sandwiched between two isotropic media with indices of refraction n, and

n,.

i r isotropic, n,

stratified anisotropic
medium

isotropic, n,

Figure 2-2. Schematic showing the coordinates system and a stratified

anisotropic medium between two isotropic media:

With Fresnel equations, we can get thefields in incidence (i), reflection (r) and

transmission (t):

Hi _ﬂ _ %o

= = s
Eiy Eix /uO
H H

== ﬁno, and (2.47)
Ery Erx ;Uo
Htx :i — ﬁn
.

Ety Etx IUO

According to Eq. (2.47), the generalized field vectors in each region can be found to

be:
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¥ = , and

t = ' (2.48)

E,, COS @, /inz
Ho

Thus, Eq. (2.45) can be modified'to be

Y, =P(N)('¥,+Y¥,), (2.49)

where P(IT) is the propagation matrix. Substituting Eq. (2.48) into Eq. (2.49), we

then have:
Etx EiX
E E
T, OW = P(IDT, Eri , (2.50)
0 E

which results in
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Etx EIX
E, E,
Y |=U Y, 251
0 b Erx ( )
0 E,
with
U, =T,'P(IMT,, (2.52)
where
Cos @, 0 —CoS @, 0
\/gno 0 \/gno 0
T, = !:)O 1 Ag) L , and
0 COS @, \/Tno 0 —CoS @, \/Tno
0 0,
CoS @, 0 00
[fon, 0 0 0
T, - Ho
0 1 0 O
0 COS @, /@nz 00
Hy

The projection matrices P(IT) can be found to be:

, and

(2.53)

© O © © oo o
© O ©O ©O oo r o
o B O O oo o o
P O O O oo o o

By using Eg. (2.51) and Eq. (2.53), we can derive the components of transmitted and

reflected waves as:
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E

Y = U E
v g |, (2.54)

E

Etx Etx Eix
. E E E,
which leads to Y Y| = iy
P+ rx 0 ’ rx EI’X ’ EI’X Ub 0
El'y 0 ry Ery EW 0
EtX Eix
Ety -1 Eiy . . . .
Therefore £ |= (P,-U,P) U, 0 or in the matrix notation simply as
E, 0
(¥, +¥,)=B-¥,=(P,.-U,P)" U,¥, (2.55)

By using Eqg. (2.55), we can calculate the TMand TE components of the transmitted

and reflected waves for given incident TM and TE waves.

Although the Berreman 4 x 4. matrix method is a fast and powerful method, it is

usually difficult to be used to solve a three-dimensional problem, especially when the

geometry is complex. We therefore introduce a modified Jones matrix method to

analyze the light transmission for a twisted nematic (TN) LC. The theoretical

derivation had been reported by the group of Oldano [10] by using a perturbative

approach. The transmission matrix of a TN LC cell was found to be

: e
T = gl , (2.56)

where * indicates the complex conjugation operation, k =7z(ne+n0)//1,

a
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2z(n,—n,)d
O =Akd = y and t is a perturbative parameter defined as

~iAkd iAkd
1= |e 2 99| % 941 (2.57)
Ak dz|, dz|,
d¢ de¢ L : .
where G and G are the derivatives of director angle at surfaces locating at
z 1 z 2

5 and % respectively. Combining Eq. (2.56) and Eq. (2.57), we get,

g% i(aei"‘e +be'® )
T= - - - , (2.58)
i(ae"’D + be"’E) g%
where &, = 270, , O, = 27n,d , a= _m 99 b= _m 990 g
A A Ak dz |, Ak dz|,

m :%[\/n_:+\/n_TJ By using Eq. (2.58), we can derive the electric field of output
r-]0 ne

light as:

E.. = EMe® +EX e (2.59)

where

E =[E;” + ia\/n—TE(ﬂ”jﬁ+ ib\/”:eE;”ﬁ (2.60)
ne nO

and

ES = b /&E;”M[E;“ +ia ﬁE;”jﬁ. (2.61)
ne nO

The A and h in Eqg. (2.60) are the unit vectors parallel and orthogonal to the

director at the surface 9

2.3 The Application Examples
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In this section, we combine the Q-tensor approach and the Berrman matrix

method to analyze several application examples of LC. Finite element method (FEM)

was implemented to solve the partial differential equations of Eq. (2.25) [11]. FEM

has the advantages of structure-flexible simulation and less computation time than

that with finite difference method. We will focus on the topics that we are interested in.

The coupled partial differential equations solver is implemented with COMSOL

Multiphysics [12] and is linked to MATLAB. Figure 2-3 shows the flowchart of our

simulation procedure.
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Calculate optical response by

Berreman matrix method if needed.

Figure 2-3. The flowchart of the simulation used to calculate the alignment

configuration and optical response of nematic LC.

Example 1
In this example, we aim to design a LC cell with each side possessing a

square-shaped defect of 1um each side. The structure of the cell is depicted in

Figure 2-4 (a). The material parameters of the LC used are given in Table 2-1. The
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alignment layers are at the top and bottom of the cell. The cell gap is4um . The pretilt

angle for the alignment layer is70°. We use a mesh that has a higher density near the

defect region than that in the rest area. The result is shown in Figure 2-4 (b).

As we can see, the LC molecules near the both sides of the defect square can

deviate from the alignment direction. The lowest pretilt angle is close to 40° which

is almost 30" different from the surface condition. The affected length is around

0.7um started from the square defect. This example illustrates that the smoothness

of the substrates used is important for the fabrication of a good LC cell.

Table 2-1: The material parameters of LC used for the simulation.

Ky [42.3pN |1, | 1506

Ky [ 7.7pN | 7 | 213 mPaS

Ky | 15.8pN | & | 14.1

ne |1.675 g 4.0
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(a) Alignment Layer (b) Mz 90
- 5um —

1um
Alignment Layer

Figure 2-4. The simulation structure with a square of defect. (a) The mesh plot.

(' b) The plot of simulation result.

2L f

Sl
choring ef
ios 7 ‘.;:"

Example 2

_- on a LC cell. We set up the LC

P d-' 2
.....

cell with a pretilt angle of6°. The scheétic showing the distribution of LC pretilt
angle from the bottom to the top plate is presented in Figure 2-5 (a). We discuss the
LC alignment effect with four different surface anchoring energies: infinity,107,
10°and 107 (J). The result is shown in Figure 2-5(b). The infinite anchoring energy
has an identical pretilt angle of 6°across the thickness of LC cell. The maximum
angular deviation across the thickness by using alignment surfaces with an anchoring
energy of 10™J can be as large as2.3". This example illustrates that the LC

molecules in the center area are not fully aligned with the surface condition when the
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surface anchoring energy is weak.

(a) (b)

Z,
<

4pum

Anchoring Energy

\

Pretilt Angle (degree)
N
W o

Distribution of LC pretilt 4.2 R %%1’]?
4.0 r10e-6
2g +10e-12

20 -1.0 00 1.0 20
Fosition {um)

Figure 2-5. (a) The schematic showing the distribution of LC pretilt angle from
the bottom to the top plate. (b) The pretilt angle distribution of a LC cell with

different anchoring energies.

Example 3

In this example, we will focus on the influence of the separation of in-plane
electrodes on LC alignment. We design a LC cell with a cell dimension of 28.:m and
a cell gap of4um but with two different separations of the in-plane electrodes. The
electrodes lie on the top surface of the cell. By applying a voltage of 5V, the results
are shown in Figure 2-5 with the pretilt angle plot and the potential contour. We find
the influence range of the electric field is quite wide. The influence range for the
4umwidth of the electrode is ~20xm and for the 2um is ~15um. This result
suggests that for a liquid crystal on silicon (LCOS), whose cell structure is similar to
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this simulated cell, the inter-pixel crosstalk should be taken into account, especially

when the pixel size approaches its cell gap.

