國立交通大學 材料科學與工程學研究所

碩士論文

壓應力對鎳片在非晶矽薄膜誘發側向結晶之影響 Effect of compressive stress on the nickel sheet induced lateral crystallization of amorphous silicon thin film.

- 研究生:林欣龍
- 指導教授:劉增豐 教授
 - 朝春光 教授

中華民國九十八年七月

壓應力對鎮片在非晶矽薄膜誘發側向結晶之影響

學生:林欣龍

指導教授:劉增豐教授

朝春光教授

國立交通大學材料與工程研究所碩士班

摘 要

本論文研究目的為使用一種低成本,可以替代昂貴鍍膜設備,產 生金屬誘發非晶矽薄膜側向結晶之方法。使用鎳片施加 265.8 MPa ES 至 2.857 MPa 壓應力於非晶矽層上並熱處理後,進行 AFM、SEM、 EDS、Raman 與 XRD 之分析。 1896

當壓應力為 268.8 MPa 時做 550℃一小時之熱處理,其表面鎳 矽層厚度為 185.95 nm,EDS 分析其鎳含量為 76.22 at%。壓應力 2.857 MPa 時,表面之鎳矽層為 8.98 nm,EDS 分析其鎳含量為 0.33 at%。壓應力介於 265.8 MPa 與 132.9 MPa 時 550℃一小時之熱處 理,較難側向成長,壓應力介於 38.2 MPa 與 3.7 MPa 時在在熱處理 的過程中已經開始側向成長。在移除壓應力與鎳片後用 550℃熱處理 側向成長速率皆約為 3.3µm/h。壓應力 2.857 MPa 做 550℃一小時之 熱處理後移除鎳片再作 550℃四小時之熱處理之試片以 SIMS 分析, 其鎳殘留量約為 30 counts。由拉曼光譜分析得知試片之結晶矽峰值 位置在 517.11 cm⁻¹,為多晶矽之訊號。

Effect of compressive stress on the nickel sheet induced lateral crystallization of amorphous silicon thin film.

Student : H. L. Lin

Advisor : Dr. T. F. Liu

Dr. C. G. Chao

Department of Materials Science and Engineering National Chiao Tung University

Abstract

The purpose of this study is to develop a low-cost fabrication method of metal induced lateral crystallization of amorphous silicon film, which can replace the expensive coating equipment. After executed compressive stress at the stresses ranging from 265.8MPa to 8.857Mpa and heat treated, the specimens were analyzed by AFM, SEM, EDX, Raman and XRD.

After carried out compressive stress of 265.8MPa at 550° C for 1h, the thickness of nickel silicide surface film was 185.95nm. EDS analysis indicated that the Ni content of the nickel silicide film was 76.22 at%. When the compressive stress executed with 2.857 MPa at 550° C for 1 hr, the thickness of nickel silicide was 8.98 nm

and EDS analyzed the Ni content was 0.33 at%. The nickel silicide was hard to form at the compressive stress between 265.8MPa and 132.9MPa at 550°C for 1 hr. However the nickel silicide induced lateral crystallization was occurred at the compressive stress between 38.2MPa and 3.7MPa at 550°C for 1 hr. After nickel sheet removed the compress stress and then annealed at 550°C, the lateral crystallization rate was 3.3 µm/h. The nickel concentration of the sample which was enforced with 2.857MPa at 550°C for 1 hr and then nickel sheet removed and annealed at 550°C for 4 hr was examined by SIMS. The residual nickel concentration was 30 counts. From Raman spectroscopy, the Raman signal at lateral crystallization region was 517.11 cm⁻¹, the result showed that the grain was poly-grain by Raman signal.

目錄

中文摘要	I
英文摘要	
目錄	V
圖目錄	
表目錄	XI

第一章 緒論

-	(***) Vind	
1.1	研究背景	1
1.2	研究動機	3
二章	文獻回顧	

第二章 文獻回顧

2.1 固相結晶法	•••••	4
2.2 準分子雷射		5
2.3 化學氣相沉積		7
2.4 金屬誘發結晶		8
2.4.1 降低鎳之殘留量		11
2.5 拉曼散射光譜用於多晶砂之分析		12

第三章 實驗步驟

3.1 實驗流程
3.2 試片製備
3.3 試片清洗
3.4 錄片製備
3.5 夾具製備
3.6 第一步热處理
3.7 真空封管
3.8 第二步熱處理
3.9 測試與分析
3.9.1 場發射掃描式電子顯微鏡(SEM)
3.9.2 拉曼光譜分析(Raman)25
3.9.3 原子力顯微鏡(AFM)
3.9.4 X光繞射分析(XRD)26
3.9.5 飛行時間二次離子質譜儀(TOF-SIMS)

第四章 結果與討論

4.	1	壓力對鎳拿	金屬	層的景	。響	30
----	---	-------	----	-----	----	----

4.2 壓力對第一步熱處理中側向成長之影響………………………… 32

4.3	第二步熱處理對側向成長速率的影響	35
-----	------------------	----

4.4 鎳金屬之殘留量

	4.4.1 EDS 分析 ······	36
	4.4.2 Etching pits 比較	39
	4.4.3 SIMS 分析	40
4.5	· 拉曼光譜定性之分析 ······	41
4.6	;X光繞射定性之分析	43

圖目錄

圖	2-1 準分子雷射再結晶部分熔融示意圖1	5
圖	2-2 準分子雷射再結晶完全熔融示意圖1	6
圖	2-3 準分子雷射再結晶部分完全熔融示意圖1	7
圖	2-4 熱線式化學氣相沉積示意圖1	8
圖	2-5 鎳-矽反應之莫耳自由能曲線	8
圖	2-6 NiSi2誘發結晶機制示意圖]	19
圖	2-7 鎳-矽反應相圖2	20
圖	2-8 (a)NiSi2(b)Si 之晶體結構	20
圖	2-9 拉曼散射與瑞立散射 2-9	21
圖	2-10 C. M. Hu 文獻[46]之 SIMS 分析	21
圖	3-1 實驗流程圖 2	22
圖	3-2 經過研磨後之鎳片 2	28
圖	3-3 夾具	28
圖	3-4 拉曼光譜儀裝置 2	29
圖	3-5 原子力顯微鏡構造圖 2	29
圖	4.1 鎳片經由 80 號砂紙研磨後之 side view	17
圖	4-2 分別(a)400 號以及(b)2000 號	

砂紙研磨後之 AFM 表面形貌 49

圖 4-3 分別為試片經過(a)80 號砂紙 20kg (b)80 號砂紙 10kg

(c)400 號砂紙 20KG (d) 400 號砂紙 10KG (e)2000 號砂

紙 20KG(f) 2000 號砂紙 10KG 之 550℃一小時第一步熱處

理後之 OM 圖 ······52

圖	4-4	試片	A 經	過第	一步	熱處	理後	之之	表面	形貌	••••	• • • • • •	• • • • • • •	••••	53
圖	4-5	試片	B 經	過第	一步	熱處	理後	之之	表面	形貌	••••	•••••	• • • • • • • •	••••	54
圖	4-6	試片	C 經	過第	一步	熱處	理後	之之	表面	形貌	••••	•••••	• • • • • • • •	••••	55
圖	4-7	試片	D 經	過第	一步	熱處	理後	之	表面	形貌	••••	• • • • • •	• • • • • • • •	••••	56
圖	4-8	試片	E經	過第	一步	熱處	理後	之之	表面	形貌	••••	• • • • • •	• • • • • • • •	••••	57
圖	4-9	試片	F經	過第	一步	熱處	理後	ŻŻ	表面	形貌	••••	• • • • • •	• • • • • • • •	••••	58
圖	4-10	施加	應力	與鎳	动化	合物	为厚厚	度作	圖・	5		•••••	•••••		59
圖	4-11	(a)∮	與(b)	為A	試片	經由	9第-	- 步	熱處	理不	同區	域之	. SEM	圖••	•60
圖	4-12	(a)\$	與(b)	為B	試片	經由	日第-	一步	熱處	理不	同區	域之	. SEM	圖••	•61
圖	4-13	C 試	片經	由第	一步	熱處	理之	SEI	M 圖	•••••	••••	•••••	•••••	•••••	•62
圖	4-14	D試	片經	由第	一步	熱處	理之	SEI	M 圖	•••••	••••	•••••	•••••	•••••	•62
圖	4-15	E試	片經	由第	一步	熱處	理之	SEI	M 圖	•••••	••••	•••••	•••••	•••••	•63
圖	4-16	F試	片經	由第	一步	熱處	理之	SEI	M 圖	•••••	••••	•••••	•••••	••••	•63
圖	4-17	為圖	4-1	1(b)	框框	範圍]之苏	大	 	• • • • • • • •	• • • • •	•••••	• • • • • • • •	••••	64
圖	4-18	A 至	F試	片在	550	℃經	過不	同素	熟						

