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I. INTRODUCTION

THE MuLTIPLICITY problems of positive solutions of a class of semilinear eigenvalue problems
are studied
—Au(x) = Af(u(x) forx e Q

(1.1)
uix) =0 for x € 3Q2

where f(u) > 0 for u > 0 and A > 0, and Q is a bounded smooth domain in R".

Equation (1.1) arises in nonlinear heat generation, in models of combustion, etc. We refer to
the survey paper by Lions [12].

In [10], the author proved that the positive solution of (1.1) is unique for A is large when f
is bounded and satisfies a ‘‘concavity’’ condition. More precisely, (1.1) has an unique positive
solution for large A if f satisfies the following assumptions:

(i) fe CY(0, »)),
(ii) f(u) = m > 0 for each 4 = 0 and some m > 0,
(iii) Iim f(uy/u =0,
u—+o
(iv) lim inf f(u) > lim sup f'(Wu.
u—+ow u—> 4+
We proved that solutions u, of (1.1) satisfies u, = ACu, if A is large, where v, is the solution of

—-Avix) =1 forxe Q
(1.2)
vix) =0 for x € 302

and some constant C > 0. Then, condition (iv) implies that (1.1) has an unique positive solution
when 4 is large. Condition (iv) permits f has a logarithmic growth when u tends to infinite. In
the case of an ODE, a similar result has been obtained by Shivaji [18].

In this paper, we shall study the multiplicity problem of (1.1) when f is sublinear. More
precisely, f(u) ~ u*, 0 < B < 1, when u is large. By constructing some appropriate super- and
subsolutions and applying Serrin’s sweeping principle, we can prove that for ‘“large solution’’
uy, of (1.1), uy = Av, for large 1. And then improve this estimate to u, ~ A'/"~Py, by a
“‘singular perturbation method’’ used in [10], where v; is the unique positive solution of

—Aux) = u¥x) forxeQ
uix) =0 for x € aQ.

283

(1.3)
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The uniqueness of large solution can be obtained if f satisfies a concavity condition

lim sup S
umvo f(1)

If £ has power growth at ¥ = 0 and +co, then problem (1.1) can be classified into four types,
8,0, (o, B), (B, ) and (o, o), 0 < f < 1 and o > 1, where type («, B) is

< 1.

Su) ~ u® when u ~ 0
and
f(w) ~u®  whenu ~ +

etc. This classification makes it easier to identify large or small solution when it exists.

In this paper the existence and uniqueness problems for large solutions of types (5, ) and
(a, B) are studied. Problems of type (8, «) and («, ) are more difficult and complicated,
depending on geometrical and/or topological properties of Q. For reference, see e.g. Brezis and
Nirenberg [5] and Lions [12].

In Section 2, we give a special case of Serrin’s sweeping principle and recall some results in
[10] which are useful in this paper.

In Section 3, we prove that #, ~ 4"y, and an uniqueness theorem for large 4, in the case
of type (8, B).

In Section 4, we prove that u, ~ A'~®y, for large solution u, and an uniqueness theorem
for large solution in the case of type («, ).

2. PRELIMINARIES

In this section we shall recall some results obtained in [10], which are useful in getting a priori
estimates of u, when 1 is large. We also give a theorem (with a proof) which is a special case
of Serrin’s sweeping principle. The principle can tell us where solutions do not exist, therefore
gives us some a priori estimates of solutions. The principle is useful in various problems and is
very useful in the case when f is sublinear.

In this paper it is always assumed that Q is a bounded smooth domain in R”, for example,
Q e C3. We denote by #(x) the distance from x € Q to the boundary dQ, and by s(x) the point
of dQ which is closest to x (which is uniquely defined if x is close enough to 0Q). We choose
sufficiently small §, > 0 such that the boundary strip Q; of width Jy, i.e.

Q;, = x e Q10 < 1(x) < Jy}

is covered (and only covered) by the straight lines in the inner normal direction —ng,, and
emanating from s(x).
Given p € I7(Q), p > 1, let u € W*P(Q) be the solution of Poisson equation with Dirichlet
boundary condition, i.e.
—Au(x) = p(x) forxe Q
2.1
ulx)y =0 for x € 0Q.