4875 g
1625
4375 Mo,
4125
3675 (.,
3625
3375 ||
3125
2875 | |
2625
2375
2125 [ |40
| 1,875
1625 [ 30
N e R «1378
S125-10-75 -5 25 0 25 5 7.5 10125 1.125 [0
(o) 0.875
0625 10
0375
p.125 M,
Min: O

Electrode = dum

IEEEEEENEENE

Figure 2-6. The simulation results revealing the influence of the separation of

in-plane electrodes on LC alignment.

Example 4

In this example, the Berreman matrix method is used to calculate the optical
transmittance of a LC cell, which has both a homeotropic and hybrid alignment zones
inside. The parameters of the LC used are presented in Table 2-1. The transmittance of
LC between cross polarizers is calculated. The wavelength of the light source is
632.8nm. The simulation result is shown in Figure 2-7. The homeotropic area has a
higher transmittance than hybrid area. This example illustrates the transmittance result
of the LC molecules under different alignment and the Berreman matrix method is a

useful tool to analysis the LC devices.
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Figure 2-7. The calculated optical transmittance of a LC cell, which has both a

homeotropic and hybrid alignment zones inside, and the pretilt angle

distribution are plotted.

In summary, simulation technique on the LC director and optical response is
developed with Q tensor approach and the Berreman matrix method. We offer some
examples to demonstrate the efficacy of the technique. The simulation tools also
prove to be extremely useful to help us interpreting the dynamic optical probing data

of hybrid alignment LC cells to be reported in Chapter 3.
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Chapter 3

Simulation and Dynamic Optical Probing for

Hybrid Alignment Liquid Crystal Cells

3.1 Introduction

Liquid crystal has been widely used as flat panel displays in a variety of
information system. Conventional TN-mode LCDs are slow response and have a
viewing angle problem, are therefore not suitable for displaying high quality video
pictures. Recently, n-cells or -LC cells in-an optically compensated bend mode
(OCB-mode) have been successfully developed to offer wider viewing angle and fast
speed [13]. Figure 3-1(a) shows the typical structure of an OCB cell with parallelly
rubbed alignment surfaces, which render the LC configuration in splay alignment at
zero applied voltage. When an applied voltage is raised, the OCB cell tends to make a
transition from the splay configuration to the bend-1 state (see Figure 3-1(b)). Figure
3-1(c) depicts the LC configuration in the bend-2 state as the applied voltage is further
increased to a higher level. When the voltage is removed, the cell makes a
configurational transition from the bend-2 state to the bend-1 state. After in the bend-1

state, the cell does not return to the splay state. A twist configuration may be
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generated during the bend-1 to the splay state transition. The typical operation mode

of an OCB cell is transition between the bend-1 state and the bend-2 state, which

makes OCB attractive for its fast switching characteristics [14].

Rubbing direction

(@) =———> (b) (c)

=
7

b

Glass

Splay configuration Bend-1 configuration Bend-2 configuration

V=0 V=V, <) V=V,

Operation mode

(d)

i

LN N
i
. | " L
e y ]
[ ] 3
| . WO .
2 .
[ r 2
o

P
=]

Twist configuration i |

Figure 3-1. The geometric transition of the OCB cell as applied voltage. (a) Splay
configuration. (b) Bend 1 configuration. (c) Bend 2 configuration. (d) Twist

configuration.

3.2 The Modification of The Existing OCB Cell

A major problem with a typical OCB cell is the need to convert the device from
the splay configuration to the bend-1 configuration before use. Based on our
observation on an OCB with 4xm cell gap at 5V, it needs about 40~60 seconds to
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complete the transition. The warm-up period is needed because a transition from two

topologically distinct configurations (such as from the splay configuration to the

bend-1 configuration) takes time to complete and the transition is discontinuous [15,

16]. Another issue in an OCB cell is its poor contrast ratio. In the switching operation

between the bend-1 to the bend-2 configuration, the contrast ratio of optical

transmittance between the two states is low. The finite warm-up time and low contrast

ratio of an OCB cell are becoming the major issues, which are often coupled together.

If the operation begins at the splay configuration, higher contrast ratio can be yielded.

However, the discontinuous transition between the splay state and the bend-1 state

causes another difficulty for application. Thetransitional discontinuity with an applied

electric field may be caused by ‘several meta-states occurring between the splay and

the bend-1 state. If we can apply a vertical force on LC molecules in an OCB cell

before the electric field is applied, the transition time or warm up time might be

reduced. The motivation is to design an OCB structure that can eliminate these

drawbacks while keeps the fast switching characteristics. As shown Figure 3-2, we

implemented a periodic hybrid alignment zones in an OCB cell in order to produce

the effects that we hope for.
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. /

Side view

Figure 3-2 The schematic and the side view of our modified OCB cell.

Apparatus e

3.3 Experimental Setup-;‘dflthé"”“Dynamic Optical Probing

|

We prepared LC alignmenf"layé’rs"'orll 1TO 'glé'l__ss substrates with parallel rubbing
to yield a LC pretilt angle of6°. Then we deposited a thin layer of liquid crystal
polymer (LCP) on one of the substrates via spin coating and patterned the resulting

LCP to make LC molecules nearly vertically aligned at an angle of 85°to the surface.

The line pattern of LCP has a period of90um. The line-width of LCP stripes is
designed to be either 2xm or 4um to yield two different alignment patterns. The
cells with 4um cell gap are filled with nematic LC 5128 from Chisso. The material

characteristics are presented in Table 3-1.

41



Table 3-1: The LC cell and material parameters used in this experiment.

Ky | 11.3pN | 7 213 mPaS
Ky | 7.7pN | ¢ 14.1

Ky | 15.8pN | &, 4.0

N, | 1.675 | D (cell gap) 4pum

N, | 1.506 | LC pretilt angle on surface | 6°

Figure 3-3 (a) shows the schematic of the measurement setup. An Electron

Multiplying CCD (EMCCD) is used to acquire. the image of an inverted optical

microscope. EMCCD provides the benefits of fing€ temporal resolution and high

sensitivity, which is crucial for“our dynamic optical probing study. EMCCD can

rapidly take an image exposure, however, the frame read out speed is limited to below

34ms. Since the dynamic optical probing event for LC is repeatable, we use a

pump-probe scheme to retrieve the dynamic response of the OCB cell by using a

delay generator to trigger the EMCCD and the LC sample repeatedly. The sample is

driven by a pulse whose duration is 4ms and pulse period is 75ms. The waveform is

shown in Figure 3-3 (b). The EMCCD exposure time is set for0.5ms . After a multiple

of exposure with a delay timet, a time-resolved dynamic image of the LC sample is

acquired. By varying the delay time t, a series of dynamic images can be acquired.
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Polarizer
(a)
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Delay Generator
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Voltage
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Duration=4ms
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the sample N | I > Time (ms)
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the EMCCD > Time (ms)

Period =75ms

Figure 3-3 (a) The setup of dynamic optical probing comprising of a delay
generator to control the time delay. (b) The waveform and the trigger signal

applied on the sample and the EMCCD.

