
Chapter 1 

Introduction 

1.1 Overview 

Time series data of different frequencies and different time spans are often 

available to empirical studies.  They are usually changed to a common time interval 

through temporal aggregation or systematic sampling, depending on whether the 

variables are flow variables or stock variables respectively.  Several papers have 

documented the fact that time aggregation potentially distorts the relationship between 

variables (Sims, 1971; Tiao and Wei, 1976; Wei, 1982; Cunningham and Vilasuso, 

1995, 1997).  This approach, apart from losing information, may defeat the purpose 

of using the association between variables so as to make a correct decision or to 

forecast a key variable of interest.  Thus, we are concerned with the question of 

whether the regression and the correlation coefficients are affected by the selected 

time interval. 

According to modern portfolio theory, the point about the gains from 

international portfolio diversification is inversely related to the correlations of security 

returns.  Diversification benefits depend upon the correlations among different stock 

markets.  Nevertheless, the employed time interval may affect the results if the data 

contain autocorrelation.  Even if all random variables are independent over time, the 

effect is documented in recent literature.  The effect of the differencing interval on 

several economic indices and finance has been studied by Schneller (1975), Levhari 

and Levy (1977), Levy (1972,1984), Lee (1990), Bruno and Easterly (1998), and 

Souza and Smith (2002).  Levy and Schwarz (1997) show that the correlation 

coefficients are affected by the frequency of data employed when two independent, 

identically distributed (i.i.d.) random variables are multiplicative over time.  Levy et 
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al. (2001) write a similar theoretical effect when one of the i.i.d. variables is additive 

and the other is multiplicative.  If we select arbitrarily the time interval and neglect 

that the corresponding results may be incorrect, then it is likely to lead us to 

misguided actions.  That is, the correlation coefficients are not invariant under 

changes of the differencing interval, particularly with serial correlation. 

1.2 Research Motivations 

Generally speaking, a time series variable is either a flow variable or a stock 

variable.  Examples flow variables include gross domestic product (GDP), industrial 

production, etc.  The values of a flow variable are usually obtained through 

aggregation over equal time intervals.  A stock variable such as money supply or 

inventory levels, can be recorded at each point of time.  The data of stock variables 

are employed by aggregation to transfer various time intervals.  Time aggregation 

involves either temporal aggregation or systematic sampling.  Systematic sampling 

represents the choice of a particular observation value at fixed intervals.  

Alternatively, temporal aggregation is formed by averaging observations over 

non-overlapping intervals.  This is used to construct the aggregated time series 

(Cunningham and Vilasuso, 1997).  

On the other hand, the multiplicative variables are such as the rate of return on 

assets, economic growth rate, population growth, which is simply equal to the product 

of the n one-period variables and its net variable over the most recent n periods is 

simply equal to its n-period corresponding variable minus one (Campbell et al., 1997). 

When random variables are additive or multiplicative, such effects have been 

evident even if they are independent, identically distributed (i.i.d.) variables over time 

(Levy and Schwarz, 1997; Levy et al., 2001).  This study considers the impact of 

such analyses containing systematically sampled and temporal aggregated. 
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1.3 Research Objectives 

The objective of this work is to investigate the problem of the time interval effect 

of the association between two variables that are additive, multiplicative, 

systematically sampled or temporal aggregated.  For flow variables, such as 

production or imports, they can only be measured over a period of time, so that their 

values are accumulated.  They are denoted by additive variables.  Levy et al. (2001) 

write that when one of the variables is additive and the other is multiplicative, the 

squared multi-period correlation coefficient decreases monotonically as n increases 

and approaches zero when n goes to infinity.  However, in many cases the variables 

are stock variables, then systematically sampled or temporal aggregated variables are 

often involved in empirical models.  For fundamental and practical reasons we study 

the correlation between multiplicative and aggregate variables that can be widely 

applied in other fields where correlation analyses are employed. 

 On the other hand, this study discusses the time interval impact on the partial 

regression and correlation coefficients in multiple-regression models.  Using two 

random variables, we can only construct a simple regression model; that is, a model 

with a single regressor that has a relationship with a response.  Unfortunately, very 

often we move to the situation with more than one independent variable such that the 

inferential possibilities increase more or less exponentially.  Therefore, it always 

behooves the investigator to make the underlying rationale and the goals of the 

analysis as explicit as possible.   

 The framework of this research is shown in Figure 1.1. 

1.4 Organization 

 The organization of the remaining chapters for this research is as follows.  

Chapter 2 reviews the literatures of related work and background.  Chapter 3 
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describes the impact of the employed time interval on the correlation coefficients.  

Chapter 4 presents the time interval effect of the association between one which is 

multiplicative and the other which is systematically sampled or temporal aggregated 

on a simple regression model.  Chapter 5 considers the time interval effect when two 

random variables are additive or multiplicative.  We study the time interval effect by 

using the multiple-regression model that can be widely applied in many fields where 

regression or correlation analyses are employed.  Chapter 6 shows the influence of 

the selected time interval on the association between independent, identically 

distributed variables over time when one of the variables is additive and one is from 

systematic sampling.  Finally, the conclusions and the directions of future research 

are given in Chapter 7. 
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Chapter 2 

Related Work 

2.1 Literature Review  

 In time series analysis of a given set of variables, practitioners often have to 

decide whether to use monthly, quarterly, or annual data.  However, in some cases, 

the investigator often cannot choose the time interval.  Thus, the assumed time unit 

in the interesting investigation may not be the same as the time interval for the 

employed data.  In many studies, data often are available only through aggregation, 

multiplication, or systematic sampling. 

 A variety of papers have documented the fact that time aggregation potentially 

distorts the relationship between variables.  Sims (1971) warned that temporal 

aggregation can result in a spurious causal relationship.  Tiao and Wei (1976) and 

Wei (1982) demonstrate that forming temporally aggregated data can change a true 

one-way Granger causal relationship into a two-sided causal system.  Cunningham 

and Vilasuso (1995) demonstrate that temporal aggregation is between two and ten 

time more likely to fail to detect a true causal relationship than is systematic 

sampling.  

 In empirical studies, the effect of the selected time interval on variables has been 

studied extensively.  Levy (1972) shows that the performance of mutual funds 

changes systematically and in a predictable way with changes in the time interval.  

Fund A may outperform Fund B with monthly data, whereas the opposite holds true 

with annual data.  Lehari and Levy (1977) show that the systematic risk (beta) of 

securities changes with the length of the time interval.  Stocks with high risk become 

even more risky as the time interval increases, whereas the opposite holds regarding 

stock characterized by relatively low risk. 
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 If the data contain serial correlation, the effect of the selected time interval on 

variables has been studied extensively.  Levy and Schwarz (1997) and Levy et al. 

