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CHAPTER 2  

RELATED WORK AND BACKGROUND STUDY 

   

In this chapter, the literatures of past researches about EWMA controllers are 

reviewed. It is known that an integral (I) control action in a discrete 

proportional-integral-derivative (PID) controller can eliminate offsets or shifts and 

provide robustness. There is a close relation between I controllers and the 

exponentially weighted moving average (EWMA) statistic. In this chapter, some 

relative knowledge about feedback adjustment methods based on the EWMA statistic 

are presented. Beside this, a neural technique will also be introduced in this chapter. 

 

2.1 Related Work 

  The EWMA statistic was first suggested by Roberts (1959) for process monitoring, 

but he referred to it as a geometric moving average (GMA). The use of the EWMA 

statistic has two distinct purposes (Fatin et al. 1990): as control charts (Box and 

Kramer 1992, Montgomery 1996, Box and Luceño 1997, Chen and Elsayed 2002) 

and as forecasts (Box and Jenkins 1976, Box et al. 1994, Brockwell and Davis, 1996). 

Recently, the statistic has been used widely for process adjustment purposes (Lucas 

and Saccucci 1992, Ingolfsson and Sachs 1993, Del Castillo and Hurwitz 1997, Del 

Castillo 2001, Pan and Del Castillo 2001, Del Castillo 2002, O’Shaughnessy and 

Haugh 2002, Fan et al. 2002).  

In semiconductor manufacturing, EWMA controllers are sometimes called bias 

tuning controllers (Butler and Stefani 1994). The purpose of EWMA-based controllers 

is for compensating against disturbances which affect the run-to-run (batch-to-batch) 

variability in quality characteristics (Del Castillo 2002). Sachs et al. (1995) describe a 

controller that recommends process adjustments at each run of silicon wafers based on 
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the EWMA. 

The use of single EWMA controller has a relation to the pure-integral (I) control 

action, which was a part theme of the well-known PID controller. Box and Jenkins 

(1976) shown that a controller based on the single-EWMA statistic is a minimum 

mean square error (MMSE) controller when the underlying process disturbance 

model follows the IMA(1,1) (first-order integrated moving average) time-series 

process. Other than IMA(1,1) process, the single-EWMA controller had been shown 

to possess effective performance in some disturbances, for instance: step and ramp 

with slow drift rate disturbance models.  

  The performance of the EWMA controlled process output strongly depends on 

choosing the control parameters. As mentioned by Smith and Boning (1997), the 

controlled process output under a higher EWMA weight would return to the target 

much faster than a lower weight, but it would create more oscillations. Therefore, it 

is important to select the EWMA parameter carefully. 

Due to a process environment is usually dynamic in a real manufacturing world, 

developing adaptive algorithm for self-tuning the single-EWMA controller is 

necessary. Satri (1988) used the theory of least squares estimation (LSE) for 

sequential parameter-detection and revision of the moving average parameter in the 

IMA(1,1) time series model. Luceño (1995) presented a computer program to 

choose the EWMA controller parameter in the EPC. His algorithm was based on the 

maximum likelihood estimate (MLE) theory. These above mentioned algorithms all 

have a common constraint in that the probability distribution must be known 

beforehand. Therefore, Smith and Boning (1997) utilized a neural network as an 

approximation function to map from the disturbance state (magnitude of linear drift 

and random noise) of a given process to the corresponding optimal EWMA weights. 
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However, it was a problem to estimate the slope of the controlled process. Del 

Castillo and Yeh (1998) presented an adaptive run-to-run 

multiple-input-multiple-output controller for linear and nonlinear semiconductor 

processes. Recently, an adaptive algorithm to estimate the EWMA gain was 

suggested by Patel and Jenkins (2000). Their objective was to design an automated 

scheme for optimizing the numerical parameter of the EWMA controller. 

