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摘要 

液晶的排列指向在液晶應用是很重要的性質。在本篇論文中，我們利

用加入混合垂直配向的延展態液晶盒做為例，以模擬計算與量測的光

學結果相比較，得到靜態與動態液晶指向分佈資訊。我們模擬計算液

晶的排列與光學反應使用液晶自由能張量表現型式。實驗量測使用高

靈敏度攝影機搭配延遲時間產生器來擷取液晶盒的動態影像。我們針

對取得液晶的排列指向逆問題做了理論分析與實驗示範。結果發現在

加入混合垂直配向可消除延展態液晶的暖機時間，但也增加了液晶盒

的反應時間。在利用逆問題的方法取得液晶的排列指向，我們提出了

符合液晶特性的正則化矩陣，並驗證使用大範圍入射角的光學測量數

據和系統量測誤差在百分之十下，在此逆問題求解是穩定而可靠的。

從實際實驗示範成功展示在不同施加電壓下的液晶盒內之液晶排列

指向可穩定而可靠取得。 
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Student：Jien-Hui Li               Advisors：Professor Jung Y. Huang 
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Abstract 

The liquid crystal (LC) director profile is an important property for a variety of LC 

applications. In this study, we combine simulation and experimental measurement of 

the optical responses of hybrid alignment liquid crystal cells to demonstrate the 

functionality of LC director profile retrieval. Our simulation invokes the Q-tensor 

formalism of liquid crystal director calculation and Berreman matrix method for the 

optical response of LC. An electron-multiplying charge coupled device and a delay 

time generator were combined to capture the dynamic optical image of the liquid 

crystal cells. We discovered that by including a hybrid alignment region into an OCB 

cell, the warm up time of the LC cell can be effectively eliminated. The relaxation 

time was unfortunately also increased. We also study the inverse problem of LC to 

retrieve the director profile of liquid crystal cell directly from the measured optical 

transmittance data. To retrieve the director profile from the inverse problem technique, 

we proposed a regularization matrix based on a priori knowledge of LC. We found our 

method can yield LC director profile reliably from the measured optical data covering 

a wide range of incident angle and 10% noise level. We further demonstrated the 

functionality by retrieving the liquid crystal director profiles of LC cells with applied 

voltage from the experimentally measured data. 
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Chapter 1 
 

Thesis Motivation and the Introduction to the 

Physical and Optical Properties of LC 

 

Liquid Crystal (LC) is an intermediate state of a matter between the isotropic 

liquid and the crystal. In the LC state, several phases with different molecular 

alignment orders can be found. LC molecules have typical shapes of rod-like, 

discotic-like, and bend-shape. Figure 1-1 illustrates the different phases and shapes of 

LC molecules. For simplicity of this thesis study, we will focus only on the rod-like 

LC molecules in the nematic phase. [1] 

 

Figure 1-1 (a) Different shapes of liquid crystal molecules. (b) The molecular 

alignments in the SmC, SmA, and the nematic phases. 
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ẑ

θ

Smectic C phase 

Temperature 

n n n
(a)   

(b) 

Rod‐like  Discotic‐like  Bend‐shape 

1 



 

1.1 Motivation 

    Liquid crystal display (LCD) has been widely used in the flat panel display (FLD) 

industry. To satisfy the ever-increasing need for information flow and display, the next 

generation LC display will demand accurate control of LC configuration in each LC 

pixels. The static and dynamic alignment structures of liquid crystal molecules are 

important factors for the optical properties and response of a LC device. To probe the 

response of a LC device, a variety of optical techniques can be used to yield useful 

insight. However, the optical data are usually resulted from the entire liquid crystal 

layer along the propagation direction of the optical beam used. To offer the detailed 

information of LC director profiles and allow for the further progress of LC devices, 

we developed in this thesis two techniques to retrieve the LC director profiles of LC 

devices. We termed the first approach with a name of the model extraction. The 

method iteratively compares the simulation result with the measured data and 

retrieves the LC director profile. The second method invokes the inverse problem 

technique by way of optical transmittance measurement of a LC device and retrieving 

the LC director profile directly from the measured data. We demonstrate these two 

methods as in Chapters 3 and 4. However, to fulfill the objective, in the flowing we 

will first depict the physical and optical properties of LC materials in chapter 1 and 

2 



then in chapter 2 illustrate the models developed to simulate the LC alignment 

structure and the resulting optical response. 

 

1.2 The Physics of Liquid Crystal 

A rigid rod-shaped molecule is the simplest picture to be used for the description 

of the nematic LC. For an elongated molecule, the alignment status and the positions 

of the centers of mass of the molecules determine the state of matter. We can first 

define the averaged molecular orientation of a nematic LC, which is called 

director ( , as shown in Figure 1-2.  )n

 

Figure 1-2. An example to describe nematic LC with an averaged molecular 

direction picture. 

 

Because the director is an averaged vector over a small local volume, we need to 

further specify how the LC molecules angularly spread about the direction. A 

convenient measure of the amount of order is the scalar order parameter, denoted by 

. This is a weighted average of the molecular alignment angles S mθ between the long 

mθmθ−

n

LC molecules 
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molecular axes and the director. Eq. (1.1) describes how to calculate the scalar order 

parameter: 

21 3cos 1
2 mS θ= −  ,                        (1.1) 

where  denotes the thermal or statistical average. Therefore, Eq. (1.1) can be 

rewritten as: 

( ) ( )21 3cos 1
2 m mB

S θ θ= −∫ f dV ,                       (1.2) 

where B  denotes the volume of integration and ( )mf θ  is the distribution function 

of the molecular angle mθ . Figure 1-3 presents two cases of the distribution function 

( mf )θ  with a high and a low orientational order. As we can see in the Figure 1-3, 

because of the symmetry of molecule, ( )mf θ  shall be even with ( ) ( )m mf fθ θ= −  

and periodic ( ) ( )m mf fθ π+ = θ . We can easily calculate a perfect crystal to have 

 and  for an isotropic fluid. 1S = 0S =

( )mf ( )mfθ θ(a)  (b) 

Figure 1-3 Two cases of the distribution function of molecular orientation 

mθ with (a) high orientational order, (b) low orientational order. 

     

According to the Frank-Oseen theory, the Gibbs free energy density of a nematic 

mθ mθ0 0
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LC medium can be expressed as 

 

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

2 2
11 22 33

22 24

0 22

2
0

1 1 1
2 2 2
1
2

1
2
1 ,
2

G elastic electric surfacef f f f

K n K n n K n n

K K n n n n

q K n n

D E

W n n

2

= + +

= ∇ ⋅ + ⋅∇× + ×∇×

⎡ ⎤− + ∇ ⋅ ∇ ⋅ + × ∇×⎣ ⎦

− ⋅∇×

− ⋅

+ −

 (1.3) 

by taking the elastic, the electric and the surface energy density into account. Each 

term can be explained as follows: 

The expression at the first line, which describes the elastic deformation energy of the 

LC medium, is comprised of three terms representing the most important elastic 

distortion energies in LC: splay ( )( )2
11K n∇⋅ , twist ( )( )2

22K n n⋅∇×

24K

, and bend 

 with three corresponding elastic constants.  at the second line 

is related to the surface anchoring energy and  at the third line is the chirality of 

the LC. Figure 1-4 shows the LC molecular alignment with the three different elastic 

deformations. In fact, the elastic constants in a typical LC material are very small in 

the order of pN, implying that LC material is quite easy to be influenced by an 

external force field. 

(( 2
33K n n×∇× ) )

0q
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Splay  Twist  Bend   

Figure 1-4. Three kinds of deformation commonly existing in a liquid crystal 

medium. 

 

The expression at the fourth line describes how the LC molecules interact with an 

electric field. This is the foundation of LC applications. For LC with dielectric 

constants, ε  (parallel to the molecular long axis) and ε⊥  (perpendicular to the 

molecular long axis), we can relate the electric energy to the LC director by 

using 

elf ectric

 
( )

( )0

1
2
1 ,
2

electricf D E

V Vε ε

= − ⋅

= − ∇ ⋅∇
 (1.4) 

where ε  is the dielectric tensor of LC, and can be conveniently expressed as 

ij i jn nijε ε δ= + ε⊥ Δ  , with ( ), , ,i j x y z= ε ε ε⊥Δ = −  and ijδ  the Kronecker delta, 

which is 1 if i equals j, and 0 otherwise.  

The expression at the fifth line is the surface energy or called surface anchoring 

energy, where  denotes the prefer alignment direction of LC molecules on surface 0n
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and  is the surface anchoring strength. A useful model of surface anchoring energy 

is Rapini-Papoular form [2]. 

W

In a physical system, the equilibrium stable state tends to have a structure with 

minimum free energy. Thus, we can use this property to calculate the director 

configuration by minimizing the free energy density of LC. We can use the functional 

minimization technique to yield the result that the target functionals shall satisfy the 

Euler-Lagrange equations: 

 
, , ,

, , ,

0,  and

0,

G G G G

i i x i y i z

G G G G

x y z

f f f fd d d
dn dx dn dy dn dz dn

f f f fd d d
dV dx dV dy dV dz dV

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (1.5) 

where Gf  is the Gibbs free energy density describing by Eq. (1.3). 

 

1.3 The Optical Properties of Liquid Crystal 

LC has been widely used in fat panel display industry due to its attractive 

visco-elastic and electro-optical characteristics. To reveal its unique properties, we 

will study in this section the electro-optical behavior of LC under an electric field.  

Nematic LC is an optical uniaxial medium with birefringence characterizing by 

two principal refractive indices. The refractive index, which is given by 
cn
υ

= , is 

inverse proportional to the velocity of light, υ , traveling in the medium, and  

denoting for the velocity of light in vacuum. So, when an optical beam is incident at a 

c
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nematic LC film, it would experience two different velocities inside the LC, which we 

called ordinary-ray and extraordinary-ray. Therefore, a phase retardation will be 

experienced between the o-ray and e-ray in the LC film. Figure 1-5 illustrates how we 

can convert a unpolarized light into a polarized light by using a LC cell.  

d

LC 

(Polarized) 

E‐ray 

(Polarized) 

O‐ray 

(Unpolarized) 

Incident light 

 

Figure 1-5 A diagram showing ordinary and extraordinary rays in a LC medium. 

 

We can introduce ordinary and extraordinary refractive indices and birefringence 

as: 

,  ,o e en n n nε ε⊥= = Δ = on− .                (1.6) 

From Eq. (1.4) and Eq. (1.6), we found that the dielectric constants and refractive 

indexes can be affected by electric field. Figure 1-6 describes a general operational 

principle of LC applications. 
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ELC 

DarkBright 

Polarizer 

Analyzer 

 
Figure 1-6. Schematic showing the way to generate on and off state with a 

positive εΔ  LC material. 