	處理時間對側向成長距離圖65
圖	4-19 A 試片 EDS 分析之位置圖66
圖	4-20 B 試片 EDS 分析之位置圖66
圖	4-21 C 試片 EDS 分析之位置圖67
圖	4-22 D 試片 EDS 分析之位置圖67
圖	4-23 E 試片 EDS 分析之位置圖68
圖	4-24 F 試片 EDS 分析之位置圖68
圖	4-25 Etching pits 示意圖69
圖	4-26 A 試片經過 550℃四小時熱處理之 SEM 圖
圖	4-27 A 試片經過 550℃四小時熱處理之
	Etching pits 區域放大圖
圖	4-28 經過 550℃四小時之第二步熱處理之 etching pits
	含量與第一步熱處理過程所施加之應力作圖 71
圖	4-29 F 試片經 550℃四小時熱處理之 SIMS 分析 71
圖	4-30 試片(a)A (b)B (c)C (d)D (e)E (f)F
	分別經不同時間退火之拉曼光譜分析 74

圖 4-31 A-F 試片經過 550℃四小時之 X 光繞射分析圖 ·······75

表目錄

表 2-1	不同準分子雷射氣體及其波長
表 2-2	錄-矽反應之晶體結構······14
表 4-1	錄片經過不同號數砂紙研磨後之表面粗糙度45
表 4-2	試片受到不同粗糙度之砂紙與不同壓力下所受之應力45
表 4-3	試片受到不同粗糙度之砂紙與

不同壓力下第一步熱處理後試片上之錄層厚度 …… 46 表 4-4 A 至 F 試片第一步熱處理過程之

非晶砂层中之镍矿	7化合物深度	46
	ESA	
表 4-5 A 試片之 EDS 分析		66
表 4-6 B 試片之 EDS 分析		66
表 4-7 C 試片之 EDS 分析		67
表 4-8 D 試片之 EDS 分析		67
表 4-9 E 試片之 EDS 分析		68
表4-10F試片之EDS分析		68

第一章 緒論

1.1 研究背景

目前平面顯示器(Flat Panel Display, FPD)大致上可分為五類。 分別為陰極射線管(Cathode Ray Tube, CRT)螢幕、有機發光顯示器 (Organic Light EmittingDiode, OLED)、電漿顯示器(Plasma Display Panel, PDP)、場發射式顯示器(Field Emission Display, FED)及 液晶顯示器(Thin Film Transistor Liquid CrystalDisplay, TFT-LCD)。

CRT雖然色彩鮮明,而且使用壽命長、製造成本低,對比及色階 調都很棒,但是不容易製造成薄型,非常佔空間,並且非常耗能。OLED 雖然不需要背光源,可以做的非常薄,特別適合超薄短小型的可攜式 裝置,但目前仍須克服發光效率和壽命等問題。PDP螢幕雖然其構造 簡單,並且大型化之影像清晰,但是其驅動程序複雜,使用時所消耗 之能量大,而其對比與最小之像素尺寸過大(約300μm),所以只適用 於大型之顯示器。FED顯示器其可視角大,溫度區間大並且影像清晰 之最小像素小(約10μm),可製造於小型之顯示器,但是場發射之工 作環境需要高電壓及高真空,高耗能並且還有低壽命與低良率之問 題。而 TFT-LCD因體積小、低輻射、重量輕、低耗電、全彩與色度柔 和等優點目前已成為市場上之主流,舉凡電腦監視器、桌上監視器、 全彩汽車導航系統、筆記型電腦、PDA等皆為 LCD應用之範圍[1]。

TFT-LCD又可進一步分為非晶矽薄膜電晶體及多晶矽薄膜電晶 體。非晶矽薄膜電晶體技術為過去10年來較成熟之技術,是目前市場 上主流,優點為:(1)製程簡單且低溫(<350℃),適合製造於玻璃基 板上、(2)較低的漏電流。但非晶矽薄膜電晶體之缺點如電子遷移率 (Mobility)很低(<1cm²/V・S)和小的開路電流(on current),使得 非晶矽薄膜電晶體有反應速率慢、解析度低,開口率低等缺點。為了 改善以上缺點,因此發展出比非晶矽薄膜電晶體電性更好的多晶矽薄 膜電晶體,由於多晶矽薄膜電晶體有比非晶矽薄膜電晶體高上好幾百 倍的電子遷移率(10-400 cm²/V・S)[2],所以驅動電路可以直接設計 在玻璃基板上,降低了驅動電路的貼附成本,而驅動電路在多晶矽薄 膜電晶體當中是僅次於彩色濾光片的高單價零件,因此發展多晶矽薄 膜電晶體可有效的改善反應速度慢、解析度低、成本高等問題[3]。 1.2 研究動機

雖然多晶矽薄膜已成為平面顯示器發展之主流,但是目前的研究 中MILC,最常使用的元素為鎳,大都需要使用到濺鍍等高成本之設 備,因而去思考該如何在低成本的情況下,降低鎳殘留量可以達到良 好之效果。故本實驗使用鎳片直接壓在非晶矽薄膜上,研究不同壓力 之熱處理反應對非晶矽薄膜影響,觀察鎳矽化合物層之厚度與二次熱 處理後,對誘發矽晶之側向成長以及鎳元素之殘留量。

第二章 文獻回顧

2.1 固態結晶法(Solid Phase Crystallization, SPC)

固態結晶法是成本最低,並且也是最容易使用的結晶技術。所謂 之固態結晶法是利用加熱將非晶矽得到足夠的能量,使之可以重新排 列成結晶態。而其加熱所需要之溫度約為 600℃,熱處理大都需要經 過12-72小時之長時間退火[4-6]。由於為均質成核,在非晶矽層中 皆可成核,因而會導致成核點太多,使得在成長過程中受到周圍晶粒 之限制而無法長成較大之晶粒。成核之數量,可以經由改善非晶矽薄 膜沉積時的條件及熱處理的條件,如改善沉積時的壓力或形狀就可以 改善多晶矽的結晶品質[7-10]。

固態結晶法主要的缺點在於退火溫度過高,一般玻璃的玻璃轉化 溫度(Glass Transition Temperature, Tg)約600℃,但固態結晶需要 加熱至600℃以上,因此不適用於一般的玻璃基板。並且熱處理所需 的時間較長,需要至少12小時以上。並且其所形成之多晶矽晶粒太 小、缺陷多,使得做出來的薄膜電晶體性質不好[11, 12]。

4

2.2 準分子雷射再結晶法(Excimer Laser Annealing, ELA)

準分子雷射再結晶主要在紫外光波段範圍(表2-1)之雷射退火。 雷射退火主要是將非晶矽薄膜照射脈衝式或是連續式的雷射光 [52],使非晶矽薄膜瞬間加熱熔化,讓矽原子重新排列而結晶,以得 到較大的成長晶粒。在雷射退火過程中,表面之非晶矽薄膜温度會瞬 間加熱至上千度,但因為瞬間加熱部分僅侷限在非晶矽薄膜表面,且 高溫加熱階段之時間極短(10-30ns),可使玻璃基板不致受高溫影響 而產生熱應變破壞。以準分子雷射再結晶法所長的晶粒粒徑大小主要 決定於矽薄膜凝固過程時之成核密度。當成核密度高時,則在成長過 程會互相限制,因而使得所成長之晶粒較小。所以成核之密度較低 時,所得之成長之晶粒較大。由於雷射退火對矽來說是屬於高溫退 火,並且晶粒內的缺陷極少,主要控制其成核密度,使其成長至較大 之晶粒,就可得到較好性質之多晶矽薄膜。[15, 16]。

一般雷射再結晶依能量密度不同分三種型態[17, 18]:部分熔 融、完全熔融與接近完全熔融

1. 部分熔融:

由於使用之雷射的能量密度較低,所以只能使非晶矽薄膜之表面 達到熔融,而薄膜之下層未熔融。在冷卻的過程中就會上層就會以下 層未熔融之非晶矽為核而往上成長,因而形成一條條向上之長條的晶 粒。也因為下層之核過多,所以使得所形成之長條晶粒過多且互相侷限,最後形成的晶粒也因而較小。如(圖2-1)所示。

2. 完全熔融:

使用高能量密度之雷射照射,使整層之非晶矽薄膜熔融。由於整 層皆熔融,所以冷卻時皆為均質成核,使之成核密度較高,形成許多 小的晶粒且多為不規則形狀。如(圖2-2)所示。

3. 接近完全熔融:

其所使用之雷射能量密度介於部分熔融與完全熔融之間,使非晶 矽薄膜近乎完全熔融,其中留下少許之非晶矽做為晶種,使得在冷卻 過程中以這些未熔融之非晶矽晶種做異質成核。由於晶種較少,相對 較分散,使得其可成長空間較大,最後可得之晶粒也相對於部分熔融 與完全熔融大許多。如(圖2-3)所示。