(2001) present that such effects occur even if all random variables are independent 

over time.  Levy and Schwarz (1997) show that when two random variables are 

multiplicative over time, the coefficient of determination decreases monotonically as 

the differencing interval increases, approaching zero in the limit.  Levy et al. (2001) 

write that when one of the variables is additive and the other is multiplicative the 

squared multi-period correlation coefficient decreases monotonically as n increases 

and approaches zero when n goes to infinity.  The purpose of this dissertation is to 

complement and extend the results in Levy and Schwarz (1997) and Levy et al. 

(2001).  We consider the various types of variables to study the time interval effect.  

For practical reasons we also investigates the impact on simple regression models and 

multiple regression models that can be widely applied in many fields where regression 

or correlation analyses are employed. 

2.2. Definition of Variables    

2.2.1 Multiplicative Variables 

 The asset’s gross return over the most recent k periods from date  to date t 

is equal to the product of the k single-period returns from 

kt −

1+− kt  to t, i.e., 
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 Its net return over the most recent k periods is equal to its k-period gross return 

minus one.  These multiperiod returns are called compound returns (Campbell et al., 

1997).  
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2.2.2 Additive Variables 

 The log return  of an asset is defined to be the natural logarithm of its gross 

return .  The multiperiod returns can be written by 

tr

)1( tR+

    )(k
tr )1()1()1log(()1log( 11

)(
+−− ++⋅+=+= kttt

k
t RRRR L

  )1log()1log()1log( 11 +−− ++++++= kttt RRR L    

  . 11 +−− +++= kttt rrr L

The multiperiod log return is the sum of single-period log returns (Campbell et al., 

1997). 

2.2.3 Temporal Aggregated Variables 

 Temporal aggregation is an aggregate formed by averaging observations over 

non-overlapping intervals, i.e., it is the additive variable divided by the number of 

observations.  

2.2.4 Systematically Sampled Variables 

 The observed series is only a subseries obtained by a scheme of systematic 

sampling where a single observation from the sampling interval. 
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Chapter 3 

The Relationship Between the One-period and  

the n-period Correlation Coefficients 

In time series studies in which the association between variables is an issue, the 

data collection interval is critical.  If each of the variables exists serial correlation, a 

variety of papers have documented the fact that correlations change over time.  This 

chapter shows the impact of such analyses even if they are independent, identically 

distributed (i.i.d.) variables over time. 

Let be 

a sequence of independent, identically distributed variables.  These variables are not 

autocorrelated over time.  We define the following variables to denote an n-fold 

increase of the differencing interval involving multiplicative, systematically sampled, 

temporal aggregated and additive variables. 

),,,,,,,(,),,,,,,,,( 432143214131211141312111 nnnnnnnn XXXXYYYYXXXXYYYY K

 The multiplicative variables, denoted by  and , are given by )(
1

nY )(
1

nX

   n
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The systematically sampled variables, denoted by  and , are given by )(nY2 2
)(nX
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2
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The temporal aggregated variables, denoted by and , are given by )(
3
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The additive variables, denoted by and , are given by )(
4

nY )(
4

nX

   n
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and 

  . n
n XXXX 44241
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Using the above variables, denoted by , , , , , ,  

and , the impact of the selected time interval on the correlation coefficient 

depending on the various types of variables, is as follows: 
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3.1 Both Are Multiplicative 

 Levy and Schwarz (1997) explain that when two random variables are 

multiplicative, their correlation coefficient will not be independent of the differencing 

interval even when each of the random variables is a product of i.i.d. variables over 

time.  They show that unless ,0  , >= kkXY  the coefficient of determination ( ) 

decreases monotonically as the differencing interval increases, approaching zero in 

the limit. 

2ρ

3.2 Both Are Systematically Sampled 

 Let  and be the systematically sampled variables. Because 

 is a sequence of independent, identically 

distributed (i.i.d.) pairs of variables.  The n-period expected value of  and 

, respectively, are 
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The n-period variances are denoted by  
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The n-period covariance and correlation coefficient are given, respectively, by  
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Equations (1)-(4) provide the fundamental statistics of the systematically sampled 

variables  and , respectively.  All these results do not depend on the 

number of periods.  Hence, we directly obtain the fact that the correlation and 

regression coefficient of  and are unaffected by the selected time interval. 
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3.3 Both Are Additive 

 Using two random variables, we can construct a simple regression model.  If 

the independent variable and the dependent variable are both additive, then 

the regression coefficients corresponding to the model and the correlation coefficient 

between them will be unaffected by the selected time interval. 
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The one-period correlation coefficient is 
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Using Equation (5), the n-period correlation coefficient is as follows: 
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Hence, the correlation coefficient between and is independent of the 

differencing interval.  Using Equation (10) and the relationship between the 

correlation coefficient and the regression coefficient, we can easily obtain the same 

result.  That is, the regression coefficient is also unaffected by the time interval 

employed. 

)(nX 4 4
)(nY

 12



3.4 Both Are Temporal Aggregated 

 Let  and be the temporal aggregated variables.  Because  and 

 are i.i.d. random variables over time, it is similar to Section 3.3 that the 

correlation coefficient between them is unaffected by the selected time interval (e.g. 

). 
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3.5 One Is Multiplicative, the Other Is Systematically Sampled 

  is an multiplicative random variable and  is a random variable from 

systematic sampling.  Because  are i.i.d., we have 
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Form Equation (13), we find that the n-period correlation coefficient  depends 

on the parameter of the multiplicative variable (i.e., 

)(
12

n
yxρ

1yµ  and 
1yσ ) and the 

one-period correlation , but not on the parameters of the systematic sampling 

variable . 
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Proposition 1.  Let  be the n-period correlation coefficient as defined in 

Equation (13).  We obtain the following results: 
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The proof is shown in the Appendix A.1. 

3.6 One Is Multiplicative, the Other Is Additive 

 Levy et al. (2001) study the time interval effect when one of the variables is 

additive and one is multiplicative.  They show that the squared multi-period 

correlation coefficient ( ) monotonically decreases in n, and approaches zero when 

n goes to infinity. 
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3.7 One Is Multiplicative, the Other Is Temporal Aggregated 

Let  is a temporal aggregated variable. Because  are 

i.i.d., we have 
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Similarly, the n-period covariance and correlation coefficient of  and can 

be obtained, respectively, by  
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Equation (17) is the same as the correlation coefficient between multiplicative and 

additive variables (see Levy et al., 2001, p.1152).  It depends only on the parameters 

of the multiplicative variable  except the one-period correlation coefficient 

.  We directly have the limiting properties that the squared correlation 

coefficient  decreases monotonically as n increases and approaches zero 

when n goes to infinity. 