3.4 Results and Discussion

Figure 3-4 shows the on and off response curves of the LC cells measured with
crossed polarizers. Four different LC cells of homogeneous OCB, homogeneous

hybrid cell, and2m - and 4um -line patterned hybrid OCB cells. The homogeneous
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OCB cell is measured after being warming up for about 40-60 seconds with 5 volts.
The other LC cells are measured without warm up process. We notice that the off
times of both line-patterned hybrid cells are about the same as that of the
homogeneous hybrid cell. From Figure 3-4, by including a line pattern in a hybrid LC
cell, we found that the optical transmittance in the dark state can be improved,
whereas the bright state is degraded. Figure 3-5 exhibits the behaviors of the optical
transmittances of the LC cells after the voltage on the cells is removed. It shows that
the twist motion in the OCB cell during the transition between the bend and the splay

configuration takes 200 seconds butithe other cells do not show such a characteristic.

1 T T T T T T

J k

= QCB Cell

5 Hybrid Cell

05t 2um Patterned Cell
+  dum Patterned Cell
Applied Yoltage

Transmittance (%)
Applied Voltage (volts)

0 W 1 1 i 1]
0 20 40 B0 80 100 120 140
Time (ms)

Figure 3-4 Optical response curves of four different LC cells (homogeneous OCB,

homogeneous hybrid, and2xm - and 4um -line patterned hybrid OCB cells.
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Table 3-2: The response times of each cells are given.

Types of LC cells | ON (ms) | OFF (ms)
OCB 1.45 4.68
Hybrid 1.15 32.69
2um pattern 1.09 33.37
4um pattern 1.12 353

T
— Y _— g

0.8+ B
= B8 OCB Cell
~ Y o Hybrid Cell
@ L u
=2 o6 B 2urn Patterned Cell
8 1 4 4um Pattemed Cell
; E
504l .
: i
'_

02F % B

0 ! ! ! ;
0 a0 100 150 200 2480 300

Time (s)

Figure 3-5 The optical transmittance is measured after the applied voltage is

removed. The measurement results reveal the LC twist motion in each cells.

For detailed analysis, we use the apparatus described in the section 3.3 to probe

the2um- and 4um-line patterned hybrid OCB cells. The optical images of the

line-patterned cells are given in Figure 3-6. The separation distance between two

neighboring lines is 90um, corresponding to 222 pixels in the image. We use this
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calibration to calculate the line width of the LC cells. The 2um -line patterned cell
looks like a homogeneous cell while the observed linewidth for the 4um -line

patterned cell is about 1.62um

Pattern=2 M Pattern=44m

i 3ls = 90 um

Figure 3-6 The optical micrographic ime jesof the line-patterned hybrid cells.

The resolution of the microscape;is &

Figure 3-7 (a) shows the optical trnsmittance images of the two line-patterned
LC cells in a region covering one period (90um). The images were taken with
crossed polarizer and analyzer. The 4um -line patterned cell exhibits a clear stripe
whereas the 2um -line patterned cell is somewhat like homogeneous. Figure 3-7 (b)
shows the measured image and the simulated optical transmittance distribution of
the 4 4m -line patterned cell. For a quantitative comparison, the gray-level line profile
taken by cutting through the images horizontally at the middle of the line stripe. Both

of the simulation and the measured line profiles reveal two dark stripes locating at the
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positions of pixel number 30 and 70, respectively.

(a) linewidth=2xm  linewidth=4,m

(b)

170 — - % - heasurement
-2 Sirnulation

Measured

Gray Level

Simulation

Figure 3-7. (a) The measured ‘_"
line-patterned LC hybrid alig .'*-f ' “ fon covering one period (90m).
(b) The measured and the simulated optical transmittance images of
the4um -line patterned cell and the gray level profiles horizontally cut through

the images at the center of the vertical position.

The dynamic optical probing results of the cells are summarized in Table 3-3 at
different delay times. Each image shows the optical transmittance with crossed

polarizers over an area covering one period (90um) of the line-patterned cells. The

direction of the line stripes is marked with the red arrow. We can see that during the
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field-on period fromOms to 4ms, the 4um-line patterned cell is darker than the
2um -line patterned cell. After turning off the voltage, the LC molecules relax to the
original configuration. The 4um -line patterned cell becomes brighter than the
2um -line patterned cell at the delay time of 75ms. With our optical apparatus, the
brightest and darkest gray levels are 120 and 9, respectively, in an 8-bits TIFF image
format. We sum the gray-level values over a region covering one period. The summed
gray-level value as a function of delay time is presented in Figure 3-8. The response
times of the two line-patterned cells have values of 1Ims and 30ms for the on and
the off times, respectively, affirming the obéerVation shown in Table 3-2. Within the
field-on duration from Oms fo 4ms , thé 4,um -line patterned cell reaches the

darkest gray level faster than the . 2/m=line péttemed cell does.

Table 3-3: The optical images of the two line-patterned cells at different delay

times.
Delay time | 0 (ms) 0.5 (ms)
2um
4um
Delay time | 2 (ms) 2.5 (ms)
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2um
4um
Delay time | 20 (ms) 25 (ms) 75 (ms)
2um
4um

100 &
e e e e eess |
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~ A4 dum Patterned Cell EE

10 20 30 40 a0 B0 70 a0
Delay Time (ms)

Figure 3-8. The summed gray-level value over a region covering one period in

each image of Table 3-3 is plotted as a function of delay time.

We analyze the LC configuration above the LCP line stripe and above the region
between the neighboring LCP lines. Note that the LC molecules above the LCP line

stripe are in hybrid alignment configuration (Hybrid) while LC molecules form a
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typical OCB splay configuration (OCB) above the region without LCP. Figure 3-9
presents the optical transmittance of the 2um and 4xm -line patterned cells
measured under crossed polarizers. The summed gray-level values over the region
with hybrid alignment configuration (Hybrid) and over the region with OCB splay
configuration (Splay) are plotted as a function of delay time. The result shows that the

response curves in the Hybrid and the OCB regions are almost identical and

indistinguishable.
100 100 5
s FTOEOEE E O OEE 1E
80 i xR WX R - B0 & = 13
5 &0} = —1:;;;@ 60 = 1'%
8 z I, €13 2 1 g
& P F =& P <
G 4f = TG 40 ¥ | o
X P B [ ¢ P 5
i Rubbin * - i *
20 1‘; g * - Splay-area | 7 i} RUbbmg #+- Splay-area |1
A © Hybrid-area Z‘j A @ Hybrid-area
UO 1 ID ZID 3‘0 4‘0 SJD EID ?IU 80 I’JD 110 2’0 3’0 4J 0 5’0 EJD ?Jﬂ Bh
Nelav Time (ms) Nelav Time fms1
(@) The 2um patterned cell (b) The 4um patterned cell

Figure 3-9. The optical transmittance (in terms of gray-level ) of the2xmand
4um -line patterned cells was measured under a crossed polarizer-analyzer. The
summed gray-level values over the region with hybrid alignment configuration
(Hybrid) and over the region with OCB splay configuration (Splay) are plotted

as a function of delay time.

Based on the result of OCB cell described in the section 3.1, we found that a LC
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twist motion can occur as the OCB cell makes a transition from the bend to the splay

configuration by removing the applied voltage. Therefore, to probe into the

line-patterned cells we specifically arrange the directions of polarizer and analyzer to

allow us observing the LC twist motion. This can be achieved by aligning the

direction of the polarizer with the rubbing direction of the cell and then let the

analyzer to cross with the polarizer. Figure 3-10 shows the measurement results. By

using the simulation tool developed with the elastic free energy density of Eq. 1-3,

two LC configurations with minimum free energy can be found: (1) the LC pretilt can

be at any tilt angle without twist, of:(2) the LC pretilt is fixed at0° while with a twist

angle of 0° , 90° or 180°. From our previous study on splay configuration, there

exists a 180° twist motion in the cell when the I:C molecules are allowed to relax as

depicted in Figure 3-1. We further use the simulation tool described in section 2.2 to

calculate the optical response of a twist cell with a twist angle varying from 0° to

180°. In Figure 3-11, we present the results for two LC cells with different cell gap.