For a process that drifts considerably, the single-EWMA controller will tend to be 

significantly off-target. For this reason, Bulter and Stefani (1994) extended the 

single-EWMA controller with another EWMA equation in order to compensate for 

the ramp disturbance model. There are two mechanisms for the double EWMA 

controller (termed a predictor-corrector controller, PCC): one for estimating the drift 

rate and the other for estimating the step change deviation. The double-EWMA 

controller is a MMSE controller when the IMA(2,2) disturbance model exists in the 

process. Chen and Guo (2001) shown that the double-EWMA controller is not a 

discrete PID form, but an integral-double-integral (Ⅰ-Ⅱ) form.  

Del Castillo (1999) presented an optimization form for solving the 

double-EWMA gains. The objective of his algorithm is to trade-off the initial 

transient effect and long-run variance. Del Castillo and Rajagopal (2002) extended 

the algorithm to a multiple-input multiple-output (MIMO) process.  

  Although Del Castillo (1999) suggested keeping the trade-off solution weights to 

control the process will provide adequate performance than a variety case. However, a 

time-varying weight can produce a superior performance than a fix one (Del Castillo 

and Hurwitz, 1997). Therefore, one objective of this research aims to develop a 

time-varying weights tuning strategy for the double-EWMA controller. 

 



 8

2.2 Single EWMA Controller 

2.2.1 Brief Review  

Assume that the relation between the input and the output of a manufacturing 

process can be expressed as follows: 

ttt xy εβα ++= −1 (2.1)

where ty  denotes the observed output deviation from target, tε  is a white noise 

stochastic process, and tx  is the manipulated variable. The parameter of α  

represents the process offset, β  is the process gain, and both parameters need to be 

estimated. Equation (2.1) implies that all the effects of a change in the compensating 

variable will be realized at the output, in one time interval. Such a system is called a 

responsive system (Box and Luceño 1997) and is commonly seen in the discrete part 

manufacturing. Let b represents an estimate of the gain ( β ) that can be estimated 

off-line by fitting the regression model. The single EWMA scheme can be expressed 

as follows: 

b
ax t

t −= (2.2)
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is an estimate of the offset, and is computed recursively based on the EWMA statistic 

with the last measurement data. The previous estimate 1−ta , and λ  are the controller 

parameters which can be adjusted to achieve a desired output. As λ  approaches 1, 

more weight is given to the most recent observations. As λ  decreases, more weight 

is given to older observations, and in the limit when 0=λ , all the sat′  equal to 0a . 

Substituting Equation (2.3) into Equation (2.2) lead to 

∑
−∞=

−=
t

j
jt y

b
x λ (2.4)
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Therefore, the single EWMA controller is a pure integral (I) controller with integral 

constant bK I
λ−= , which is a particular case of the well-known PID controller. A 

discrete PID form can be expressed as follows 

)( 1
0

−

∞

=
− −−−−= ∑ ttD

j
jtItPt yyKyKyKx (2.5)

where PK , IK  and DK  are the tuning parameters of the controller. From the PID 

controller, the integral action can eliminate offsets or shifts, and provides robustness 

in the controlled process. 

  Box and Jenkins (1976) showed that the single EWMA statistic is a minimum mean 

square error (MMSE) controller when the integrated moving average (IMA(1,1)) 

disturbance model exists in the process. The IMA(1,1) is an important non-stationary 

time series model in the study of process regulation and adjustment (Box and Luceño, 

1997). Other than the IMA(1,1), the single EWMA controller has been shown to 

perform effectively in some disturbance models such as the step and ramp with slow 

drift rate disturbance model. 

 

2.2.2 Effects of Incorrectly Setting the EWMA Parameter 

  As mentioned by Smith and Boning (1997), the controlled process output under a 

higher EWMA weight would return to the target much faster than a lower weight, but 

it would create more oscillations. Therefore, it is important to select the EWMA 

parameter carefully. In this section, the effect of incorrectly choosing the EWMA gain 

will be described in more detail.  