We prove the following proposition by using L”-estimates and applying maximum and strong
maximum principle.
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ProprosiTION 2.1. Assume that p = 0 and p # 0 on Q.
(i) Suppose that u € C3(Q) NCY(Q) is the solution of (2.1). Then there exist constants
! = k > 0, such that
kt(x) < u(x) < lf(x) on Q. 2.2)

(ii) Suppose that p € L*(Q2) and supp(p) € Q;, 0 < § < d,, then for p > n, solution u of
(2.1) satisfies B
u(x) < C,6"7|Ipllotx) onQ (2.3)

where constants C, depends only on p, n, Q, but not p.
(iii) For 0 < 6 < é,, define the function p; by

1 for x € Q;
= 2.4
Ps() {O forxe Q — Q;. (24)
Then the solution u; of (2.1) with p(x) = p;(x) satisfies
U;(x) < C,6"Pvy(x)  on Q. 2.5
Remark. u; is given by
uy(x) = i Gix, y)dy onQ (2.6)
J Qs

where G(x, y) is the Green’s function of —A with zero Dirichlet boundary condition.

Proof. (i) Since p = 0 and p # 0. By maximum principle, u(x) > 0 in Q, and by strong
maximum principle
ou
an,

) <0 on 9Q.

Since dQ is compact, there exists ', 0 < ' < d,,and !’ = k’ > 0 such that

ou

' =
Ong,

x=-k'<0 2.7

for any x € Q;.. (2.2) follows by
1

u(x) = —t(x)j 3

0 Ofg(x)

ou

(x + tH(xX)nyy) dr (2.8)

for any x € Q;., and by choosing / = k& > 0 appropriately for x e Q — Q.. It is clear that k
and / depend on u and then on p.
(ii) In the following, constants C;, i = 1, 2, 3, ..., may vary but depend only on p, n and Q.
By LP-estimate, there exists a constant C, such that

lulls,, < Cilloll,
< G pllo vol(Q4)'”
< G| pll. area(@Q)'? 6'7
= Gyl plles?.
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For p > n, by Sobolev imbedding theorem, u € C'"**(Q), « = 1 — n/p. Therefore, for any
xeQ

dou
g 69]

H

lu| + ¥

i=1

< Gslul,,, = Cellpllcs™”.

Since (2.8) is also valid for u, u(x) = C,6'?| pll.t(x) on Q, with C, depends on p, n and Q
only.
(iii) This follows by (i) and (ii). The proof is complete.

We need the following comparison lemma in order to prove Serrin’s sweeping principle.

LEMMA 2.2. Suppose that f € C! and u and v € C*(Q) satisfying

Au + f(u) = Av + f(v) in Q
and
v=u in Q.

Then, either u = v or v > u in Q.

Proof. Let w(x) = v(x) — u(x). Then
wx) =0 in Q

and

Aw(x) + c(x)w(x) =0 in Q
where

c(x) = f'(w(x)) with w(x) € [u(x), v(x)].

Let Q' be any subdomain of Q with Q' C Q and m’ = max{0, I'}, where /' = max{f'(w) | u(x) <
ws< v(x), x € Q). Then, for x € Q', Aw(x) + (c(x) — m")w(x) = —m'w(x) < 0. By maximum
principle, either w = 0in Q' or w(x) > 0 for all x € Q'. Since Q' C Q is arbitrary, either w = 0

in Q or w(x) > 0 for x € Q.
The proof is complete.

In the remainder of this paper, it is always assumed that f satisfies the following conditions:

. L w 10, o
(H-0) { (@) f e C((0, =) N C([0, =)) for some y € (0, 1)

(i) f(u) >0 for u > 0.
Then, it is easy to see that the following definition applies.