2.3 化學氣相沉積法(Chemical Vapor Deposition, CVD)

化學氣相沉積大致可分為感應耦合式電漿化學氣相沉積
(Inductively Coupling Plasma CVD, ICP-CVD)、電子迴旋共振化學
氣相沉積(Electron Cyclotron Resonance CVD, ECR-CVD)、觸媒式
化學氣相沉積(Catalytic CVD, Cat-CVD)與引控式電漿化學氣相沉積
(Remote Plasma CVD, RP-CVD),其中又以觸媒式化學氣相沉積較被
重視,又稱為熱線式化學氣相沉積(Hot Wire CVD, HW-CVD)[13, 14,
51]。HW-CVD 主要是將玻璃基板在 300-400℃之溫度下,以瞬間
1700-2000℃高溫之鎢絲做為觸媒,分解矽甲烷氣體而直接生成多晶 ES
SiH₄→SiH₃+田(室溫) (1)
$SiH_4 \rightarrow SiH_2 + 2H (<1000^{\circ}C) \qquad (2)$
$SiH_4 \rightarrow Si + 4H \ (>1000^{\circ}C) \ (3)$

當鎢線加熱溫度低於1000℃時,其鎢觸媒與矽甲烷氣體反應會形成SiHa與SiHa之矽化物,如式子(1)和(2)所示。而當鎢線之加熱溫度高於1000℃時,其鎢觸媒與矽甲烷氣體反應會形成多晶矽,如式子(3) 所示。

2.4 金屬誘發結晶法

非晶矽會與某些特定金屬產生反應而形成多晶矽。一般分為兩 類,一類是非晶矽與金屬有共晶反應,如A1[19,20]、Au[21,22]。 因為共晶溫度皆低於單相結晶溫度,所以可以在較低溫下結晶。以A1 為例,A1與Si的共晶溫度為577℃,但在文獻[20]中,200℃左右並可 以使非晶矽產生結晶。

另一類是非晶矽與金屬會形成金屬矽化物,如Pd[23-25]、 Ni[26-34]。非晶矽可經由矽化物而降低其結晶所需要的能量,使得 在較低溫就可以形成結晶,以Ni為例,C. flayzelden提出其機制,圖 2-5為Ni-Si反應自由能圖,NiSi2中的Ni原子在NiSi2/a-Si介面的自由 能比在NiSi2/poly-Si介面的自由能低,由此可知Ni原子會往a-Si移 動;NiSi2中的Si原子在NiSi2/a-Si介面的自由能比在NiSi2/poly-Si 介面的自由能高,所以Si原子會趨向往poly-Si移動。這使得NiSi2持 續往a-Si移動,而所經過的地方形成結晶矽。而其反應過程如圖2-6, 圖2-6(a)為Ni與Si先形成NiSi2,並且在NiSi2之{111}上形成結晶矽的 核,圖2-6(b)為多餘之Si由於在結晶矽層之自由能交低所以會往結晶 矽層擴散,圖2-6(c)Si往結晶矽層擴散,Ni往非晶矽層,使得NiSi2

但Ni-Si的反應不是直接就反應成為NiSi2,圖2-7為Ni-Si相圖及

8

表2-2為Ni-Si矽晶體結構[35],在約200℃時開始產生δ-Ni₂Si,之 後隨著退火溫度的提高,在500℃時Ni₂Si逐漸被NiSi相所取代,在650 ℃左右慢慢形成NiSi₂。NiSi₂的形成主要是由成核機制所控制的,需 要在高溫下才能形成。但在退火的過程中Ni並不會直接與矽反應形成 NiSi₂,而會先反應形成NiSi的介穩定相[36],再由NiSi與Si反應而 得到NiSi₂。在NiSi與Si的反應機制裡,NiSi與a-Si反應形成NiSi₂是 屬於擴散控制在350℃左右就可以形成NiSi₂;而NiSi與c-Si反應形成 NiSi₂則是屬於成核控制,所以需要在高溫下才能得到。

圖2-8為NiSi2與Si之晶體結構圖,其中NiSi2為螢石結構 (Fluorite Structure),其晶格常數為5.406A,而Si為鑽石結構 (Diamond Structue),其晶格常數為5.430A,兩者晶格常數相異所造 成的晶格不匹配(Lattice Mismatch)只有0.44%,因此NiSi2適合作為 Si誘發結晶的核。所以當結晶矽在NiSi2{111}平面上產生磊晶時,並 不會有介面差排的出現,所以在側向成長的過程中,{111}為其結晶 矽的優選方向[26]。

在 Ni 誘發 a-Si 側向成長的退火過程中,給予不同的應力會改變 其側向成長的速率[37, 38]。當在退火過程中施以張應力時,其側向 成長速率會相較於未施加應力快;而在壓應力時,會抑制其側向成 長,降低其側向成長的速率。材料間的擴散系數會受到應力而有所影

9

響[39]。當試片受到拉伸應力時,會使 a-Si 層空孔濃度增加,相對 就使 Ni 進入 a-Si 層所需之能量降低,進而加速側向成長速率。壓應 力就相對會提高 Ni 擴散進入 a-Si 的能量,而降低側向成長速率。

2.4.1 降低鎳之殘留量

目前捕捉(Gettering)複晶矽中殘餘鎳並實際應用在量產,例子 為夏普(Sharp)的CGS(Continuous Grain Silicon)技術[55],其利用 捕捉降低了鎳含量並減少漏電流。但是在製程上需要額外的離子佈 值、黄光微影及蝕刻步驟,整體製造成本與時間上的增加為其缺點。 在C. M. Hu之文獻[46]中,利用晶圓接合(Wafer Bonding)[56]的技 術將鍍覆非晶矽的晶圓做為補捉基板與金屬誘發側向結晶的複晶矽 接合,由於兩者鎳含量之差異以及熱力學上的因素,成功的把殘餘鎳 捕捉至基板,顯著的降低了複晶矽中鎳含量。圖2-10為C. M. Hu文獻 [46]中之SIMS分析圖,其實線為濺鍍(Sputter) 2 nm 鎳金屬再經過 550 ℃十二小時熱處理之鎳成分分析。而虛線是經由 550 ℃十二小 時熱處理捕捉後之鎳含量成分分析。圖 2-10可知,純濺鍍鎳之鎳含 量約為 2000 counts,而經由吸附之鎳含量約為 60 counts。捕捉後 之鎳元素含量大約只有純濺鍍鎳的1/30。

11

2.5 拉曼散射光譜之分析

拉曼散射光譜為利用光散射現象來測定其分子震動光譜學。當光 束照射樣品,光子會與分子碰撞,如果只有動量改變,光的波數(頻 率)不變,定義為瑞立散射(Reyleigh Scattering);若光子能量改 變,波數(頻率)會有所改變,也就是說,會有散射產生,而收集此 散射光便可得到拉曼散射(Raman Scattering)光譜圖。分子能量變化 $\Delta E = h(\nu - \nu) = hc(\Delta \sigma)$,其中c為光速,h為浦朗克常 數(Planck Constant), ν 為入射雷射光的頻率, ν 為散射光的頻 率。拉曼散射是測量光子的能量差,也可說是測量待測分子的能量 差,在光譜圖上以波數的改變 $\Delta \sigma$ [cm⁺]來表示,即為拉曼位移(Raman Shift, $\Delta \sigma$)。 $\Delta \sigma$ 與 ΔE 的關係如下:

 $\Delta \sigma = \Delta E / hc \qquad (4)$

入射光子與分子作用使其電子從起始態(Base State)激發至虛 態(Virtual State),最後再回到終態(Final State),如圖2-9所示。 虛態與起始態間的能量差為入射雷射光的能量,此能量遠低於最低的 電子激發態(Excited State)。

若散射後分子得到能量則稱為史托克斯側(Stokes Side),分子 失去能量稱為反史托克斯側(Anti-Stokes Side),一般的拉曼光譜測 定史托克斯側(Stokes Side)因為這一側的光譜線強度較強[41]。 拉曼光譜依照選用雷射光源之波長不同,能穿透試片的深度也相 對不同,穿透深度一般可用下式進行計算:

 $D = 1/2 \alpha \qquad (5)$

其中α為光學吸收係數(Optical Absorption Coefficient)[40,

41],以Ar⁺雷射(λ =514.5nm)為例,其矽之穿透深度約340nm。

矽的Raman光譜特徵峰介於480-500cm⁻¹間屬於非晶性矽;520cm⁻¹ 為結晶矽的特徵峰;510~520cm⁻¹為奈米晶矽的特徵峰,且隨著矽晶體 變大,其特徵峰會往520cm⁻¹偏移。但也有可能是因為有應力的存在使 得Si的特徵峰會有所偏移,當薄膜內存有壓應力(Compressive Stress),則特徵峰中心位置會往比520cm⁻¹波數大的方向偏移;有張 應力(Tensile Stress)存在,則特徵峰中心位置會往比520cm⁻¹波數小 的方向偏移。

