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CHAPTER 3  

PROPOSED EWMA CONTROLLERS 

 

The performance of the EWMA controlled process is based on choosing the correct 

EWMA gain. Most related researches have focused on analyzing the optimal EWMA 

gain in the static condition. Unfortunately, a process environment is usually dynamic 

in a real manufacturing world. In order to achieve a better performance in the 

dynamic system, developing a method of on-line tuning of the EWMA controller 

parameters is an important issue. The main objectives of this chapter are: (1) Develop 

a neural network (NN) based adaptive algorithm for the single EWMA controller. (2) 

Enhance the efficiency of the neural-based adaptive algorithm. (3) Develop a 

time-varying tuning strategy for the double EWMA controller. (4) Develop dynamical 

double EWMA controller. 

 

3.1 Neural-Based Adaptive Algorithm for the Single EWMA Controller 

  A methodology was developed under the framework of neural networks to conduct 

on-line tuning of the parameters of the EWMA controller. The input feature of the 

neural structure is the sample autocorrelation function (SACF) and the output unit is 

an estimator of the EWMA controller parameter at run t. The theoretical 

autocorrelation function (ACF) at lag h  is defined as follows: 
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Equation (3.1) can be estimated by the SACF: 
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process output. 

The idea of selecting the SACF to be the input feature in the neural network can be 

described simply in Figure 3.1. Figure 3.1(a) is the family of SACF patterns given 

that the controller parameter is 0.1, and Figure 3.1(b) is the family of SACF patterns 

given that the controller parameter is 0.9. On the one hand, we can see that the SACF 

behaves [in Figure 3.1(b)] like the exponential decay, which implies that the more 

non-stationary the process is, the larger the value of the controller parameter will be in 

order to compensate the process. On the other hand, the tendency of the SACF 

behaves similarly when the controller parameter has a specific value (say 1.0=λ or 

0.9). So, our objective is to estimate the controller parameter through the tendency of 

the SACF pattern.  

The structure of the proposed adaptive neural-based EWMA controller is shown in 

Figure 3.2. At first the controlled process output was sent to the SACF block to 

calculate the )(ˆ hρ , and then the SACF pattern over lag h was fed into the Trained NN 

Model block to estimate the controller parameter. After estimating the parameter, we 

updated the EWMA controller parameter with time to provide a better control 

performance. 
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3.2 Enhanced Neural Adaptive Algorithm for the Single EWMA Controller 

  In this section, our objective is to reduce the learning speed of the neural network in 

order to enhance the neural-based adaptive EWMA controller. The input features of 

the neural structure we selected are sample auto-correlation function (SACF) and 

sample partial auto-correlation function (SPACF). The output unit is an estimate of 
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Figure 3.1 The parameter with (a) 1.0=λ  (b) 9.0=λ  
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Figure 3.2 NN-based EWMA controller 
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the EWMA controller parameter at run t. The theoretical partial auto-correlation 

function (PACF) is defined as follows:  
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which can be estimated by the SPACF as follows:  

∞=
−

−
=

∑

∑
−

=
−

−

=
−−

,,.....3,
ˆˆ1

ˆˆˆ
ˆ

1

1
,1

1

1
,1

hh

j
jjh

h

j
jhjhh

hh

ρρ

ρρρ
ρ (3.4)

where  

1,....,2,1;,.....,2ˆˆˆˆ ,1,1 −=∞=−= −−− hjhjhhhhjhhj ρρρρ (3.5)

and 111 ˆˆ ρρ = , 2
1

2
12

22 ˆ1
ˆˆˆ

ρ
ρρρ

−
−

= . 

Opinions of selecting SACF and SPACF statistics to be input features can be 

described simply from Figure 3.3. Figure 3.3(a) shows the family of SACF/SPACF 

(denoted ρ) patterns under the condition of a perfect controlled process up to run t, 

given the disturbance model obeys Equation (2.8) and the controller parameter 

follows Equation (2.10). If we receive this type of SACF/SPACF patterns, then we 

will set the controller parameter at next run (t+1) to be the same with previous run. 