Definition 2.3. A function ¢ € C}Q) N C(Q) is called a supersolution of semilinear elliptic

boundary value problem
Au(x) + flu(x)) = 0 for x e Q

uixy =0 for x € Q2

(2.9)

if ¢ satisfies
Ao + f(d(x) <0 forxe Q

o(x) =0 for x € 0Q.

(2.10)
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Similarly, a subsolution ¥ € C3(Q) N C(Q) of (2.9) satisfies
Aw(x) + fly(x)) = 0 for x e Q

(2.11)
vx) <0 for x € 3Q2.

We state the monotone iteration schemes as below.

ProPOSITION 2.4. Let ¢ be a supersolution and y a subsolution of (2.9) with y < ¢. Then there

exist solution u and & with
v=su=<

=¢

u
where u is the minimum solution between y and ¢, and % is the maximum solution between
and ¢. u may be equal to #. For the proof see, e.g. Sattinger [15, 16] or Amann [1].

We now give the following theorem which is a special case of Serrin’s sweeping principle, see
Serrin [17] and Sattinger [16]. For completeness a short proof is given.

THEOREM 2.5. Let {¢,] be a family of supersolutions of (2.9) which is increasinginz,0 < 7 < 1,
i.e.
¢, = ¢,(x) forxeQ

if 7, < 1,, and satisfy the following conditions:
@) ¢, € CHQ) N C(Q), for T € [0, 1],
(ii) ¢, = 0 on 90Q,
(iii) ¢, is not a solution of (2.9) for t € (0, 1],
(iv) ¢, is continuous in 7, in the sense that for any ¢ > 0, there exists J = d(¢) > 0 if
[t — 1] <&
lp.(x) — ¢.(x)| = er(x) for x € Q.

Suppose that u € CX(Q) N CHQ) is a solution of (2.9) with
U= in Q.

Then either u = ¢, or u(x) < ¢y(x) for x € Q. A similar result holds for a family of subsolutions
w3

Proof. Let 15 = inf{t € [0, 1]1] ¢,(x) > u(x) in Q}. Then ¢,,(x) = u(x) in Q. By lemma 2.2,
either ¢, = u or ¢,(x) > u(x) for x € Q. We shall prove 7, = 0. If 75 > 0, then ¢, (x) > u(x)
for x € Q by (iii).

By strong maximum principle

(¢, — U

—2—(s5) =< -k <0
ang

for s € dQ and some k£ > 0. A similar argument as in proving proposition 2.1(i) implies that
P(X) — ulx) = ni(x)
for x € Q and some 5 > 0. By (iv), there exists 0 < 7’ < 7, such that
$,() — ux) = (¢, (x) — ni(x)) —ulx) =0  inQ

a contradiction to the definition of 7,. Hence 7, = 0. This completes the proof.
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Remark. The conditions in theorem 2.5 are easily verified in our constructions of super- or
subsolutions of (1.1). It is clear that some kind of continuity condition of {¢,} with respect to
7 has to be satisfied in order that the conclusion of theorem 2.5 holds. (iv) suits our purpose and
is easily obtained by applying proposition 2.1(i).

3. (B,0H)-TYPE

In the remainder of the paper we shall also assume that f has a power growth at 4 — oo, i.e.
Jf satisfies

(H-1) lim f_(u_)___ 1, 0<p<l.

U+ uﬁ

In the case of (8, f)-type, we shall prove that for large A4 (1.1) has the large solution only.
Consider the linear eigenvalue problem

—Au(x) = Au(x) forx e Q
3.1

uix) =0 for x € Q2.
Let 4; (>0) be the least eigenvalue and v, > 0 be the corresponding eigenfunction with
normalization [|v,|, = 1. We first prove the following lemma.
LemMMA 3.1. Suppose that f satisfies (H-0), (H-1) and (H-2)

Sw)y>ou  in (0,4l

for some ¢ > 0 and g > 0. Then the solution u, of (1.1) satisfies

U, = uv, if A= 4,/0. 3.2)

Furthermore, (1.1) has the minimum positive solution u for A = 1,/0.