此外利用特徵峰強度也可來計算薄膜的結晶程度(*pc*),計算公 式如下[42, 43, 53, 54]:

 $\rho c = (Ic + Ii) / (Ic + Ii + \gamma Ia)$ (6)

其中*Ic、Ii和Ia*分別為結晶相、奈米晶相及非晶相矽的繞射強度。而 γ為非晶矽和結晶矽Integrated Raman Cross-section的比值0.88。

表 2-1 不同準分子雷射氣體及其波長

Laser gas	XeF	XeCl	KrF	KrCl	ArF	F ₂
λ (nm)	351	308	248	222	193	157

表 2-2 鎳-矽反應之晶體結構[35]

Ni-Si Crystal Structure Data

Phase	Composition, at.% Si	Pearson symbol	Space group	Struktur- bericht designation	Prototype
(Ni)	0 to 15.8	cF4	Fm3m	A1	Cu
β ₁ (Ni ₃ Si)	22.8 to 24.5	cP4	Pm3m	$L1_2$	AuCu ₃
B.(Ni Si)	-24.5 to 25.5	mC16			GePt ₃
Ba(NiaSi)	-24.5 to 25.5	mC16			GePt ₃
v (Ni, Si,)	-26.5 to 29.5	hP 14			
ð (Ni Si)		hP6			
δ (Ni _s Si)	32.5 to 34.5	oP12			
Ni ₃ Si ₂ (ε)	39 to 42	oP 80			
NiSi	49.5 to 51	oP8	Pnma	B 31	MnP
BNiSi.	66.6	?			?
aNiSi.	66.6	cF12	Fm3m	C 1	CaF ₂
(Si)	~100	cF8			

excimer laser irradiation

small poly-Si grain

圖 2-1 準分子雷射再結晶部分熔融示意圖[15]

excimer laser irradiation

melted a-Si

substrate

homogeneous nucleation

圖 2-2 準分子雷射再結晶完全熔融示意圖[15]

excimer laser irradiation

large poly-Si grain

圖 2-3 準分子雷射再結晶部分完全熔融示意圖[15]

圖 2-5 錄-矽反應之莫耳自由能曲線[26]

圖 2-6 NiSi2誘發結晶機制示意圖[26]

圖 2-8 (a)NiSi₂(b)Si 之晶體結構[27]

圖 2-10 C. M. Hu 文獻[46]之 SIMS 分析

第三章 實驗步驟

3.1 實驗流程圖

圖 3-1 實驗流程圖

3.2 試片製備

本實驗所使用之試片為產學合作之公司所提供,為Corning 1737F玻璃上鍍 200奈米(nm)之SiNx,再鍍上一層 200奈米(nm)之非 晶矽層,然後再切成 10 mm * 10 mm大小。

3.3 試片清洗

- (1) 使用去離子水(D.I. water)沖泡五分鐘
- (2) 浸泡在丙酮(Acetone)溶液中使用超音波震盪五分鐘

- (3) 使用去離子水沖泡五分鐘
- (4) 浸泡於H2SO4:H2O2(3:1)溶液於 120℃下十分鐘
- (5) 使用去離子水沖泡五分鐘
- (6) 浸泡於HF:H20(1:100)溶液中約15秒用以去除表面之氧化矽
- (7) 使用去離子水沖泡五分鐘
- (8) 使用氮氟槍吹乾

3.4 鎳片製備

將1mm厚度之 99.99% 鎳板切成 12mm * 12mm 之鎳片,再分別使 用 80號、400號、2000號砂紙研磨至單一平行方向之磨痕。如圖3-2

3.5 夾具製備

製作直徑 35mm、厚度 7mm 之不鏽鋼圓餅,再於圓餅上鑽三個 5mm 之圓孔,此為上下之夾具。而兩夾具之間共夾四層,最外兩層為 13mm * 13mm * 1mm 之石墨墊片,用以平均壓力。而中間兩層就為研 磨好之鎳片與試片,並以磨痕面與非晶矽薄膜面接觸。在施以 10kg 與 20kg 之力以螺絲固定之。如圖3-3

3.6 第一步熱處理

將夾好之試片放入氫氣(Ar)氣氛高溫爐內,以 550℃做一小時之 退火,使鎳原子從鎳片與試片接觸之磨痕擴散至非晶矽表面,此為之 第一步之熱處理。

3.7 真空封管

將第一步熱處理後之試片放入外徑 12mm、內徑 10mm之玻璃管 內,抽真空至 1.0*10⁻³ torr 之後通入氫氣,重複三次後再將真空抽 至 4.0*10⁻⁶ torr,並以氧-乙炔焰將玻璃管兩端封住。
3.8 第二步熱處理

將封好之玻璃管放入大氣高溫爐中,以 550℃分別做 1、2、4 小時之第二步退火,使鎳金屬誘發側向結晶。

3.9 测試與分析

3.9.1 場發射掃描式電子顯微鏡

(Field-emission Scanning Electron Microscopy, FE-SEM)

本實驗使用之電子顯微鏡為場發射掃描式電子顯微鏡,其型號為 JOEL-6500F。工作條件:電子束電壓 15KeV,電流 40µA, Working Distance為 10mm,真空為 9.63*10⁵ Pa,實驗中分析之EDS為附加在 於FESEM中,其操作電壓為15 KeV 896

藉由掃描式電子顯微鏡觀察非晶矽薄膜結晶後之表面型態、側向成長情形以及結晶區域之完整性。並在觀察前,先以 Secco.
Etchant[44]蝕刻表面,Secco. Etchant之溶液為K₂Cr₂O₇(0.15M):
HF(55%): H₂O = 1 : 2 : 6。利用蝕刻液對結晶矽與非晶矽蝕刻速率不同,並且對結晶矽與其晶界之蝕刻速率也不同,使之方便觀察。

3.9.2 拉曼光譜分析(Raman Spectroscopy)

本實驗使用之拉曼光譜儀型號為 Jobin Yvon HR-800,備有

10X、20X、40X 以及 100X 之物鏡,搭配高解析能力 CCD(1024*768 Pixels of 26 Microns)偵測器,及搭配 Confocal Laser Raman,提 供兩種雷射波段(632nm,514.5nm)供選擇。示意圖如圖3-4。

本實驗使用之光源為Ar⁺雷射,其波長為514.5nm,並以 100X物 鏡將光源聚焦至約 3 μ m,且為避免長期照射的加熱效應,使試片退 火而造成誤差,將保持雷射照射於表面之功率低於 10mW。校正用之 標準試片為 380+/-25 μ m、N-Type、電阻 1-10 Ω -cm,(100)Silicon wafer,且選擇 520cm⁻¹ 峰值進行三次校正。

3.9.3 原子力顯微鏡(Atomic Force Microscopy, AFM)

AFM操作模式可分為三種:接觸式(Contact Mode),非接觸式 (Non-contact Mode),和敲觸式(Tapping Mode)。而本實驗使用接觸 式模式。

本實驗使用之AFM機台型號為Digital Instruments, Model no. :LFM-2, Serial no. : 242,所採用的探針材料為n⁺ Silicon, Resistivity: 0.01-0.02 Ω·cm。其示意圖如圖3-5。

3.9.4 X 光繞射分析(XRD)

本實驗使用之X-Ray繞射儀為Material Analysis

Characterization(SRA) [M18XH],工作條件:200V、50A,以銅靶產 生 Kα1,波長為 1.542Å 的光源,掃描範圍 2θ=20°-60°。且為了避 免玻璃基材對於X-Ray 繞射背景訊號之影響,將固定低入射角度(<5 °),進行X-Ray繞射。藉由X-Ray繞射鑑定非晶矽層是否已誘發成多晶 矽結構,及各晶面峰值強度大小變化及半高寬變化之情形。

3.9.5 飛行時間二次離子質譜儀(TOF-SIMS)

本實驗使用之 TOF-SIMS 為 ION-TOF,其型號為 TOF. SIMS IV,而 分析離子源為 Ga⁺, 濺射離子源為 Cs⁺,其質量分析器為飛行時間式, 質量解析與範圍皆>10000。TOF-SIMS 一般可以使用於:(1)表面質譜: 全質譜掃描分析表面成分;(2)離子影像:分析特定元素在表面的分 佈情況;(3)縱深分析:分析特定元素在縱向深度的分布情況。而本 實驗是使用縱深分析去分析鎳元素之含量。

圖 3-2 經過研磨後之錄片

圖 3-3 夾具

圖 3-5 原子力顯微鏡構造圖

4.1 壓力對鎳矽化合物層的影響

本實驗經由不同粗糙度(80號、400號與2000號)之砂紙研磨純鎳 片製造出不同粗糙度之鎳片,如圖4-1為鎳片經由80號砂紙研磨後之 SEM截面圖,圖4-2(a)-(b)分別400號以及2000號砂紙研磨後之AFM表 面形貌,當研磨之號數越大,其表面粗糙度越小;其中80號砂紙所研 磨出來之鎳片,其表面粗糙度為527nm,而400號所研磨出之粗糙度為 125nm,而2000號砂紙研磨後之表面粗糙度為37nm(如表4-1)。

