
國 立 交 通 大 學 

 

環 境 工 程 研 究 所 

 

碩 士 論 文 

 

在配水管網中餘氯傳輸模式之研究 

The Study of Model for Chlorine Transport in the Water 

Distribution System 

 

 

研究生：溫士賓 

指導教授：葉弘德 

 

 

 

中 華 民 國 九 十 七 年 九 月 



在配水管網中餘氯傳輸模式之研究 

The Study of Model for Chlorine Transport in the Water 

Distribution System 
 
 

研究生﹕溫士賓                      Student: Shi-Bin Wen 

指導教授﹕葉弘德                      Advisor: Hund-Der Yeh 

 
 

國立交通大學 

環境工程研究所 

碩士論文 

 
 
 

A Thesis 
Submittd to Institute of Environmental Engineering 

College of Engineering 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for the Degree of  
Master of Science 

in 
Environmental Engineering 

September, 2008 
Hsinchu, Taiwan  

 

 

中 華 民 國 九 十 七 年 九 月



致謝 

    在兩年的研究所生涯，即將劃下句點。回首這兩年的歲月，真的可以說是有歡笑

有淚水，並且要感謝許多人的支持與幫助，才能順利完成學業。 

    首先，最先要感謝的人就是我的指導老師葉弘德教授，老師是一位學識豐富且研

究認真的一位學者，他不僅細心教導我如何做研究，更讓我學到一些處事的態度，時

間管理與執著努力為成功的不二法門，實在讓我受益良多。此外，也要特別感謝中興

大學盧重興教授、中國科技大學陳主惠教授及台灣大學劉振宇教授擔任本論文的口試

委員，在他們細心指正本論文一些疏失之處及提供許多寶貴意見，使本論文得以更加

完整。 

    研究室裡有親切的學長姐們，他們從不吝嗇於提供他們寶貴的經驗與學弟妹分

享，再加上熱心的學弟妹們，研究室就像是一個大家庭。由衷感謝雅琪學姊不厭其煩

的解決我研究上的問題，並且細心的修改我的論文，是我研究順利的大推手，使我能

夠在一年級的時候就有一些研究成果。而研究室成員，紹洋學長、智澤學長、彥禎學

長、雅琪學姊、彥如學姊、嘉真學姊、志添學長、毓婷學姊、敏筠學姊、凱如學姊，

他們都是我的好榜樣，從他們身上學到很多寶貴的知識與經驗，非常感謝他們在兩年

來的照顧與指導。也謝謝珖儀、其珊、仲豪、庚轅及璟勝的協助，還有與我一同進入

地下水研究室的博傑同學，我們經常分享研究與生活上的心得，謝謝他這兩年的幫助，

也很高興能與他一起畢業。感謝環工所壘球隊的大家，我很高興能與你們一起打球、

一起奮鬥，讓我兩年的生活更加多彩多姿。還有感謝楚俊、毅豪、家驤、詔元及燦煌

你們的陪伴，使研究生活不再枯燥。 

    最後，深深地感謝我的家人，尤其是我的祖母、父母及兩位哥哥，你們給我的無

條件的支持與關心，是讓我繼續走下去的動力，讓我能無後顧之憂地完成學業，在此

送上我最由衷的謝意，謝謝你們。 

 



在配水管網中餘氯傳輸及模式之研究 

 

研究生：溫士賓                       指導教授：葉弘德 

 

國立交通大學環境工程研究所 

 