Proof. For 7 € (0, u] and 4 = 1,/a, we have
A(tv(x) + Af(tv,(x)) > —14, v4(x) + AoTv(X)
= w,(x)(Ao — A))
= 0.

Therefore, {tv,}, T € (0, ], is a family of subsolutions of (1.1) which is strictly increasing in 7
and is not a solution for 7 € (0, u]. By proposition 2.1(i), u, = 7, v, in Q for some 7, € (0, u).
For A = A,/0, by theorem 2.5, u, = uv, in Q. This proves (3.2).

To prove (1.1) has the minimum positive solution, it suffices to construct a supersolution ¢,
of (1.1) such that ¢, = uv,, in Q. This can be obtained if f satisfies (H-0) and
(H-1) lim UG =

u—+oo U

0.

However, in the case of f satisfying (H-0) and (H-1), ¢, = APy, is a supersolution for
large 7. For details, see the proof of theorem 3.3.
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It is known that (1.3) has the unique positive solution in C**#(Q) (unique in the class of
CHQ) N CY(Y), for example, see Aronson and Peletier [3]. We shall give a short proof as
below.

ProrosrTioN 3.2. There exists a unique positive solution vg of
—Au(x) = u®(x) forx e Q
ux) =0 for x € 9Q

(1.3)

where 0 < B < 1.

Proof. It suffices to prove that (1.3) has a minimum positive solution. In fact, if f satisfies

<f(“)> <0  for u e (0, ) 3.3)
du

U

and (2.9) has the minimum positive solution ¥. Then (2.9) has the unique positive solution. In
fact, if u is a positive solution of (2.9), then

S (u Au — u Au)dx

(uf () — uf(w)) dx

u

1A

0.
This implies that u = u.
To prove (1.3) has the minimum positive solution. We note that u® > i,u for all
u e (0, A7y the existence of minimum solution follows by lemma 3.1. The proof is
complete.

We can now prove the following asymptotic theorem for u, when 4 is large.

THEOREM 3.3. Suppose that f satisfies (H-0), (H-1) and (H-2). Then
xlim U ()/ (A Pyg(x)) =1 uniformly on Q
- 4+
where u, is a solution of (1.1).
Proof. We shall divide the proof into three steps:
Step 1. There exists 4, > 0, if A > 4,, then
U, = Avg.

Step 2. For any ¢ > 0 and &, > 0 there exists A, = A(g, &) > 0, if 1 > A,, then

u, = )'1/(1—6)(1 . 8)1/(1—43)(1 _ 81)1/(1_6)05'
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Step 3. For any € > 0 and ¢; > 0 there exists A, = A'(¢, &) > 0, if L > A/, then
u, = 20D 4 VB 4 g)V Py
Step 1. We shall first prove that there exists m > 0 such that u, = Amuy, if A = 1,/0.
By proposition 2.1(i), there exists k; > 0 such that v, = k,v,. Hence
Uy = Uy ifA=A,/0

where u; = uk; > 0. Let u’ € (0, 4y) and m’' = min{ f(u): u € [u’, ©)}. Since f satisfies (H-0)
and (H-1), m’ > 0. Denote by [¢ = U] = {x € Q| p(x) = U}, etc. If 1 = 1,/a, then

u\(x) = A L Gx, fur(y)) dy

> /lm’j G(x, y)dy
[rvo=p']

= lm’{vo(x) — j G(x, y) d}’}
oo u'/uy]

= Am'{ve(x) — Cp(u'/u)Pvo(x)}
= Amuy(x)
here (2.5) is used, m = m’'/2 and u’ is chosen with
Cou'/u)"? = 4.
Next, we prove that there exists A, = A,/0, such that 4 = 4, implies u,, = Avg.
By proposition 2.1(i), there exists M > 0 such that
M
? Uy = Ug.