Figure 3.3(b) shows the simulated family of SACF/SPACF patterns with parameter 

1=θ  (white noise process) in Equation (2.8) and the full adjustment ( 1=λ ) in 

Equation (2.10) up to run t. Obviously, Figure 3.3(b) behaves more non-stationary 

than Figure 3.3(a), because of the incorrect choosing the controller parameter. If the 

neural network receives the types of patterns such as shown in Figure 3.3(b) at run t, 

then it will respond by setting the controller parameter to be zero at the next run to 

meet the optimal condition. So, as per the above, our objective is to estimate the 
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controller parameter adaptively through pattern recognition on the SACF and SPACF 

patterns. 

The structure of the proposed enhanced neural network adaptive single EWMA 

controller is shown in Figure 3.4. At first, the controlled quality characteristic was 

sent to SACF and SPACF blocks to calculate the statistic individually. The combined 

(denoted as the black bar) SACF/SPACF pattern was then sent to the Trained NN 

Model block to estimate the controller parameter for the next run. After estimating the 

parameter, we should update the single EWMA controller parameter dynamically to 

provide a better control performance. 
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Figure 3.3 The family of SACF/SPACF patterns (a) perfect controlled (b) 1;1 == λθ
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3.3 A Time-Varying Weights Tuning Strategy for the Double EWMA 

Controller 

  In order to enhance the performance of the double EWMA controller, a simple but 

effective time-varying weights tuning algorithm will be proposed in this section. We 

will first present a preliminary model of the time-varying control scheme and then 

modify it to be our proposed tuning method. 

It was intuition to initially use the all-bias solution to bring the process on target, 

and then use the all-variance solution to reduce the process oscillations around the 

target. However, it has shown to be an inefficient tuning method from the viewpoint 

of “abrupt change”. Therefore, we are attempting to use the viewpoint of “gradual 

change”, which means using higher weights first and then “gradually” reducing them 

to the all-variance solution weights. We call this control strategy a GC (gradual 

change) control scheme, and it can be expressed as follows: 

t
v ft )()( 1,11 += λλ (3.6)
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t
v ft )()( 2,22 += λλ (3.7)

where 1f  ( 10 1 <≤ f ) and 2f  ( 10 2 <≤ f ) denote the discount factor. v,1λ  and 

v,2λ  individually represent the tc ’s and tD ’s all-variance solution weight. From 

Equations (3.6) and (3.7), we can see that )(1 tλ  and )(2 tλ  approach the 

all-variance solution as time approaches to infinity. 

However, there is a problem for adding a discount factor in Equation (3.6). 

Consider a drifting process in Equation (2.13). Figure 3.5 shows the results of the 

controlled process (without noise term) when the discount value ( 1f ) is large, 

moderate and 0. We can see that a large discount value makes it difficult for the 

process to converge to the target value. On the contrary, when the discount value is 0, 

the process converges quickly to the target. Therefore, we are tempering it by setting 

the discount value in Equation (3.6) to be 0. That is:  

vt ,11 )( λλ = (3.8)

t
v ft )()( ,22 += λλ (3.9)

where f  ( 10 <≤ f ) expresses the discount factor. We call Equations (3.8) and (3.9) 

the MGC (modified gradual change) control scheme. 

From Equation (2.30), it can be shown that if the double EWMA controller with the 

fixed weights control scheme, then the following equation holds as:  

}),max{},,(min{}),min{},,(max{),( 2121212121 λλλλλλλλλλ ==  (3.10)

But, for the time-varying weights, the above equation does not hold. Therefore, there 

are two cases in the MGC control scheme, they are MGC-1: 

},min{)( ,2,11 vvt λλλ = (3.11)

t
vv ft )(},max{)( ,2,12 += λλλ (3.12)
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and MGC-2: 

},max{)( ,2,11 vvt λλλ = (3.13)

t
vv ft )(},min{)( ,2,12 += λλλ (3.14)

In order to compare the tuning method between MGC-1 and MGC-2, we assume the 

discount factor f to be fixed as a constant. Figure 3.6 shows the controlled process 

under MGC-1 versus MGC-2 control scheme. It shows that both control schemes 

converge to the target at almost the same time, but the controlled output under the 

MGC-2 tuning method shows much smaller offsets from the target. Thus, we will 

adopt the MGC-2 to be our proposed time-varying weighs tuning method for the 

EWMA controller. 