The propagation of a polarized optical beam in a LC cell can be properly 

described with Jones matix formalism [3]. For an analysis, we first introduce a 

coordinate system with x- and y-axis lying on the plane of the LC cell. A Jones vector 

is used to describe the state of polarization of light with a complex envelope that 

represents the amplitude and phase of the optical field: 

  (1.7) 0

0

.
x

y

i
xx

i
y y

V eV
V V e

ϕ

ϕ

⎛ ⎞⎛ ⎞
⎜= =⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

V ⎟
⎟

The resulting intensity is given by: 

 
22* .x yI V= = +VV V

d

 (1.8) 

By the description, we can construct a Jones matrix to connect the incoming and the 

outgoing wave in a vector form: 

  (1.9) 11 12

21 22

,
J J
J J

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
out in inV JV V

When calculating light propagation through a birefringent slab with thickness and 

9 



refractive indices  and , inserted between crossed polarizers. By taking into 

account the optical axis of the LC cell relative to the laboratory frame, we can derive 

an expression for the system in Jones matrix representation: 

1n 2n

 ( ) ( ) ,ϕ ϕ= −y slab x inV P R J R P V  (1.10) out

where ( ),i x=iP y  denotes the polarizer, ( )ϕR  is the rotation matrix, and ϕ  is 

the angle of the optical axis of the birefringent slab relative to the x-axis of the 

laboratory frame. By substituting each matrix into Eq. (1.10), the result becomes: 

( ) ( ) ( )

1

1

2

2

1 2

0 0 c si 0 cos sin 1 0
0 1 sin cos sin cos 0 0

0

.
sin 2

i n dout in
x x
out ini n dy y

i
in

x

V Ve
V V

e

n n d
iV e

π
λ

π
λ

π
λ

ϕ ϕ
ϕ ϕ

π
λ

−

−

− +

⎛ ⎞
⎛ ⎞ ⎛ ⎞−⎛ ⎛ ⎞⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟

= ⎛ ⎞−⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 2

os

n n d

⎞
⎟
⎠

n

0

sin

ϕ ϕ
ϕ ϕ

ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠

.   (1.11) 

From Eq. (1.8) and Eq. (1.11), we can further obtain the output light intensity: 

 ( )( ) ( )

( ) ( )( )

1 2

22

2

1 2

2 1 22 2

sin 2

sin sin .

x y

i n nin
x

in
x

I V V

n n d
iV e

n n d
V

π
λ

π
ϕ

λ

π
λ

− +

= +

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

sin

2

d

ϕ

.                      (1.12) 

Eq. (1.12) is useful to analyze the light propagation through a LC slab (Figure 1-7(a)). 

For a planar aligned LC with a pretilt angle θ  with respect to the cell surface, the 

optical plane wave traveling through the LC cell will experience an effective 

refractive index of 

10 



                                   
2 2 2 2

.
sin cos

e o
eff

e o

n nn
n nθ θ

=
+

                                         (1.13) 

By substituting 1 effn n= and 2 on n= into Eq. (1.12), it becomes: 

 ( ) ( )
2 2 2

2 2 2 2
sin 2 sin .

sin cos
in e o

x o

e o

n ndI V n
n n

πϕ
λ θ θ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 (1.14) 

For a hybrid LC cell (see Figure 1.7(b)) with a LC director profile a linear variation of 

distance, we can derive the output light intensity to be 

( ) ( )
( ) ( )

2 2 2

2 2 2 2
0

sin 2 sin .
sin cos

d
in e o

x o

e o

n nI V dz dn
n z n z

πϕ
λ θ θ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −
⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

∫  (1.15) 

 

(a) 

Hybrid Planar 

(b) 

 

Figure 1-7. Shcematic showing two kinds of LC alignment: (a) planar, (b) hybrid. 
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Chapter 2 

 
Models of the LC Alignment Structure and the 

Optical Response 

     

Over the past several years, liquid crystal has been widely used for information 

display applications. As the technology becomes more and more sophisticated, 

computer simulation on LC devices becomes more important. Simulation can help 

researchers probing into the static and dynamic behaviors of LC and the optical 

properties thereafter. By calculating the director configuration and optical response of 

LC, we can predict what kinds of defects might develop and what optical responses 

could be yielded. To compute the director profile, it is required to express the free 

energy density of LC as shown in Eq. (1.3). By minimizing the free energy density, 

the LC alignment configuration can be obtained. 

We found in Eq. (1.3) that it does not include the order parameter, , which is 

one of the important parameters of nematic LC. By including the order parameter  

into the free energy density, the defect formation can be described with the solution in 

a more intuitive way. In addition, we also discover that Eq. (1.3) is in the vector 

representation. The free energy density expression may have different values for  

S

S

n
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and  [4]. However, for a real nematic LC,  and n− n n−  shall be equivalent and 

possess the same free energy based on the symmetry argument. By using the 

Landau-de Gennes’s Q-tensor representation of free energies [5, 6] to calculate the LC 

director configuration, the above-mentioned difficulty can be avoided. The 

equivalence between the Frank-Oseen’s vector representation and Landau-de 

Gennes’s Q-tensor representation has been proved by Dickman [7]. 

    Once we have retrieved the director profile of a nematic LC, we can analyze its 

optical response to reveal more useful information for its application properties. In the 

chapter 1, we have introduced the Jones matrix method which is a powerful tool to 

analyze the optical properties of a layer-stacked medium at normal incidence. But to 

calculate the optical properties of a layer-stacked medium at high incident angle with 

multiple reflections, the Jones matrix method does not give a precise result. For this 

reason, we choose the Berreman 4 4×  matrix method [8], which is based on the 

assumption of plane wave propagation in a stratified medium.  

 

2.1 The Q-Tensor Formalism 

Consider the  matrix, 3 3×

 ( ) ,nS n= ⊗M  (2.1) 

where  is the scalar order parameter, and the operator  indicates a S ⊗
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mathematical operation on the director vector ( ), ,x y zn n n n= with the rule 

  (2.2) .
x y x z

y y y z

z y z z

n n n n
n n n n
n n n n

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟
⎝ ⎠

x x

y x

z x

n n
n n n n

n n
⊗ = ⎟

1n =We note that the director vector is an unit vector with  and this makes the trace 

of  to be . The other property of the matrix  is the symmetric property. We 

can then define Q-tensor as 

M S M

 1 ,
3

S n n⎛= ⊗ −⎜
⎝ ⎠

Q ⎞
⎟I  (2.3) 

which is symmetric and traceless. With the definition, we can derive the Q-tensor 

formalism of free energy from the Frank-Oseen free energy density. 

    We first define some elastic free energy density parameters, corresponding to 

each terms present in Eq. (1.3): 

 

2
1

2
2

2
3

4

5

( )

( )

( )
[ ( ) ( )]

F

F

F
F
F

= ∇⋅

= ⋅∇×

= ×∇×
= ∇⋅ ∇ ⋅ + × ∇×
= ⋅∇×

n

n n

n n
n n n n

n n

 (2.4) 

and then construct the following vectors: 

 
1 2 3 4 5

3311 22 22 24
0 22

[ , , , , ]

[ , , , , ]
2 2 2 2

T

T

F F F F F
KK K K K q K

=

+
= − −F

F

K .
 (2.5) 

By using Eq. (2.4) and Eq. (2.5), we can rewrite the elastic free energy density in an 

inner product of row and column matrices by 

 .elasticf = ⋅T
FK F  (2.6) 
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In the next step, some convenient parameters, which are bilinear forms of the elastic 

free energy density parameters defined in Eq. (2.4), can be defined 

 ( )2

1 , 2 , , 3 , , 4 , , 5 ,, , , , ,j j j k j k j k l j j k j k k j j l k jklf n f n n f n n n n f n n f n n e= = = = =  (2.7) 

where Einstein summation convention is invokes, jkle is the Levi-Civita symbol 

defined by  and all other , and  

is defined as: 

1, 1,xyz yzx zxy xzy yxz zyxe e e e e e= = = = = = − 0jkle = ,j kn

 {, ,    , , , .j
j k

n
n j k x

k
}y z

∂
= ∈
∂

 (2.8) 

We prepared a vector f that possesses the components of Eq. (2.7): 

 [ ]1 2 3 4 5, , , , .Tf f f f f=f  (2.9) 

The relationship between the two vectors  and  can be found F f

  (2.10) ,F = Af

with 

 

1 0 0 0 0
0 1 1 1 0

.0 0 1 0 0
1 0 0 1 0
0 0 0 0 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

A  (2.11) 

After the necessary preparation, the elastic free energy density in Eq. (1.3) can be 

expressed as a linear combination of the vector  and an elastic constant vector : f fK

  (2.12) .sf = T T
F F fK F = K Af = K fT

Here  can be obtained by: fK
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33 2211 22 24 22 24

0 22, , , ,
2 2 2 2

TK KK K K K K q K−− −⎡ ⎤= −⎢ ⎥⎣ ⎦

T
f FK = A K

.
 (2.13) 

We can define bilinear Q-tensor terms by using the same approach detailed in Eq. 

(2.7): 

 

1 , ,

2 , ,

3 , ,

4 ,

5 , ,

,

,

,

,  and

jk l jk l

jk k jl l

jk l jl k

jkl jm km l

jk lm j lm k

G Q Q

G Q Q

G Q Q

G e Q Q

G Q Q Q

=

=

=

=

=

 (2.14) 

where 
3
jk

jk j kQ S n n
δ⎛ ⎞

= −⎜ ⎟ jk
⎝ ⎠

, δ is Kronecker’s delta, and  is the scalar order 

parameter. We then define a vector in terms of the bilinear Q-tensor components as: 

S

 3 51 2 4
2 2 2 2 3, , , ,

TG GG G G
S S S S S

.⎡ ⎤= ⎢ ⎥⎣ ⎦
g  (2.15) 

The relationship between  and  is now clear to be f g

 g = Bf  (2.16) 

with  

 

0 2 0 0 0
1 0 1 0 0

2 .2 1 1 0
3

0 0 0 0 1
0 1 3 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

B  (2.17) 

By defining a new elastic constant vector  for vector g , the elastic free energy 

density can be rewritten as: 

gK
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 .sf = T T T -1
g g gK g = K Bf = K BA F  (2.18) 

Comparing Eq. (2.6), Eq. (2.12) and Eq. (2.18), we obtain 

 -T T -T
g FK = B A K = B Kf

-1

 (2.19) 

where . By using Eq. (2.13) and Eq. (2.17), we can also find 

that 

( ) ( )T-T -1 TB = B = B

 

( )

( )

( )

33 11 22

11 22 24

24

0 22

33 11

1 3
12
1 3
2

1
2

1
6

K K K

K K K

K

q K

K K

⎡ ⎤− +⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

T

gK  (2.20) 

Finally, by substituting Eq. (2.15) and Eq. (2.20) into Eq. (2.18), the Q tensor 

representation of the elastic free energy density becomes 

 
( ) ( )

( )

31 2
33 11 22 11 22 24 242 2

54
0 22 33 112 3

1 13 3
12 2 2

1
6

s
GG Gf K K K K K K K

S S
GGq K K K

S S

= − + + − − +

+ + −

2

1
S  (2.21) 

To include the electric free energy density of Eq. (1.4) into Eq. (2.21), we can express 

it in terms of the Q-tensor representation by following the Einstein summation 

convention 
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2
0 , , ,

,

1 ,
2

2
,

3
,

.

jk
electric j j k

j

Q
f V V V

S

VV
j

ε ε ε

ε ε
ε

ε ε ε

⊥

⊥

⎛ ⎞
= + Δ⎜ ⎟

⎝ ⎠
+

=

Δ = −

∂
=
∂

 (2.22) 

For the surface free energy density, the Q-tensor representation is 

 ( 2
2 ,

2surface
s

Wf
S

= − sQ Q )  (2.23) 

where sS is the preferred surface order parameter. Thus, by combining Eq. (2.21), Eq. 

(2.22), and Eq. (2.23) together, we finally obtain the Euler-Lagrange equation in the 

Q-tensor representation 

 
, , ,

, , ,

0,

and

0.