For this M, there exists U = U(M) > 0, if u = U, then f(u) = M. Therefore

u(x) = AM S G(x, y)dy

vy = U
= AM{1 — C,(U/Am)"P}ug(x)
= Avg,

here 4, is chosen such that C,(U/A,m)"? = %.
Step 2. By proposition 2.1(i) and (ii), with p = UBB,

us(x) = j Gx, Yof(») dy = C5"Pug(x) (3.4)
25
for 0 < 6 < &,, and constant Cz depends on p, n, Q and vz. We note that (3.4) can be

improved to
Us(x) < Cp0%* "Pys)  on Q 3.9
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for 0 < 6 < dy, and some constant C; > 0. By (H-1), for any & > 0, there exists U = U(g) > 0
such that ¥ > U implies
fay = 1 ~ eu”.

Therefore,

uy(x) = A1 - 6)§ G(x, )(Avg(»)° dy

Mg = U)
= AP - 9ugll — Ca(U/V)VP)
= A Pus(1 - o)1 - &)

whenever A = max({4,, 45}, here, A; = (Cp/€)?U, i.e. Cz(U/A3)""? = g,. Moreover, after
repeating this argument once, we obtain

u(x) = A(1 - 8)§ s Gix, »IA™EA - o — e)vg(M}Pfdy
2N (1-8)(1 —sl)vﬁ = U}
148+8% 1+8 8 Y e
=2 (1 - 8) (1 - 81) ’ {1 - CB(AI+B(1 _ 8)(1 — 81)> KUB(X)

= AT~ ) B — g ) *Pug(x)

whenever 4 = max(4,, A4, 4,), here 4, is given in

U 1/p
C‘*(Ai“*(l Z e - 81)> -
U /(1+8)
a-ed - sl)}
Repeating this argument, we can prove that forany n > 2

() = A - (1 — e P ()

i.e.

Ay = {(CB /€,)"

whenever 4 = max{a,, A5, ..., 1,,,), with

U 21/(1+B+--~+B"")

—_ 4
/1,,+2 - {(CB/EI) [(1 — 8)(1 _ 81)]1+,3+...+3'r—1

Since 0 < B < 1, 4, = A, as n = o, where

UI—B

- 1-8
Ao = (Cg/8))? -0 <ey)’

(3.6)

Let
A, = max{i,, 15, ...}

= A(g, &) < +o0.
If A = A,, then

() = AV — g/ 0-H(q — )Py (x)  on Q.

This completes the proof of step 2.
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Step 3. It is easy to see that (H-0) and (H-1) implies that
Swy<=A+2u®  foru=0 3.7

where A = 0is a constant. We first prove that {1y} is a family of supersolutions of (1.1)
if 7 is large. In fact

AV Prug) + AfAY T Prp) = AV 4 A4 + 2P 1yy)F)
— —AINI_B“T _ 2Tﬁvf _ A_B/U_Bl4}
=0
if
72 2ol Bf + AP 4, (3.8)
Furthermore, it is easy to verify that (3.8) is true if

7 = max{A~VIP4VE 2llul| & + 1A, 3.9

= M} = max{A"?, 2|y, |8 + 1)/-5y, (3.10)

Therefore, 2" ~#zvy, T = My}, is not a solution of (1.1) if 7 is large enough. Hence, by Serrin’s
sweeping principle, we have
uy, < AVOPay,

for A = A5, for some A5 > 0. Next, by an argument similar to that in step 2, we can prove that
for any ¢ > 0, &, > 0, there exists A, = A'(¢, &) < +o0, such that A = A, implies

() = AV + VDA 4+ )V Py (x)  on Q.

The proof is complete.
During the proof, we have obtained the following corollary.

CoOROLLARY 3.4. Suppose that f satisfies (H-0) and (H-1). If {u,} is a family of solutions of (1.1)
with u, = uv, for some g > 0and A = A = 0, then

lim u, /(A Pyg) = 1 uniformly on Q.

A= 400

To prove an uniqueness result for positive solutions of (1.1), we need the following lemma.
LemMa 3.5. For any w € Wy 4(Q) (= H3(Q))

j [Vw|? > j vfw? (3.11)
Q Q
and
j [Vw|? = cﬁg viw? (3.12)
Q Q

where Cg > 0 is a constant.
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Proof. Consider the linear eigenvalue problem
~Aw(x) = uvf ' (x)w(x) in Q w(x) = 0 on 4Q.