摘要 

在配水管網中，餘氯的殘留關係到飲用水的安全。二維非穩態氯傳輸方程式可以描

述餘氯在管中傳輸行為，此方程式考慮氯在軸向的傳流及延散作用，徑向的擴散作用和

發生在水體及管壁上的一階消耗反應。目前已有許多數值模式被發展來模擬管網中餘氯

的濃度，然而，在這個領域中解析解的研究是相當的稀少。本論文首先利用拉式轉換和

廣義傅立葉級數展開推倒出在紊流中二維非穩態氯傳輸方程式的解析解，並且結合忽略

軸向延散作用的解析解，及一系列數學方法，發展出可模擬管網中餘氯濃度的解析模

式。此模式以美國康乃狄克州部份供水區域 (South Central Connecticut Regional Water 

Authority) 進行實際模擬配水管網中的餘氯濃度，結果將與一維質量傳輸模式 (Rossman 

et al., 1994) 比較。此外，本論文亦發展在紊流中穩態氯傳輸方程式的近似解。相較於 

Biswas et al. (1993) 提出的近似解，此近似解具有容易計算與精度高的優點，並且可結

合模擬退火演算法，發展出可以預測管壁消耗參數的方法。兩個案例研究驗證此近似解

和數學方法的應用性。第一個案例是利用近似解模擬 Rossman (2006) 的餘氯消耗實驗

結果，而另一案例為美國康乃狄克州部份供水區域(South Central Connecticut Regional 

Water Authority)中管壁消耗反應常數的預估結果。 

關鍵字：解析解、近似解、 餘氯、管、配水系統、傳輸方程式、管壁消耗 
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The Study of Model for Chlorine Transport in the Water 
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ABSTRACT 

The residual chlorine concentration in a water distribution system concerns safety of 

drinking water.  A mathematical model can be used to describe the transport behavior for 

chlorine in a pipe.  This model is mainly make up of two dimension chlorine transport 

equation (CTE) considering the mechanisms of advection and dispersion in axial direction, 

the diffusion in radial direction, and the first-order decay reactions in the bulk liquid phase 

and at pipe wall.  Many numerical techniques were utilized to solve the 1-D model and only 

few studies have been devoted to the development of analytical solution in this area.  This 

study first derives the analytical solution of unsteady CTE in turbulent flow through 

utilization of Laplace transform and generalized Fourier series expansion, which is to simplify 

differential term in the radial direction.  This solution is further simplified in absence of 

dispersion in axial direction and integrates with a series of methodology to establish an 

analytical model for simulating the chlorine residual at any location in a water network.  

This analytical model is used to predict the chlorine concentration distribution in the water 

network of the South Central Connecticut Regional Water Authority (SCCRWA).  The 

simulated results are compared with those obtained from a mass-transfer-based model 
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developed by Rossman et al. (1994).  Moreover, an approximate solution of the 2-D 

steady-state chlorine transport equation under turbulent flow is also developed.  This new 

approximate solution has advantages of easy evaluation and good accuracy when compared 

with Biswas et al.’s approximate solution (1993).  This thesis also develops a methodology 

which combines simulated annealing (SA) with this new approximate solution to determine 

the wall decay parameter.  Two cases are chosen to demonstrate the application of the 

present approximate solution and methodology.  The first case is to use this new 

approximate solution in simulating chlorine decay in pipes with the experiment-observed data 

given by Rossman (2006) while the second case presents the determination of the wall 

consumption at the end of pipe in the water network of SCCRWA. 

 

KEY WORDS: analytical solution, approximate solution, chlorine, pipes, water 

distribution system, transport equation, wall decay. 
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NOTATION 

 

C Point value of chlorine concentration in the any location of the pipe (mgl-1); 

C’ Average chlorine concentration in the pipe under no wall consumption     

Condition(mgl-1); 

C  Concentration in Laplace domain 

Cav Cup-mixing average concentration of the pipe at any cross-section (mgl-1); 

m
avjC  Cup-mixing average concentration at Xj within pipe j at mth hydraulic time step 

m
initiali, jC  Spatial concentration distribution of ith segment in pipe j at the beginning of the mth 

hydraulic time step (mgl-1); 

Cm Well mixed concentration (mgl-1); 

Cin j The concentration at the inlet node of pipe j 

Cinlet Inlet temporal concentration variable (mgl-1); 

Cout j The concentration at the out node of pipe j 

Cinitial Initial spatial concentration distribution (mgl-1); 

D Dimensionless chlorine radial diffusivity (LDr/r02u); 

Deddy Eddy diffusivity (m2s-1); 

Dr Radial effective diffusivity of chlorine in the water (m2s-1); 

Dx Axial effective diffusivities of chlorine in the water (m2 s-1); 

f(r) Flow parameter term on the flow regime; 

g Number of confluent node; 

G Number of flow path; 

J0 Bessel function of the first kind of order zero; 

J1 Bessel function of the first kind of order one; 

kd First-order chlorine decay rate constant in the bulk water (s-1); 
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kf mass transfer coefficient (ms-1) 

K Dimensionless chlorine decay rate in the bulk water  (kdL/u); 

L Pipe length (m); 

m Number of hydraulic time step; 

N Number of the last segment in pipe j; 