)(
1

nY

)1(
13 yxρ

2)( )(
13

n
yxρ

3.8 One Is Temporal Aggregated, the Other Is Systematically Sampled 

 Let  and  be a temporal aggregated and systematically sampled 

variable, respectively.  The n-period correlation coefficient between them can be 

obtained by  
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Proposition 2.  Let  be the n-period correlation coefficient as defined in the 

above equation.  We obtain the following results: 
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Proof.  We can directly obtain these results from the above equation. 

3.9 One Is Additive, the Other Is Systematically Sampled 

 Term  is an additive random variable and  is a random variable from 

systematic sampling.  Then the n-period correlation coefficient is as follows: 
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The above equation is the same as the result of Section 3.8.  Hence, the squared 

correlation coefficient  decreases monotonically as n increases and 

approaches zero when n goes to infinity. 
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3.10 One Is Additive, the Other Is Temporal Aggregated 

 Similarly,  and  are additive and temporal aggregated variables, 

respectively.  We have 
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It is unaffected by the selected time interval.  This result is the same as Sections 3.2, 

3.3 and 3.4. 
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 From the above cases, the effect of the selected time interval on the various types 

of correlation coefficients can be summarized as follows: 

1. Using the four variables that are multiplicative (M), systematically sampled (S), 

temporal aggregated (T) and additive (A), we can obtain ten kinds of coefficient 

coefficients as shown in Table 3.1. 

2. It is interesting to note that , ,  and  is unaffected by the time 

interval employed, the squared others is decreasing in n.  In empirical study, we 

often transfer the multiplicative variables to additive variables by taking 

logarithms, especially in economics and finance.  The simplification really has 

the better behavior over time. 
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SSρ )(n

TTρ )(n
TAρ )(n

AAρ

3. The n-period correlation coefficients  and  is equal.  Similarly,  

and  also have the same results. 

)(n
STρ )(n

SAρ )(n
MSρ

)(n
MAρ

4. If one of the variables is multiplicative, the squared correlation coefficients are 

decreasing as time interval increases.  As a result, to study the behavior of 

multiplicative variables, this subject deserves more than a passing notice. 

Numerical Results.  Here is a figure that shows the change of the various 

correlation coefficients by the selected time interval in the above cases.  The data 

used in this numerical example are obtained from the Center for Research in Security 

Prices (CRSP) of the University of Chicago.  We consider the monthly rates of 

returns of IBM stock and the S&P500 index from January 1926 to December 1999 for 

888 observations.  Dividend payments are included in the returns. (Tsay, 2002).  We 

assume that the one-period correlation coefficients are equal to 0.6297.  Figure 3.1 

indicates that the n-period correlation coefficients show a horizontal line, which is the 

same as the results of Sections 3.2-3.4 and Section 3.10.  That is to say they are 
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independent of the differencing interval.  In addition, when one of variables is 

multiplicative, , ,  and , the n-period correlation coefficients 

decrease monotonically as n increases.  Figure 3.1 also reveals the decreasing speed 

of  is far faster than .  These results deserve more than a passing notice. 
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MTρ )(n
MSρ )(n

MAρ

)(n
MSρ )(n

MTρ

Table 3.1.  The n-period Correlation Coefficients of Different Kinds of Variables 

Correlation 
coefficients M S T A 

M 
1)(n

MM
ρ  

2)(n
MS

ρ  
3)(n

MT
ρ  

4)(n
MA

ρ  

S 
- 5)(n

SS
ρ  

6)(n
ST

ρ  
7)(n

SA
ρ  

T 
- - 8)(n

TT
ρ  

9)(n
TA

ρ  

A 
- - - 10)(n

AA
ρ  

1. The result of Section 3.1.  6. The result of Section 3.8. 
2. The result of Section 3.5.  7. The result of Section 3.9.    
3. The result of Section 3.7.  8. The result of Section 3.4. 
4. The result of Section 3.6.  9. The result of Section 3.10. 
5. The result of Section 3.2.     10. The result of Section 3.3. 
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Figure 3.1.  The Multi-period Correlation Coefficients 
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Chapter 4 

Simple Regression Models: 

 Multiplicative-Time Aggregated Framework  

 From what has been mentioned above, we know the effect of the selected time 

interval when one random variable is systematically sampled or temporal aggregated 

and the other variable is multiplicative.  Here, we would like to analyze the impact 

of the time interval on the regression coefficient.  We consider the subject under the 

following cases:  (1) the dependent variable is multiplicative; (2) the dependent 

variable is systematically sampled or temporal aggregated. 

4.1 The Dependent Variable Is Multiplicative 

 In the regression model, the dependent variable  is multiplicative and the 

regressor  is systematically sampled.  We can then construct the following 

n-period simple regression model: 

)(
1

nY

)(
2

nX

  ,            (18) εαα ++= )(
210

)(
1

n
nn

n XY

where  and  are as defined in Section 3. Terms )(
1

nY )(
2

nX n0α  and n1α  are the 

regression coefficients corresponding to the n-period regression model. The error term 

ε  is assumed to be normally and independently distributed.  We additionally 

assume that the errors have mean zero and unknown variance . 2σ

By the results of the OLS estimation, we get 
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where  and  are the standard errors of   and , respectively.  The 

limiting properties of 

1ys
2xs )(

1
nY )(

2
nX

n1α̂  are the same as the regression coefficient where the 
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independent variable is additive and the dependent variable is multiplicative (see 

Levy et al., 2001).  

 Now substituting the systematically sampled variable  with the temporal 

aggregated variable , we can rewrite Equation (18) to become 
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Similarly, we have 
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Comparing Equation (20) and (21), we find Equation (21) is Equation (19) times n 

and both the limiting results are the same except the speed of convergence. 

Proposition 3.  Let n1α̂  and n1α̂ ′  be the regression coefficients as defined in 

Equations (19) and (21), respectively.  When the one-period regression coefficients, 

11α̂  and 11α̂ ′ , is greater than zero, we obtain the following results: 

1. If 11 >y , n1α̂  and n1α̂ ′  are monotonically increasing in n, ∞=
∞→ nn 1ˆlimα  

and ∞=′
∞→ nn 1ˆlimα .  

2. If 10 1 <≤ y , n1α̂  is monotonically decreasing in n, 0ˆlim 1 =
∞→ nn
α  and 

0ˆlim 1 =′
∞→ nn
α . 