圖4-3(a)-(f)分別為試片經過80號砂紙20kg與10kg、400號砂紙 20KG與10KG、2000號砂紙20KG與10KG之第一步熱處理後之OM圖。經由 影像分析軟體(Image Pro)去計算其壓痕密度,再由施加之應力除以 密度可得六組之應力。 1896

應力計算方式以圖4-3(a)為例子,壓痕密度為圖片經由影像分析 軟體計算後可知,其反應之面積占總面積之0.752%。總施加之應力為 20KG/1cm² = 2MPa。實際接觸點所受之應力為總施加應力/接觸面積 = 2MPa / 0.752% = 265.8 MPa。

由所受應力由大到小分別標號A、B、C、D、E和F。其中A為受應 力265.8MPa之試片、B為132.9MPa、C為38.2MPa、D為19.1MPa、E為 7.4MPa、F為3.7MPa(如表4-2)。

將經過此六組應力之第一步熱處理試片用AFM分析,A試片為受應

力最大之試片,其表面之鎳砂化合物厚度為185.95nm,而其次為B, 其鎳砂化合物厚度為59.76nm,之後依序C為37.16nm、D為26.92nm、E 為14.26nm、F為8.98nm(如圖4-4至4-9與表4-3)。發現在相同熱處理 條件下,應力越大則試片上之鎳矽化合物厚度越厚,而應力越小則鎳 矽化合物越薄。而將應力與鎳矽化合物之厚度做圖(圖4-10),發現近 乎於斜一直線,再經由程式(OriginPro)迴歸所得之趨勢線公式如下:

 $Y = 0.622X + 7.05 \quad (1)$

式子(1)中之Y為鎳砂化合物厚度(nm),X為施加之應力(MPa)。其中斜率之誤差值為0.074,截距之誤差值為9.12。在壓應力介於265.8MPa 與 3.7MPa之間時,每增加1MPa之壓應力,鎳矽化合物之厚度增加 0.622nm。如壓應力為 200MPa時,可預估其鎳矽化合物為 131.45nm。 1896

4.2 壓力對第一步熱處理中側向成長之影響

本實驗觀察其側向成長之方法是先將經過第一步熱處理後之試 片經過Secco. etchant處理,使其表面形貌之對比較明顯後再使用 SEM觀察。圖4-11(a)與(b)為A試片經過第一步熱處理後之不同區域 SEM圖,圖4-11(a)中並無明顯之側向成長,圖4-11(b)中上半部沒有 明顯側向成長,在下半部中觀察到有少許稀疏之側向成長。圖4-12(a) 與(b)為B試片經過第一步熱處理後之SEM圖,圖4-12(a)中並無明顯之 側向成長,圖4-12(b)中有稀疏之側向成長。而圖4-13與圖4-14為C、 D試片經過第一步熱處理後之SEM圖,C與D皆有明顯之側向成長,且都 約為3~4 µm。圖4-15與圖4-16為E、F試片經過第一步熱處理後之SEM 圖,其中側向成長與C、D差不多,都有大約3-4µm之側向成長層。 P. Shewman文獻可知,應力會影響材料之間之擴散係數[39]。

在側向成長的過程中,主要是三個相變化過程:

- $2Ni + Si \rightarrow Ni_2Si$ (2)
- $Ni_2Si + Si \rightarrow 2NiSi$ (3)
- $NiSi + Si \rightarrow NiSi_2$ (4)

而在C. Hayzelden文獻[26]中有提到,式子(4)NiSi與a-Si反應形成 NiSi₂是屬於擴散控制,所以在350℃左右就可以形成NiSi₂。但是在壓 應力的情況下,材料間的擴散係數因而降低,使得NiSi₂難以形成。 所以本實驗中,A與B試片因為所施加之應力過大,使得大部分無測向 成長的現象,在少部分區域有稀疏之側向成長,而C、D、E與F四個試 片皆有側向成長,且成長的距離也都差不多,約3~4μm,與C.F. Cheng文獻比較[45]相比較,其中550℃退火速率約為3.3μm/h,相 差不大。

L.W.Cheng之文獻[58]中提到,當30 nm厚之Ni鍍在(0 0 1)Si 上在不同壓力下以不同溫度之相同時間熱處理會產生不同之相變化 過程。在未受任何應力之試片,在300℃開始產生少量之Ni₂Si,在350 ℃時所有之Ni反應成為Ni2Si並且有少量之NiSi產生,在400℃時所有 之Ni2Si都反應成為NiSi,而在750℃時已經完全反應為NiSi2。在受100 MPa之壓應力情況下,在400℃時還有少許Ni₂Si尚未完全反應成為 NiSi, 在450℃時才完全反應成為NiSi,在750℃時也還有少許之NiSi 未完全反應成為NiSi2,在800℃時才完全反應成為NiSi2。當壓力大至 380 MPa時,在300℃時未有任何Ni₂Si形成,表面還都是Ni,在350℃ 時才開始有Ni2Si形成,在400℃時還有少許Ni2Si尚未完全反應成為 NiSi, 在450℃時才完全反應成為NiSi,在750℃時也還有少許之NiSi 未完全反應成為NiSi₂,在800℃時才完全反應成為NiSi₂。在壓應力下 會延遲鎮矽化合物之相變化。主要之原因為, 鎮矽化合物之相變化主 要為擴散控制之相變化,在熱力學中,固相之擴散主要為交換擴散 (Exchange Diffusion),主要是與原子附近之缺陷(Defect),如空孔 . 擴散(Vacancy Diffusion)。當壓力增加時,為了要平衡所增加的壓

力,所以材料內之空孔會相對減少。當空孔濃度降低時,則在材料內 之擴散係數也相對降低,使得擴散較困難,因而延遲相變化之過程, 使得要在相同熱處理時間下需要較高之溫度才可以完成。

C. Hayzelden在論文中提到[26],Ni與非晶矽在350℃就可以形成NiSi2,在本實驗中當壓應力介於265.8 MPa與132.9 MPa之間時,發現其側向成長較困難,可知其相變化過程可能尚未到NiSi2,而可能主要形成Ni2Si或是NiSi。其主要原因為,在壓應力下減少了空孔 濃度,進而降低了其擴散係數,因此在壓應力265.8 MPa與132.9 MPa 之間時較難形成NiSi2所以側向成長較困難。當壓應力介於38.2MPa與 3.7MPa之間時,可以發現有明顯之側向成長,所以相變化已經達到 NiSi2,所以壓應力介於38.2MPa與3.7MPa之間時,在550℃一小時之 熱處理可以形成NiSi2。

圖4-17為圖4-11(b)中框框範圍之放大圖,測量圖4-17中側向成 長的夾角約為 69°至 71°,與C. Hayzelden論文[26]中提到鎳側向成 長主要是經由NiSi₂{111}與Si{111}<110>,其夾角為 70.5°,由此也 可以互相印證。

4.3 第二步熱處理對側向成長速率的影響

第二步熱處理是將經過第一步熱處理之試片,將鎮片移除,再將 試片經由封管抽真空後分別做一小時、兩小時與四小時之550℃熱處 理。

圖4-18為A至F試片在550℃經過不同第二步熱處理時間與其側向 成長距離作圖。A試片之平均側向成長之速率約為3.2µm/h,B試片之 平均側向成長之速率約為3.3µm/h,與C.F.Cheng論文中提到550℃ 側向成長速率3.3µm/h相近[45]。雖然在第一步熱處理中是受到壓力 使NiSi₂較難形成,但是當壓力移除後之熱處理,因為沒有受到應力, 其在550℃可以順利之形成NiSi₂所以移除應力後之側向成長速率不 會有所影響。

之後觀察C、D、E、F之1、2、45,時熱處理之側向成長距離,當 扣除第一步熱處理側向成長之距離後,其側向成長之速率約為 3.2~3.6µm/h,沒有太大的改變。 4.4 鎳金屬之殘留量

4.4.1 EDS分析

本實驗使用SEM內之EDS做打點模式(Point)元素之分析A、B、C、 D、E、F六組鎳矽化合物層試片,其中A試片之鎳元素含量為 76.22 at%,矽元素含量為 23.78 at%、B試片鎳元素含量為 37.06 at%,矽 元素含量為 62.94 at%、C試片鎳元素含量為 13.70 at%,矽元素含 量為 86.30 at%、D鎳元素含量為 11.55 at%,矽元素含量為 88.45 at%、E鎳元素含量為 3.28 at%,矽元素含量為 96.72 at%、F鎳元素 含量為 0.33 at%,矽元素含量為 99.67 at% (如圖4-19至圖4-24、 表4-5至表4-10),統計結果如表4-4。