PL Dimensionless chlorine axial diffusivity (LU/Dx); 

m
jPT  Retention time for water flow in pipe j at the mth hydraulic time step; 

qi Flow rate at confluent node i in a single flow path; 

Qi Total flow rate at confluent node i; 

r0 Pipe radius (m); 

rh Hydraulic radius of pipe; 

R Dimensionless radial distance from the center of the pipe (r/r0); 

s Laplace parameter related to dimension time 

m
i, jST  Retention times of ith segment in pipe j at the mth hydraulic time step; 

t Time (s) 

th Time of hydraulic time step (hr); 

ts Time of water quality time step (min); 

T Dimensionless time (tu/L) 

m
jT  Dimensionless time of pipe j at the mth hydraulic time step; 

m
jT ′  Dimensionless time at the end of the mth HTS in pipe j,  

u Average flow velocity throughout the distribution system (ms-1); 

m
ju  Average flow velocities in pipe j at the mth hydraulic time step; 

wd Pipe wall surface reaction constant (ms-1); 

W Dimensionless wall decay rate (wdr0/Dr); 

x Axial distance from the inlet along the pipe (m); 
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X Dimensionless axial distance from the inlet along the pipe (x/L); 

Xj Dimensionless axial location in pipe j ; 

α̂  Dimensionless reaction parameter for initial condition; 

α%  Dimensionless reaction parameter for inlet condition; 

m
i, jα̂  Dimensionless reaction parameter for ith segment in pipe j at mth hydraulic time step;

β̂  Concentration parameter for initial condition (mgl-1); 

β%  Concentration parameter for inlet condition (mgl-1); 

m
i, jβ̂  Concentration parameter for ith segment in pipe j at the mth hydraulic time step; 

ε Fractional error; 

λn The nth root of Eq. (16);  

τ Time within a hydraulic time step (0 ~ th). 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

The establishment of maximum contaminant level goals for some pernicious materials 

existing in the treated water after leaving from treatment plants was regulated by the Safe 

Drinking Water Act and its Amendments in US.  More interest in water quality aggravation 

in the water distribution systems is by virtue of this command.  In general, disinfection is 

carried out to reduce or prevent microbiological growth before treated water entering the 

water network system.  Chlorine is a strong and enduring disinfectant which can control 

microbial growth in the distribution networks.  When chlorine is added to water, it can 

combine with water rapidly to form hypochlorous acid (HOCl) and hydrochloric acid (HCl).  

Partial hypochlorous acid then ionizes to form the hydrogen ion (H+) and the hypochlorite ion 

(OCl-).  The HOCl and OCl- are called free available chlorine which has a strong 

disinfection capacity because it is a strong oxidizing agent capable of oxidizing substance in 

water, inclusive of microbe.  Chlorine can react with the organic matters in water; however, 

the process may result in some carcinogens by-products, e.g., trihalomethanes 

(Tchobanoglous and Schroeder, 1987).  The quantity of residual chlorine should be small to 

avoid producing the carcinogens disinfection; however, there is no disinfection capacity in 

water if the concentration of residual chlorine is low.  Consequently, it is very important to 

control the concentration of residual chlorine in water. 

The model for chlorine transport in the pipes may include the first-order decay kinetics 

in bulk liquid and chlorine consumption at the pipe wall.  The consumption process at the 

pipe wall is similar to the process of mass transfer from the bulk liquid phase to the pipe 

surface.  LeChevallier et al. (1988) indicated that the transport of chlorine from the bulk 

liquid phase to the biofilm at the pipe wall is an important factor affecting the chlorine decay 

rate.  In order to inactivate bacterial populations, higher chlorine concentrations are required 
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in the biofilm as compared to those suspended in the bulk liquid phase.  In addition, the pipe 

material strongly affects the wall decay and could generally be grouped into two different 

types.  That is the reactive pipes such as unlined iron and unreactive pipes, e.g., PVC, MDPE, 

cement-lined iron (Hallam et al., 2002).  Additionally, pipe age also affect the capacity of 

chlorine reaction at the pipe wall (Al-Jasser, 2006).  Therefore, the decay of chlorine at the 

pipe wall is usually considered as the first order reaction parameter in relation to the degree of 

reactivity of the pipe material or growth of biofilm on the pipe wall. 