For the LC cell with10um cell gap, the LC configuration with 180° twist angle

cannot yield any gray-level change. But for the LC cell with a 4umcell gap the

gray-level can be changed by 60 and can be easily measured. However, no gray-level

change was detectable for the LC cell with a 4um cell gap. Thus, we conclude that

no twist motion occurs during the relaxation after removing the applied field.
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Figure 3-10. The measured optical transmittance (in terms of gray-level) of

the2umand 4um-line patterned cells is plotted as a function of delay time. The

direction of the polarizer is aligned with the rubbing direction and the analyzer

is set to cross with the polarizer.
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Figure 3-11. The calculated optical transmittance variation (in terms of
gray-level change) of a TN cell with a twist angle varying from 0° to 180°. Two

TN cells with cell gaps 4 and 10 um were used for the simulation.

Because no twist motion occurs during the relaxation inside the line-patterned
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cells, we can employ a two-dimensional model to simulate the device structure and
compare with the measurement results. The device and LC material parameters used
are shown in Table 3-1. Figure 3-12 gives the plots of the director profile and optical
transmittance of the simulation on the 4um line-patterned cell at relaxation time
ofSms, 15ms, 25ms and 75ms. There are ripples in the optical transmittance
curve can be observed, which could be due to some defect areas caused by the finite

elements method.

T T T Max: 900

1 T T T

Transanttaade (26)

L . 5
Min: 0

Figure 3-12. The calculated director profile and optical transmittance of the

4um line-patterned cell at delay time of 5ms, 15ms, 25ms and 75ms.

As shown in Figure 3-10, the gray-level steady value of the on-state is about 2 or
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3 higher than the darkest level (~9) of our apparatus. The slightly higher brightness in

the dark state may originate from that LC molecules are misaligned or misaligned

rubbing direction and polarizer. The observed higher gray-level by 3 indicates the

angular deviation must be less than 1.82° in the 4um line-patterned cell. We

therefore set the direction of the polarizer to deviate from the rubbing direction

by1.82° in our simulation (Fig. 3.10 (b)). Based on the calibration, we can make a

direct comparison between the measured data and the simulation. The measured and

simulated optical transmittance (in terms of gray-level) as a function of delay time are

plotted in Figure 3-13. As shown, the simulation‘result agrees well with the measured

data of the 4 um line-patterned ¢ell: For the 22zm liné-patterned cell, since we cannot

observe the LCP lines in Figure 3-6, so the simulation result cannot be used to

compare with the measured data.
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Figure 3-13. The measured and simulated optical transmittance variation (in

terms of gray-level change) is plotted as a function of delay time. The 4um

line-patterned cell was inserted between a cross polarizer-analyzer with (a) the
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direction of the polarizer aligning to the rubbing direction, (b) the direction of

the polarizer deviating from the rubbing direction by1.82°.

In summary, by including a periodic LCP line pattern in an OCB cell, we show

that the resulting hybrid OCB cell can eliminate the need of warm up. The zones of

hybrid LC configuration also prevent LC twist motion during the transition from the

bend to the splay configuration after the voltage is removed. However, the hybrid LC

configuration above the LCP lines also significantly influences the LC relaxation and

makes the cells relax slowly.

This work is supported by Taiwan TET LCD Association (TTLA) and useful

discussions with the members of the group are acknowledged.
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Chapter 4

Inverse Problem of Liquid Crystal Director

Profile

In Chapter 3, a model extraction technique has been implemented by comparing
the model simulation result with the measured data to retrieve the model parameters.
However, in the case of LC, the direct retrieval of a LC director profile from the
measured data is difficult to check its accuracy and reliability. Recently, C. J. P.
Newton in Hewlett-Packard Lahoratories -investigated the possibility of inverse
problem to retrieve the LC director profile with singular value decomposition scheme
[17]. Although it is inspiring, the work is limited to the stability and converging
properties of inverse problem technique developed. No practical applications on the
LC director profile retrieval from experimentally measured data were reported. In this
chapter, we go one further step by deriving the necessary equations and detailed steps
to successfully achieve the target of the LC director profile retrieval from the

measured data.

4.1 Introduction to the Inverse Problem
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The relation between the inverse problem and the forward problem can be
understood as follows: In Eq. 4.1, a model of a physical system is described by a
matrix A and a state vector x depicts the system status. Then the forward problem
is that we can predict the system response b with Eq. 4.1

Ax =b. (4.1)
The inverse problem can then be easily understood as follows: Based on the measured
system response vector b and the model matrix A, we can retrieve the parameters of
the physical system x.

x=A". (4.2)
In the past, inverse problems -are usually treated as a data fitting procedure with
forward problem. This can be done by'varying the-state vector x to obtain the best
fit. However, some problems are not suitable for data fitting because either it may be
difficult to fit the response data to a model or the best fit could yield a spurious
solution. Hadamard introduced some useful criteria to categorize the problems: [18]
Criterion 1: For all admissible data, a solution exists.
Criterion 2: For all admissible data, the solution is unique.
Criterion 3: The solution depends continuously on the data.
A problem that violates any of the three criteria is called ill-posed. The third criterion

is actually the stability condition, which requires that a small perturbation to the input
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does not produce a large change in the output. When a problem is ill-posed, it is not
easy to determine the true solution objectively. We will start from a simple
mathematical problem to illustrate the difficulties of an inverse problem.

Assuming that the model matrix A and the input vector x are:

111

2 3 4

1 1 1 1 1

5 2 4 & 1
A=|2 3 4 5 |7 (4.3)
1111 1

3 4 5 6 1

1111

4 5 6 7,

It is clear that for any given x, we'can obtaina unique b. By evaluating b to the

four-digit accuracy,

E i
g LTEEE
.
1 1 1 111 2.0833
2 2 2 5|1 1.2833
b=A-x= 2 .3 45 = ) (4.4)
1 1 E i 1 0.95
3 4 5 6|1 0.7595
1111
L4 5 6 7]

Therefore, the first two Hadamard criteria are satisfied. To analyze the stability
criterion, we add noise to x with a noise level around 0.1 percent of x. We then

introduce the following parameters to reveal the instability of a problem with S:
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[x'-x]

Sin = '
X
Sout = |b|'l;|b| » where |X| = ,[(Z Xiz), and (4.5)
S = Sout
S

We apply Eqg. 4.5 to calculate S by adding 10,000 different random noise to x and
present the distribution of S in Figure 4-1(a). We can find that most of the values
fall between 0 and 1.1, which indicates that a small the perturbation to x does not
generate a large variation in b. Thus a stable solution can be obtained for this
problem.

