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CHAPTER 4 

IMPLEMENTATION OF ADAPTIVE SINGLE EWMA 

CONTROLLER 

  In this chapter, we first implement the proposed neural-based adaptive single 

EWMA controller. After that, an enhanced neural adaptive single EWMA controller 

will also be evaluated. Both proposed adaptive algorithms would be compared with 

the Patel-Jenkins adaptive algorithm that was mentioned in Section 2.2.3. 

 

4.1 Implement Neural-Based Adaptive Single EWMA Controller 

  This section will implement the proposed neural-based adaptive single EWMA 

controller that was mentioned in Section 3.1. The proposed controller will be 

implemented by using the software of Matlab/Simulink. In this section, we first 

present the training result of the neural network. After that, we will make comparisons 

between the proposed NN-based and the Patel-Jenkins adaptive algorithms through 

implementing three examples. 

 

4.1.1 Off-Line Training the Neural Network 

  The training data sets were generated by simulating different combinations of the 

disturbance and controller parameters. There were a total of 121 data sets (i.e. 

]1,0[],1,0[ ∈∈ λθ ) which implied that we had a total of 121 SACF patterns. We used 

30 data sets to be the testing data, and the remainder to be the training data. A useful 

guide was provided by Box and Jenkins (1976), p. 33, who suggested that the size of 

time series (t) be at least 50 and lags (h) to analyze the series at most 4/t . Thus, we 

simulated 50 runs at each simulation, and took 12 lags in each SACF and SPCAF 

pattern. 



 37

The learning rate we set to train the neural network was 0.15, and the momentum 

coefficient was 0.9. The summary of the training result was shown in table 4.1. The 

12-17-1 network was the best network for the data sets, because of the lower training 

and testing RMSE (root mean square error). Thus, we utilized the 12-17-1 network 

structure to implement the NN-based EWMA controller on line in the following 

examples. 

 

 

Structure Training RMSE Testing RMSE 

12-15-1 0.0191 0.0213 

12-16-1 0.0183 0.0210 

12-17-1 0.0166 0.0198 

12-18-1 0.0175 0.0220 

12-19-1 0.0182 0.0232 

 

 

4.1.2 Step Disturbance Model 

  We first considered the example from Patel and Jenkins (2000). The step 

disturbance model can be expressed as follows: 
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(4.1)

where Ω  is the level of the step change disturbance and st  is the time of the  

disturbance introduced into the process. The tuner parameters in the Patel-Jenkins 

system [Equation (2.11)] were set to be the same as their simulation example. They 

Table 4.1 Summary of the training result 
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were 12 =εσ , 1.00 =µ , 10 =ζ , 410−=δ , 005.0=τ , and the step disturbance is 

introduced at run 50 with 10=Ω . Figure 4.1(a) shows the controlled process output 

and Figure 4.1(b) plots the EWMA gain tλ  through 800 runs. On the other hand, the 

trained network structure 12-17-1 which was implemented on line to tune the EWMA 

controller gain under the step disturbance was also introduced at run 50 with 

magnitude 10. Figure 4.2(a) shows the NN-based controlled process output and 

Figure 4.2 (b) plots the NN-based EWMA gain tλ  through 800 runs. As expected, 

tλ  increased on a shift, and decreased to a small number. The uncontrolled inflation 

factor ( 2

2

ˆ
ˆ

εσ
σ y ) was 5.2795, and the controlled inflation factor under the Patel-Jenkins 

method was 1.8521, and 1.4401 in the NN-based EWMA controller. Thus, the 

performance of the NN-based controller was superior.  
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Figure 4.1 Patel-Jenkins adaptive method (a) controlled output (b) EWMA gain 

(a) 

(b) 

Figure 4.2 NN-based adaptive method (a) controlled output (b) EWMA gain 

Controlled 

Run No. (t) 
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4.1.3 IMA(1,1) Disturbance Model 