G G G G

jk jk x jk y jk z

G G G G

x y z

f f f fd d d
dQ dx dQ dy dQ dz dQ

f f f fd d d
dV dx dV dy dV dz dV

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

=

 (2.24) 

We can calculate the director profile of LC with the Q-tensor formalism. For example, 

by solving the eigen-modes of Eq. (2.24) we can produce the static LC director 

profiles for our LC design. The LC dynamic response is also an important issue for 

LC application. By using Erickson-Leslie theory and neglecting the inertial 

momentum of LC molecules, the dynamic visco-elastic behaviors of nematic LC can 

be analyzed with a modified version of Eq. (2.24) shown below 
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, ,

, , ,

,

0,

jk G G G G

jk jk x jk y jk z

G G G G

x y z

Q f f f fd d d
t dQ dx dQ dy dQ dz dQ

f f f fd d d
dV dx dV dy dV dz dV

γ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

= − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

− − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

,
 (2.25) 

where γ  denotes the rotational viscosity of nematic LC. 

    We examined Q tensor in Eq. (2.3) and found that it meets the following two 

criteria: zero trace ( ) and a unit vector (0ii
i

Q =∑ 1ii
i

n =∑ ) of LC director. Based on 

our experience of calculating the director profile under an electric field, we often 

encountered that our solution cannot converge and LC director is not a unit vector 

during iteration. These difficulties had also been reported in literature [9]. Therefore, 

to solve Eq. (2.25), the conditions of zero trace ( 0ii
i

Q =∑ ) and a unit vector 

( ) of LC must be maintained at each time step. To meet the traceless 

condition, we renew the diagonal terms of Q tensor with the replacing scheme 

1ii
i

n =∑

 
( )

.
3

new old
ii ii

Trace
Q Q= −

oldQ
 (2.26) 

For the normalization condition of LC director, it can be implemented simply as: 

 
2 2 2

.
old

new i
i

x y z

nn
n n n

=
+ +

 (2.27) 

We also derive new off-diagonal components of Q tensor to be 
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( )

2 2 2

2 2 2

2 2 2

'( )

1        '( )
( )

'        '( )
'( 1) '

'        ( ).
'

i jnew
ij

x y z

i j
x y z

i j
x y z

old

n n
Q S

n n n

S n n
n n n

SS n n
S n n n S

SQ
S Trace

=
+ +

= ×
+ +

= ×
+ + − +

=
+ oldQ

 (2.28) 

For the diagonal components of Q tensor, the following normalization conditions can 

be used 

 

2

2 2 2

2 2 22

2 2 2 2 2 2

2 2 2
2

2 2 2

2 2 2
2

2 2 2

2
2

1'( )
3

     '( )
3( )

1     '( )
3 ( )

( 1)1 '     '( )
3 3 '( 1) '

(1     ( '( ) '
3

new i
ii

x y z

x y zi

x y z x y z

x y z
i

x y z

x y z
i

x y z

x
i

nQ S
n n n

n n nnS
n n n n n n

n n n
S n

n n n

n n n SS n
S n n n S

n
S n S

= −
+ +

+ +
= −

+ + + +

+ +
= − ×

+ +

+ + −
= − − ×

+ + − +

+
= − −

( )
( )

2 2

2 2 2

1) ')
3 '( 1

'     ( )( ).
3 '

y z

x y z

old

n n S
S n n n S

Trace SQ
S Trace

+ −
×

) '+ + − +

= −
+

old

old

Q

Q

 (2.29) 

The  in Eq. (2.28) and Eq. (2.29) is not the same value as we use at the beginning 

of simulation. To illustrate this problem, let us take a look at the Q tensor at the 

beginning: 

'S
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1( ) ( ) ( )
3

1( ) ( ) ( )
3

1( ) ( ) ( )
3

x x x y x z

y x y y y z

z x z y z z

S n n S n n S n n

S n n S n n S n n

S n n S n n S n n

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

Q .  (2.30) 

It is clear that Eq. (2.30) has the following eigenvalues  

 
2 2 2[ 3 ( )] 2 .

3 3 3 3 3 3
x y zS S n n nS S S S Sλ

⎡ ⎤− + + + ⎡ ⎤= − − = − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
 (2.31) 

The new '  therefore shall be evaluated with the eigenvalues of  instead of 

using the initial value at the beginning.  

S oldQ

 

2.2 The Berreman Matrix Method 

    Based on the Maxwell’s equations 

 

,

,

0,  and
0,

t

t

∂
∇× = −

∂
∂

∇× = −
∂

∇⋅ =
∇ ⋅ =

BE

DH

B
D

 (2.32) 

we can describe the wave propagation in a layered medium in a matrix formalism. 

This can be done by expressing curl and divergence operation as a matrix 

 

0

0 ,

0

z y

.

x

z x

y x z

∂ ∂⎛ ⎞ ⎛ ⎞

y

∂−⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟
∂ ∂⎜ ⎟ ⎜ ⎟∇× = − ∇⋅ =⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟
∂ ∂⎜ ⎟

∂
∂
∂⎜ ⎟− ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (2.33) 

By substituting Eq. (2.33) into Eq. (2.32), the wave propagation of all field 

21 



components can be properly described as follows: 

 

0 0 0 0

0 0 0 0

0 0 0 0
.

0 0 0 0

0 0 0 0

0 0 0 0

x

y

x

y z

z

x x

y

yz

z

D
z y t

D
Ez x t
E D
Ey x t
H B

z y tH
BH
tz x

B
ty x

∂ ∂⎛ ⎞ ∂⎛ ⎞−⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟
∂ ∂⎜ ⎟ ∂⎜ ⎟−⎜ ⎟⎛ ⎞ ⎜ ⎟∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ∂⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟∂ ∂ ⎜ ⎟∂⎜ =⎜ ⎟ ⎜∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ∂⎜ ⎟⎝ ⎠ ⎜ ⎟−⎜ ⎟ ∂⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟∂∂ ∂⎜ ⎟ ⎜ ⎟−⎜ ⎟ ∂⎝ ⎠∂ ∂⎝ ⎠

⎟ ⎟  (2.34) 

Eq. (2.34) can be expressed in a matrix form as: 

 .
t

∂
=
∂
COG  (2.35) 

In the absence of spatial dispersion and nonlinear optical effects, the constitutive 

relations 0ε=D εE  and 0μ=B μH  can be easily included in Eq. (2.34). For 

simplicity, we use time harmonic optical fields, in which the i te ω  factor can be taken 

out of the field components. Under the condition, Eq. (2.35) can be simplified as: 

 ( ) ( )
,

,  and

,

i t i t

t
e i e

i

ω ωω

ω

∂
∂

=

GOG = M

O Γ = M Γ

OΓ MΓ

 (2.36) 

where 

0 11 0 12 0 13

0 21 0 22 0 23

0 31 0 32 0 33

0 11 0 12 0 13

0 21 0 22 0 23

0 31 0 32 0 33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

μ μ μ μ μ μ
μ μ μ μ μ μ
μ μ μ μ μ μ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M  and  is the spatial part Γ
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of .  G

    As shown in Figure 2-1, we consider a monochromatic plane wave obliquely 

incident from an isotropic medium to a homogeneous anisotropic layer medium with 

the surface normal along the z-axis. 

z
zy

x

0ϕ

incident plane 

anisotropic 

isotropic   in

 
Figure 2-1. An optical beam incidents on a homogeneous anisotropic layer at an 

angle 0ϕ . 

 

The problem is invariant along the y-direction, so all derivatives along y can be set to 

zero 

 0.
y
∂
=

∂
 (2.37) 

The incident plane wave ( )
0

i tE e ω −= krE  must have the same spatial dependence on x. 

The x-component of the wave vector xk  in the ambient medium of index  is: in

 0 sin ,ik n 0ξ ϕ=  (2.38) 

where 0ϕ  is the angle of incidence and 0k
c
ω

= . The variation of all fields in the 

x-direction is proportional to i xe ξ− , so we can get: 
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 .i
x

ξ∂
= −

∂
 (2.39) 

We assume that the magnetic permeability  of a nematic LC is isotropic and the 

dielectric permittivity tensor can be related to the pretilt and azimuthal angle of the 

LC director by 

μ

 
2 2 2 2

2 2 2 2

2 2

0 0
0 0 ,  and
0 0
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where θ  denotes the pretilt angle and φ  denotes the azimuthal angle. Combining 

Eq. (2.38), Eq. (2.39) and Eq. (2.40) into Eq. (2.36), we obtain the wave propagation 

equations for all field components 
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The third and the sixth row equations of Eq. (2.41) can be reduced to 
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which show that the field components zE  and  are linearly dependent on the zH
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other field components. Replacing zE  and  of Eq. (2.41) with of Eq. (2.42), four 

linear, first-order differential equations for the field components

zH

xE , yE , xH− (minus 

sign for convenience and simplicity), and yH are obtained 
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or in a matrix form 

 .i
z

ω∂
= −Ψ

∂
ΠΨ

Π

 (2.44) 

Here  denotes the differential propagation matrix. Eq. (2.44) can be solved to 

yield an analytic solution of 

 ( ) ( ).z+ =Ψ iwhe− Π

z

z h Ψ  (2.45) 

This yields a generalized field vector  at Ψ h  if  is known at Ψ z+ . Here  is 

a finite propagation distance. For a multilayer structure with a total thickness of 

, we obtain  

h

i
i

d = ∑ h

 ( ) ( )2 1... 0 .iwhd e e− −= n 2 1Π Π
out in

niwh− ΠΨ iwhe Ψ  (2.46) 

Berreman matrix method can also be used to yield Fresnel equations and the reflected 

wave and transmitted wave. Figure 2-2 depicts the case with an anisotropic stratified 
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medium sandwiched between two isotropic media with indices of refraction  and 

.  

0n

2n

 

Figure 2-2. Schematic showing the coordinates system and a stratified 

anisotropic medium between two isotropic media. 

 

With Fresnel equations, we can get the fields in incidence (i), reflection (r) and 

transmission (t): 
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According to Eq. (2.47), the generalized field vectors in each region can be found to 

be: 
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Thus, Eq. (2.45) can be modified to be 

 ( )( ) ,P=t iΨ Π Ψ +Ψr  (2.49) 

where  is the propagation matrix. Substituting Eq. (2.48) into Eq. (2.49), we 

then have: 
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The projection matrices can be found to be: ( )ΠP

  (2.53) 
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By using Eq. (2.51) and Eq. (2.53), we can derive the components of transmitted and 

reflected waves as: 
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By using Eq. (2.55), we can calculate the TM and TE components of the transmitted 

and reflected waves for given incident TM and TE waves. 

    Although the Berreman  matrix method is a fast and powerful method, it is 

usually difficult to be used to solve a three-dimensional problem, especially when the 

geometry is complex. We therefore introduce a modified Jones matrix method to 

analyze the light transmission for a twisted nematic (TN) LC. The theoretical 

derivation had been reported by the group of Oldano [10] by using a perturbative 

approach. The transmission matrix of a TN LC cell was found to be 
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where  indicates the complex conjugation operation, * ( ) /a e ok n nπ λ= + , 
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. By using Eq. (2.58), we can derive the electric field of output 

light as: 
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The  and  in Eq. (2.60) are the unit vectors parallel and orthogonal to the 

director at the surface 

n̂ ĥ

2
d . 

 

2.3 The Application Examples 
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    In this section, we combine the Q-tensor approach and the Berrman matrix 

method to analyze several application examples of LC. Finite element method (FEM) 

was implemented to solve the partial differential equations of Eq. (2.25) [11]. FEM 

has the advantages of structure-flexible simulation and less computation time than 

that with finite difference method. We will focus on the topics that we are interested in. 