3. If 11 =y , n1α̂  and n1α̂ ′  are always equal to 11α̂  and 11α̂ ′ . 

These results are obtained directly from Equations (19) and (21). 

4.2 The Dependent Variable Is Systematically Sampled or Temporal Aggregated 

 When the dependent variable is systematically sampled, the regression model is 

as follows: 
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where  and  are as defined in Section 3.  Terms )(
2

nY )(
1

nX n0β  and n1β  are the 

regression coefficients corresponding to Equation (22).  Here, ε  is a random error 

component.  By the results of the OLS estimation, we get 
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where  and  are the standard errors of   and , respectively.  
2 1ys xs )(

2
nY )(

1
nX

Proposition 4.  Let  be the regression coefficients as defined in Equation (23).  

As n approaches infinity, we obtain the following results: 

n1β̂

1. If 11 ≥x  then  .0ˆlim 1 =
∞→ nn
β

2. If 11 <x  and 12
1

2
1

1

≥
+ xs
x

x

, then . 
⎩
⎨
⎧

<∞−
>∞+

=
∞→ 0ˆ if

0ˆ ifˆlim
11

11
1 β

ββ nn

3. If 11 <x  and 12
1

2
1

1

<
+ xs
x

x

, then  .0ˆlim 1 =
∞→ nn
β

The above results can be proved by Levy et al. (2001). 

Alternatively, when the dependent variable is temporal aggregated, the regression 

model is as the following 

  .           (24) εββ +′+′= )(
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We find  is equal to  defined in Equation (23). They have the same properties. n1β̂ ′ n1β̂

4.3 Numerical Example   

Table 4.1 and Table 4.2 illustrate the effect of the selected time interval on the 

correlation coefficients in the regression models corresponding to the U.S. stock 
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market.  We use the same data and assumption (the one-period regression coefficient 

is equal to one) as Levy et al. (2001) in order to help to compare the difference 

between them.  The multi-period regression coefficients in the regression models 

when the independent variable is systematically sampled or temporal aggregated and 

the dependent variable is multiplicative, are shown in Table 4.1 as a numerical 

example.  In Table 4.1, Columns (1)-(4) show the monotonically increasing property 

of regression coefficients n1α̂  and n1α̂ ′  when 1y  is greater than one, which agrees 

with Proposition 3.  Columns (5) and (6) indicate the cases of 10 1 << y .  Term 

n1α̂  is monotonically decreasing in n and approaches zero when n goes to infinity.  

However, term n1α̂ ′  is monotonically increasing as n is small.  When n is large, n1α̂ ′  

is monotonically decreasing in n and approaches zero when n goes to infinity.  Table 

4.1 also tells us that the increasing speed of n1α̂ ′  in n is faster and the decreasing 

speed of n1α̂ ′  in n is slower. 

 Table 4.2 shows the numerical results of Proposition 4.  We assume that the 

dependent variable is systematically sampled or temporal aggregated and the 

independent variable is multiplicative in a simple regression model.  Columns (1)-(4) 

of Table 4.2 indicate that the regression coefficient  decreases monotonically and 

approaches zero as n increases.  Columns (5) and (6) reveal the case where 

n1β̂

11 <x . 

They also show the claim of Case 3 and Case 2 of Proposition 4, respectively.   

4.4 Concluding Remarks 

 In many applications, the relationship between two time series is of major 

interest.  The association between variables is often measured by regression and 

correlation coefficients, which is widely applicable in economics and finance.   

In time series studies in which direction of causation is an issue, the data 
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collection interval is critical.  The data for empirical studies are sometimes limited, 

and aggregation is usually used in empirical study.  They are usually changed to a 

common time interval through temporal aggregation or systematic sampling, 

depending on whether the variables are flow variables or stock variables respectively.  

On the other hand, the multiplicative variables are such as the rate of return on stocks, 

population size, economic growth, etc.  Here, we use the three kinds of variables to 

express the impact of time interval on a simple regression model.  The effect on the 

regression coefficients is substantial.  Hence, the time interval of the data for such 

analyses cannot be selected arbitrarily. 
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Table 4.1.  The Multi-period Regression Coefficients When the Dependent 

Variable Is Multiplicative 

1ys  0.0260 0.0963 0.2110 0.6000 0.1000 0.0100

1y  1.0022 1.0287 1.1200 1.1200 0.9920 0.9500
 (1) (2) (3) (4) (5) (6)

n n1α̂  
1 1 1 1 1 1 1
2 1.0022 1.0287 1.1200 1.1500 0.9920 0.9500
3 1.0044 1.0582 1.2544 1.3225 0.9841 0.9025
4 1.0066 1.0886 1.4049 1.5209 0.9762 0.8574
5 1.0088 1.1198 1.5735 1.7490 0.9684 0.8145
6 1.0110 1.1520 1.7623 2.0114 0.9606 0.7738
7 1.0133 1.1850 1.9738 2.3131 0.9529 0.7351
8 1.0155 1.2190 2.2107 2.6600 0.9453 0.6983
9 1.0177 1.2540 2.4760 3.0590 0.9378 0.6634

10 1.0200 1.2900 2.7731 3.5179 0.9303 0.6302
50 1.1137 4.0008 258.0377 942.3108 0.6746 0.0810

100 1.2430 16.4659 7.46E+04 1.02E+06 0.4515 0.0062
500 2.9940 1.36E+06 3.63E+24 1.94E+30 0.0182 0.0000

1000 8.9835 1.89E+12 1.48E+49 4.34E+60 0.0003 0.0000
n n1α̂ ′  
1 1 1 1 1 1 1
2 1.4173 1.4548 1.5839 1.6263 1.4029 1.3435
3 1.7397 1.8329 2.1727 2.2906 1.7044 1.5632
4 2.0132 2.1772 2.8099 3.0418 1.9524 1.7148
5 2.2558 2.5040 3.5185 3.9109 2.1654 1.8213
6 2.4766 2.8218 4.3168 4.9268 2.3531 1.8954
7 2.6809 3.1353 5.2222 6.1198 2.5213 1.9449
8 2.8723 3.4480 6.2528 7.5237 2.6738 1.9752
9 3.0532 3.7621 7.4279 9.1771 2.8133 1.9903

10 3.2254 4.0794 8.7692 11.1245 2.9417 1.9930
50 7.8750 28.2900 1824.6019 6663.1437 4.7704 0.5727

100 12.4304 164.6589 7.46E+05 1.02E+07 4.5150 0.0623
500 66.9468 3.03E+07 8.11E+25 4.34E+31 0.4063 0.0000

1000 284.0822 5.98E+13 4.66E+50 1.37E+62 0.0104 0.0000
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Table 4.2.  The Multi-period Regression Coefficient When the Independent 