Then u; = 1 is an eigenvalue with positive eigenfunction vs. Hence 1 is the first eigenvalue.
A variational principle which characterizes the first eigenvalue gives (3.11). For (3.12), see
Brezis and Turner [6, lemma 2.1] and Lions and Magenes [11, p. 76].

We can now prove the following uniqueness theorem.

THEOREM 3.6. Suppose that f satisfies (H-0), (H-1) and (H-2)

(H-3) lim sup f'(w)|u* < +o
u—0
and
. S'(wu
H-4 lim sup———< 1
(H-4) m Sup )

Then there exists A* = 0 such that (1.1) has an unique positive solution for 4 > A*.

Proof. Let u, be the minimum solution and u, be any positive solution of (1.1). Let
wy, = u, — u,. Then
—Aw, = Af'(0\)w, (3.13)
where 6, (x) € (u\(x), uy(x)).
For any € > 0, which is sufficiently small, let U = U(e) be chosen such that ¥ = U imply

A -ouf<fuw=q1+ eu’
S Gu n= <lim sup f’(u)u> +e<1

IA

Sw) u—te  f(U)
|f'w)) = Au=>+ B forue(0,U]
where A = A(€) and B = B(g) = 0. By theorem 3.3, there exists A, = 0 such that A = A, implies

AVA-B(1 — gyog < uy < 6y < u, = A0 + g)v,.

and

From (3.13), we have

g AN lg FECNIE lS VECNIZS (3.14)
Q [0y = U]

[0, = Ul

For the first term of right-hand side of (3.14), if A = A,, we have

AS FOIWE < An(1 + a)g 6F 'w?
[0,z U] [6)= U]
< An(l + s)g (AVAB( — g)g) P wl
Q

=n(l + &)1 — &' g vh ' wg
Ja

< n(l + &)1 — g)P! g [V w, |2
JQ
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by (3.11). For the second term of right-hand side of (3.14), we have

AS FUOIWE < AS (4652 + BYw?
[6,= U] [6,< Ul

=A

j AQAYAA(L — g)ug) iwi
DB s 0

+ AB j vhvg 2w
[ug= UQ-g) NV~

< ACIRADq — o)7HA + BUZ)j vg Wi
Q

< /1(“1‘5)/(1'5)(1 — &) XA + BUZ)CB'IS |VW)\|2
Q

by (3.12). Hence, for 4 = A,

(1 — g1 + &)1 — &)1 = ACEVA-B _ g)"X4 + BUHC; 1} | Ivw|* <=0. (3.15)
8 Q

By choosing sufficiently small ¢ > 0 and large A = A,, then A = A; implies {---] > 0 in
(3.15). Hence, for A = A,

S [Vwy|* =0  which implies w, = 0.
Q
The proof is complete.

4. (o, B)-TYPE

In this section we shall study the multiplicity problem of (1.1) in the case of («, #)-type, i.e.
we consider f(u) ~ u® for u ~ 0%, l <o whenn=1,2and 1 < a <(n + 2)/(n ~ 2) when
n = 3, and f(u) ~ u® foru ~ +e, 0 < g < 1. For (a, B)-type, (1.1) has no positive solution if
A is too small. More precisely, we have the following lemma.

LeMMA 4.1. Suppose that f satisfies
0< f(u) = Mu foru>0 4.1

for some constant M > 0. Then (1.1) has no positive solution if 1 < A,/M.
Proof. Multiplying (1.1) by v; and integrating over Q, gives

—S v Auy, = AS S, .
Q Q
Hence

Alj uv, = AS Sy,
Q o

= AMX u)\vl
Q

by (4.1). Since [g v, > 0, the lemma follows.