The coupled partial differential equations solver is implemented with COMSOL 

Multiphysics [12] and is linked to MATLAB. Figure 2-3 shows the flowchart of our 

simulation procedure. 
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Set boundary conditions and initial 

conditions at time  0t =  

 

Figure 2-3. The flowchart of the simulation used to calculate the alignment 

configuration and optical response of nematic LC. 

 

Example 1 

    In this example, we aim to design a LC cell with each side possessing a 

square-shaped defect of 1 mμ  each side. The structure of the cell is depicted in 

Figure 2-4 (a). The material parameters of the LC used are given in Table 2-1. The 

Calculate each Q tensor components 

at time  t t= Δ  

Call the traceless and normalization 

operations for Q tensor 

Exit when preset time is reached 

Get the Q tensor and transfer to 

director profile 

Define the simulation geometry 

Update   't t= + Δt

Calculate optical response by 

Berreman matrix method if needed.
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alignment layers are at the top and bottom of the cell. The cell gap is 4 mμ . The pretilt 

angle for the alignment layer is70 . We use a mesh that has a higher density near the 

defect region than that in the rest area. The result is shown in Figure 2-4 (b). 

As we can see, the LC molecules near the both sides of the defect square can 

deviate from the alignment direction. The lowest pretilt angle is close to  which 

is almost  different from the surface condition. The affected length is around 

40

30

0.7 mμ  started from the square defect. This example illustrates that the smoothness 

of the substrates used is important for the fabrication of a good LC cell. 

 

Table 2-1: The material parameters of LC used for the simulation. 

11K  11.3pN on 1.506 

22K  7.7pN γ  213 mPaS

33K  15.8pN ε 14.1 

en  1.675 ε⊥ 4.0 
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(a)  (b) Alignment Layer 
5 mμ  

1 mμ  

Alignment Layer   
Figure 2-4. The simulation structure with a square of defect. (a) The mesh plot. 

( b) The plot of simulation result. 

 

Example 2 

    In this example, we discuss the anchoring effect on a LC cell. We set up the LC 

cell with a pretilt angle of . The schematic showing the distribution of LC pretilt 

angle from the bottom to the top plate is presented in Figure 2-5 (a). We discuss the 

LC alignment effect with four different surface anchoring energies: infinity,

6

310− , 

and (J). The result is shown in Figure 2-5(b). The infinite anchoring energy 

has an identical pretilt angle of across the thickness of LC cell. The maximum 

angular deviation across the thickness by using alignment surfaces with an anchoring 

energy of J can be as large as . This example illustrates that the LC 

molecules in the center area are not fully aligned with the surface condition when the 

610− 1210−

10−

6

12 2.3
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surface anchoring energy is weak. 

(a)  (b) 

4 mμ

6  

Distribution of LC pretilt 

 
Figure 2-5. (a) The schematic showing the distribution of LC pretilt angle from 

the bottom to the top plate. (b) The pretilt angle distribution of a LC cell with 

different anchoring energies. 

 

Example 3 

    In this example, we will focus on the influence of the separation of in-plane 

electrodes on LC alignment. We design a LC cell with a cell dimension of 28 mμ  and 

a cell gap of 4 mμ but with two different separations of the in-plane electrodes. The 

electrodes lie on the top surface of the cell. By applying a voltage of 5V, the results 

are shown in Figure 2-5 with the pretilt angle plot and the potential contour. We find 

the influence range of the electric field is quite wide. The influence range for the 

4 mμ width of the electrode is ~ 20 mμ  and for the 2 mμ  is ~ 15 mμ . This result 

suggests that for a liquid crystal on silicon (LCOS), whose cell structure is similar to 
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this simulated cell, the inter-pixel crosstalk should be taken into account, especially 

when the pixel size approaches its cell gap. 

 
Figure 2-6. The simulation results revealing the influence of the separation of 

in-plane electrodes on LC alignment.  

 

Example 4 

    In this example, the Berreman matrix method is used to calculate the optical 

transmittance of a LC cell, which has both a homeotropic and hybrid alignment zones 

inside. The parameters of the LC used are presented in Table 2-1. The transmittance of 

LC between cross polarizers is calculated. The wavelength of the light source is 

. The simulation result is shown in Figure 2-7. The homeotropic area has a 

higher transmittance than hybrid area. This example illustrates the transmittance result 

of the LC molecules under different alignment and the Berreman matrix method is a 

useful tool to analysis the LC devices. 

632.8nm
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Figure 2-7. The calculated optical transmittance of a LC cell, which has both a 

homeotropic and hybrid alignment zones inside, and the pretilt angle 

distribution are plotted. 

     

In summary, simulation technique on the LC director and optical response is 

developed with Q tensor approach and the Berreman matrix method. We offer some 

examples to demonstrate the efficacy of the technique. The simulation tools also 

prove to be extremely useful to help us interpreting the dynamic optical probing data 

of hybrid alignment LC cells to be reported in Chapter 3.  



Chapter 3 
 

Simulation and Dynamic Optical Probing for 

Hybrid Alignment Liquid Crystal Cells 

 

3.1 Introduction 

    Liquid crystal has been widely used as flat panel displays in a variety of 

information system. Conventional TN-mode LCDs are slow response and have a 

viewing angle problem, are therefore not suitable for displaying high quality video 

pictures. Recently, π-cells or LC cells in an optically compensated bend mode 

(OCB-mode) have been successfully developed to offer wider viewing angle and fast 

speed [13]. Figure 3-1(a) shows the typical structure of an OCB cell with parallelly 

rubbed alignment surfaces, which render the LC configuration in splay alignment at 

zero applied voltage. When an applied voltage is raised, the OCB cell tends to make a 

transition from the splay configuration to the bend-1 state (see Figure 3-1(b)). Figure 

3-1(c) depicts the LC configuration in the bend-2 state as the applied voltage is further 

increased to a higher level. When the voltage is removed, the cell makes a 

configurational transition from the bend-2 state to the bend-1 state. After in the bend-1 

state, the cell does not return to the splay state. A twist configuration may be 
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generated during the bend-1 to the splay state transition. The typical operation mode 

of an OCB cell is transition between the bend-1 state and the bend-2 state, which 

makes OCB attractive for its fast switching characteristics [14]. 

Splay configuration 

0V =  

(b) 
Rubbing direction 

Bend‐1 configuration 

biasV V=  
Operation mode 

Bend‐2 configuration 

onV V=  

(c) (a) 

LC 

Glass 

(d) 

Twist configuration 

 
Figure 3-1. The geometric transition of the OCB cell as applied voltage. (a) Splay 

configuration. (b) Bend 1 configuration. (c) Bend 2 configuration. (d) Twist 

configuration. 

 

3.2 The Modification of The Existing OCB Cell 

    A major problem with a typical OCB cell is the need to convert the device from 

the splay configuration to the bend-1 configuration before use. Based on our 

observation on an OCB with 4 mμ  cell gap at 5V, it needs about 40~60 seconds to 
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complete the transition. The warm-up period is needed because a transition from two 

topologically distinct configurations (such as from the splay configuration to the 

bend-1 configuration) takes time to complete and the transition is discontinuous [15, 

16]. Another issue in an OCB cell is its poor contrast ratio. In the switching operation 

between the bend-1 to the bend-2 configuration, the contrast ratio of optical 

transmittance between the two states is low. The finite warm-up time and low contrast 

ratio of an OCB cell are becoming the major issues, which are often coupled together. 

If the operation begins at the splay configuration, higher contrast ratio can be yielded. 

However, the discontinuous transition between the splay state and the bend-1 state 

causes another difficulty for application. The transitional discontinuity with an applied 

electric field may be caused by several meta-states occurring between the splay and 

the bend-1 state. If we can apply a vertical force on LC molecules in an OCB cell 

before the electric field is applied, the transition time or warm up time might be 

reduced. The motivation is to design an OCB structure that can eliminate these 

drawbacks while keeps the fast switching characteristics. As shown Figure 3-2, we 

implemented a periodic hybrid alignment zones in an OCB cell in order to produce 

the effects that we hope for. 
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Hybrid    Hybrid 

Splay 

4d mμ=

( )L mμ  
90T mμ=

LCP  Side view 

Vertical force 

 

Figure 3-2 The schematic and the side view of our modified OCB cell. 

 

3.3 Experimental Setup of the Dynamic Optical Probing 

Apparatus 

We prepared LC alignment layers on ITO glass substrates with parallel rubbing 

to yield a LC pretilt angle of . Then we deposited a thin layer of liquid crystal 

polymer (LCP) on one of the substrates via spin coating and patterned the resulting 

LCP to make LC molecules nearly vertically aligned at an angle of to the surface. 

The line pattern of LCP has a period of90

6

85

mμ . The line-width of LCP stripes is 

designed to be either 2 mμ  or 4 mμ  to yield two different alignment patterns. The 

cells with 4 mμ  cell gap are filled with nematic LC 5128 from Chisso. The material 

characteristics are presented in Table 3-1. 

 

41 



Table 3-1: The LC cell and material parameters used in this experiment. 

11K 11.3pN γ  213 mPaS 

22K  7.7pN ε  14.1 

33K  15.8pN ε⊥  4.0 

en  1.675 D (cell gap) 4 mμ  

on  1.506 LC pretilt angle on surface 6o  

 

Figure 3-3 (a) shows the schematic of the measurement setup. An Electron 

Multiplying CCD (EMCCD) is used to acquire the image of an inverted optical 

microscope. EMCCD provides the benefits of fine temporal resolution and high 

sensitivity, which is crucial for our dynamic optical probing study. EMCCD can 

rapidly take an image exposure, however, the frame read out speed is limited to below 

. Since the dynamic optical probing event for LC is repeatable, we use a 

pump-probe scheme to retrieve the dynamic response of the OCB cell by using a 

delay generator to trigger the EMCCD and the LC sample repeatedly. The sample is 

driven by a pulse whose duration is  and pulse period is . The waveform is 

shown in Figure 3-3 (b). The EMCCD exposure time is set for . After a multiple 

of exposure with a delay time , a time-resolved dynamic image of the LC sample is 

acquired. By varying the delay time t, a series of dynamic images can be acquired.  

34ms

4ms 75ms

0.5ms

t
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Figure 3-3 (a) The setup of dynamic optical probing comprising of a delay 

generator to control the time delay. (b) The waveform and the trigger signal 

applied on the sample and the EMCCD. 

 

3.4 Results and Discussion 

    Figure 3-4 shows the on and off response curves of the LC cells measured with 

crossed polarizers. Four different LC cells of homogeneous OCB, homogeneous 

hybrid cell, and 2 mμ - and 4 mμ -line patterned hybrid OCB cells. The homogeneous 

 40X
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OCB cell is measured after being warming up for about 40-60 seconds with 5 volts. 

The other LC cells are measured without warm up process. We notice that the off 

times of both line-patterned hybrid cells are about the same as that of the 

homogeneous hybrid cell. From Figure 3-4, by including a line pattern in a hybrid LC 

cell, we found that the optical transmittance in the dark state can be improved, 

whereas the bright state is degraded. Figure 3-5 exhibits the behaviors of the optical 

transmittances of the LC cells after the voltage on the cells is removed. It shows that 

the twist motion in the OCB cell during the transition between the bend and the splay 

configuration takes 200 seconds but the other cells do not show such a characteristic. 

