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CHAPTER 5  

IMPLEMENTATION OF DYNAMICAL DOUBLE EWMA 

CONTROLLER 

 

In this chapter, we first present how to determine the discount factor, and then we 

implement the proposed tuning method by using the software of Matlab/Simulink 

version 4.1. After that, we will make a comparison between the fixed weight trade-off 

solution and the proposed time-varying tuning method by running the Monte Carlo 

simulations. 

 

5.1 Implement Time-Varying Weights Tuning Strategy 

  For the control performance characterization, the normalized mean square error 

( 2/ εσMSE ) is used as the performance measure. The prediction MSE is defined as 

follows:  
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Therefore, the normalized mean square error is the measure of inflation for the 

controlled process produced against the natural disturbance ( tε ). To implement the 

proposed tuning method, the first task is to determine the discount factor. The 

objective of the chosen discount factor is to minimize the normalized mean square 

error.  

Consider a drifting process model in Equation (2.13) with 0=α , 0=T , 

1/ == bβξ , 1=δ , 12 =εσ and 200=m . By solving Equation (2.33), we obtain 

the all-variance solution weight )1486.0,0247.0(),( ,2,1 =vv λλ . Therefore, our 

proposed tuning method can be expressed as follows:  



 49

}1486.0,0247.0max{*
1 =λ (5.1)

tft )(}1486.0,0247.0min{)(*
2 +=λ (5.2)

A plot of the normalized mean square errors of the controlled process output, 

obtained from a series of trial values of the discount factor, is shown in Figure 5.1. 

The minimum value of 2/ εσ
Λ

MSE  appears at 92.0* =f . Table 5.1 shows a similar 

process for determining the discount factor under other drifting speeds. We can see 

that whatever the drifting speed is, the optimal discount factor always appears at 

92.0* =f . Thus, it shows the robustness for determining the discount factor under 

our proposed tuning method. Substituting 92.0* =f  into Equation (5.2), Figure 5.2 

shows the controlled process output, and it shows that observations wander around the 

target value (T=0) with 2481.12 =
Λ

εσ
MSE . In addition, if we use the fixed trade-off 

solution weights to control the process, then 6183.12 =
Λ

εσ
MSE . Therefore, our 

proposed time-varying tuning method is 22.88% better than the fixed weights control 

scheme. The following section will make a more detailed comparison between the 

trade-off solution, and the proposed tuning method, by using the Monte Carlo 

simulations.  
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Figure 5.1 2/ εσMSE  versus discount factor 
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δ  

v,1λ  v,2λ  Optimal 

Discount factor 

0.1 0.0067 0.0485 0.92 

0.5 0.0173 0.1067 0.92 

1.0 0.0247 0.1486 0.92 

1.5 0.0303 0.1799 0.92 

2.0 0.0351 0.2057 0.92 

2.5 0.0393 0.2281 0.92 

3.0 0.0432 0.2480 0.92 

 

 

 

 

 

 

 

 

Table 5.1 Optimal discount factors under various drifting speeds 

Output 

Figure 5.2 Controlled process output under the proposed 
time-varying tuning method 

Run 
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5.2 Comparison Results 

  In order to validate the effectiveness of the proposed time-varying weight tuning 

method, Monte Carlo simulations are performed under various random seeds. In these 

Monte Carlo simulations, we assume the target value 0=T , 0=α , 1== b
βξ  

and )1,0(~ Ntε . At each simulation, the performance index, 2/ εσ
Λ

MSE , is calculated 

based on the simulation results of 200 runs ( m ) and 200 simulation cycles (initial 

seed from 0 to 199). 

Table 5.2 shows the comparison results between the fixed trade-off solution 

weights, and the proposed time-varying tuning methods under various drifting speeds. 

The estimated standard deviation errors are shown in the parentheses. We can see that 

the performance between the two control schemes is not significantly different with 

the slow drifting speed (say 1.0=δ ). But, when the drifting speed is moderate to 

large (say 5.0≥δ ), then the proposed time-varying tuning method is much better 

than the fixed trade-off control scheme. The last column of Table 5.2 shows the 

percent improvement of the proposed time-varying tuning method over the fixed 

trade-off control scheme. It shows that the larger the drifting speed, the more 

improved the performance. Thus, it is recommended that when a drifting disturbance 

model exists in the process, using the proposed method to tune the double EWMA 

controller will produce a satisfactory performance. 
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δ  Trade-Off 

 

Proposed 

(MGC-2) 

Improvement (%) 

Over Trade-Off 

0.1 1.1309 (0.1124) 1.1322 (0.1153) --- 

0.5 1.3315 (0.1303) 1.1458 (0.1167) 13.95% 

1.0 1.5096 (0.1447) 1.1955 (0.1214) 20.81% 

1.5 1.6581 (0.1564) 1.2454 (0.1254) 24.89% 

2.0 1.7939 (0.1667) 1.2957 (0.1292) 27.77% 

2.5 1.9222 (0.1763) 1.3469 (0.1329) 29.93% 

3.0 2.0456 (0.1855) 1.3995 (0.1366) 31.58% 

 

5.3 Implement Dynamical Double EWMA Controller 

  Consider a simple dynamic system model follows 1−= tt xy  (T=0). Assume the 

drifting disturbance parameter (δ ) changed from 0.1 to 0.3 at run 200 ( 200=′t ) with 

)1,0(~ Ntε . Figure 5.3 shows the uncontrolled drifting process output over 400 runs. 

  Design criteria, 2.0=q  and 962.2=L  are selected for the EWMA chart. 

Figure 5.4 shows the EWMA chart applied to the controlled process output. The chart 

shows that a shift is detected at the 208th run, that is 208=k . Next, the estimated 

drifting rate is shown in Figure 5.5, it shows 3.0ˆ →δ  after the 208th run. From 

Table 3.1, we know that the ARL for detection a drifting process with 3.0=δ  is 

81 ≈ARL . By solving Equation (2.33), we can obtain )1241.0,0203.0(),( ,2,1 =vv λλ . 

So, the Dynamic Tuning Loop module becomes:  
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Figure 5.6 shows the control cycle of )(2 tλ . It shows the control cycle is triggered at 

Table 5.2 Comparison results 
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the 208th run and then converges to the all variance solution weight at the 319th run. 

The all variance weights will be held until the EWMA chart triggers a new signal. 

Finally, the performance ( 2/ εσ
Λ

MSE ) of the controlled process output is only 1.196, 

which is close to the MMSE controlled process output (i.e. 1/ 2 =εσMSE ). 

 

 

 

 

 

 

 

Figure 5.3 Uncontrolled drifting process output 

Run 

Run 

Figure 5.4 EWMA chart on the controlled process output 

tz  

output 
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5.4 Discussion and Concluding Remarks 

  In this chapter, we have shown that the proposed tuning strategy possesses a 

significant improvement over the fixed trade-off solution weights control scheme, 

especially for processes with a moderate to large drifting rate. In addition we also 

proposed a dynamic tuning double EWMA controller. In the proposed controller, the 

EWMA control chart was used to trigger the Dynamic Tuning Loop Module, in order 

to adjust the control parameters. We have shown that the proposed controller is 

effective in responding to the disturbance changes. 

 

Run 

Figure 5.5 Estimated drifting rates 

δ̂  

Run 

Figure 5.6 Control cycle of )(2 tλ  

)(2 tλ  