For the inverse problem, we repeat the calculation by adding small noise to b
and estimate the variation of x= and.the“resulting instability parameter S is plotted in
Figure 4-1(b). By comparing Figure 4-1(b)to Figure 4-1(a), it is clear to find that the
instability parameter S of the inverse problem is 10 thousand times larger than that of
the forward problem. Therefore, the inverse problem fails to satisfy Hadamard’s third

criterion of stability and is ill-posed in nature.
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Figure 4-1. (a) The Stability distribution of x. (b) The Stability distribution of

By looking further into Ax =b’; in a general case withA e R"*" | xeR", and
b e R . To find a solution x, we can encounter the following three situations:
(1) If M =N, we encounter a linear system of N~ variables with N equations. If
A is nonsingular with det(A);tO, the system possesses a unique solution. On the
other hand if A is singular (i.e., det(A)=0), the system has infinitely many
solutions.
(2) If M <N, we have a linear system with less equations than variables, which is
called under-determined. This problem can be reduced to the situation (1) by
expanding matrix A and matrix b with N —M rows of zero, respectively.
(3) If M >N, we have a linear system with more equations than variables, which is

called over-determined and ill-posed. However, we can find the least-squares solution
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of Ax = b by finding a vector x in R" that minimizes |Ax—b|.

Let us return to our simple problem. Since the problem is ill-posed, any matrix
inversion algorithm will fail to find the desired solutionx. Therefore, specialized
technique must be invoked to solve the inverse problem. One of the successful
approaches is the so-called regularization [19]. We will briefly describe the idea of
the regularization scheme, known as Tikhonov regularization. As noted above, we can
find the least-squares solution of Ax = b by finding a vector x in R" that minimizes
||Ax—b||2 [20]. The key issue is how to choose the sensible solution from the space of
reasonable solutions. An idea is to.reduce the size of the solution space by invoking
additional constraints. We can-implement this idea by adding an additional term to
||Ax—b||2With a carefully selected regularization parameter A

x = min {|Ax-b|] + |21x"}. (4.6)
A graphical tool, which is termed as the L-curve, can be used to help us choosing the
regularization parameter. The L-curve graphical technique plots the ||/1Ix||2 on the
y-axis and the ||Ax-b||2 on the x-axis by varying A . Figure 4-2 exhibits the L-curve
for our illustrative example, which explains the name of the L-curve to be due to the
shape of the plot. The optimal value of A is at the corner of the curve. By using this
value, we can find the solution x=[1.0163 0.9188 1.0481 1.0429]T, which is

very close to the known state vector x given in Eq. 4.3.
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Figure 4-2. The L-curve is a curve in a log-log scale with ||/1Ix||2 on the y-axis

and ||Ax-b||2 on the x-axis by varying 1 from 10 to 1. The optimal value of

A 1is be chosen is at the corner of the curve labeled with the red circle.

4.2 The Inverse Problem- of Liquid Crystal Director Profile

Inverse problem has been widely used in medical diagnostic imaging, such as
magnetic resonance imaging (MRI) and computed tomography (CT). The goal is to
non-invasively diagnose the internal structure of a patient’s body. The two medical
imaging methods are accomplished by measuring the scattered field at various
incident angles and then solving the inverse problem to yield the cross section image
of the patient’s body.

In the case of LC, we want to know the director profile in a LC cell. This goal is
the same as MRI and CT. So we refer to the CT concept and convert it for LC. The
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scheme implemented to collect the data with various incident angles of light is

illustrated in Figure 4-3.

Output Light

Different Incident rYYYYYY /
Angle of Light ggggggg Q

Figure 4-3. The schematic showing the setup implemented to collect the data with

various incident angles of light.

The forward problem in thescase of LC IS that a LC director profile 6(z), which
is generated from a simulation, is first-converted to the dielectric-constant profile
€(z) and then calculate the resulting optical transmittance via the Berreman matrix
method (see Eq. (2.40)). The output light relates to the dielectric-constant profile as
shown in Eq. (4.7) or Eq. (2.55).

4.7)

By applying the inverse problem technique to LC [13], the HP group used
singular value decomposition (SVD) to retrieve the dielectric-constant profile from
the simulated data. We note that the dielectric constant of a uniaxial film is described
by a symmetric 3x3 matix, which has 6 independent matrix elements. But its

corresponding optical axis, which is the pretilt angle of LC, can be described by only

63



two components. If we set up an inverse problem to retrieve the dielectric-constant
profile from the measured optical data, we have to solve the inverse problem with 6
unknown variables. The 6 variables leads to a higher level of noise than the less
variables. To avoid the drawback, we develop a new formalism of inverse problem,
which goes directly from the optical fields to the pretilt profile. Figure 4-4(a) shows
the difference between our new approach and the HP group’s method.

The inverse problem is ill-posed, so that in lack of a priori information it is
difficult to find a solution. Fortunately, we have some priori information about the
initial director profile 0,(z)from the surface condition and the simulation result. We

also have the measured transmittance of output light. We can rewrite Eq. (4.7) as:

V.. CZB(0,)¥, +57, (4.8)

output
where oW is the difference of the measured transmittance of output light from
simulation. We concentrate on 6¥ and derive an equation to show how the director
profile change would change oW . The result is similar to the inverse problem that we

search for ao0(z) to minimize o6¥:

sw =28 50-1.50, (4.9)
00

where J is the Jacobian matrix with an element J;, = %

j

The flowchart of searching for the LC director profile with optical transmittance data

is described in Figure 4-4.
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Inverse Problem Process

Figure 4-4. (a) Schematic showing the difference between our new approach and

the HP group’s method. (b) The flowchart of searching for the LC director

profile with optical transmittance data.

4.3 Theoretical Details
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To reveal the mathematical features of the inverse problem in LC, we begin with
the Berreman matrix method and show the details of our method. Eq. (4.10) is an

ODE form of wave propagation based on the Berreman matrix formalism with & the

parameter relating to the incident angle of input light.
d i I, \¥.=0 4.10
a-ﬁ-la) g ¢ =V ( . )
A perturbation of pretilt angle results in a change of Berreman matrix from II to
IT+ OT1 . A change in Berreman matrix further leads to a change in optical field from
¥ to ¥+0Y.Toinclude the perturbation effect of &(z) into Eq. (4.10), we obtain:
d .
d—+|co(II+5H) (W+0o¥) =0, (4.12)
z
or
z

(diﬂa)l'[jé‘l’:—ia)(é’l'[ ¥ STLSY), (4.12)

where (di-i-ia)nj‘l’ =0 isused. Eq. (4.12) is a differential equation, which can be
z

casted into an operator form
L-u=f, (4.13)

where L=(di+ia)ﬂj, u=J0¥Y, and f:—iw(5H‘1’+5H 5‘1‘). The solution of
Z

Eq. (4.13) is given as
u=H-u(0)+G[f], (4.14)
where G is the operator notation of Eq. (4.13). By using the initial condition of

u(0)=0, Eq. (4.12) can be rewritten as
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(diJr ia)HJ5‘I' =—io(ST ¥+ ST S5Y)
z

= (1+iwG sI)[6¥] = —iwG[s1T ¥] (4.15)
= oY =-i1wG[o11 Y],
where the Neumann series
(L+i0GsM) " =(1+(-i0GoT) + (-ieGsM) +...), (4.16)

is kept up to the first-order term in view of |G STI||<1. We can convert the Green’s

function to an integral form and transform Eq. (4.15) into an integral equation
d
o (d)=-iw[g(d,z)sTI(2)¥(z)dz. (4.17)
0

By substituting W(z)=e "“™W¥(0)s7and  g(dsz) =e " into Eq. (4.17), we

obtain

d - -
oY (d)=—iw}| e NSz ) e W (0)dz
(@) j" ) %) (4.18)
— —id I iozll —iwzIl
=—iwe IO eI (z)e ¥ (0)dz.

Note that IT is a function of incident angle. Since Eq. (4.18) is an integral operation,

a wide range of incident angle would offer more information and vyield tighter

d

constrain on the solution space. The term J e“™dz in Eq. (4.18) can be viewed as
0

Fourier transform, which may lead to an oscillation in LC director profile from the
inverse problem retrieval procedure.