SEM中之EDS分析之深度依分析元素不同而有不同之分析深度,其 分析之深度式子如下: 1896

 $Zm = 0.033 (V0^{1.7} - VK^{1.7}) A \rho z$ (5)

Zm : 電子束激發深度 (μm)

V0:激發電壓(儀器用的高壓)(KeV)

VK: 臨界激發能(KeV)

A:原子量

Z:原子序

 ρ : 密度 (g/cm³)

EDS分析之深度以矽為例,儀器之激發電壓為15 KeV,臨界激發

能為 1.8 KeV,原子量為 28,原子序為 14,密度為 2.33 (g/cm³), 所以 Zm = 0.033 (15^{1.7} - 1.8^{1.7}) 28 / 14 / 2.33 = 2.75 (μ m)。 鎳經過計算後之穿透深度為 0.716 μ m。

本實驗試片之非晶矽層為200 nm,最厚之鎳矽化合物層為185.95 nm,所以可以確定EDS 之分析可以完全穿透預分析之區域。

C~F試片中在第一步熱處理過程中皆有明顯之側向成長,所以可 以推斷其鎳矽化合物皆為NiSi2。C 試片之鎳矽原子比為 1:6.3, 表面之NiSi2層為37.16 nm,計算其非晶矽層反應之深度,計算方法 如下:已知NiSi²之密度為4.8 g/cm³,Si之密度為2.3 g/cm³,假設非 晶矽中之反應層深度為 X nm,所以NiSi2層之總厚度為(19.63 + X) nm,未反應之矽層厚度為 (200 - X) nm。鎮與矽原子之比例為(NiSi2 之厚度 * NiSi2之密度 / NiSi2之分子量): (NiSi2之厚度 * NiSi2 之密度 *2 / NiSi2之分子量 + 未反應之矽層厚度 * 矽之密度 / 矽 之原子量) = 1 : 6.3, 經過計算後得知 X = 48.7 nm, 非晶矽層表 面之反應深度為 36.81 nm。D 試片之鎳矽原子比為 1:8,經過計 算後,在非晶矽層中反應之深度為30.51 nm。E試片之鎳矽原子比為 1: 29.5,經過計算後,在非晶矽層中反應之深度為1.02 nm。F 試片之 . 鎮矽原子比為 1:302,經過計算後,在非晶矽層中反應之深度為-5.3 nm,主要原因為 EDS之誤差範圍為1%,F 試片所測量出之鎳含量為 0.33 at%,在誤差範圍內,所以才無法計算出有效之反應深度。

鎮與砂之反應主要是先形成Ni₂Si,再與矽反應形成NiSi,之後
才會形成穩定相之NiSi₂。而A與B試片經由以上之分析得知,在第一
步熱處理過程中只有極少量之NiSi₂可觀察到,其他區域皆無NiSi₂,
因此推測A與B試片在第一步熱處理後之鎳矽化合物主要為Ni₂Si或是
NiSi。

在A試片之 EDS分析中可知,其鎳矽之原子比為 3.2:1,就算 分析區域皆反應成為Ni₂Si,其原子比也為 2:1,明顯之分析區域 中之鎳原子量較多,其推測可能是A試片所施加之應力為265.8 MPa, 鎳金屬之降伏強度(Yield Strength)為148 MPa[57],已經超過鎳金 屬之降伏強度,所以在此壓力下熱處理,鎳金屬已經產生塑性變形, 因此會有部份之鎳金屬殘留在鎳矽化合物層上。

假設A試片之分析區域之鎳矽化合物皆為NiSi,經過計算後之表 面鎳金屬層為183.1 nm。假設分析區域之鎳矽化合物皆為Ni₂Si,計 算後之表面鎳金屬層為129.35 nm。

B試片分析區域之鎳矽原子比為 1:1.7,並且其施加之應力為 132.9 MPa,小於鎳金屬之降伏強度,所以不會產生塑性變型,沒有 鎳金屬層殘留在鎳矽化合物上。B試片之表面鎳矽化合物為59.76 nm。若B試片上之鎳矽化合物為Ni₂Si,則經過計算後之非晶矽反應深 度為30.93 nm,若為NiSi,則非晶矽反應深度為105 nm。但是A與B 式片之第一步熱處理後之鎳矽化合物是Ni₂Si還是NiSi還有待後續之

分析。A至F試片之計算結果如表4-4所示。

4.4.2 Etching pits比較

Etching pits主要產生於兩側向成長之交界區。NiSi2側向成長 主要是利用NiSi2/a-Si與NiSi2/c-Si兩種介面之自由能不同,因為自 由能差而側向成長。但是當碰到另外一邊側向成長過來之NiSi2,則 兩邊之介面都是NiSi2/c-Si,則沒有自由能差,因此就不會再側向成 長,如圖4-25所示。所以此時NiSi2就會停留在兩個側向成長之交界 處,再經由etching以後,則形成etching pits。因此etching pits 也可以顯示出介面之NiSi2之殘留量。

圖4-26為A試片經過550℃四小時之第二步熱處理SEM圖,可明顯 看出在兩個側向成長交界處有明顯之etching pits,圖4-27為圖4-26 之etching pits區域放大圖,經由影像分析軟體(Image Pro)分析在4 μm * 4μm範圍中etching pits所佔之面積百分比為4.64%。

之後同樣分析B~F試片側向成長交界處之etching pits在4µm * 4µm 範圍中所佔之面積百分比。B為2.62%、C為1.53%、D為1.13%、E 為1.02%和F為0.87%。

圖4-28為etching pits與第一步熱處理之應力做圖。發現當第一 步熱處理時之壓應力越大時,其鎳矽化合物越厚,使得側向成長過程 中之鎳矽化合物含量越多,最後在側向成長交界處之鎳矽化合物殘留 量越多。 本實驗將第一步熱處理壓力最小之F試片,做550℃四小時之熱處 理後,再以SIMS分析做整體鎳殘留之分析。分析結果如圖4-29所示, 其鎳含量在表面至25 nm深約為 200 counts,而在100-175 nm約為30 counts。圖2-10為C. M. Hu文獻[46]之SIMS,其在經由捕捉後之鎳含 量約為60 counts。由此可知本實驗之F試片經由550℃四小時熱處理 後之鎳元素含量,在未經過捕捉的過程也可達到約 30 counts之鎳殘 留量。所以只要有效的控制第一步熱處理,就可以有效率地降低鎳殘 留量。

4.5 拉曼光譜定性之分析

拉曼光譜除了可鑑定矽薄膜之結晶性,也可決定具有特定厚度的 矽薄膜是否已完全結晶,本實驗選擇波長514.5nm 之Ar⁺雷射光源, 並以100X物鏡將光源聚焦至約3µm,估算入射光源可穿透之矽薄膜深 度為340nm,而本實驗所使用試片之非晶矽鍍層為200nm,因此可完全 分析薄膜是否已結晶及其相關特性。

圖4-30(a)-(f)分別為試片A,B,C,D,E,F經550℃不同時間退 火之拉曼光譜分析,其中Blank為未做過任何處理之空白試片,而試 片代號後之數字為第二步熱處理之時間,A0為A試片未做第二步熱處 理。由圖可看出不同的應力對於薄膜的結晶性較無顯著的差異性,幾 乎呈現相同的趨勢。矽的Raman光譜特徵峰介於480-500cm⁻¹間屬於非 晶性矽;520cm⁻¹為結晶矽的特徵峰;510~520cm⁻¹為奈米晶矽的特徵 峰。Blank試片即以480cm⁻¹為中心呈現一寬廣的山坡狀此為非晶矽之 拉曼峰值訊號,而A0~F4皆在517.11 cm⁻¹即出現一明顯的峰值,此為 多晶矽的拉曼峰值訊號[47]代表矽薄膜已經結晶。

為了討論熱處理對結晶性之影響,將以多晶砂(517.11 cm⁻¹)的分量,(Ic)所貢獻的曲線下積分面積討論薄膜結晶之程度,而圖 4-30(a)-(f)除了(a),(b)一開始其曲線下積分面積有明顯的改變 外,其他部分峰值強度並未隨著持溫時間而有明顯之改變。其主要原 因在於A,B試片在第一步熱處理時未有明顯之側向成長,而是在第二

步熱處理時才開始有明顯之側向成長,所以在A0至A1與B0至B1皆有明 顯之峰值強度增加。而由於分析之範圍為3µm,所以當側向成長超過 3µm以後,其分析之薄膜範圍皆已完全結晶,所以其峰值強度不會有 明顯之改變。

4.6 X光繞射定性之分析

圖 4-31 為未做任何處理之空白試片與 A,B,C,D,E,F六組試 片經過 550℃四小時熱處理之 X 光繞射分析。而空白試片為非晶矽之 玻璃基板,其繞射角度之 2 θ=20°-27°,未有任何明顯之繞射峰,表 示在未做任何處理前是沒有任何結晶的。