Consider a process that can be modeled by 

ttt Nxy ++= −1βα (2.6)

where tN  denotes the disturbance model we want to compensate for. Assume it 

follows an IMA(1,1) stochastic process as follows:  
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tt BNB εθ )1()1( −=− (2.7)

where θ  is the moving average parameter. An IMA(1,1) model is widely used for 

modeling the drift in the discrete manufacturing (Box et al. 1994, Lucas and Saccucci 

1992). If we use the single EWMA controller to compensate for the disturbance, then 

the controlled process is as follows: 

tt ByB εθλξ )1())1(1( −=−− (2.8)

We can see that the controlled process exhibits an ARMA(1,1) process, and that the 

stable condition is 11 ≤− λξ . Therefore, the inflation factor of the controlled process 

will be: 

2

2

2

2

)1(1
)1(1

λξ
θλξ

σ
σ

ε −−
−−

+=y (2.9)

Figure 2.1 shows the inflation factor ( 2

2

εσ
σ y ) versus λ  and θ  given the process 

gain is known ( 1=ξ ). Consider that the disturbance model follows a white noise 

process, which implies 1=θ  in Equation (2.8) and we use a full adjustment to the 

process ( 1=λ ), then the controlled output variance will be inflated twice as much 

than if there was no adjustment. This is what Dr. Deming (1986) meant by “tampering 

with the process”. In order to achieve the minimum mean square error (MMSE) 

controlled process output, we should set the controller parameter to be as follows: 

θλ −=1* (2.10)

  Although we already knew the actual optimal controller parameter in the above 

equation, it was only an optimal value in the static sense. In practice, the parameter of 

the disturbance model changes with time, thus it is necessary to develop an approach 

to adjust the controller parameter dynamically in order to obtain a better performance 

of the controlled process output. The following section will introduce an adaptive 

algorithm that was recently suggested by Patel and Jenkins (2000). 
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2.2.3 Patel-Jenkins Adaptive Algorithm 

  In the sense of an adaptive system, Satri (1988) used the theory of least squares 

estimation (LSE) for sequential parameter-detection and revision of the moving 

average parameter in the IMA(1,1) time series model. Luceño (1995) presented a 

computer program to choose the EWMA controller parameter in the EPC. His 

algorithm was based on the maximum likelihood estimate (MLE) theory. These above 

mentioned algorithms all have a common constraint in that the probability distribution 

must be known beforehand. Therefore, Smith and Boning (1997) utilized a neural 

network as an approximation function to map from the disturbance state (magnitude 

of linear drift and random noise) of a given process to the corresponding optimal 

EWMA weights. However, it was a problem to estimate the slope of the controlled 

process. Del Castillo and Yeh (1998) presented an adaptive run-to-run 

multiple-input-multiple-output controller for linear and nonlinear semiconductor 

processes. Recently, an adaptive algorithm to estimate the EWMA gain was suggested 

by Patel and Jenkins (2000). Their objective was to design an automated scheme for 

λ 
θ 

Figure 2.1 Inflation factor versus λ  and θ  

2

2

εσ

σ y  
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optimizing the numerical parameter of the EWMA controller. Figure 2.2 shows the 

adaptive EWMA controller block diagram they proposed. 

 

 

 

 

 

 

 

 

   

 

The Patel-Jenkins adaptive algorithm can simply be described as the following 

system: 

)( 11 ttttt e µτµµ −+= ++

)( 2
11 ttttt e ζτζζ −+= ++

tt

t
t ζµδ

µδ
λ

++
+

= 2

22 4

 

 

(2.11)

where }{ tµ  are the estimates of the mean of the output, and }{ tζ  are the estimates 

of the mean square value of the output. Initial conditions of ( 00 ,ζµ ) 

satisfy 0
2
00 ζµ ≤≤ . δ  is a constant with a very small value which satisfies 10 << δ , 

and }{ tτ  is a sequence such that 10 <≤ tτ  and satisfies (1) 0lim =
∞→ tt
τ , (2) 

∑
∞

=

∞=
0t

tτ , (3) ∞<∑
∞

=0

2

t
tτ . The form of tλ  in Equation (11) intuitively provides a 

measure of the signal-to-noise (SN) ratio that satisfies 20 ≤≤ tλ . According to the 

above mentioned adaptive system, the EWMA control equation can be updated 

EWMA controller System gain ∑

One-step delay

Disturbance 
tε

xt 

Linear Filter 

yt+1 

yt 

λt 

Figure 2.2 Structure of adaptive tuning controller 

Tuner 
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dynamically as follows:  

∑
−∞=

−=
t

j
j

t
t y

b
x λ (2.12)

where the adaptive parameter tλ  follows the system in Equation (2.11). 