In this example, we considered the IMA(1,1) disturbance model with moving average 

parameter 2.0=θ  and 12 =εσ . We knew that the optimal controller parameter was 

θλ −=1* . Assume the IMA(1,1) disturbance model was introduced at run 50 over 

800 runs. Figure 4.3 shows the EWMA gain under NN-based adaptive controller. The 

value of tλ  tended to 0.7846 (taking the sample mean of the last 100 runs). This was 

close to the optimal controller parameter of 0.8. The NN-based adaptive controlled 

inflation factor after 50 run was 1.025 which implies that the increased standard 

deviation (ISD) was 2.4672 %, and the ISD under Patel-Jenkins adaptive algorithm 

was 6.5762%. Thus, the NN-based adaptive algorithm produces a lower inflation in 

the controlled process. 
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4.1.4 Trend Disturbance with Slow Ramp Rates 

  The Chemical Mechanical Planarization (CMP) is a very critical step for the Very 

Large Scale Integrated (VLSI) manufacturing. The objective of CMP is to obtain 

global within-wafer planarization. It is well known that the polish pad tends to 

wear-out with use, leading to a trend process in remove rate which needs to be 

tλ

Figure 4.3 NN-based adaptive EWMA gain under IMA(1,1) 
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compensated for. Therefore, this example will simulate the environment of the CMP 

process and apply the proposed approach to control it. 

Consider the trend disturbance model which can be expressed as: 
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(4.2)

where S is the trend rate. The optimal EWMA controller parameter under trend 

disturbance can be solved by the following equation:  

044 222232 =−+− SSS λλλσ ε
(4.3)

Assuming the trend disturbance with 1.0=S and 12 =εσ  was introduced at run 

50. Figure 4.4 shows the EWMA gain under NN-based adaptive method. Taking the 

sample mean of the last 100 runs, the value of tλ  tended to 0.3057 which was very 

close to the optimal value of 0.3061 which was obtained by solving Equation (4.3). 

The NN-based controlled inflation factor was 1.5919, and 2.0914 under Patel-Jenkins 

adaptive algorithm.  
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4.1.5 Discussion and Concluding Remarks 

  The effect of improperly setting the EWMA controller parameter would inflate the 

controlled process output variance has been demonstrated in this study. We have 

tλ

Figure 4.4 NN-based adaptive EWMA gain under trend disturbance 
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shown that the NN-based adaptive approach possesses better performance than the 

Patel-Jenkins adaptive algorithm on the controlled process output. Furthermore, the 

proposed system has been shown to be a stable system. From Section 4.1.2, as we 

expected the NN-based EWMA gain tended to a small value with time when a step 

disturbance model was introduced to the process. Sections 4.1.3 and 4.1.4 showed the 

EWMA gain behaving close to the optimal controller parameter when the IMA(1,1) 

and trend disturbance existed in the process. The proposed methodology could update 

the EWMA gain automatically, which would reduce the needs for operators to tune 

recipes in the process. Although the proposed methodology was implemented via 

simulation, nevertheless it is anticipated to improve the performance of the EWMA 

controller on an actual process. 

 

4.2 Implement Enhanced Neural Adaptive Single EWMA Controller 

4.2.1 Off-Line Training the Enhanced Neural Network 

  The training data sets were generated by simulating different combinations of the 

disturbance and controller parameters. There were a total of 121 data sets (i.e. 

]1,0[],1,0[ ∈∈ λθ ) which implied that we had a total of 121 SACF/SPACF patterns. 

We used 30 data sets to be the testing data, and the remainder to be the training data. 

The considered case included 24 nodes at the input layer, and one node at the 

output layer. The problem in a full-connected neural network is to determine the 

number of neurons in the hidden layer. A trial and error approach was used to 

determine that a single hidden layer with 22 neurons formed the required structure for 

the considered problem. In order to improve the network performance, a 22 factorial 

design were used to find the learning rate and momentum constants (see Table 4.2). 