結晶矽之繞射峰分別為20=28.543°之(111),20=47.417°之 (220),20=56.139°之(311)。而比較六組不同壓力皆經過550℃四小 時熱處理之X光繞射圖發現,A試片在經過四小時之熱處理後並沒有明 顯之繞射峰,而B-F試片皆有明顯之(111)繞射峰,並且C-F試片皆可 觀察到(220)之繞射峰。

但是A試片在SEM中很明顯的有觀察到側向成長之針狀結晶砂,推 測未有繞射峰之原因可能為:A試片之壓痕密度只有佔約總面積之 0.752%,壓痕為寬9μm之長條狀(如圖4-11),經過四小時之熱處理則 左右兩邊皆增加13μm之側向成長,MIC加 MILC之寬度總和約為35μ m,只佔總面積之3%,而X光繞射需要5%以上之訊號才會有明顯之繞射 峰,所以A試片才不會有明顯之繞射峰。

而B-F試片,當應力小越則其壓痕寬度越小,而相對可側向成長 之區域愈大。在相同之第二步熱處理條件下,B試片之整體可側向成 長之區域較少,所以在經過熱處理以後所佔之總結晶區域也較少,相 對的X光繞射峰強度較低。F試片其可側向成長之區域較多,所以在經

過熱處理以後之結晶區域相對多,得到之X光繞射峰強度較強。而B-F

試片皆有這種趨勢。

表 4-1 鎳片經過不同號數砂紙研磨後之表面粗糙度

	80 號	400 號	2000 號
表面粗糙度	527nm	125nm	37nm

表 4-2 試片受到不同粗糙度之砂紙與不同壓力下所受之應力

代號(砂紙號數*施加應力)	應力(MPa)	
A(80*20)	265. 8	
B(80*10)	132. 9	
C(400*20)	38.2	
D(400*10)	1896 19.1	
E(2000*20)	7.4	
F(2000*10)	3. 7	

表 4-3 試片受到不同粗糙度之砂紙與不同壓力下第一步熱處理後,

代號(砂紙號數*施加應力)	鎳矽化合物厚度
A(80*20)	185.95
B(80*10)	59.76
C(400*20)	36. 81
D(400*10)	30. 51
E(2000*20)	14.26
F(2000*10)	8.98

試片上之錄層厚度

ESP

表 4-4 A 至 F 試片第一步熱處理過程之非晶矽層中之鎳砂化合物深度

代號	EDS 分析後	396 a-si 中 NiSix 反應之深度
(施加應力, MPa)	Ni 含量(at%)	(nm)
A (265.8)	76.22	Ni2Si -> Ni : 129.35 nm
		NiSi -> Ni : 183.1 nm
B (132.9)	37.06	Ni2Si -> 30.9 nm
		NiSi -> 105 nm
C (38.2)	13.7	36.81
D (19.1)	11.55	30.51
E (7.4)	3.28	1.02
F (3.7)	0.33	-5.3

Peak Surface Area Summit Zero Crossing Stopband Execute Curson

Roughness Analysis

(a)

970122.008

Peak Surface Are

Roughness Analysis

Stopband

Execute

ero Crossing

(b)

圖 4-2 分別(a)400 號以及(b)2000 號砂紙研磨後之 AFM 表面形貌

(a)

(b)

(d)

(e)

(f)

圖 4-3 分別為試片經過(a)80 號砂紙 20kg (b)80 號砂紙 10kg (c)400
號砂紙 20KG (d) 400 號砂紙 10KG (e)2000 號砂紙 20KG(f)
2000 號砂紙 10KG 之 550℃一小時第一步熱處理後之 0M 圖。

圖 4-4 試片 A 經過第一步熱處理後之表面形貌

圖 4-5 試片 B 經過第一步熱處理後之表面形貌

圖 4-6 試片 C 經過第一步熱處理後之表面形貌

Peak Off Summit Off Zero Cross. Off Box Cursor

圖 4-7 試片 D 經過第一步熱處理後之表面形貌

Zero Cross. Off mit Off Box Curson

圖 4-8 試片 E 經過第一步熱處理後之表面形貌

圖 4-9 試片 F 經過第一步熱處理後之表面形貌

圖 4-10 施加應力與錄矽化合物厚度作圖

(b)

圖 4-11 (a)與(b)為 A 試片經由第一步熱處理不同區域之 SEM 圖

(b)

圖 4-12 (a)與(b)為 B 試片經由第一步熱處理不同區域之 SEM 圖

圖 4-13 C 試片經由第一步熱處理之 SEM 圖

圖 4-14 D 試片經由第一步熱處理之 SEM 圖

圖 4-15 E 試片經由第一步熱處理之 SEM 圖

圖 4-16 F 試片經由第一步熱處理之 SEM 圖

圖 4-17 為圖 4-11(b)框框範圍之放大圖

圖 4-18 A~F 試片在 550°C 經過不同熱處理時間對側向成長距離圖

	表 4-5	A試片之	、EDS 分析
	Eleme	Weight	Atomic
in the second	nt	%	%
in the second stand	Si K	12.99	23. 78
Stretton -	Ni K	87.01	76.22
Electron Image 1			
圖 4-19 A 試片 EDS 分析之位置圖			
ESA			
	表 4-6	B試片之	:EDS 分析
	Eleme	Weight	Atomic
	nt	%	%
Spectrum 1	с. <i>и</i>	44 00	69.04
	S1 K	44.83 55.17	62.94 37.06
a starter	NI K	55.17	37.00
10μm Electron Image 1			

	表 4-7 C	試片之	EDS 分析
	Eleme	Weight	Atomic
	nt	%	%
Spectrum 2			
	Si K	75.08	86.30
	Ni K	24.92	13.70
8µm Electron Image 1			
圖 4-21 C 試片 EDS 分析之位置圖			
ESP			
•	表 4-8	D試片之	EDS 分析
	Eleme	Weight	Atomic
	nt	%	%
	III	70	70
	Si K	78 55	88 15
		10.00 91 45	11 55
		21.4J	11. JJ
Spectrum			
Electron Image 1	_		
圖 4-22 D 試片 EDS 分析之位置圖			

	表 4-9	E試片之	こ EDS 分析
	Eleme	Weight	Atomic
	nt	%	%
Spectrum	Si K	93.38	96.72
	Ni K	6.62	3.28
20μm Electron Image 1			
□ 值 4-23 E 試方 EDS 分析之位直圖			
	+ 4 10		
	表 4-10	F試片	之 EDS 分析
	表 4-10 Eleme	F 試片 Weight	之 EDS 分析 Atomic
	表 4-10 Eleme nt	F 試片 Weight %	之EDS分析 Atomic %
	表 4-10 Eleme nt	F試片 Weight %	之 EDS 分析 Atomic %
	表 4-10 Eleme nt Si K	F 試片 Weight % 99.32	<u>之 EDS 分析</u> Atomic % 99.67
	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	<u>之 EDS 分析</u> Atomic % 99.67 0.33
Spectrum 1	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	之 EDS 分析 Atomic % 99.67 0.33
Spectrum 1	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	之 EDS 分析 Atomic % 99.67 0.33
Spectrum 1	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	之 EDS 分析 Atomic % 99.67 0.33
Spectrum 1	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	之 EDS 分析 Atomic % 99.67 0.33
Spectrum 1	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	<u>之 EDS 分析</u> Atomic % 99.67 0.33
Imm Electron Image 1	表 4-10 Eleme nt Si K Ni K	F 試片 Weight % 99.32 0.68	<u>之 EDS 分析</u> Atomic % 99.67 0.33

圖 4-25 Etching pits 示意圖

圖 4-26 A 試片經過 550℃四小時熱處理之 SEM 圖

圖 4-27 A 試片經過 550℃四小時熱處理之 Etching pits 區域放大圖

圖 4-29 F 試片經 550℃四小時熱處理之 SIMS 分析

(a)

(b)

(d)

(f)