 

2.3 Double EWMA Controller 

2.3.1 Brief Review 

Due to the single EWMA controller can not compensate for the wear-out process, that 

is a considerable offset will be produced. Butler and Stefani (1994) extended the 

single EWMA controller with another EWMA equation in order to compensate for the 

ramp disturbance model. In this section, we will briefly introduce the double EWMA 

controller that was proposed by Butler and Stefani (1994). Note that they do not call it 

a double EWMA controller, but refer to it as a predictor corrector control (PCC) 

scheme. 

Consider a drifting process model as follows: 

ttt txy εδβα +++= −1 (2.13)

where δ  denotes the drifting speed. A PCC control equation for tx  can be 

expressed as: 

b
Dcx tt

t
−−

= (2.14)

where b  is the estimate of β  which can be obtained off-line by using designed 

experiments in a pre-control phase. tc  and tD  can be expressed as follows: 

1111 )1()( −− −+−= tttt cbxyc λλ ;   10 1 ≤< λ (2.15)

;)1()( 12112 −−− −+−−= ttttt DcbxyD λλ  10 2 ≤< λ (2.16)

where 1λ  and 2λ  are the weights for the first and second EWMA equations. Note 

that if we set 01 =λ  or 02 =λ , then the double EWMA controller will reduce to a 

single-EWMA controller. From Equations (2.14) and (2.15), it is clear that the 
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performance of a double EWMA controller depends on selecting both parameters of 

1λ  and 2λ . To appropriately select both parameters, the stability conditions of 

controller parameters should be held.  

By substituting Equation (2.14) into Equation (2.13), we obtain the closed-loop 

description of the output given be 

tttt tDcy εδξξα ++−−= −− 11 (2.17)

where b
βξ = , is the bias in the gain estimate. Substituting this into Equations (2.15) 

and (2.16), we get, respectively, 

11111 )1()1()( −− −+−++= tttt Dctc ξλξλεαδλ (2.18)

12122 )1()( −− −+−++= tttt DctD ξλξλεδαλ (2.19)

To analyze the stability conditions of the system, define the state vector 

),,( 11
' tDcE ttt −−= , where the apostrophe means transpose. With this setting we have 

the state-space representation 

ttt

ttt
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+=+1 (2.20)
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)0,,( ξξ −−=′F , and tt tR εδα ++= . To solve the state equation with 
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where 0k  is the point in time where initial condition (
0kE ) are known. One way of 

computing tA  is to write 1−Γ= PPA tt , we get 
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where 2121
2

21 4)(( eee −=−−+= λλλλξξ , and 1e  and 2e  are the first two 

eigenvalues of A . Thus, the process will be asymptotically stable if and only if 

( )[ ] 14)
2
1)(

2
11 21

2
2121 <−+++− λλλλξξλλξ

( )[ ] 14)
2
1)(

2
11 21

2
2121 <−+−+− λλλλξξλλξ

 

(2.23)

Note that if 02 =λ , the stability conditions reduce to 11 1 <− ξλ , the condition for 

stability in a single EWMA controller. 

  From Equations (2.20) and (2.21), the expected value of the output is: 

∑
−

=

−− ++′=
1

1

1 ][][
t

j
j

jt
t tGAFEyE δα (2.24)

assuming )1,0,0('
1 =E , so we have 10 =k . It can be shown, after considerable 

algebraic manipulation, that 
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21
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1
2121

1
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1
1 eeee

eeee
eeTyE tt

tt

t −+−
−

+
−
−

+= −−
−− αδ  (2.25)

Given 02 =λ , Equation (2.25) gives ξλ
δ

1
][lim =

∞→ tt
yE , the bias incurred by the 

single EWMA controller applied to a system that drifts. 