 

Figure 3-4 Optical response curves of four different LC cells (homogeneous OCB, 

homogeneous hybrid, and 2 mμ - and 4 mμ -line patterned hybrid OCB cells. 
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Table 3-2: The response times of each cells are given. 

Types of LC cells ON (ms) OFF (ms)

OCB 1.45 4.68 

Hybrid 1.15 32.69 

2 mμ  pattern 1.09 33.37 

4 mμ  pattern 1.12 35.3 

 

 

Figure 3-5 The optical transmittance is measured after the applied voltage is 

removed. The measurement results reveal the LC twist motion in each cells. 

     

For detailed analysis, we use the apparatus described in the section 3.3 to probe 

the 2 mμ - and 4 mμ -line patterned hybrid OCB cells. The optical images of the 

line-patterned cells are given in Figure 3-6. The separation distance between two 

neighboring lines is 90 mμ , corresponding to 222 pixels in the image. We use this 
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calibration to calculate the line width of the LC cells. The 2 mμ -line patterned cell 

looks like a homogeneous cell while the observed linewidth for the 4 mμ -line 

patterned cell is about 1.62 mμ . 

 

Pattern=2 mμ   Pattern=4 mμ  

Figure 3-6 The optical micrographic images of the line-patterned hybrid cells. 

The resolution of the microscope is about 0.3 mμ . 

 

Figure 3-7 (a) shows the optical transmittance images of the two line-patterned 

LC cells in a region covering one period (90 mμ ). The images were taken with 

crossed polarizer and analyzer. The 4 mμ -line patterned cell exhibits a clear stripe 

whereas the 2 mμ -line patterned cell is somewhat like homogeneous. Figure 3-7 (b) 

shows the measured image and the simulated optical transmittance distribution of 

the 4 mμ -line patterned cell. For a quantitative comparison, the gray-level line profile 

taken by cutting through the images horizontally at the middle of the line stripe. Both 

of the simulation and the measured line profiles reveal two dark stripes locating at the 
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positions of pixel number 30 and 70, respectively. 

linewidth=4 mμlinewidth=2 mμ(a)

(b)

Measured 

Simulation 

 

Figure 3-7. (a) The measured and calculated optical transmittance images of two 

line-patterned LC hybrid alignment cells in a region covering one period (90 mμ ). 

(b) The measured and the simulated optical transmittance images of 

the 4 mμ -line patterned cell and the gray level profiles horizontally cut through 

the images at the center of the vertical position. 

 

The dynamic optical probing results of the cells are summarized in Table 3-3 at 

different delay times. Each image shows the optical transmittance with crossed 

polarizers over an area covering one period (90 mμ ) of the line-patterned cells. The 

direction of the line stripes is marked with the red arrow. We can see that during the 
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field-on period from 0  to , the ms 4ms 4 mμ -line patterned cell is darker than the 

2 mμ -line patterned cell. After turning off the voltage, the LC molecules relax to the 

original configuration. The 4 mμ -line patterned cell becomes brighter than the 

2 mμ -line patterned cell at the delay time of 75 . With our optical apparatus, the 

brightest and darkest gray levels are 120 and 9, respectively, in an 8-bits TIFF image 

format. We sum the gray-level values over a region covering one period. The summed 

gray-level value as a function of delay time is presented in Figure 3-8. The response 

times of the two line-patterned cells have values o  an s for the on and 

the off times, respectively, affirming the observation shown in Table 3-2. Within the 

field-on duration from 0  to , the 4

ms

f

m

 d 1ms 30m

ms 4ms μ -line patterned cell reaches the 

darkest gray level faster than the 2 mμ -line patterned cell does.    

  

Table 3-3: The optical images of the two line-patterned cells at different delay 

times.                                                                                

Delay time 0 (ms) 0.5 (ms) 1 (ms) 1.5 (ms) 

2 mμ  

  

4 mμ  

  

Delay time 2 (ms) 2.5 (ms) 3 (ms) 15 (ms) 
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2 mμ  

  

4 mμ  

  

Delay time 20 (ms) 25 (ms) 30 (ms) 75 (ms) 

2 mμ  

  

4 mμ  

  

 

 

Figure 3-8. The summed gray-level value over a region covering one period in 

each image of Table 3-3 is plotted as a function of delay time. 

 

We analyze the LC configuration above the LCP line stripe and above the region 

between the neighboring LCP lines. Note that the LC molecules above the LCP line 

stripe are in hybrid alignment configuration (Hybrid) while LC molecules form a 
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typical OCB splay configuration (OCB) above the region without LCP. Figure 3-9 

presents the optical transmittance of the 2 mμ  and 4 mμ -line patterned cells 

measured under crossed polarizers. The summed gray-level values over the region 

with hybrid alignment configuration (Hybrid) and over the region with OCB splay 

configuration (Splay) are plotted as a function of delay time. The result shows that the 

response curves in the Hybrid and the OCB regions are almost identical and 

indistinguishable. 

P 

A 
Rubbing 

A

P
Rubbing 

 

(a) The 2 mμ  patterned cell           (b) The 4 mμ  patterned cell 

Figure 3-9. The optical transmittance (in terms of gray-level ) of the 2 mμ and 

4 mμ -line patterned cells was measured under a crossed polarizer-analyzer. The 

summed gray-level values over the region with hybrid alignment configuration 

(Hybrid) and over the region with OCB splay configuration (Splay) are plotted 

as a function of delay time. 

     

Based on the result of OCB cell described in the section 3.1, we found that a LC 
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twist motion can occur as the OCB cell makes a transition from the bend to the splay 

configuration by removing the applied voltage. Therefore, to probe into the 

line-patterned cells we specifically arrange the directions of polarizer and analyzer to 

allow us observing the LC twist motion. This can be achieved by aligning the 

direction of the polarizer with the rubbing direction of the cell and then let the 

analyzer to cross with the polarizer. Figure 3-10 shows the measurement results. By 

using the simulation tool developed with the elastic free energy density of Eq. 1-3, 

two LC configurations with minimum free energy can be found: (1) the LC pretilt can 

be at any tilt angle without twist, or (2) the LC pretilt is fixed at while with a twist 

angle of  ,  or 180 . From our previous study on splay configuration, there 

exists a  twist motion in the cell when the LC molecules are allowed to relax as 

depicted in Figure 3-1. We further use the simulation tool described in section 2.2 to 

calculate the optical response of a twist cell with a twist angle varying from  to 

. In Figure 3-11, we present the results for two LC cells with different cell gap. 

For the LC cell with10

0

0

180

90

m

0

180

μ  cell gap, the LC configuration with 180  twist angle 

cannot yield any gray-level change. But for the LC cell with a 4 mμ cell gap the 

gray-level can be changed by 60 and can be easily measured. However, no gray-level 

change was detectable for the LC cell with a 4 mμ cell gap. Thus, we conclude that 

no twist motion occurs during the relaxation after removing the applied field. 
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2 mμ  patterned cell              (b) The 4 mμ  patterned cell (a) The 

Figure 3-10. The measured optical transmittance (in terms of gray-level) of 

the 2 mμ and 4 mμ -line patterned cells is plotted as a function of delay time. The 

direction of the polarizer is aligned with the rubbing direction and the analyzer 

is set to cross with the polarizer. 

 

 

Figure 3-11. The calculated optical transmittance variation (in terms of 

gray-level change) of a TN cell with a twist angle varying from  to 180 . Two 

TN cells with cell gaps 4 and 10 μm were used for the simulation.  

0

 

Because no twist motion occurs during the relaxation inside the line-patterned 
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cells, we can employ a two-dimensional model to simulate the device structure and 

compare with the measurement results. The device and LC material parameters used 

are shown in Table 3-1. Figure 3-12 gives the plots of the director profile and optical 

transmittance of the simulation on the 4 mμ  line-patterned cell at relaxation time 

of , ,  and 75 . There are ripples in the optical transmittance 

curve can be observed, which could be due to some defect areas caused by the finite 

elements method.  

5ms 15ms 25ms ms

 

Figure 3-12. The calculated director profile and optical transmittance of the 

4 mμ  line-patterned cell at delay time of , ,  and 75 . 5ms 15ms 25ms ms

 

As shown in Figure 3-10, the gray-level steady value of the on-state is about 2 or 
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3 higher than the darkest level (~9) of our apparatus. The slightly higher brightness in 

the dark state may originate from that LC molecules are misaligned or misaligned 

rubbing direction and polarizer. The observed higher gray-level by 3 indicates the 

angular deviation must be less than 1.82  in the 4 mμ  line-patterned cell. We 

therefore set the direction of the polarizer to deviate from the rubbing direction 

by1.82  in our simulation (Fig. 3.10 (b)). Based on the calibration, we can make a 

direct comparison between the measured data and the simulation. The measured and 

simulated optical transmittance (in terms of gray-level) as a function of delay time are 

plotted in Figure 3-13. As shown, the simulation result agrees well with the measured 

data of the 4 mμ line-patterned cell. For the 2 mμ  line-patterned cell, since we cannot 

observe the LCP lines in Figure 3-6, so the simulation result cannot be used to 

compare with the measured data. 

 

Figure 3-13. The measured and simulated optical transmittance variation (in 

terms of gray-level change) is plotted as a function of delay time. The 4 mμ  

line-patterned cell was inserted between a cross polarizer-analyzer with (a) the 

P, Rubbing

A

P 

Rubbing 
A 
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direction of the polarizer aligning to the rubbing direction, (b) the direction of 

the polarizer deviating from the rubbing direction by1.82 . 

     

In summary, by including a periodic LCP line pattern in an OCB cell, we show 

that the resulting hybrid OCB cell can eliminate the need of warm up. The zones of 

hybrid LC configuration also prevent LC twist motion during the transition from the 

bend to the splay configuration after the voltage is removed. However, the hybrid LC 

configuration above the LCP lines also significantly influences the LC relaxation and 

makes the cells relax slowly. 

    This work is supported by Taiwan TFT LCD Association (TTLA) and useful 

discussions with the members of the group are acknowledged. 
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Chapter 4 
 

Inverse Problem of Liquid Crystal Director 

Profile 

     

In Chapter 3, a model extraction technique has been implemented by comparing 

the model simulation result with the measured data to retrieve the model parameters. 

However, in the case of LC, the direct retrieval of a LC director profile from the 

measured data is difficult to check its accuracy and reliability. Recently, C. J. P. 

Newton in Hewlett-Packard Laboratories investigated the possibility of inverse 

problem to retrieve the LC director profile with singular value decomposition scheme 

[17]. Although it is inspiring, the work is limited to the stability and converging 

properties of inverse problem technique developed. No practical applications on the 

LC director profile retrieval from experimentally measured data were reported. In this 

chapter, we go one further step by deriving the necessary equations and detailed steps 

to successfully achieve the target of the LC director profile retrieval from the 

measured data. 

 

4.1 Introduction to the Inverse Problem 
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    The relation between the inverse problem and the forward problem can be 

understood as follows: In Eq. 4.1, a model of a physical system is described by a 

matrix  and a state vector  depicts the system status. Then the forward problem 

is that we can predict the system response  with Eq. 4.1  

A x

b

 .=Ax b  (4.1) 

The inverse problem can then be easily understood as follows: Based on the measured 

system response vector and the model matrix , we can retrieve the parameters of 

the physical system . 

b A

x

x

  (4.2) .= -1x A b

In the past, inverse problems are usually treated as a data fitting procedure with 

forward problem. This can be done by varying the state vector  to obtain the best 

fit. However, some problems are not suitable for data fitting because either it may be 

difficult to fit the response data to a model or the best fit could yield a spurious 

solution. Hadamard introduced some useful criteria to categorize the problems: [18] 

Criterion 1: For all admissible data, a solution exists. 