The factors involved in this design are the learning rate and the momentum constants, 

and the response variable was the number of epochs used to achieve the desired level 
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(0.01) of the root-mean-square (RMS) error. It can be observed that the best network 

performance (with smallest number of epochs) was achieved when the learning rate 

0.15 and the momentum constant was 0.85. Figure 4.5 shows the learning behavior 

versus iterations of the selected network structure; it indicates that the network learns 

very fast and only required 3393 iterations (about 28 epochs). Thus, we will utilize the 

24-22-1 network structure to implement the NN-based EWMA controller on line in 

the following examples. 

 

 
 

Run Learning 

Rate 

Momentum

Constant 

Epoch 

1 0.35 0.85 54 

2 0.15 0.85 28 

3 0.35 0.95 51 

4 0.15 0.95 37 

 

 

 

 

Table 4.2 Experimental design results 

Figure 4.5 Enhanced neural network learning behavior 
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4.2.2 Step Disturbance Model 

  The step disturbance model was expressed in Equation (4.1). The tuner parameters 

in the Patel-Jenkins system were set to be the same as their simulation example. They 

were 12 =εσ , 1.00 =µ , 10 =ζ , 410−=δ , 005.0=τ , and the step disturbance was 

introduced at run 50 with 10=Ω . Figure 4.1(a) shows the controlled process output 

under the Patel-Jenkins approach, and Figure 4.1(b) plots the EWMA gain tλ  

through 800 runs.  

The off-line trained network was implemented on line to tune the EWMA controller 

gain under the step disturbance which was also introduced at run 50 with magnitude 

10. Figure 4.6(a) shows the NN-based controlled process output, and Figure 4.6(b) 

plots the enhanced NN EWMA gain tλ  through 800 runs. As expected, tλ  

increased on a shift, and decreased to a small number with time. The performance of 

the uncontrolled process measured in the inflation factor ( 2

2

ˆ
ˆ

εσ
σ y ) was 5.2795, the 

controlled inflation factor under the Patel-Jenkins method was 1.8521, and 1.3321 in 

the enhanced NN-based EWMA controller. Therefore, the enhanced NN adaptive 

EWMA controller possessed superior performance.  
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4.2.3 IMA(1,1) Disturbance Model 

  The IMA(1,1) disturbance model will be considered in this example. We used the 

moving average parameter 2.0=θ  and 12 =εσ  to simulate the problem. Assume that 

the disturbance was introduced at run 50 over 800 runs. Figure 4.7 shows the EWMA 

gain under the enhanced NN adaptive controller. We could see that the value of tλ  

oscillated along with the optimal controller value (say 0.8). Taking the sample mean 

of the last 200 runs, it tended to 0.8078, which was close to the optimal controller 

parameter. The inflation factor of the controlled process output approximated to 1, 

which implied that the proposed adaptive controller has the ability to produce the 

minimum mean square error (MMSE) process output. 

 

tλ  

(b) 

Figure 4.6 Enhanced NN adaptive method (a) controlled output (b) EWMA gain

Run No. (t) 
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4.2.4 Trend Disturbance Model with Slow Ramp Rates 

This example considered the ramp disturbance model [see Equation (4.2)]. 

Following the example of Patel-Jenkins, we introduced the trend disturbance, with 

1.0=S , 12 =εσ  at run 50. Figure 4.8 shows the EWMA gain under the enhanced NN 

adaptive method. We could see that the value of tλ  oscillated along with the optimal 

controller value (say 0.3061). The inflation factor under Patel-Jenkins was 2.0914, but 

only 1.3825 under the proposed method. 
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Figure 4.7 Enhanced NN adaptive EWMA gain under IMA(1,1) 

tλ  
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Figure 4.8 Enhanced NN adaptive EWMA gain under trend 
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4.2.5 Discussion and Concluding Remarks 

  The proposed enhanced NN adaptive algorithm was based on the pattern 

recognition of the SACF/SPACF patterns by training the neural network. The 

behavior of the off-line trained network showed that the network learns fast with input 

features being SACF/SPACF patterns. We have shown that the proposed approach 

possesses superior performance over the Patel-Jenkins adaptive algorithm through 

three implementations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