Variable Is Multiplicative 

1xs  0.0260 0.0963 0.2110 0.6000 0.1000 0.0100

1x  1.0022 1.0287 1.1200 1.1200 0.9920 0.9500
)/( 2

1
2

1 1
xsx x +  0.9971 0.9637 0.8623 0.6835 0.9979 1.0525

 (1) (2) (3) (4) (5) (6)
n 

n1β̂  
1 1 1 1 1 1 1
2 0.4987 0.4839 0.4386 0.3827 0.5015 0.5263
3 0.3316 0.3122 0.2565 0.1943 0.3353 0.3693
4 0.2481 0.2267 0.1687 0.1105 0.2522 0.2915
5 0.1980 0.1755 0.1184 0.0667 0.2024 0.2455
6 0.1646 0.1415 0.0865 0.0418 0.1691 0.2153
7 0.1407 0.1174 0.0650 0.0268 0.1454 0.1943
8 0.1228 0.0994 0.0499 0.0175 0.1276 0.1789
9 0.1089 0.0855 0.0389 0.0115 0.1138 0.1674

10 0.0977 0.0745 0.0307 0.0077 0.1027 0.1586
11 0.0886 0.0656 0.0244 0.0051 0.0936 0.1518
12 0.0810 0.0582 0.0196 0.0034 0.0861 0.1464
13 0.0746 0.0520 0.0159 0.0023 0.0797 0.1423
14 0.0691 0.0467 0.0129 0.0016 0.0742 0.1390
15 0.0643 0.0422 0.0106 0.0011 0.0694 0.1366
20 0.0476 0.0268 0.0041 0.0002 0.0528 0.1324
25 0.0376 0.0182 0.0017 0.0000 0.0428 0.1368
50 0.0177 0.0040 0.0000 0.0000 0.0229 0.2463

100 0.0078 0.0004 0.0000 0.0000 0.0129 1.5958
500 0.0006 0.0000 0.0000 0.0000 0.0036 2.54E+08

1000 0.0001 0.0000 0.0000 0.0000 0.0013 1.70E+19
1500 0.0000 0.0000 0.0000 0.0000 0.0004 1.51E+30

(1) Correspond to weekly data of Common Stock Index. 
(2) Correspond to quarterly data of Common Stock Index. 
(3) Correspond to yearly data of Common Stock Index. 
(4) Correspond to individual stocks or to other phenomena not necessarily taken from the stock market. 
(5) A case in Proposition 4, item 3. 
(6) A case in Proposition 4, item 2. 
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Chapter 5 

Multiple Regression Models:  

Additive-Multiplicative Framework 

 This chapter presents the time interval effect of multiple regression models in 

which some of the variables are additive and some are multiplicative.  It is to 

complement and extend the results in Levy and Schwarz (1997) and Levy et al. 

(2001).  They use the correlation and the regression coefficient to demonstrate the 

importance of analyzing the time interval effect and provide us with a very good 

concept.  Unfortunately, very often we move to the situation with more than one 

independent variable such that the inferential possibilities increase more or less 

exponentially.  Therefore, we would like to focus on an extension to the multiple 

regression models.  We may consider the subject under the following cases:  (1) the 

dependent variable is additive; (2) the dependent variable is multiplicative.   

5.1 The Dependent Variable Is Additive 

In the multiple regression model, the dependent variable is additive and the 

regressors are composed of one additive and one multiplicative variable 

simultaneously.  We can then construct the following n-period multiple regression 

model: 

  ,       (25) εααα +++= )(
12

)(
410

)(
4

n
n

n
nn

n XXY

where , , and  are as defined in Section 3.  Terms )(
4

nY )(
4

nX )(
1

nX n0α , n1α , and 

n2α  are the regression coefficients corresponding to the n-period multiple regression 

model.  The error term ε  is assumed to be normally and independently distributed.  

We additionally assume that the errors have mean zero and unknown variance . 2σ
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To apply the above suitable transformation, standardized variables, the regression 

model becomes 
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where is the simple correlation between regressor  and .  Similarly, 

is the simple correlation between the regressor  and the response . 

)(n
ijr )(n

ix )(n
jx

)(n
jyr
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Proposition 5.  Let n1α̂ be the n-period partial regression coefficient of the 

regression as defined in (25).  We obtain the following results: 

1. As n approaches infinity, 111 ˆˆlim αα =
∞→ nn

(for the properties of the partial 

regression coefficient n2α̂ , see Levy et al., 2001). 

2. If the regressor variables,  and , are independent, then)(nX 4 1 111
)(nX ˆˆ αα =n . 

Proof. 
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1. Applying the results of Section 3.3 to Equation (28), we know that  and 

.  Hence, as n approaches infinity, the standardized regression 

coefficients  can be obtained 
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where  is shown in Section 3.1.  Using the relationship between the 

original and standardized regression coefficients, we achieve 
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Using Equations (29), and (30), the n-period partial regression coefficient n1α̂  is as 

follows: 
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which completes the proof. 

2. Because  and are independent, it is obvious that . 

Similarly, using Equation (30), we obtain 
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Proposition 6.  Let  and  be the partial correlation coefficients of the 

regression as defined in (25).  Therefore, 
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Because  and  (see Section 3.6), we achieve .  
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Since  (see Section 3.6) and  (see Section 3.3), we directly 

obtain that , which completes the proof. 
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5.2 The Dependent Variable Is Multiplicative 

 When the dependent variable is multiplicative, the regression model is as 

follows: 
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are the regression coefficients corresponding to Equation (31).  Here, ε  is a 

random error component. 

 We similarly let: 
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The regression model then becomes 
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Proposition 7. Let  be the n-period partial regression coefficient of the 

regression as defined in (31).  As n approaches infinity,  (for the 

properties of the partial regression coefficient , see Levy et al., 2001). 

n2β̂

0ˆlim 2 =
∞→ nn
β

n1β̂

The proof for Proposition 7 appears in Appendix A.2. 