Criterion 2: For all admissible data, the solution is unique. 

Criterion 3: The solution depends continuously on the data. 

A problem that violates any of the three criteria is called ill-posed. The third criterion 

is actually the stability condition, which requires that a small perturbation to the input 
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does not produce a large change in the output. When a problem is ill-posed, it is not 

easy to determine the true solution objectively. We will start from a simple 

mathematical problem to illustrate the difficulties of an inverse problem. 

    Assuming that the model matrix  and the input vector  are: A x

1 1 11
2 3 4

11 1 1 1
12 3 4 5 ,   .

1 1 1 1 1
3 4 5 6 1
1 1 1 1
4 5 6 7

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ =

⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

A x

x b

 (4.3) 

It is clear that for any given , we can obtain a unique . By evaluating b to the 

four-digit accuracy,  

 

1 1 11
2 3 4

1 2.08331 1 1 1
1 1.28332 3 4 5A x= .

1 1 1 1 1 0.95
3 4 5 6 1 0.7595
1 1 1 1
4 5 6 7

b

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.4) 

Therefore, the first two Hadamard criteria are satisfied. To analyze the stability 

criterion, we add noise to  with a noise level around 0.1 percent of . We then 

introduce the following parameters to reveal the instability of a problem with S: 

x x
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,

, where ( ),  and

.

in

out i
i

out

in

s

s

sS
s

=

= =

≡

∑

x' - x
x

b' - b
x

b
x

x

x

 (4.5) 

We apply Eq. 4.5 to calculate S by adding 10,000 different random noise to  and 

present the distribution of  in Figure 4-1(a). We can find that most of the values 

fall between 0 and 1.1, which indicates that a small the perturbation to  does not 

generate a large variation in b. Thus a stable solution can be obtained for this 

problem. 

x

S

For the inverse problem, we repeat the calculation by adding small noise to  

and estimate the variation of  and the resulting instability parameter S is plotted in 

Figure 4-1(b). By comparing Figure 4-1(b) to Figure 4-1(a), it is clear to find that the 

instability parameter S of the inverse problem is 10 thousand times larger than that of 

the forward problem. Therefore, the inverse problem fails to satisfy Hadamard’s third 

criterion of stability and is ill-posed in nature. 

b
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(a)                                 (b) 

 

Figure 4-1. (a) The Stability distribution of . (b) The Stability distribution of 

. 

x

b

 

By looking further into , in a general case withAx = b M N×∈A R , , and N∈x R

M∈b R . To find a solution x, we can encounter the following three situations: 

(1) If M N= , we encounter a linear system of  variables with  equations. If 

A is nonsingular with , the system possesses a unique solution. On the 

other hand if  is singular (i.e.,

N N

( )det 0≠A

A ( )det 0=A ), the system has infinitely many 

solutions. 

(2) If M N< , we have a linear system with less equations than variables, which is 

called under-determined. This problem can be reduced to the situation (1) by 

expanding matrix  and matrix b  with A N M−  rows of zero, respectively. 

(3) If M N> , we have a linear system with more equations than variables, which is 

called over-determined and ill-posed. However, we can find the least-squares solution 
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of Ax = b by finding a vector x in Rn that minimizes A −x b .  

Let us return to our simple problem. Since the problem is ill-posed, any matrix 

inversion algorithm will fail to find the desired solution . Therefore, specialized 

technique must be invoked to solve the inverse problem. One of the successful 

approaches is the so-called regularization [19]. We will briefly describe the idea of 

the regularization scheme, known as Tikhonov regularization. As noted above, we can 

find the least-squares solution of Ax = b by finding a vector x in Rn that minimizes 

x

2A −x b  [20]. The key issue is how to choose the sensible solution from the space of 

reasonable solutions. An idea is to reduce the size of the solution space by invoking 

additional constraints. We can implement this idea by adding an additional term to 

2A −x b with a carefully selected regularization parameter λ  

 { }2min .λ= +
x

x Ax - b Ix 2  (4.6) 

A graphical tool, which is termed as the L-curve, can be used to help us choosing the 

regularization parameter. The L-curve graphical technique plots the 2λIx  on the 

y-axis and the 2Ax - b  on the x-axis by varyingλ . Figure 4-2 exhibits the L-curve 

for our illustrative example, which explains the name of the L-curve to be due to the 

shape of the plot. The optimal value of λ  is at the corner of the curve. By using this 

value, we can find the solution [ ]1.0163 0.9188 1.0481 1.0429 T=x , which is 

very close to the known state vector  given in Eq. 4.3. x
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2λIx  

2Ax - b
 

Figure 4-2. The L-curve is a curve in a log-log scale with 2λIx  on the y-axis 

and 2Ax - b  on the x-axis by varying λ  from 510−  to 1. The optimal value of 

λ  is be chosen is at the corner of the curve labeled with the red circle. 

 

4.2 The Inverse Problem of Liquid Crystal Director Profile 

Inverse problem has been widely used in medical diagnostic imaging, such as 

magnetic resonance imaging (MRI) and computed tomography (CT). The goal is to 

non-invasively diagnose the internal structure of a patient’s body. The two medical 

imaging methods are accomplished by measuring the scattered field at various 

incident angles and then solving the inverse problem to yield the cross section image 

of the patient’s body.  

    In the case of LC, we want to know the director profile in a LC cell. This goal is 

the same as MRI and CT. So we refer to the CT concept and convert it for LC. The 
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scheme implemented to collect the data with various incident angles of light is 

illustrated in Figure 4-3.  

Different Incident 
Output Light Angle of Light 

 

Figure 4-3. The schematic showing the setup implemented to collect the data with 

various incident angles of light. 

     

The forward problem in the case of LC is that a LC director profile , which 

is generated from a simulation, is first converted to the dielectric-constant profile 

 and then calculate the resulting optical transmittance via the Berreman matrix 

method (see Eq. (2.40)). The output light relates to the dielectric-constant profile as 

shown in Eq. (4.7) or Eq. (2.55). 

( )zθ

( )zε

 ( )( ) .=output inΨ B ε θ Ψ  (4.7) 

By applying the inverse problem technique to LC [13], the HP group used 

singular value decomposition (SVD) to retrieve the dielectric-constant profile from 

the simulated data. We note that the dielectric constant of a uniaxial film is described 

by a symmetric 3  matix, which has 6 independent matrix elements. But its 

corresponding optical axis, which is the pretilt angle of LC, can be described by only 

3×
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two components. If we set up an inverse problem to retrieve the dielectric-constant 

profile from the measured optical data, we have to solve the inverse problem with 6 

unknown variables. The 6 variables leads to a higher level of noise than the less 

variables. To avoid the drawback, we develop a new formalism of inverse problem, 

which goes directly from the optical fields to the pretilt profile. Figure 4-4(a) shows 

the difference between our new approach and the HP group’s method.  

The inverse problem is ill-posed, so that in lack of a priori information it is 

difficult to find a solution. Fortunately, we have some priori information about the 

initial director profile from the surface condition and the simulation result. We 

also have the measured transmittance of output light. We can rewrite Eq. (4.7) as: 

( )z0θ

 ,δ= +output 0 inΨ B(θ )Ψ Ψ  (4.8) 

where δΨ  is the difference of the measured transmittance of output light from 

simulation. We concentrate on δΨ  and derive an equation to show how the director 

profile change would change δΨ . The result is similar to the inverse problem that we 

search for a ( )zδθ  to minimize δΨ : 

 ,δ δ δ∂
= ⋅ = ⋅
∂
BΨ θ J θ
θ

 (4.9) 

where  is the Jacobian matrix with an element J i
ij

j

BJ
θ
∂

=
∂

. 

The flowchart of searching for the LC director profile with optical transmittance data 

is described in Figure 4-4. 
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Figure 4-4. (a) Schematic showing the difference between our new approach and 

the HP group’s method. (b) The flowchart of searching for the LC director 

profile with optical transmittance data. 

 

4.3 Theoretical Details 
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    To reveal the mathematical features of the inverse problem in LC, we begin with 

the Berreman matrix method and show the details of our method. Eq. (4.10) is an 

ODE form of wave propagation based on the Berreman matrix formalism with ξ  the 

parameter relating to the incident angle of input light. 

 0.d i
dz

ω⎛ ⎞+ =⎜ ⎟
⎝ ⎠

ξ ξΠ Ψ  (4.10) 

A perturbation of pretilt angle results in a change of Berreman matrix from  to Π

δ+Π Π

Ψ

. A change in Berreman matrix further leads to a change in optical field from 

 to δ+Ψ Ψ . To include the perturbation effect of ( )zθ into Eq. (4.10), we obtain: 

 ( ) ( )d i
dz

ω δ δ⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

Π Π Ψ + Ψ 0,  (4.11) 

or 

 ( ,d i i
dz

ω δ ω δ δ δ⎛ ⎞+ = − +⎜ ⎟
⎝ ⎠

Π Ψ Π Ψ Π Ψ)  (4.12) 

where 0d i
dz

ω⎛ ⎞+⎜ ⎟
⎝ ⎠

Π Ψ =  is used. Eq. (4.12) is a differential equation, which can be 

casted into an operator form 

 ,L u f⋅ =  (4.13) 

where dL i
dz

ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

Π , u δ= Ψ , and ( )f iω δ δ δ= − +Π Ψ Π Ψ . The solution of 

Eq. (4.13) is given as 

 ( ) [ ]0u H u G f= ⋅ + ,  (4.14) 

where  is the operator notation of Eq. (4.13). By using the initial condition of 

, Eq. (4.12) can be rewritten as 

G

0( )0u =
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( )

( )

         

1 [ ] [ ]
[ ],

d i i
dz

i G i G
i G

ω δ ω δ δ δ

ω δ δ ω δ
δ ω δ

⎛ ⎞+ = − +⎜ ⎟
⎝ ⎠

⇒ + = −

⇒ = −

Π Ψ Π Ψ Π Ψ

Π Ψ Π Ψ
Ψ Π Ψ

 (4.15) 

where the Neumann series 

 ( ) ( ) ( )( )11 1 ... ,i G i G i Gω δ ω δ ω δ−+ = + − + − +Π Π Π 2  (4.16) 

is kept up to the first-order term in view of <1Gω δΠ . We can convert the Green’s 

function to an integral form and transform Eq. (4.15) into an integral equation 

 . (4.17) ( ) ( ) ( ) ( )
0

,
d

d i g d z z z dδ ω δ= − ∫Ψ Π zΨ

Ψ

1 2 n

By substituting  and  into Eq. (4.17), we 

obtain 

( ) (0)i zz e ω−= ΠΨ Ψ ( )( , ) i d zg d z e ω− −= Π

  (4.18) 
( ) ( )

( )

( )

0

0

(0)

(0) .

d i d z i z

di d i z i z

d i e z e dz

i e e z e dz

ω ω

ω ω ω

δ ω δ

ω δ

− − −

− −

= −

= −

∫
∫

Π Π

Π Π Π

Ψ Π

Π Ψ

Note that  is a function of incident angle. Since Eq. (4.18) is an integral operation, 

a wide range of incident angle would offer more information and yield tighter 

constrain on the solution space. The term  in Eq. (4.18) can be viewed as 

Fourier transform, which may lead to an oscillation in LC director profile from the 

inverse problem retrieval procedure. 