From Eg. (2.40), Eq. (2.46), and Eq. (2.55), ¥ becomes a function of pretilt

angle profile {0(2)},., ,, , ={6..6,,...6,} where nis the number of LC layers
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‘Poutput (61’02""’0n): B(01’62""’9n)Tin' (419)

The equation for the inverse problem of LC is given:

d¥ =J-de
4.20
= a—Bd91+6—]3d492+...+G—Bdé’n Y. (4.20)
06, 00, 00,

The Jacobian matrix in Eq. (4.20) can be obtained by using Eq. (4.19) and (2.55):

j_9B
o0

-1

_a(P.-U,P) U,Y¥,] (4.21)

00

-1

_[ a(p.-u,P) ]'Ub +(p,-U,P)" ou, v

09 o9

The inverse matrix in Eq. (4.21).is given by following the mathematical operation

Al (x)A(x)=1

o(ATA
e s b
)4
-1
L OAT L AOA (4.22)
OX OX
-1
= 0A ‘A =-A" oA
OX OX
-1
= oA :—A'la—A-A".
OX OX

By substituting Eq. (4.20) into Eq. (4.19) we obtain
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o((p,-u,P)’
J= (7.0 ))-Ub+(P+-UbP_)“a(U") v
o0 o0
o((P,-U,P
~(P,-U,P) (P.-U,P)) (p,-u,p)" U,
_ o )9 v, (4.23)
U
P,-U,P)" b
+(P.-U,R) o0
(P,-U,P)" (Ié")-P_-(P+-UbP_)"-Ub
) a(u,)
P,-U,P)" b
+(P.-U,P) o0
And by substituting Eq. (2.52) into Eq. (4.21), we have
(P+-UbP_)'1-%-P_-(P;UbP_)'l-Ub
J: in
+(P,-U,P )" -%
» (4.24)
(P,-U,P)" T (P() “T.P(P,-U,P)" U,
_ v .
1, O(POD) "
o(p-ue) o AL
Furthermore, from Eq. (2.45), there are two.ways to calculate P(IT) = e ™"
e—iwhl‘[ _ e—ithDQ"
=Qe"""Q" (4.25)
g-iwhd; 0
-Q 0 g iwhd, Ql
or
e ™™ = | +(—iwhIl)+(—iwhI)* +(—iwhII) +(-iwhI)* +...  (4.26)

Eg. (4.25) uses the matrix diagonalization technique to solve an

eigenvalue-eigenvector problem of IT and Q is the resulting unitary matrix formed

by the eigenvectors of II. Eq. (4.26) uses the Taylor expansion of an exponential
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function. Eq. (4.25) is more accurate in calculating exponential function than Eqg.
(4.26) since we cannot include infinite orders of the expansion. But the advantage of

Eq. (4.26) is that the derivative can be performed quite easily

OP(IT) _ Al -+ (—iwhIT)+ (—iwhIT)" + (<iwhIT)’ + (<iwhIT)" +..]

o8 o8 (4.27)
_ O+ (—iwhIT )+ (—iwhIT)” + (<iwhIT)’ + (<iwhIT)* +..] 2¢
- de o0’

where IT is a function of dielectric tensor &€ while & afunction of 6 asshown in
Eq. (2.36) and Eq. (2.40).

W carries the entire information about the intensity and phase of an optical
wave. For a measurement, which the phase of the optical wave is perturbed by an
external factor with a significant noise level,-the noise influence can be amplified and
seriously degrades the solution accuracy. Therefore, we convert the equation in the
field representation to the form of intensity representation. This can be done by first

separating aa_‘el)! into the real and the imaginary part

8‘P_8(Re‘P)+i8(lm‘P)

e , (4.28)
00 00 00
The intensity of an optical wave is represented as:
1=E’=(Re¥) +(Im¥)". (4.29)
So the derivative of the intensity to the pretilt angle can be written as
JO(ReY¥ o(Im¥Y
%:z(Rew).Mm(lmw).%. (4.30)

Eq. (4.20), Eq. (4.24), Eq. (4.27), and Eq. (4.30) form the mathematical ground for
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solving the inverse problem based on the Berreman matrix model of LC.

4.4 Simulation Results and Discussion

We first developed an experimental technique to acquire high-quality data for the
inverse problem of LC. As shown in Figure 4-6, A He-Ne laser is used for the light
source. The optical transmittance is resolved into T, and T, with an analyzer and
detected with a CCD. As noted in Section 4.3, the more independent data are collected,
the higher accurate solution be retrieved. Therefore, we combine a polarizer and a
quarter wave plate to collect more data by setting the incident light at four different
polarization states: three linear-(122.5°, 67,5 and 112.5° to the laboratory x-axis)
and one left circularly polarized®light“A rotation stage is used to adjust the incident
angle into the LC cell. We should let the covering range of incident angle as wide as
possible. However, due to the experimental constrain, the widest range of incident
angle with this apparatus only covers from -50° to 50°. But “how wide the range is
sufficient to serve our purpose” is not easy to answer.

A 4pum -thick planar alignment LC cell with 1" pretilt is used for the test run of
the inverse problem. The director profile of the LC cell is generated with Q-tensor
approach by using with a finite element PDE solver. The optical transmittance of the

LC cell is predicted with an optical model based on the Berreman matrix method.
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From the simulation data, the test run aims to investigate the effect of data
regularization, the noise influence, and the finite range of incident angle for the LC
inverse problem. Finally, we will demonstrate a complete procedure to retrieve the LC

director profile by using the inverse problem method developed.

Rotation Stage A

_ . X
4 Polarizer T
+60 z

Analyzer

Figure 4-5. The experimental setup used to measure the optical transmittance

data for inverse problem retrieval of LC director profile.

We first investigate the question about how many layers are needed to

decompose the LC cell in order to yield an accurate prediction of optical

transmittance. We discovered that the error mainly comes from the use of Taylor

expansion shown in Eq. (4.26). Assuming the geometry depicted in Figure 4-6 is used,

the calculation results with the two different methods Eq. (4.25) and Eq. (4.26) are

compared in Table 4-1. We can see clearly that Eq. (4.25) yields an exact result which

shall be independent of the layer number while Eq. (4.26) with an expansion up to the

fourth order of Taylor expansion requires at least 200 layers in order to yield a result
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with similar accuracy.

4 um -Thick

Planar LC cell
M
Tl» . I B

Figure 4-6. The schematic showing an idea that decomposes a LC cell into

several layers to facilitate the calculation of optical transmittance.

Table 4-1: Comparison of the calculation results with the two different methods
based on Eq. (4.25) and Eq. (4.26). Eq. (4.26) is calculated to the fourth order of

Taylor expansion.

200 layers 100 layers 50 layers

Eq. (4.25) | 0.9193-¢"*** | 0.9193-¢"***" | 0.9193.¢"***

Eq. (4.26) | 0.9173-¢""™ | 0.8624-¢"* | 0.1735.***

How to choose a proper regularization parameter is a crucial issue for inverse
problem. To answer the question, we set up a test run by adding one percent of noise

to the simulated transmittance data and retrieve the LC director profile with inverse
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problem method. The regularization parameter 4 is chosen to be single constant
value. Figure 4-7 (a) presents the retrieved LC director profile (line with cross
symbol). Significant oscillation in the retrieved LC director profile can be clearly seen.
By comparing to the simulated LC director profile from our PDE solver with FEM,
we conclude that single constant regularization parameter does not give a reasonable
solution. To solve the problem, we borrow some knowledge from the physics of LC,
which demands the profile of the LC to be continuous and cannot change abruptly.
However, we have to find an appropriate way to include the LC physics into the data

regularization procedure.

