CONTENTS

摘要	Ι
ABSTRACT	ΙI
誌謝	IV
CONTENTS	V
LIST OF FIGURES	VII
LIST OF TABLES	IX
CHAPTER 1 INTRODUCTION	1
1.1 Research Motivations	1
1.2 Research Objectives	2
1.3 Framework and Organization	3
CHAPTER 2 RELATED WORK AND BACKGROUND STUDY	5
2.1 Related Work	5
2.2 Single EWMA Controller	8
2.2.1 Brief Review	8
2.2.2 Effects of Incorrectly Setting EWMA Parameter	9
2.2.3 Patel-Jenkins Adaptive Algorithm	11
2.3 Double EWMA Controller	13
2.3.1 Brief Review	13
2.3.2 Trade-off Tuning Strategy	17
2.4 Neural Network Techniques	19
CHAPTER 3 PROPOSED EWMA CONTROLLERS	23
3.1 Neural-Based Adaptive Algorithm for the Single EWMA Controller	23
3.2 Enhanced Neural Adaptive Algorithm for the Single EWMA Controller	25
3.3 A Time-Varying Weights Tuning Strategy for the Double EWMA	28

Controller

3.4 Dynamical Double EWMA Controller Under Wear-Out Process	32
CHAPTER 4 IMPLEMENTATION OF PROPOSED ADAPTIVE SINGLE	36
EWMA CONTROLLER	
4.1 Implement Neural-Based Adaptive Single EWMA Controller	36
4.1.1 Off-Line Training the Neural Network	36
4.1.2 Step Disturbance Model	37
4.1.3 IMA(1,1) Disturbance Model	39
4.1.4 Trend Disturbance Model with Slow Ramp Rates	40
4.1.5 Discussion and Concluding Remarks	41
4.2 Implement Enhanced Neural Adaptive Single EWMA Controller	42
4.2.1 Off-Line training the Enhanced Neural Network	42
4.2.2 Step Disturbance Model	44
4.2.3 IMA(1,1) Disturbance Model	45
4.2.4 Trend Disturbance Model with Slow Ramp Rates	46
4.2.5 Discussion and Concluding Remarks	47
CHAPTER 5 IMPLEMENTATION OF DYNAMICAL DOUBLE EWMA	48
CONTROLLER	
5.1 Implement Time-Varying Weights Tuning Strategy	48
5.2 Comparison Results	51
5.3 Implement Dynamical Double EWMA Controller	52
5.4 Discussion and Concluding Remarks	54
CHAPTER 6 CONCLUSION AND FUTURE WORKS	55
REFERENCES	57

LIST OF FIGURES

Figure 1.1 Research Framework	4
Figure 2.1 Inflation factor versus λ and θ	11
Figure 2.2 Structure of adaptive tuning controller	12
Figure 2.3 Double EWMA controller	17
Figure 2.4 Change control scheme at run 100	19
Figure 2.5 The backpropagation neural network structure	22
Figure 3.1 The parameter with (a) $\lambda = 0.1$ (b) The parameter with $\lambda = 0.9$	24
Figure 3.2 NN-based EWMA controller	25
Figure 3.3 (a) The family of SACF/SPACF patterns with perfect controlled	
(b) The family of SACF/SPACF patterns with $\theta = 1; \lambda = 1$	27
Figure 3.4 Enhanced NN adaptive single EWMA controller	28
Figure 3.5 Controlled output with f_1 being large, moderate and 0	31
Figure 3.6 MGC-1 v.s. MGC-2 tuning method	31
Figure 3.7 Controlled output with and without discount	31
Figure 3.8 Dynamic tuning double EWMA Controller under wear-out process	34
Figure 3.9 The trigged tuning loop (i.e. $\lambda_2(t)$)	35
Figure 4.1 Patel-Jenkins adaptive method (a) controlled output (b) EWMA gain	38
Figure 4.2 NN-based adaptive method (a) controlled output (b) EWMA gain	39
Figure 4.3 NN-based adaptive EWMA gain under IMA(1,1)	40
Figure 4.4 NN-based adaptive EWMA gain under trend disturbance	41
Figure 4.5 Enhanced neural network learning behavior	43
Figure 4.6 Enhanced NN adaptive method (a) controlled output (b) EWMA gain	44
Figure 4.7 Enhanced NN adaptive EWMA gain under IMA(1,1)	46

Figure 4.8 Enhanced NN adaptive EWMA gain under trend	46
Figure 5.1 $MSE/\sigma_{\varepsilon}^2$ versus discount factor	49
Figure 5.2 Controlled process output under the proposed time-varying tuning	
method	50
Figure 5.3 Uncontrolled drifting process output	53
Figure 5.4 EWMA chart on the controlled process output	53
Figure 5.5 Estimated drifting rates	54
Figure 5.6 Control cycle of $\lambda_2(t)$	54

LIST OF TABLES

Table 3.1 ARL for Shewhart and EWMA control chart Image: Control chart	35
Table 4.1 Summary of the training result	37
Table 4.2 Experimental design results	43
Table 5.1 Optimal discount factors under various drifting speeds	50
Table 5.2 Comparison results	52