Positive solutions of nonlinear elliptic equations 295

In the remainder of this section, we always assume that f satisfies

fw _

(H-2) lim

u-0t U

1

where « > 1. (H-2') implies that there exists u > 0 such that f(u) < 2u® for u € [0, u].
Therefore for any solution u of (1.1)

/{1 -1/(1-B)
M, = max{<M—> AVE 2)woll 8 + 1)1/“-5)}

is given in (3.9) with A = A,/M. We now give an existence theorem for type («, §) problem.

where

THEOREM 4.2. Suppose that f satisfies (H-0), (H-1) and (H-2"), with
Da>lifn=1,2,
) l<a<@+2)/(n-2),ifn=3.
Then there exists 1, = A;/M such that
(i) when 4 < 4,, (1.1) has no positive solution,
@ii) when 4 > A,, (1.1) has at least one positive solution.

Proof. The existence of positive solution of (1.1) for large A can be proved by a variational
method, see for example, Ambrosetti and Rabinowitz [2] and Nirenberg [13]. It will also be
proved in theorem 4.4 by constructing an appropriate subsolution of (1.1). Let

A, = inf{A > 0:(1.1) has positive solution at 4}.

Then A, = A,/M by lemma 4.1. Once (1.1) has a positive solution u, at 4, then u, is a sub-
solution of (1.1) for A’ > A. In fact

Au, + Af(uy) =0
implies
Auy + Vf(uy) = (A" — Df(uy) >0

if A’ > 1. As in theorem 3.3, A/~® 1y, is a supersolution if 7 is large enough. Hence (1.1) has
solution for A > A, . The proof is complete.

We need the following well-known results, see e.g. [2, 6, 12].

ProposiTION 4.3. The equations
—Au = u* in Q

0 on Q.

4.2)

u
have a positive solution if

(i) a>1forn=1,2, and

i 1l <a<(@n+2)/(n-—2)),forn=3.
Denote by v,, (any) solution of (4.2). We can prove an uniqueness result for large solution of
(1.1) of type (o, ).
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THEOREM 4.4. Suppose that f satisfies (H-0), (H-1), (H-2'), (H-3) and (H-4). Then there exists
A* > 0 such that for A = A1*, (1.1) has an unique positive solution u, with u, = v,. Moreover,
for these u,

lim w, /(A Pyg) = 1 uniformly on Q.
A +o0

Proof. By corollary 3.4 and theorem 3.6, the solution u, of (1.1) is unique if u, = v, for
Az A* and some A* > 0. It remains to prove that there exists positive solution u, of (1.1)
satisfying u, = v,if A = A for some A > 0. In the following, we shall show that A ~?Cy,_ is
a subsolution of (1.1) by an appropriately chosen C and large A (depends on C). (H-1) and
(H-2") imply that there exist U; and U,, 0 < U, < U, < o, such that

Sw) = fu” if u € (0, Uy)
and
S = tu?  if u e (U,, ).
Let
m=min{f(w) | U, < u=< U} >0.

(i) For x € Q with APy (x) = U,
A(Al/(l‘B)Cva(x)) + if(/ll/(l_ﬁ)cva(x)) > _Al/(l—B)Cvg(x) + %A(Al/(l_ﬁ)CUQ(X))B
= AVOPCELE — O Pugf)

=0

1 >1/(1—ﬂ)
C=|7—— .
<2llvall‘; g

(i) Forx e Qwith U; < AV PCy (x) < U,,
A@QYEPCu(0) + S PCr,(x0) = AP Cu(x) + Am

if £ = C1Fy |27, Let

v

U027 (%) + Am

=0
if 1 = (1/m)U,Jlv 127"
(iii) For x € Q with APy (x) < U,

AQYPCu,(0) + AfACPC(x0) = =AY PCu) + ARV P Cu, (x)*
= /11/(1_6)Cvg(x)(%/l("'6)/(l_B)C”‘_1 -1
=0
if 4 = (2C"'~*)1-97=H Therefore, A'/“~®Cu, is a subsolution when
A= v llg™! - max(2, U,/m).

This completes the proof.
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