Π

0

d
i ze dzω∫ Π

    From Eq. (2.40), Eq. (2.46), and Eq. (2.55),  becomes a function of pretilt 

angle profile 

Ψ

, ,..., 1 2{ ( )} { , ,..., }z z z z nzθ θ θ θ= =  where n is the number of LC layers  
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 ( ) ( )1 2 1 2, ,..., , ,..., .nθ θ θ θ θ θ=output inΨ B Ψn  (4.19) 

The equation for the inverse problem of LC is given: 

 
1 2

1 2

... .n
n

d d

d d dθ θ θ
θ θ θ

= ⋅

⎛ ∂ ∂ ∂
= + + +⎜ ⎟∂ ∂ ∂⎝ ⎠

in

Ψ J θ

B B B Ψ
⎞  (4.20) 

The Jacobian matrix in Eq. (4.20) can be obtained by using Eq. (4.19) and (2.55): 

 
( )

( ) ( )

[ ]

[ ]
.

∂
=
∂

∂
=

∂
⎛ ⎞∂ ∂
⎜ ⎟= ⋅ +
⎜ ⎟∂ ∂⎝ ⎠

-1
+ b - b in

-1
-1+ b - b

b + b - i

BJ
θ

P - U P U Ψ
θ

P - U P UU P - U P Ψ
θ θ n

 (4.21) 

The inverse matrix in Eq. (4.21) is given by following the mathematical operation 
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By substituting Eq. (4.20) into Eq. (4.19) we obtain 
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And by substituting Eq. (2.52) into Eq. (4.21), we have 
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Furthermore, from Eq. (2.45), there are two ways to calculate  ( ) iwhP e−= ΠΠ

  (4.25) 
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 ( ) ( ) ( ) ( )2 3 4 ....iwhe I iwh iwh iwh iwh− = + − + − + − + − +Π Π Π Π Π  (4.26) 

Eq. (4.25) uses the matrix diagonalization technique to solve an 

eigenvalue-eigenvector problem of Π nd Q the resulting unitary matrix formed 

by the eigenvectors of Π . Eq. (4.26) uses the Taylor expansion of an exponential 

 a is  
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function. Eq. (4.25) is more accurate in calculating exponential function than Eq. 

(4.26) since we cannot include infinite orders of the expansion. But the advantage of 

Eq. (4.26) is that the derivative can be performed quite easily 
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where  is a function of dielectric tensor  while ε  a function of  as shown in 

Eq. (2.36) and Eq. (2.40).  

Π ε θ

Ψ  carries the entire information about the intensity and phase of an optical 

wave. For a measurement, which the phase of the optical wave is perturbed by an 

external factor with a significant noise level, the noise influence can be amplified and 

seriously degrades the solution accuracy. Therefore, we convert the equation in the 

field representation to the form of intensity representation. This can be done by first 

separating ∂
∂
Ψ
θ

into the real and the imaginary part  

 
( ) ( )Re Im

.i
∂ ∂∂

= +
∂ ∂ ∂

Ψ ΨΨ
θ θ θ

 (4.28) 

The intensity of an optical wave is represented as: 

  (4.29) ( ) ( )2Re Im .= = +2I E Ψ Ψ 2

So the derivative of the intensity to the pretilt angle can be written as 

 ( ) ( ) ( ) ( )Re Im
2 Re 2 Im .

∂ ∂∂
= ⋅ + ⋅

∂ ∂
Ψ ΨI Ψ Ψ

θ θ ∂θ
 (4.30) 

Eq. (4.20), Eq. (4.24), Eq. (4.27), and Eq. (4.30) form the mathematical ground for 
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solving the inverse problem based on the Berreman matrix model of LC.  

 

4.4 Simulation Results and Discussion 

We first developed an experimental technique to acquire high-quality data for the 

inverse problem of LC. As shown in Figure 4-6, A He-Ne laser is used for the light 

source. The optical transmittance is resolved into xT  and  with an analyzer and 

detected with a CCD. As noted in Section 4.3, the more independent data are collected, 

the higher accurate solution be retrieved. Therefore, we combine a polarizer and a 

quarter wave plate to collect more data by setting the incident light at four different 

polarization states: three linear ( ,  and 112.5  to the laboratory x-axis) 

and one left circularly polarized light. A rotation stage is used to adjust the incident 

angle into the LC cell. We should let the covering range of incident angle as wide as 

possible. However, due to the experimental constrain, the widest range of incident 

angle with this apparatus only covers from -  to 50 . But “how wide the range is 

sufficient to serve our purpose” is not easy to answer.  

yT

22.5 67.5

50

A 4 mμ -thick planar alignment LC cell with  pretilt is used for the test run of 

the inverse problem. The director profile of the LC cell is generated with Q-tensor 

approach by using with a finite element PDE solver. The optical transmittance of the 

LC cell is predicted with an optical model based on the Berreman matrix method. 

1
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From the simulation data, the test run aims to investigate the effect of data 

regularization, the noise influence, and the finite range of incident angle for the LC 

inverse problem. Finally, we will demonstrate a complete procedure to retrieve the LC 

director profile by using the inverse problem method developed. 

 
Figure 4-5. The experimental setup used to measure the optical transmittance 

data for inverse problem retrieval of LC director profile. 

 

We first investigate the question about how many layers are needed to 

decompose the LC cell in order to yield an accurate prediction of optical 

transmittance. We discovered that the error mainly comes from the use of Taylor 

expansion shown in Eq. (4.26). Assuming the geometry depicted in Figure 4-6 is used, 

the calculation results with the two different methods Eq. (4.25) and Eq. (4.26) are 

compared in Table 4-1. We can see clearly that Eq. (4.25) yields an exact result which 

shall be independent of the layer number while Eq. (4.26) with an expansion up to the 

fourth order of Taylor expansion requires at least 200 layers in order to yield a result 

Polarizer 
λRotation Stage  x Analyzer  4

z θ+

LC Cell  θ−

72 



with similar accuracy.  

4 mμ ‐Thick 

y  Planar LC cell
x 

 

Figure 4-6. The schematic showing an idea that decomposes a LC cell into 

several layers to facilitate the calculation of optical transmittance.  

 

 

Table 4-1: Comparison of the calculation results with the two different methods 

based on Eq. (4.25) and Eq. (4.26). Eq. (4.26) is calculated to the fourth order of 

Taylor expansion. 

 200 layers 100 layers 50 layers 

Eq. (4.25) 1.46460.9193 ie⋅ 1.46460.9193 ie⋅ 1.46460.9193 ie⋅  

Eq. (4.26) 1.47110.9173 ie⋅ 1.5560.8624 ie⋅ 2.23480.1735 ie⋅  

     

How to choose a proper regularization parameter is a crucial issue for inverse 

problem. To answer the question, we set up a test run by adding one percent of noise 

to the simulated transmittance data and retrieve the LC director profile with inverse 

z 
1yE =  

,y outE  
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problem method. The regularization parameterλ  is chosen to be single constant 

value. Figure 4-7 (a) presents the retrieved LC director profile (line with cross 

symbol). Significant oscillation in the retrieved LC director profile can be clearly seen. 

By comparing to the simulated LC director profile from our PDE solver with FEM, 

we conclude that single constant regularization parameter does not give a reasonable 

solution. To solve the problem, we borrow some knowledge from the physics of LC, 

which demands the profile of the LC to be continuous and cannot change abruptly. 

However, we have to find an appropriate way to include the LC physics into the data 

regularization procedure. 

(a) 

(b) 

 

Figure 4-7. Comparison of the retrieved LC director profiles by using different 
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regularization methods. The transmittance data are prepared first with the finite 

element simulation based on Q-tensor approach and then added with one 

percentage of noise. (a) LC director profile retrieval by using one-constant 

regularization parameter λ . (b) LC director profile retrieval by using our new 

regularization scheme.  

 

By looking into the one constant regularization method more deeply, Eq. (4.31) 

depict the entry point that introduces the data regularization parameter to solve an 

inverse problem. 

 2 .λ+Ax - b Ix 2  (4.31) 

We aim to find the most suitable  to minimize x 2 λ+Ax - b Ix 2

x

. However, it is 

quite opaque to probe into the meaning of the regularization parameter. Therefore, we 

introduce the singular value decomposition (SVD) to clarify it. The solution  with 

SVD is: 
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The purpose of the regularization parameter λ can thus be understood with Eq. (4.32). 

The term of 
2

2
i

i

σ
2σ λ+

 can be viewed as a weighting which controls the importance of 

the singular values. Since the regularization parameter appears in the weighting factor, 

we can use Eq. (4.32) as the entry point to introduces LC physics into the data 

regularization procedure. We have known the director profile of LC must be 

continuous, so that a LC molecule and its surrounding nearest LC molecules shall 

share the same pointing direction. So the regularization parameter shall not be a single 

constant. We therefore propose the regularization parameter to be an array with a 

matrix form defined in Eq. (4.44). We assume that each LC molecule can experience a 

distance-dependent constraint from the neighboring LC molecules, resulting in a 

regularization matrix λ shown below 

 

0.1 0.01 0 0 ... ...
0.1 0.1 0.01 0 0 ...
0.01 0.1 0.1 0.01 0 ...

0 0.01 0.1 0.1 0.01 ...
0 0 0.01 0.1 0.1 ...
0 0 ... ... ... ... ...
... ... ... ... ... ... ...

λ λ λ
λ λ λ λ
λ λ λ λ λ

λ λ λ λ λ
λ λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

λ  (4.34) 

From the electrical engineering point of view, the data regularization procedure 

behaves like a signal filter, which depends on the range between singular values and 

λ . If the value of regularization parameter is close to the minimum singular value, it 

is easy to generate an oscillating behavior due to that during the iteration, the solution 

is modified too big. In this regard, we borrow a concept from global optimization that 
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uses small step at the initial stage and as soon as the solution is close enough to the 

correct answer, bigger steps are taken. Figure 4-8(b) displays the retrieved LC director 

profile by using the idea. Apparently, the oscillation has been efficiently eliminated as 

we expect. 

    Noise plays an important role in an inverse problem with experimental data. The 

noise in the measured data can be amplified and seriously affect the retrieved solution. 

To test the reliability of our new inverse problem technique, we add 1% to 30% noise 

level to the simulated data for a 4 mμ -thick planar alignment LC cell with 1  pretilt 

angle. The results are shown in e 4-8(a). It is exciting to find that even at the 

10% noise level the retrieved profile still agrees well with the true profile (shown by 

the curve with open circles). The average pretilt angles calculated from the retrieved 

profiles at 1% to 10% noise level are 1 , 0.99 , and 1.01 , respectively. The sum of 

absolute squared deviations of the retri ed e true profile as a function 

of the inserted noise level is plotted in Figure 4-8(b), indicating the root-mean squared 

(rms) deviation per data point as low as 0.02  can be achieved even with noisy data 

at 30% noise level. 

Figur

ev  profiles from th
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(a) 

(b) 

 

Figure 4-8. LC director profiles retrieved with the transmittance data. The data 

are prepared first with the finite element simulation based on Q-tensor approach 

and then added with 1%, 5%, 10%, 15%, 20%, 30% of noise. (a) The retrieved 

LC director profiles. (b) The statistics of the total deviation of the profiles to the 

true solution. 