  If 1=ξ , it follows from Equation (2.17), (2.20) and (2.21) that as time approaches 

infinity, each tc  and tD  works as follows: 

1
)1(][lim λ

δδα −++→
∞→

tcE tt
(2.26)

1
][lim λ

δ→
∞→

t
t

DE (2.27)

we can see that tc  is an asymptotical estimate of the ramp disturbance with a bias 

term (
1λ

δ ), and tD  is the asymptotical estimate of the bias term. Thus, tt Dc +  

becomes an asymptotically unbiased one-step-ahead estimate of the ramp disturbance 

model. The double EWMA formula can be further rewritten as 
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tt y
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where B is the backward shift operator ( 1−= tt yBy  ). We can see that the tc  term is 

a second order filter ( 02 ≠λ ) and can filter out the trend. The term, tD , is the first 

order filter that can filter out the process offsets. Therefore, the PCC control equations 

can be expressed as follows: 

∑ ∑∑
= = =

+=

⎟
⎠
⎞

⎜
⎝
⎛

−
+⎥⎦

⎤
⎢⎣
⎡

+−
−−

=+

t

i

t

i

t

ij
ji

tttt

ywyw

y
B

y
BB

BDc

1 1
21

22
2

1 1
1

21
)1(1 λλλ  

(2.30)

where, 21211 λλλλ −+=w  and 212 λλ=w . 

From Equation (2.30), we can see that the double EWMA controller is not a 

discrete PID form, but an integral-double-integral (Ⅰ-Ⅱ) form (Chen and Guo, 2001). 

It can be shown that the Ⅰ-Ⅱ controller is an MMSE controller when the IMA(2,2) 

disturbance model affects the process. Compared to the non-stationary IMA(1,1) 

process (i.e. drift in any direction with equal probability), the IMA(2,2) noise model 

can be interpreted as a process that experiences random changes in the slope 

coefficient in Equation (2.13) (Del Castillo, 1999). Figure 2.3 shows a block diagram 

of the double EWMA controller model when a ramp disturbance model exists in the 

process. 
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2.3.2 Trade-Off Tuning Strategy 

  The control strategies of EWMA controllers can simply be divided into 

time-invariant and time-varying weights control schemes. The time-invariant control 

scheme means that the EWMA weights do not change with time, but that the weights 

are fixed to control the process. Del Castillo (2001) presented a solution of balancing 

the adjustment and output variances to control the single-EWMA controller. He also 

designed a trade-off solution of transient and steady-state performance to control the 

double-EWMA controller (1999). The time-varying control scheme is sometimes 

called a self-tuning or adaptive control, because the EWMA gains change with time. 

Smith and Boning (1997) used the neural technique to self-tune the EWMA controller. 

Del Castillo and Hurwitz (1997) used the recursive least squares (RLS) theory to 

continuously estimate the process parameters. Patel and Jenkins (2000) proposed an 

adaptive EWMA control algorithm by taking the signal-to-noise ratio (SNR) into 

consideration. The above mentioned adaptive algorithms all have one point in 

common, they self-tune the single-EWMA controller, but not the double-EWMA 

controller. Up till now, when it came to the topic of the double-EWMA control 

Figure 2.3 Double EWMA controller 
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scheme, only Del Castillo (1999) has presented an optimization form for solving the 

double-EWMA gains. This algorithm is introduced below (assume 1=ξ ). 
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where 2
εσ  represents the variance of the white noise term. The transient effect is 

measured by averaging the mean square deviation up to run m, and can be expressed 

as follows: 

( )

⎭
⎬
⎫

−−
−−−

+

−−−
−−−−−

+

⎩
⎨
⎧

−−
−−−

−
=

=

+

++

+

=
∑

2
1

)1(2
1

2
1

21

1
1

1
212

2
2

)1(2
2

2
2

2
21

1

2

)1(1
])1(1[)(

)1)(1(1
])1()1(1)[)((2

)1(1
])1(1[)(1

)(1

λ
λαλδ

λλ
λλδαλαλδ

λ
λαλδ

λλ

m

mm

m

m

t
t

m

yE
m

MSD

 

 

 

 

 

 

(2.32)

Therefore, the optimization form can be modeled as follows: 

10
10.