Proposition 8. Let  and  be the partial correlation coefficients of the 

regression as defined in (31). Therefore: 
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1. The partial correlation coefficient  can be expressed by )(
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Since  and  (see Section 3.6), and  (see 
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Similarly, because ,  (see Section 3.6) and  (see 

Section 3.1), we obtain that , which completes the proof. 
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5.3 Numerical Example 

Table 5.1 illustrates the effect of the selected time interval on the partial 

regression and correlation coefficients in the multiple regression models 

corresponding to the U.S. stock market.  We use the monthly rates of returns of IBM 

stock and the S&P500 index shown in Table 5.1 as a numerical example.  The 

sample period is from January 1926 to December 1999.  In Table 5.1, three of the 

correlation coefficients (Columns (1)-(3)), depending on the additive or multiplicative 

variables, seem to be helpful in attempting to sketch out the association between 

variables in the multiple regression models.  Using three distinct kinds of correlation 

coefficients corresponding to the two return series (corresponding to  

   and 

,0148.1)( ≅XE

,0046.02 ≅xσ ,0070.1)( ≅YE  0032.02 ≅yσ 0024.0 ≅xyσ ), the other 

parameters (Table 5.1, Columns (4)-(9)) can be easily obtained.  
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 To begin with, we claim that 111 ˆˆlim αα =
∞→ nn

 in Proposition 5 where the 

dependent variable is additive.  Column (4) of Table 5.1 reveals that n1α̂  becomes 

closer to 11α̂ (=0.52315) as n increases and =n1α̂ 0.52315 (i.e., 111 ˆˆ αα =n ) as 

.  Therefore,  approaches  and  approaches zero as n 

increases (see Columns (5) and (6)).  The results also confirm with the claim of 

Proposition 6.  Finally, we turn to the case where the dependent variable is 

multiplicative.  Column (7) indicates that approaches zero and decreases 

monotonically as n increases.  This seems reasonable to support the claim of 

Proposition 7.  The claim of Proposition 8 is shown in Columns (8) and (9).  

5000=n )(
1.44

n
yr )1(

44yr )(
4.14

n
yr

n2β̂

5.4 Concluding Remarks 

 We usually use a regression model to express the relationship between a variable 

of interest (the dependent variable) and a set of related independent variables.  The 

association between variables is often measured by regression and correlation 

coefficients.  The time interval of the data for such analyses cannot be selected 

arbitrarily.  When two random variables are additive or multiplicative, the effect of 

the time interval employed is well documented in the literature. 

 In this chapter we study the multiple linear regression models with two 

independent variables, where one of the variables is additive and the other variable is 

multiplicative.  The dependent variable corresponding to the models is either 

additive or multiplicative.  We show that the partial regression and correlation 

coefficients are affected by the selected time interval.  When two variables are both 

additive, the partial regression and correlation coefficients between them approach 

one-period values as n goes to infinity.  When one of the variables is multiplicative, 

they approach zero as n increases.  The longer time intervals will decrease the 
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relevant association between variables, particularly for the multiplicative dependent 

variable.  We should not overlook these phenomena in such empirical analyses or it 

might lead to making incorrect decisions and misguided actions.  The power of the 

test for the correlation is also influenced by the differencing interval.  We also find 

that the decreasing speed of the n-period correlation coefficients between both 

multiplicative variables is faster than others, except that the one-period correlation has 

a higher positive value.  This subject in the case deserves more than a passing notice. 

 The results of this chapter relate to a multiple regression analysis, which is one 

of the most widely used techniques for analyzing multifactor data.  Its broad appeal 

and usefulness are applied to studies conducted in various fields where variables are 

additive or multiplicative over time. 

 

 

 33



Table 5.1.  The Multi-period Partial Regression and Correlation Coefficients 

n Corr (n) 

A&A 

(1) 

Corr (n) 

M&M 

(2) 

Corr (n)

A&M 

(3) 

n1α̂  

 
(4) 

)(
1.4

n
yr

4 4 1 1
 

 
(5) 

)(
4.1

n
yr  

 
(6) 

n2β̂  

 
(7) 

)(
1.4

n
yr  

 
(8) 

)(
4.1

n
yr  

 
(9) 

1 
 

0.62969 0.62969 0.62969 0.32102 0.38639 0.38639 0.52720 0.38639 0.38639 

2  0.62969 0.62923 0.62920 0.32154 0.38702 0.38588 0.52664 0.38618 0.38626 

3  0.62969 0.62878 0.62870 0.32206 0.38765 0.38538 0.52608 0.38596 0.38614 

4  0.62969 0.62832 0.62821 0.32259 0.38828 0.38488 0.52553 0.38575 0.38602 

5  0.62969 0.62787 0.62771 0.32311 0.38890 0.38438 0.52497 0.38554 0.38589 

6  0.62969 0.62741 0.62722 0.32363 0.38953 0.38388 0.52441 0.38533 0.38577 

7  0.62969 0.62695 0.62672 0.32414 0.39015 0.38338 0.52385 0.38512 0.38564 

8  0.62969 0.62650 0.62623 0.32466 0.39077 0.38289 0.52329 0.38491 0.38552 

9  0.62969 0.62604 0.62574 0.32517 0.39139 0.38239 0.52273 0.38470 0.38539 

10  0.62969 0.62558 0.62524 0.32569 0.39201 0.38190 0.52218 0.38449 0.38526 

11  0.62969 0.62512 0.62475 0.32620 0.39262 0.38140 0.52162 0.38428 0.38513 

12  0.62969 0.62467 0.62426 0.32671 0.39324 0.38091 0.52106 0.38408 0.38501 

13  0.62969 0.62421 0.62376 0.32721 0.39385 0.38042 0.52050 0.38387 0.38488 

14  0.62969 0.62375 0.62327 0.32772 0.39446 0.37992 0.51994 0.38366 0.38475 

15  0.62969 0.62329 0.62278 0.32823 0.39506 0.37943 0.51938 0.38345 0.38462 

20  0.62969 0.62100 0.62031 0.33073 0.39808 0.37699 0.51659 0.38241 0.38395 

25  0.62969 0.61871 0.61786 0.33319 0.40104 0.37457 0.51380 0.38137 0.38327 

50  0.62969 0.60718 0.60561 0.34496 0.41521 0.36278 0.49983 0.37625 0.37966 

75  0.62969 0.59558 0.59346 0.35589 0.42836 0.35148 0.48588 0.37122 0.37570 

100  0.62969 0.58391 0.58140 0.36605 0.44060 0.34063 0.47196 0.36625 0.37144 

500  0.62969 0.39989 0.40466 0.46291 0.55718 0.21094 0.26955 0.28973 0.28238 

1000  0.62969 0.21934 0.23745 0.50477 0.60756 0.11652 0.11059 0.19559 0.17269 

5000  0.62969 0.00072 0.00097 0.52315 0.62969 0.00046 0.00003 0.00097 0.00072 

10000  0.62969 0.00000 0.00000 0.52315 0.62969 0.00000 0.00000 0.00000 0.00000 

(1) The correlation coefficient in the additive-additive case. 
(2) The correlation coefficient in the multiplicative-multiplicative case. 
(3) The correlation coefficient in the additive-multiplicative case. 
(4) The partial regression coefficient as defined in Proposition 5. 
(5) The partial correlation coefficient as defined in Proposition 6. 
(6) The partial correlation coefficient as defined in Proposition 6. 
(7) The partial regression coefficient as defined in Proposition 7. 
(8) The partial correlation coefficient as defined in Proposition 8. 
(9) The partial correlation coefficient as defined in Proposition 8. 
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Chapter 6 

Multiple Regression Models:  

Aggregated-Systematically Sampled Framework 

 The aggregation of financial and economic time series occurs in a number of 

ways.  Temporal aggregation or systematic sampling is the commonly used approach.  