(a) = < -- Solion
g
gu.s H!"ﬂ’! hiutt‘f fﬁﬂ’h
(i 0 M 1

0 ‘Jﬂ dn Bf %‘]I'Il ?n14n1m1mm

(b) 6 Solul:lon

2
151 -4---Our Approach |1

Pretilt Angle {degree)

O
o

0 20 40 60 80 100120740160180200
200 Layers

Figure 4-7. Comparison of the retrieved LC director profiles by using different
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regularization methods. The transmittance data are prepared first with the finite
element simulation based on Q-tensor approach and then added with one
percentage of noise. (a) LC director profile retrieval by using one-constant
regularization parameter 4. (b) LC director profile retrieval by using our new

regularization scheme.

By looking into the one constant regularization method more deeply, Eq. (4.31)
depict the entry point that introduces the data regularization parameter to solve an
inverse problem.

|Ax-b|" +|A1x]". (4.31)
We aim to find the most suitable X to minimize ||Ax-b||2+||/11x||2. However, it is
quite opaque to probe into the meaning of the regularization parameter. Therefore, we

introduce the singular value decomposition (SVD) to clarify it. The solution x with

SVD is:
) Y (4.32)
~ o+ o ' " '
where
A=UQV",
U=[u, u,u,..],
0
1 (4.33)
Q=0 o, , and
0 0



The purpose of the regularization parameter A can thus be understood with Eqg. (4.32).

2

The term of 20‘ 5
ol +4

can be viewed as a weighting which controls the importance of

the singular values. Since the regularization parameter appears in the weighting factor,

we can use Eq. (4.32) as the entry point to introduces LC physics into the data

regularization procedure. We have known the director profile of LC must be

continuous, so that a LC molecule and its surrounding nearest LC molecules shall

share the same pointing direction. So the regularization parameter shall not be a single

constant. We therefore propose the regularization parameter to be an array with a

matrix form defined in Eq. (4.44). We assume that each LC molecule can experience a

distance-dependent constraint from the neighboring LC molecules, resulting in a

regularization matrix A shown below

A 0.1 0.04 0 0 ]
0.11 A 0.1 o0.011 0 0
0.0m4 011 A 0.124 o0.011 0
A= 0 004 o011 A 0.4 o0.011 (4.34)
0 0 0.04 011 A 0.11
0 0

From the electrical engineering point of view, the data regularization procedure

behaves like a signal filter, which depends on the range between singular values and

A . If the value of regularization parameter is close to the minimum singular value, it

is easy to generate an oscillating behavior due to that during the iteration, the solution

is modified too big. In this regard, we borrow a concept from global optimization that
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uses small step at the initial stage and as soon as the solution is close enough to the

correct answer, bigger steps are taken. Figure 4-8(b) displays the retrieved LC director

profile by using the idea. Apparently, the oscillation has been efficiently eliminated as

we expect.

Noise plays an important role in an inverse problem with experimental data. The

noise in the measured data can be amplified and seriously affect the retrieved solution.

To test the reliability of our new inverse problem technique, we add 1% to 30% noise

level to the simulated data for a 4um -thick planar alignment LC cell with 1" pretilt

angle. The results are shown in Figure 4-8(a).It.is exciting to find that even at the

10% noise level the retrieved profile still agrees well with the true profile (shown by

the curve with open circles). The-average pretilt-angles calculated from the retrieved

profiles at 1% to 10% noise level are 1°, 0.99°, and 1.01°, respectively. The sum of

absolute squared deviations of the retrieved profiles from the true profile as a function

of the inserted noise level is plotted in Figure 4-8(b), indicating the root-mean squared

(rms) deviation per data point as low as 0.02° can be achieved even with noisy data

at 30% noise level.
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Figure 4-8. LC director profiles retrieved with the transmittance data. The data
are prepared first with the finite element simulation based on Q-tensor approach
and then added with 1%, 5%, 10%, 15%, 20%, 30% of noise. (a) The retrieved
LC director profiles. (b) The statistics of the total deviation of the profiles to the

true solution.

Note that the range of the incident angle shall contain similar information as that
of the size of the solution space. We follow the previous procedure to analyze the

influence of the range of incident angle. The following three ranges are used: |
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(+10° ~-10), H(+30" ~-30"), and HI(+50° ~ -50"). The sample remains the same
4 um -thick planar alignment LC cell with 1" pretilt angle. The simulated LC optical
transmittance data are assumed to be contaminated with 5% noise level. Figure 4-9
shows the retrieved LC director profiles with the three ranges of data. We see that the
LC director profile from the data ranges I and Il are not smooth with small deviation
to the true profile by about 1.85° and 0.72°, respectively. The profile fluctuation
reflects the problem due to the insufficient information containing in the input data |

and Il for the inverse problem retrieval.
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2 2} '
=
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Figure 4-9. The retrieved LC director profiles with the three ranges of simulated
optical transmittance data: I ( +10°~-10" ), II( +30°~-30" ), and

II(+50° ~ —50°).
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In summary, a new procedure was developed for the inverse problem retrieval of

LC director profile. The performance of the new inverse problem technique was

proven by investigating the effect of data regularization, the noise influence, and the

finite range of incident angle for the LC inverse problem. A new data regularization

method was proposed by implementing the LC physics into the inverse problem

retrieval procedure. The integrated procedure was proven to be highly successful in

the retrieval of LC director profile even that only a limited range of noisy data is

available.
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Chapter 5

Inverse Retrieval of Liquid Crystal Director
Profile from Measured Optical Transmittance

Data

In chapter 4, we developed a practical inverse problem procedure to retrieve the
LC director profile from simulated data. The theoretical investigation indicates our
method to be authentic even when the data have been contaminated with noise as high
as 10%. In this chapter, we planito use the inverse problem retrieval technique to
recover the LC director profile’-from"real measured data. The apparatus is to be
described in details below.

5.1 Experimental Apparatus for Inverse Problem Retrieval

Analyzer Rotation Stage l Polarizer XT
z

LC Cell

Figure 5-1. The experimental setup used to measure the optical transmittance

data for inverse problem retrieval of LC director profile.
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The experimental setup used to measure optical transmittance data for inverse
problem retrieval of LC director profile is shown in Figure 5-1. A He-Ne laser is used
for the light source. The optical transmittance is resolved into T, and T, with an
analyzer and detected with a CCD. As noted in Section 4.3, the more independent data
are collected, the higher accurate solution be retrieved. Therefore, we combine a
polarizer and a quarter wave plate to collect more data by setting the incident light at
four different polarization states: three linear (22.5°, 67.5 and 112.5° to the
laboratory x-axis) and one left circularly polarized light. A rotation stage is used to
adjust the incident angle into the L'C cell. Weshould let the covering range of incident
angle as wide as possible. However, “due to the experimental constrain, the widest

range of incident angle with this apparatus only covers from -50° to 50°.

The samples we measured are a 4um -thick LC cell in a splay alignment mode
(OCB) and a 4um -thick LC cell with hybrid alignment. The measurement procedure
of the two samples is repeated for three times by using different applied voltages of

oV, 2.5V, 5V.