)(

2

1

21
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(2.33)

where the parameters ),( 21 kk  are determined by the engineers. For )1,0(),( 21 =kk , 

it is an all-bias solution. For )0,1(),( 21 =kk , it becomes an all-variance solution. If 

we set 121 == kk , then a trade-off solution will be obtained. Del Castillo (1999) 

suggested that keeping the trade-off solution weights to control the process would 

provide adequate performance than a variety case. For example: if we first use the 

all-bias solution to cancel out the transient effect, and then abruptly change it to the 

all-variance solution at a specific time, then the controlled process will incur a new 

transient at that specific time. Figure 2.4 shows the above condition in which, we 
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simulate the process with a drift rate of 0.5. By solving Equation (2.33), we obtain the 

all-bias solution (0.1811, 0.7917) and the all-variance solution (0.0173, 0.1067). 

Suppose we change the control scheme at run 100. Clearly, a new transient occurs at 

run 100. 
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2.4 Neural Network Techniques 

  Neural networks are of particular interest because they offer a means of efficiently 

modeling large and complex problems in which there may be hundreds of predictor 

variables that have many interactions. Neural nets have been used widely in pattern 

recognition (Su et al. 2002), function approximation (Smith and Boning 1997), 

optimization (Sjoberg and Agarwal 2002), and data clustering (Andrews and Geva 

2002). In general, neural networks can be classified into two different categories: 

feed-forward and feedback networks (Cheng and Titterington 1994). In this study, we 

utilized the feed-forward network because it has been found to be an effective system 

Figure 2.4 Change control scheme at run 100 

Controlled 

Output 

Run 
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for learning distinguishing patterns from a body of examples. 

  The back-propagation learning algorithm is the most commonly used algorithm to 

train multilayer feed-forward networks by implementing a local gradient-search to 

minimize the square error between realized and desired outputs. A typical 

back-propagation neural network always has an input layer, an output layer and at 

least one hidden layer. There is no theoretical limit on the number of hidden layers, 

but typically there will be one or two. Figure 2.5 shows a three layers network. Each 

layer is fully connected to the succeeding layer. The back-propagation algorithm 

involves a forward pass and a backward pass. The purpose of the forward pass is to 

obtain the activation value, and the purpose of the backward pass is to adjust weights 

according to the difference between the desired and actual network outputs. The 

above statement can be explained by the following mathematical equations: 

 

Forward pass: 

The net input to node i for pattern p is 

∑ +=
j

ipjijpi vgwnet (2.34)

pjnetpj e
g −+

=
1

1 (2.35)

where wij is the weight from unit j to unit i, vi is a basis associated with unit i, 

and pjg is the activation value of unit j with sigmoid function for pattern p. 

 

Backward pass 

The sum of the squares error function is as follows: 

2

22
1

ppp otE −= (2.36)

where tp is the target output for the pth pattern and op is the actual output for the pth 
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pattern. By minimizing the errors Ep using the gradient decent method, the weights 

can be updated using the following equation:  

pjpiijp grw η=∆ (2.37)

where 
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(2.38)

and η  is the learning rate. In general, a larger learning rate will increase the training 

speed, however it may oscillate widely. One way to increase the learning rate without 

oscillating is to modify Equation (2.37) to the following equation: 

ijppjpiijp wugrw 1−∆+=∆ η (2.39)

where u is the momentum coefficient ( ]1,0[∈u ) that determines the effect of past 

weight changes on the current direction of movement in weight space. There is no 

principle to determine the parameters of η  and u; they are chosen by the neural 

network trainer via the trial and error approach. Concerning the model selection, one 

of the most useful methods in selecting problems is the cross-validation (CV) method. 

Breiman and Spector (1992) found 10-fold and 5-fold cross-validation to work better 

than leave-one-out method for choosing subsets of inputs in linear regression. Zhang 

(1993) showed that the delete-d multifold cross-validation (MVC) criterion is 

asymptotically equivalent to the well known FPE criterion under a regression model. 

Detail discussions about CV method can be found in Witten and Frank (2001). 
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Figure 2.5 The backpropagation neural network structure 