In this chapter we investigate the time interval effect of multiple regression models in 

which the variables are additive or systematically sampled.  Levy and Schwarz 

(1997) and Levy et al. (2001) consider the time interval effect when two random 

variables are additive or multiplicative.  However, the multiplicative variables can be 

converted to additive variables by taking logarithms.  The simplification is not 

merely in reducing multiplication to addition, but more in modeling the statistical 

behavior of some variables over time.  

6.1 The Dependent Variable Is Additive 

 In the multiple regression model, the dependent variable is additive and the 

regressors are composed of one additive and one systematically sampled variable 

simultaneously.  We can then construct the following n-period multiple regression 

model: 

  ,       (34) εααα +++= )(
22

)(
410

)(
4

n
n

n
nn

n XXY

where , , and  are as defined in Section 3.  Terms )(
4

nY )(
4

nX )(
2

nX n0α , n1α , and 

n2α  are the regression coefficients corresponding to the n-period multiple regression 

model.  The error term ε  is assumed to be normally and independently distributed.  

We additionally assume that the errors have mean zero and unknown variance . 2σ

Let   
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To apply the above suitable transformation and standardized variables, the regression 

model becomes 
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where is the simple correlation between regressor  and  (see Neter, 

1989, p.290).  Similarly, is the simple correlation between the regressor  

and the response .  

)(n
ijr )(n

ix )(n
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)(
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n
jyr )(n

jx

)(
4
ny

Proposition 9.  Let n1α̂ be the n-period partial regression coefficient of the 

regression as defined in Equation (34).  We obtain the following results: 

1. As n approaches infinity, 111 ˆˆlim αα =
∞→ nn

 and . )1(
4

)1(
44

/ˆˆlim )1(
4

)1(
24212 xyynn

SSrr−=
∞→

αα

2. If the regressor variables,  and , are independent, then)(
4

nX )(
2

nX 111 ˆˆ αα =n  

and 212 ˆˆlim αα =
∞→ nn

. 

Proof. 
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1. Using the relationship between the original and standardized regression coefficients, 

we achieve 
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Using Equation (38) and applying the results of Section 3.3 to Equation (37), the 

n-period partial regression coefficient n1α̂  is as follows: 
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which completes the proof. 

2. Because  and are independent, it is obvious that  for all n.  

Similarly, using Equations (37) and (38), then 
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is obtained by Equation (40).  

Proposition 10.  Let  and  be the partial correlation coefficients of the 

regression as defined in Equation (33).  Therefore, 
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1. The partial correlation coefficient  can be expressed by )(
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Because  and  (see Section 3.9), we achieve .   

Using the relationship  (see Section 3.6), we obtain .  In 

particular, if and are independent, then . 
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Since  (see Section 3.9) and  (see Section 3.6), we directly 

obtain that , which completes the proof. 
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6.2 The Dependent Variable Is Systematically Sampled 

 When the dependent variable is systematically sampled, the regression model is 

as follows: 
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The regression model then becomes 
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Proposition 11.  Let  be the n-period partial regression coefficient of the 

regression as defined in (41).   

n2β̂

1. As n approaches infinity,  and . 0ˆlim 1 =
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The proof for Proposition 11 appears in Appendix A.3. 

Proposition 12.  Let  and  be the partial correlation coefficients of the 

regression as defined in (41).  Therefore: 
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Proof. 

1. The partial correlation coefficient  can be expressed by )(
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Since  and  (see Section 3.9), and  (see Section 
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Similarly, because ,  (see Section 3.9) and  

(see Section 3.2), we obtain that , which completes the proof. 
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6.3 Numerical Example 

Table 6.1 illustrates the effect of the selected time interval on the partial 

regression and correlation coefficients in the multiple regression models 

corresponding to the U.S. stock market.  We use the daily simple returns of the S&P 

500 index and American Express stock shown in Table 6.1 as a numerical example.  

The sample period is from January 1990 to December 1999.  For the reason of 

convenient comparison, we use the two variables to simulate the results in order to 

keep the corresponding parameters the same.  Three distinct kinds of the correlation 

coefficients discussed in Section 3 seem to be helpful in attempting to sketch out the 

association between variables in the multiple regression models.  Using the various 

correlation coefficients corresponding to the two return series (corresponding to 
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,0006.1)( ≅XE ,0089.0≅xσ  ,0010.1)( ≅YE  0206.0≅yσ and ), the 

other parameters (Table 6.1, Columns (1)-(8)) can be easily obtained.  

5828.0)1( ≅xyρ

 To begin with, we claim that 111 ˆˆlim αα =
∞→ nn

 in Proposition 9 where the 

dependent variable is additive.  Column (1) of Table 6.1 reveals that n1α̂  becomes 

closer to 11α̂ (=1.3527) as n increases and =n1α̂ 1.3527 (i.e., 111 ˆˆ αα =n ) as 

.  Also,  approaches  and  approaches zero as n increases 

(see Columns (3) and (4)).  The results also confirm the result of Proposition 10.  

Finally, we turn to the case where the dependent variable is systematically sampled.  

Column (5) indicates that approaches zero as n increases.  The limits claimed in 

Propositions 11 and 12 are illustrated in the Columns (6), (7) and (8). 

5000=n )(
2.44

n
yr )1(

44yr )(
4.24

n
yr

n1β̂

6.4 Concluding Remarks 

 The relationship between variables is described through regression models and 

correlation coefficients.  If each of the variables is a time series with autocorrelation, 

then a variety of papers have documented the fact that correlations change over time.  

When random variables are additive or multiplicative, such effects have been evident 

even if they are i.i.d. variables over time.  However, we should not overlook that 

some of the variables are from systematic sampling (e.g. stock prices and interest 

rates).  This paper considers the effect of the time interval when one of the variables 

is additive and one is from systematic sampling.  

 Additive and systematically sampled random variables are usually analyzed in 

empirical studies.  When the original variables are the stock variables or computed 

through taking a logarithm for multiplicative variables, they change their frequency 

by additive operations to become additive variables.  Systematic sampling represents 

the choice of a particular observation value at fixed intervals.  Systematically 
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sampled variables are widely applied in many fields.   