5.2 Experimental Results and Discussion

The polarization-resolved optical transmittance measurement results of the LC
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cell with hybrid alignment are presented in Figure 5-2 to Figure 5-4, with three
different applied voltages of OV, 2.5V, 5V, respectively. Similar measurement results
of the OCB cell are presented in Figure 5-5 to Figure 5-7. Each figure comprises of
T,-and T, -resolved optical transmittance plots by using an input light wave at four
different polarization states. In each figure, the optical transmittance data (cross
symbols) and the simulation curve (open squares) are compared. Deviations between
the two curves can be observed and are used to adjust the calculated LC director
profile during the inverse problem retrieval process. Figure 5-8 shows the retrieved
LC director profiles for the hybrid cell with different applied voltages of 0V, 2.5V, 5V.
Figure 5-9 presents the similar results for-the OCB cell. In the Figures, two LC
director profiles are plotted. One profile (blue symbols) is obtained from the FEM
simulation on the LC cell with Q-tensor approach, and the other profile (red symbols)
is retrieved from the measured optical transmittance data with our inverse problem
retrieval technique. We also note that our inverse problem retrieval technique always
converge to an almost identical result even the initial input profile is quite different.
Although small oscillations remain on the retrieved profile at nonzero applied
voltages, the overall agreement between the retrieved and the simulated profiles are
excellent, indicating our inverse problem retrieval technique is fairly reliable and

accurate for practical applications. The same conclusion can also be drawn for the
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OCB cell presented in Figure 5-9.
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Figure 5-2. The polarization-resolved optical transmittance measurement results

T, and T, of the LC cell with hybrid alignment are presented by using four

different input polarization states (22.5° 67.5° 112.5°, and CP). The LC cell was

applied with OV. Two curves are included for comparison: red open squares:

simulated curve with Berreman matrix technique, and blue cross symbols: the

measured transmittance as a function of optical incident angle.
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Figure 5-3. The polarization-resolvedoptical transmittance measurement results

T, and T, of the LC cell with hybrid alignment are presented by using four

different input polarization states (22.5° 67.5° 112.5°, and CP). The LC cell was

applied with 2.5V. Two curves are included for comparison: red open squares:

simulated curve with Berreman matrix technique, and blue cross symbols: the

measured transmittance as a function of optical incident angle.
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Figure 5-4. The polarization-resolved;joptical transmittance measurement results

T, and T, of the LC cell with hybrid alignment are presented by using four

different input polarization states (22.5° 67.5° 112.5°, and CP). The LC cell was

applied with 5V. Two curves are included for comparison: red open squares:

simulated curve with Berreman matrix technique, and blue cross symbols: the

measured transmittance as a function of optical incident angle.
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Figure 5-5. The polarization-resolvedjoptical transmittance measurement results

T, and T, the OCB cell with bend-splay alignment are presented by using four

different input polarization states (22.5° 67.5° 112.5°, and CP). The LC cell was

applied with OV. Two curves are included for comparison: red open squares:

simulated curve with Berreman matrix technique, and blue cross symbols: the

measured transmittance as a function of optical incident angle.
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transmittance

measurement results T, and T, the OCB cell with bend-splay alignment are

presented by using four different input polarization states (22.5°, 67.5°, 112.5°,

and CP). The LC cell was applied with 2.5V. Two curves are included for

comparison: red open squares: simulated curve with Berreman matrix technique,

and blue cross symbols: the measured transmittance as a function of optical

incident angle.
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Figure 5-7. Figure 5-5. The ‘polarization-resolved optical transmittance
measurement results T, and T, the OCB cell with bend-splay alignment are
presented by using four different input polarization states (22.5°, 67.5°, 112.5°,
and CP). The LC cell was applied with 5V. Two curves are included for
comparison: red open squares: simulated curve with Berreman matrix technique,
and blue cross symbols: the measured transmittance as a function of optical

incident angle.
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Figure 5-8. The retrieval director profiles of the hybrid cell by inverse problem

method. (a) The coordinate system used to present the LC director profiles. (b)

The retrieved director profiles of the hybrid cell biased at 0V, 2.5V, and 5V. Two

profiles are included for comparison: red squares: retrieved profile, and blue

symbols: the simulated profile calculated by the FEM with Q-tensor approach.
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Figure 5-9. The retrieval director profiles of the OCB cell by inverse problem
method. (a) The coordinate system used to present the LC director profiles. (b)
The retrieved director profiles of the OCB cell biased at 0V, 2.5V, and 5V. Two
profiles are included for comparison: red squares: retrieved profile, and blue

symbols: the simulated profile calculated by the FEM with Q-tensor approach.
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Chapter 6

Conclusions and Future Prospect of This Thesis

Study

In conclusion of this thesis research, we have accomplished a finite element
method (FEM) simulation of nematics liquid crystal by using Q-tensor approach and
the optical response is also demonstrated by using Berreman matrix method. We use
this simulation technique for comparing the result with the measurement data of the
modified OCB cell. We find ithat including” line-patterned hybrid alignment
configuration into an OCB cell can effectively eliminate the transition time between
the splay to the bend configuration. For the LC inverse problem, we have the detail
analysis of the effect of data regularization, the noise influence, and the finite range of
incident angle. We use our approach method for the data regularization of the inverse
problem to reduce the oscillating behavior in the LC inverse problem retrieval
procedure. The director profiles of an OCB and a hybrid cell with and without applied
voltage have been successfully retrieved from measured optical transmittance data

with our inverse problem retrieval technique.
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1)

)

©)

Further improvements could be done in the future:

Using a perturbation concept to modify the Berreman matrix method for

analyzing three-dimensional LC devices.

The optical response for a three-dimensional LC device can only be

calculated by the finite difference time domain (FDTD) method. The FDTD

method takes a lot of computing time and needs to setup the whole equation

system quite precisely. Although the Berreman matrix method can only calculate

the optical response caused by azimuthal or pretilt angle, but the computing time

is less. We can consult the concept in the reference [10] that using a perturbation

to extend the Berreman matrix:-method for the change of the azimuthal and pretilt

angle at the same time.

Changing the line-patterned hybrid alignment configuration for the line-patterned

homeotropic alignment configuration into an OCB cell for the symmetry

structure.

Because the hybrid alignment configuration has the un-symmetry cell

structure, so the relaxation time is not fast as the symmetry OCB cell. The

homeotropic alignment configuration has the symmetry cell structure and also it

can provide the vertical force as the hybrid alignment configuration.

Replace Tikhonov regularization method with iterative regularization method [21,
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The prior probability can be realized very well by neural network. We can
offer the prior information about the liquid crystal to help training the neural

network system. The iterative regularization method can be expressed as

2

followed which compared to Tikhonov regularization f; = 20‘ Fel
o; +

k
fi=1-(1-o7) (6.1)
where k is the iteration number. Figure 6-1 gives an example of the iterative
regularization method. When.the iteration number increases, the more singular

values we can keep. If it can be well designed; the convergence would be fast

and reliable.

0.8}

06}

04}

0.2}

10

Figure 6-1. An example of the iterative regularization method with different

iteration number.

(4) Use an optical microscope with high NA objective to simplify the data taking
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procedure.

With one shot of image exposure, the resulting optical image contains the

information with varying incident angles needed for the inverse problem retrieval

with a schematic illustrated in Figure 6-2 (a). We can do a simple estimation

about the numerical aperture of the objective lens which is around 0.76 for our

incident angle range as in Figure 6-2 (b).
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50°

Objective Lens

NA =sin(50°) ~0.76

Figure 6-2. Optical microscope with high NA objective can be used to simplify
the data taking procedure for inverse problem retrieval. (a) The experiment

setup. (b) The NA value of the objective lens for our incident angle range.
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