     

Note that the range of the incident angle shall contain similar information as that 

of the size of the solution space. We follow the previous procedure to analyze the 

influence of the range of incident angle. The following three ranges are used: I 
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( ),  II( ), and III(10 ~ 10+ − 30 ~ 30+ − 50 ~ 50+ − ). The sample remains the same 

4 mμ -thick planar alignment LC cell with  pretilt angle. The simulated LC optical 

transmittance data are assumed to be contaminated with 5% noise level. Figure 4-9 

shows the retrieved LC director profiles with the three ranges of data. We see that the 

LC director profile from the data ranges I and II are not smooth with small deviation 

to the true profile by about 1.85  and , respectively. The profile fluctuation 

reflects the problem due to the insufficient information containing in the input data I 

and II for the inverse problem retrieval. 

1

0.72

 

Figure 4-9. The retrieved LC director profiles with the three ranges of simulated 

optical transmittance data: I ( 10 ~ 10+ − ),  II( 30 ~ 30+ − ), and 

III( ). 50 ~ 50+ −
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80 

In summary, a new procedure was developed for the inverse problem retrieval of 

LC director profile. The performance of the new inverse problem technique was 

proven by investigating the effect of data regularization, the noise influence, and the 

finite range of incident angle for the LC inverse problem. A new data regularization 

method was proposed by implementing the LC physics into the inverse problem 

retrieval procedure. The integrated procedure was proven to be highly successful in 

the retrieval of LC director profile even that only a limited range of noisy data is 

available. 

 

 



Chapter 5 
 

Inverse Retrieval of Liquid Crystal Director 

Profile from Measured Optical Transmittance 

Data 

     

In chapter 4, we developed a practical inverse problem procedure to retrieve the 

LC director profile from simulated data. The theoretical investigation indicates our 

method to be authentic even when the data have been contaminated with noise as high 

as 10%. In this chapter, we plan to use the inverse problem retrieval technique to 

recover the LC director profile from real measured data. The apparatus is to be 

described in details below.  

5.1 Experimental Apparatus for Inverse Problem Retrieval 

 
Figure 5-1. The experimental setup used to measure the optical transmittance 

data for inverse problem retrieval of LC director profile. 

Polarizer Analyzer 
1
4

Rotation Stage  x λ

z 

LC Cell 

θ+
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The experimental setup used to measure optical transmittance data for inverse 

problem retrieval of LC director profile is shown in Figure 5-1. A He-Ne laser is used 

for the light source. The optical transmittance is resolved into xT  and  with an 

analyzer and detected with a CCD. As noted in Section 4.3, the more independent data 

are collected, the higher accurate solution be retrieved. Therefore, we combine a 

polarizer and a quarter wave plate to collect more data by setting the incident light at 

four different polarization states: three linear ( ,  and 112.5  to the 

laboratory x-axis) and one left circularly polarized light. A rotation stage is used to 

adjust the incident angle into the LC cell. We should let the covering range of incident 

angle as wide as possible. However, due to the experimental constrain, the widest 

range of incident angle with this apparatus only covers from -  to 50 .  

yT

22.5 67.5

50

The samples we measured are a 4 mμ -thick LC cell in a splay alignment mode 

(OCB) and a 4 mμ -thick LC cell with hybrid alignment. The measurement procedure 

of the two samples is repeated for three times by using different applied voltages of 

0V, 2.5V, 5V. 

 

5.2 Experimental Results and Discussion 

The polarization-resolved optical transmittance measurement results of the LC 
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cell with hybrid alignment are presented in Figure 5-2 to Figure 5-4, with three 

different applied voltages of 0V, 2.5V, 5V, respectively. Similar measurement results 

of the OCB cell are presented in Figure 5-5 to Figure 5-7. Each figure comprises of 

xT - and -resolved optical transmittance plots by using an input light wave at four 

different polarization states. In each figure, the optical transmittance data (cross 

symbols) and the simulation curve (open squares) are compared. Deviations between 

the two curves can be observed and are used to adjust the calculated LC director 

profile during the inverse problem retrieval process. Figure 5-8 shows the retrieved 

LC director profiles for the hybrid cell with different applied voltages of 0V, 2.5V, 5V. 

Figure 5-9 presents the similar results for the OCB cell. In the Figures, two LC 

director profiles are plotted. One profile (blue symbols) is obtained from the FEM 

simulation on the LC cell with Q-tensor approach, and the other profile (red symbols) 

is retrieved from the measured optical transmittance data with our inverse problem 

retrieval technique. We also note that our inverse problem retrieval technique always 

converge to an almost identical result even the initial input profile is quite different. 

Although small oscillations remain on the retrieved profile at nonzero applied 

voltages, the overall agreement between the retrieved and the simulated profiles are 

excellent, indicating our inverse problem retrieval technique is fairly reliable and 

accurate for practical applications. The same conclusion can also be drawn for the 

yT

83 



OCB cell presented in Figure 5-9. 

 

Figure 5-2. The polarization-resolved optical transmittance measurement results 

xT  and  of the LC cell with hybrid alignment are presented by using four 

different input polarization states (22.5o, 67.5o, 112.5o, and CP). The LC cell was 

applied with 0V. Two curves are included for comparison: red open squares: 

simulated curve with Berreman matrix technique, and blue cross symbols: the 

measured transmittance as a function of optical incident angle. 

yT
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Figure 5-3. The polarization-resolved optical transmittance measurement results 

xT  and  of the LC cell with hybrid alignment are presented by using four 

different input polarization states (22.5o, 67.5o, 112.5o, and CP). The LC cell was 

applied with 2.5V. Two curves are included for comparison: red open squares: 

simulated curve with Berreman matrix technique, and blue cross symbols: the 

measured transmittance as a function of optical incident angle. 

yT
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Figure 5-4. The polarization-resolved optical transmittance measurement results 

xT  and  of the LC cell with hybrid alignment are presented by using four 

different input polarization states (22.5o, 67.5o, 112.5o, and CP). The LC cell was 

applied with 5V. Two curves are included for comparison: red open squares: 

simulated curve with Berreman matrix technique, and blue cross symbols: the 

measured transmittance as a function of optical incident angle. 

yT
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Figure 5-5. The polarization-resolved optical transmittance measurement results 

xT  and  the OCB cell with bend-splay alignment are presented by using four 

different input polarization states (22.5o, 67.5o, 112.5o, and CP). The LC cell was 

applied with 0V. Two curves are included for comparison: red open squares: 

simulated curve with Berreman matrix technique, and blue cross symbols: the 

measured transmittance as a function of optical incident angle. 

yT
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Figure 5-6. Figure 5-5. The polarization-resolved optical transmittance 

measurement results xT  and  the OCB cell with bend-splay alignment are 

presented by using four different input polarization states (22.5o, 67.5o, 112.5o, 

and CP). The LC cell was applied with 2.5V. Two curves are included for 

comparison: red open squares: simulated curve with Berreman matrix technique, 

and blue cross symbols: the measured transmittance as a function of optical 

incident angle. 

yT
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Figure 5-7. Figure 5-5. The polarization-resolved optical transmittance 

measurement results xT  and  the OCB cell with bend-splay alignment are 

presented by using four different input polarization states (22.5o, 67.5o, 112.5o, 

and CP). The LC cell was applied with 5V. Two curves are included for 

comparison: red open squares: simulated curve with Berreman matrix technique, 

and blue cross symbols: the measured transmittance as a function of optical 

incident angle. 

yT
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(a) 

(b) 

 

Figure 5-8. The retrieval director profiles of the hybrid cell by inverse problem 

method. (a) The coordinate system used to present the LC director profiles. (b) 

The retrieved director profiles of the hybrid cell biased at 0V, 2.5V, and 5V. Two 

profiles are included for comparison: red squares: retrieved profile, and blue 

symbols: the simulated profile calculated by the FEM with Q-tensor approach. 
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(a) 

(b) 

 

Figure 5-9. The retrieval director profiles of the OCB cell by inverse problem 

method. (a) The coordinate system used to present the LC director profiles. (b) 

The retrieved director profiles of the OCB cell biased at 0V, 2.5V, and 5V. Two 

profiles are included for comparison: red squares: retrieved profile, and blue 

symbols: the simulated profile calculated by the FEM with Q-tensor approach. 
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Chapter 6 
 

Conclusions and Future Prospect of This Thesis 

Study 

 

    In conclusion of this thesis research, we have accomplished a finite element 

method (FEM) simulation of nematics liquid crystal by using Q-tensor approach and 

the optical response is also demonstrated by using Berreman matrix method. We use 

this simulation technique for comparing the result with the measurement data of the 

modified OCB cell. We find that including line-patterned hybrid alignment 

configuration into an OCB cell can effectively eliminate the transition time between 

the splay to the bend configuration. For the LC inverse problem, we have the detail 

analysis of the effect of data regularization, the noise influence, and the finite range of 

incident angle. We use our approach method for the data regularization of the inverse 

problem to reduce the oscillating behavior in the LC inverse problem retrieval 

procedure. The director profiles of an OCB and a hybrid cell with and without applied 

voltage have been successfully retrieved from measured optical transmittance data 

with our inverse problem retrieval technique. 
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    Further improvements could be done in the future: 

(1) Using a perturbation concept to modify the Berreman matrix method for 

analyzing three-dimensional LC devices. 

    The optical response for a three-dimensional LC device can only be 

calculated by the finite difference time domain (FDTD) method. The FDTD 

method takes a lot of computing time and needs to setup the whole equation 

system quite precisely. Although the Berreman matrix method can only calculate 

the optical response caused by azimuthal or pretilt angle, but the computing time 

is less. We can consult the concept in the reference [10] that using a perturbation 

to extend the Berreman matrix method for the change of the azimuthal and pretilt 

angle at the same time. 

(2) Changing the line-patterned hybrid alignment configuration for the line-patterned 

homeotropic alignment configuration into an OCB cell for the symmetry 

structure. 

    Because the hybrid alignment configuration has the un-symmetry cell 

structure, so the relaxation time is not fast as the symmetry OCB cell. The 

homeotropic alignment configuration has the symmetry cell structure and also it 

can provide the vertical force as the hybrid alignment configuration. 

(3) Replace Tikhonov regularization method with iterative regularization method [21, 
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The prior probability can be realized very well by neural network. We can 

offer the prior information about the liquid crystal to help training the neural 

network system. The iterative regularization method can be expressed as 

followed which compared to Tikhonov regularization 
2

2 2
i

i
i

f σ
σ λ

=
+

: 

 ( )21 1
k

if σ= − − i  (6.1) 

where  is the iteration number. Figure 6-1 gives an example of the iterative 

regularization method. When the iteration number increases, the more singular 

values we can keep. If it can be well designed, the convergence would be fast 

and reliable. 

k

if  

iσ
 

Figure 6-1. An example of the iterative regularization method with different 

iteration number. 

(4) Use an optical microscope with high NA objective to simplify the data taking 
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procedure.  

With one shot of image exposure, the resulting optical image contains the 

information with varying incident angles needed for the inverse problem retrieval 

with a schematic illustrated in Figure 6-2 (a). We can do a simple estimation 

about the numerical aperture of the objective lens which is around 0.76 for our 

incident angle range as in Figure 6-2 (b). 
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Lens 

SAMPLE 

Light

Objective

 (a) 

(b) 

50 Objective Lens 

( )sin 50 0.76= ≈NA

 

Figure 6-2. Optical microscope with high NA objective can be used to simplify 

the data taking procedure for inverse problem retrieval. (a) The experiment 

setup. (b) The NA value of the objective lens for our incident angle range.
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