  The advantage of adding a discount factor in our proposed tuning method is the 

quick response to the initial transient effect. In Figure 3.7, the dash and solid line 

individually represent the controlled output ‘with’ and ‘without’ adding the discount 

value. For the case of 0≠f , the double EWMA controller compensates for the 

initial transient effect more quickly than in the case of 0=f . From the proposed 

tuning equations, we know that the performance of the controlled process output 

depends on setting the discount factor (f). Even though a larger discount value can 

quickly compensate for the initial transient effect, it may cause oscillations. Therefore, 

we will present how to determine the discount parameter in the Section 5.1. 
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Figure 3.5 Controlled output with 1f  being large, moderate and 

Figure 3.6 MGC-1 v.s. MGC-2 tuning method 

Figure 3.7 Controlled output with and without discount 
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3.4 Dynamic Double EWMA Controller Under Wear-Output Process 

  Del Castillo and Hurwitz (1997) used the recursive least squares (RLS) theory to 

continuously estimate the single EWMA parameter. Patel and Jenkins (2000) 

proposed an adaptive single EWMA control algorithm by using the signal-to-noise 

ratio (SNR). 

  As mentioned in the literature, their objective was to develop a dynamic tuning 

method for the single EWMA controller. Relevant research regarding the dynamic 

tuning, double EWMA controller is seldom mentioned in the literature. Therefore, we 

will develop a dynamic tuning double EWMA feedback controller under a wear-out 

process in this section. The proposed controller can dynamically change the control 

parameters in response to disturbance changes. Figure 3.8 shows the architecture of 

the proposed dynamic tuning, double EWMA controller. We can observe that the 

proposed controller contains two main modules, and they are: the ‘Trigger’ and the 

‘Dynamic Tuning Loop’ modules.  

  Before taking a control action, we have to find any shift that the process may have 

undergone. Therefore, the objective of the Trigger module is to detect any process 

shift, and then to reset the double EWMA control parameters. The widely used 

EWMA technique in statistical control can be adopted here (Hunter 1986, 

Montgomery 1996, Wang and Mahajan 1996, Guo and Chen 2002). The EWMA of 

the process output can be calculated as 

1)1( −−+= ttt zqqyz (3.15)

where q is a weight factor of the EWMA. If the sample number is moderately large, 

then the standard deviation of z converges to its asymptotic value as 

yz q
q σσ
−

=
2

(3.16)

Thus, the control action limit can be set to zLσ . By taking 3=L  (the usual 3-sigma 
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limits), and selecting 2.0=q , the control limit simply becomes yσ . 

  When the control chart triggers a signal that implies a change in the disturbance, 

the objective of the triggered Dynamic Tuning Loop module is to compensate for the 

new disturbance. From Figure 3.9, consider the change in the disturbance at run t′  

(unknown) while the control chart detects the shift at run k. The Dynamic Tuning 

Loop module can be expressed as follows:  
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where d denotes the time delay between the point of change and the point of detection. 

Thus, d can roughly be estimated by the average run length, that is 1ARLd ≈ . Table 

1 shows the 0ARL  (in-control ARL) and 1ARL  (out-of-control ARL) for the 

Shewhart and EWMA control chart under several drifting rates. The obtained results 

are calculated using Monte Carlo simulations. In Table 3.1, the EWMA chart is shown 

to be more sensitive than the Shewhart chart for detecting slow to moderate drifting 

rates (say 5.01.0 ≤≤ δ ). So, the early detection is advantageous, since it allows 

control action to be taken in advance of any potentially bad runs. 

  To judge if the Dynamic Tuning Loop is completed or not, we can use the 

following criterion:  
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In Figure 3.8, if the tuning loop shows completed and the EWMA chart triggers a new 

signal, then this implies that the disturbances parameter (δ ) changed. Like Equation 

(2.27), the asymptotically estimate of δ  under MGC-2 tuning strategy is 

},max{ ,2,1 vvtD λλ . When δ  has been estimated, we can resolve Equation (2.33) and 

obtain a new all-variance solution weights. After that, the Dynamic Tuning Loop 
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module can be triggered to adjust the double EWMA controller weights.The 

efficiency of the proposed dynamic tuning double EWMA controller will be 

illustrated in Section 5.3. 
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Figure 3.8 Dynamic tuning double EWMA Controller under wear-out 
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Figure 3.9 The trigged tuning loop (i.e. )(2 tλ ) 

Table 3.1 ARL for Shewhart and EWMA control chart 