In this chapter we find that the correlation coefficient is changed with the 

selected time interval when one is additive and the other is systematically sampled.  

It is shown that the squared correlation coefficient decreases monotonically as the 

differencing interval increases, approaching zero in the limit.  In sampling for 

empirical studies, the results should not be ignored, particularly for decisions 

depending on the correlation between variables.  When two random variables are 

both added or systematically sampled, the correlation coefficient is invariant with 

time and is equal to the one-period values.  Moreover, we also find that the partial 

regression and correlation coefficients between two additive or systematically 

sampled variables approach one-period values as n increases.  When one of the 

variables is systematically sampled, they will approach zero in the limit.  These 

results are similar to the properties of the correlation coefficients.  It will be useful to 

keep these points in mind as we examine the empirical studies. 
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Table 6.1.  The Multi-period Partial Regression and Correlation Coefficients 

Time interval  

(n) 

n1α̂  

(1) 

n2α̂  

(2) 

)(
2.4

n
yr

4 4 2 2

(3) 

)(
4.2

n
yr  

(4) 

n1β̂  

(5) 

n2β̂  

(6) 

)(
2.4

n
yr  

(7) 

)(
4.2

n
yr

(8) 

1 
 

0.855 0.855 0.368 0.368 0.368 0.368 0.855 0.855

2  1.155 0.680 0.498 0.232 0.232 0.498 0.340 1.155

3  1.229 0.636 0.530 0.184 0.184 0.530 0.212 1.229

4  1.263 0.617 0.544 0.156 0.156 0.5441 0.154 1.263

5  1.282 0.606 0.552 0.139 0.139 0.552 0.121 1.282

6  1.295 0.598 0.558 0.126 0.126 0.558 0.100 1.295

7  1.303 0.593 0.562 0.116 0.116 0.562 0.085 1.303

8  1.310 0.589 0.564 0.108 0.108 0.564 0.074 1.310

9  1.315 0.587 0.567 0.102 0.102 0.567 0.065 1.315

10  1.319 0.584 0.568 0.096 0.096 0.568 0.058 1.319

11  1.322 0.582 0.570 0.092 0.092 0.570 0.053 1.322

12  1.325 0.581 0.571 0.088 0.088 0.571 0.048 1.325

13  1.327 0.580 0.572 0.084 0.084 0.572 0.045 1.327

14  1.329 0.578 0.573 0.081 0.081 0.573 0.041 1.329

15  1.330 0.577 0.573 0.078 0.078 0.573 0.039 1.330

20  1.336 0.574 0.576 0.068 0.068 0.576 0.029 1.336

25  1.339 0.572 0.577 0.060 0.060 0.577 0.023 1.339

50  1.346 0.568 0.580 0.043 0.043 0.580 0.011 1.346

75  1.348 0.567 0.581 0.035 0.035 0.581 0.008 1.348

100  1.350 0.566 0.581 0.030 0.030 0.581 0.006 1.350

5000  1.353 0.564 0.583 0.004 0.004 0.583 0.000 1.353

(1) & (2) The partial regression coefficient as defined in Proposition 9. 
(3) & (4) The partial correlation coefficient as defined in Proposition 10. 
(5) & (6) The partial regression coefficient as defined in Proposition 11. 
(7) & (8) The partial correlation coefficient as defined in Proposition 12. 
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Chapter 7 

Conclusions 

 In time series analysis of a given set of variables, practitioners often have to 

decide whether to use monthly, quarterly or annual data.  They usually try to use the 

time series data of the higher frequency in order to increase the number of 

observations.  However, the data for such analyses are sometimes limited and 

available for different periodicities and different time spans.  The standard approach 

is to change them to a common time interval through aggregation, systematic 

sampling or multiplication depending on whether the variables are flow variables, 

stock variables or the growth rate of specific variables, respectively.  This 

dissertation aims to study the effect of time interval on the association between the 

four types of variables. 

 In time series studies in which the association between variables is an issue, the 

collection interval is critical.  If each of the variables exists serial correlation, a 

variety of papers have documented the fact that correlations change over time.  This 

dissertation considers the impact of such analyses even if they are independent, 

identically distributed (i.i.d.) variables over time.  It follows from what has been said 

that the squared correlation coefficients are decreasing as time interval increases 

except , ,  and .  This approach, apart from losing information, 

may defeat the purpose of using the association between variables so as to make a 

correct decision or to forecast a key variable of interest.  Thus, we are concerned 

with the question of the impact of the employed time interval.      

)(n
SSρ )(n

TTρ )(n
TAρ )(n

AAρ

 In addition to these, the important point to note is the effect of the selected time 

interval on regression coefficients and partial regression coefficients in simple 
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regression models and multiple regression models respectively.  They are also used 

to measure the association between variables.  We study the simple and multiple 

linear regressions models with the above mentioned four types of variables.  It can 

be also shown that regression coefficients and partial regression coefficients are 

affected by the selected time interval.  The longer time intervals will decrease the 

relevant association between variables, particularly for the multiplicative dependent 

variable.   

 All these things make it clear that we should not overlook these phenomena in 

such empirical analyses or it might lead to making incorrect decisions and misguided 

actions.  Their broad appeal and usefulness are applied to studies conducted in 

economics and finance.  At the same time, we can also examine the impact of the 

selected data frequency on the demand correlation and the value of information 

sharing in a supply chain.  An extension to the supply chain inventory management 

is the subject of future research.        
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Appendix 

A.1.  Proof of Proposition1. 
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Differentiating  with respect to n, we get 2)( )(
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yxρ  (Levy et al., 2001).  

It is shown that  is monotonically decreasing in n.  Now turn to the second 

claim of Proposition 1.  Because   and  

(Levy et al., 2001), we can obtain  (by Sandwich Theorem), which 

completes the proof. 
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A.2.  Proof of Proposition 7. 

 Here we demonstrate the results of Proposition 7 from Levy and Schwarz (1997).  

Substituting the variable B (see Levy and Schwarz (1997) Equation (1), p. 343) with 

the variable A, we get  

 
)1()1(
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nn

n
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C . 

Using the above substitution, nρ  can be regarded as the regression coefficient 

between two multiplicative variables.  Hence, the results are obtained directly from 

Levy and Schwarz (1997). 

A.3.  Proof of Proposition 11.  

1. The approach here is similar to that of Proposition 9.  Substituting the variable 

 with the variable , we obtain )(nY4 2
)(nY
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2. If  and  are independent, then we have , and 

 and  can be obviously obtained by the above two equations. 
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