圖 4-30 試片(a)A (b)B (c)C (d)D (e)E (f)F 分別經不同時間退

火之拉曼光譜分析

圖 4-31 A-F 試片經過 550℃四小時之 X 光繞射分析圖

第五章 結論

- 第一步熱處理時之壓應力越大,在試片上之鎳矽化合物越厚。當 壓應力大到 265.8 MPa 時,其鎳矽化合物層為 185.95 nm;壓應 力為 3.7 MPa 時為 8.98 nm。並且經由迴歸計算出壓應力介於 3.7 MPa 與 265.8 MPa 之間時,每當增加 1 MPa 之應力會增加 0.622 nm 之鎳矽化合物層厚度。
- 2. 當第一步熱處理過程之壓應力介於 265.8 MPa 與 132.9 MPa 之間,側向成長不明顯;當壓應力介於 38.2 MPa 與 3.7MPa 時,在第一步熱處理過程中就會有側向成長,其側向成長之速率與第二步 550℃無壓力下之側向成長速率相同,約為 3.3 μm/h。
- 3. 第一步熱處理後之六組試片之鎮砂化合物區域,經過EDS分析後 可知,當第一步熱處理過程時之壓力為265.8 MPa時,鎳含到高 至76.22 at%。當壓應力小至3.7 MPa時,其鎳含量降為0.33 at%。
- 本實驗應力最小之試片,3.7 MPa 之 F 試片,經由 550℃四小時 之第二步熱處理後之鎳殘留量經由 SIMS 分析約為 30 counts,比 文獻中經由捕捉後之鎳殘留量 60 counts 還要低。
- 經過拉曼光譜分析後可知,當經由第二步熱處理後之側向成長區 域皆可完全結晶,其拉曼峰值訊號為 517.11 cm⁻¹之多晶矽訊號。

參考文獻

- 1. 生活科技教育月刊,二00四年三十七卷第三期.
- 2. 趙中興,田志豪著, 顯示器原理與技術, 全華出版社(1997).
- 3. 苗村省平著,陳建銘編譯,液晶顯示器技術入門,全華出版社(2005)
- 4. A. Nakamura, F. Emoto, E. Fujii, A. Yamamoto, Y. Uemoto, K. Senda, and G. Kano. J. Appl. Phys., 1989. 66, p.4248.
- 5. A. Nakamura, F0 Emoto, E. Fujii, Y. Uemoto, A. Yamamoto, K. Senda and G. Kano. Jpn. J. Appl. Phys, 1988. 27, p.2408.
- 6. J. H. Kim, J.Y. Lee, and K.S. Nam. J. Appl. Phys., 1995. 77, p.95.
- A. T. Voutsas and M.K. Hatalis, Journal of the Electrochemical Society, 1993. 140(3), p.871.
- 8. A. T. Voutsas and M. K. Hatalis, J. Electron. Mat., 1994. 23: p. 319.
- L. Pichon , F. Raoult, K. Mourgues , K. Kis-Sion, T. Mohammed-Brahim, and O. Bonnaud, Thin Solid Films, 296, pp.133, 1997
- 10. C. A. Dimitriadis, P. A. Coxon, and N.A. Economou, IEEE Trans. Elect. Dev., 42, pp.950, 1995 ES
- 11. M. Miyasaka and J. Stoemenos, Journal of Applied Physics, 1999. 86(10):p. 5556.
- 12. Y. Z. Wang and O.O. Awadelkarim, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1998. 16(6): p.3352.
- 13. O. Ebil, R. Aparicio, S. Hazra, R. W. Birkmir, E. Sutterb, Thin Solid Films 430 (2003) 120.
- D. D. Sala, S. Loreti, L. Fornarini, I. Menicucci, A. Santoni, P. D. Veneri, C. Minarinic, C. Privatoc, J. Lancockd, Thin Solid Films 403 -404 (2002) 302.
- K. SERA, F. OKUMURA, H. UCHIDA, S. ITOH, S. KANEKO AND K. HOTTAIEEE Transactions on, 1989. 36(12): p. 2868.
- 16. R. ISHIHARA , W. C. YEH, T. HATTORI , M. MATSUMURA. J. Appl. Phys. Pt. 1, 1995. 34: p.1759.
- J. S. Im and H.J. Kim, Applied Physics Letters, 1994. 64(17): p. 2303.
- 18. J. S. Im, H.J. Kim, and M.O. Thompson, Applied Physics Letters, 1993. 63(14): p.1969.
- J. H. Kim and J.Y. Lee, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1996. 35(4A): p. 2052.

- 20. L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, J. Appl. Phys., 62, pp. 3647, 1987
- 21. S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh and J. Jang, J. Appl. Phys., vol. 82, pp. 5865, 1997
- J. STOEMENOS, J. MCINTOSH, N. A. ECONOMOU, Y. K. BHATNAGAR, P. A. COXON, A. J. LOWE and M. G. CLARK. Applied Physics Letters, 1991. 58(11): p. 1196.
- 23. S. W. Lee, Y. C. Jeon, and S. K. Joo, Applied Physics Letters, 1995. 66(13): p. 1671.
- 24. Y. S. Kim, M. S. Kim and S.K. Joo. Journal of the Electrochemical Society, 2006. 153(2): p.H19.
- 25. S. W. Lee, B. I. Lee, T. K. Kim and S. K. Joo, J. Appl. Phys., 85, pp.7180, 1999
- 26. C. Hayzelden and J.L. Batstone, Journal of Applied Physics, 1993. 73(12): p. 8279.
- 27. C. D. Lien, M. A. Nicolet, S. S. Lau. Phys. Status Solidi A, 1984. 81(1): p. 123.
- 28. K. Yunosuke, K. Hiroshi, O. Seinosuke, A. Toshihiro. Jpn. J. Appl. Phys., 1990. 29 P.2698.
- 29. C. Hayzelden, J.L. Batstone and R.C. Applied Physics Letters, 1992. 60(2): p. 225.
- 30. J. Jang, K. H. Kim, B. R. Cho, W. K. Kwak, S. Y. Yoon, S. J. Park. Journal of Applied Physics, 2000. 88(5): p. 3099.
- 31. S. Y. Yoon, S. J. Park, K. H. Kim, J. Jang, C, O. Kim Journal of Applied Physics, 2000. 87(1): p. 609.
- 32. S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh and J. Jang, J. Appl. Phys., vol. 82, pp. 5865, 1997
- 33. F. A. Quli and J. Singh, Materials Science and Engineering, vol. B67, pp. 139, 1999
- 34. Z. Jin, G. A. Bhay, M. Yeung, H. S. Kwok and M. Wong, J. Appl. Phys., 84,p.194, 1998.
- 35. P.Nash, Phase Diagrams of Blnary Nickel Alloys. Vol. 6. 1991.
- 36. J. Jang, S.Y. Yoon, International Journal of High Electronics and systems, vol. 10, (2000) 13
- 37. C. Y. HOU and Y. S. WU . Japanese Journal of Applied Physics, Vol. 44, No. 10, 2005, p.7327
- N. K. Song, M, S, Kim, S, H, Han, Y, S, Kim, and S, K, Joo, Journal of The Electrochemical Society, 154 (5) H370 (2007)

- P. Shewman: Diffusion in Solids (Minerals, Metals & Materials Society, Pennsylvania, 1989) 2nd ed., Chap. 2, p. 85.
- 40. M. Holtz, W. M. Duncan, S. Zollner and R. Liu, Journal of Applied Physics, 2000. 88(5): p. 2523.
- 41. 汪建民, 材料分析, 中國材料科學學會, 台灣, 1998
- 42. Warren, B. E., X-ray Diffraction, Assison-Wesley, USA, 253, 1989
- 43. M. Ichikawa, J. Takeshita, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 38, L24, 1999
- 44. F. S. d' Aragona, Journal of the Electrochemical Society, 1972. 119(7): p. 948.
- 45. C. F. Cheng, T. C. Leung, M. C. Poon, C. W. Kok and M. Chan. Electron Devices, IEEE Transactions on, 2004.51(12): p. 2205.
- 46. C. M. Hu, Y. S. Wu, and C. C. Lin, IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 11, NOVEMBER 2007.
- 47. H. Richter, Z.P. Wang, and L. Ley, Solid State Communications, 1981. 39(5): p. 625.
- 48. I. H. Campbell, and P.M. Fauchet, Solid StateCommunications, 1986. 58(10): p. 739.
- 49. Z. Iqbal, and S. Vepiek, J. Phys. C: Solid State Phys., 1982. 15: p. 377.
- 50. W. C. Hsueh and S. C. Lee, IEEETransactions on, 2003. 50(3): p. 816.
- 51. H. Matsumura, Jpn. J. Appl. Phys., 37, 3175, 1998
- 52. K. Naeli, Mat. Res. Soc. Symp. Proc. Vol. 664, (2001), A6.
- 53. T. Okada, T. Iwaki, H. Kasahara and K. Yamamoto, Jpn. J. Appl. Phys., 24,161, 1985
- 54. H. Kakinuma, M. Mohri, M. Sakamoto and T. Tsuruoka, J. Appl. Phys., 70,7374, 1991
- 55. T, Mizuki, J, S, Matsuda, Y, Nakamura, J, Takagi, and T, Yoshida, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, 204(2004).
- 56. P. C. Liu, C. Y. Hou and Y. S. Wu, Thin Solid Films 478,280(2005).
- 57. Metal Handbook tenth edition. Volume 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. P437
- 58. L.W. Cheng, H.M. Lo, S.L. Cheng, L.J. Chen*, C.J. Tsai, Materials Science and Engineering A 409 (2005) 217