1.2 Literature review  

   In the water distribution systems, minimum chlorine residual is required to ensure safe 

drinking water.  Nevertheless, maintenance of this requirement is difficult due to chlorine 

decay with time comprising reactions in the bulk water and at the pipe wall.  In order to 

realize the chlorine disappearance and transport behavior in pipes, an unsteady two 

dimensional (2-D) mathematical model is developed.  The model is mainly composed of a 

chlorine transport equation (CTE) accounting for the processes of the advection and 

dispersion in axial direction, the diffusion in radial direction, and the decay with a first-order 

reaction in the bulk flow and at the pipe wall.  Biswas et al. (1993) derived an analytical 

solution for a steady-state 2-D CTE without considering the axial dispersion under turbulent 

flow.  Their analytical solution was further simplified to a simple exponential function form 

which can be easily applied to estimate chlorine decay or transport parameters in water 

networks.  However, the development of the approximate solution is not straightforward and 

the accuracy of approximate solution may be influenced due to regression when the wall 

decay parameter is large.  For the numerical approach, Ozdemir and Ger (1998) applied 

finite difference method to solve steady-state chlorine transport equation and simulated 

chlorine transport behavior in an experimental pipe.  Alternating Direction Implicit (ADI) 

scheme was utilized to solve the unsteady 2-D CTE (Ozdemir and Ger, 1999) 
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    Previous studies on water quality in the water distribution systems included the 

development of the contaminant propagation model or the simulation of chlorine decay in the 

pipe network (e.g., Clark et al., 1991; Clark et al., 1993; Clark et al., 1994).  Based on mass 

conservation,  Rossman et al. (1994) developed an one dimensional (1-D) 

mass-transfer-based model with considering the advection in axial direction and introducing 

the concept of mass-transfer coefficient in representing chlorine transfer from bulk flow to the 

wall pipe.  They integrated the mass-transfer-based model with the hydraulic model of 

EPANET to perform hydraulic and residual chlorine concentration simulations in the water 

networks (Rossman et al., 1994).  The same model was also utilized for the determination of 

decay parameters in real networks by coupled with an optimization approach or statistical 

technique (e.g., Vasconcelos et al., 1997; Munavalli1 and M. S. Kumar, 2006).   Munavalli 

and M. S. Kumar (2004a) developed the relation of chlorine reaction to the substrate and 

microorganisms in water distribution systems based on a 1-D multi-component reaction 

transport model.  Many numerical techniques were utilized to solve the 1-D model (e.g., 

Rossman and Boulos, 1993; Rossman et al., 1996; Munavalli and M. S. Kumar, 2004b) and 

only few studies have been devoted to the development of analytical solution in this area.  

However, most of numerical techniques involve the problems of numerical dispersion and/or 

phase shift errors (Rossman et al., 1996; Yeh, 2000). 

1.3 Objectives  

    This study has two primary objectives.  The first is to derive the closed form solutions 

of unsteady 2-D CTE with and without dispersion in turbulent flow using Laplace transform 

and technique of generalized Fourier series expansion.  The closed form solution without 

axial dispersion is further utilized to develop an analytical model for simulating the chlorine 

concentration distribution in a water network based on the pipe velocities obtained from a 

hydraulic simulation.  This model is applied to the simulation of the chlorine concentration 

in a water distribution system build by South Central Connecticut Regional Water Authority 
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(SCCRWA) for tracking the change of chlorine residual with time.  The results of the 

present model will compare with the observed data and the predicted concentration by the 

mass-transfer-based model developed by Rossman et al. (1994).  The second is to develop a 

new approximate solution of Biswas et al.’s analytical solution (1993) which has advantages 

of simple function form, easy numerical evaluation, and good accuracy.  The approximate 

solution is obtained mainly by remaining the first term of the infinite series in the analytical 

solution of Biswas et al. (1993) and simplifying the Bessel function in eigenfunction.  This 

approximate solution is expressed as an exponential form and in terms of three 

non-dimensional parameters, which physically represent the mechanisms of radial diffusion, 

first-order chlorine bulk decay, and chlorine wall decay.  Thus, this approximate solution can 

be used to estimate transport parameters if coupled with an optimization algorithm.  The two 

cases including experimental study (Rossman, 2006) and study in the water network of 

SCCRWA (Biswas et al., 1993) are chosen to demonstrate the application of the present 

approximate solution. 
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CHAPTER 2 THEORY 

 

2.1 Unsteady 2-D chlorine transport equation 

The unsteady 2-D CTE describing the concentration of total free chlorine in the water 

flowing through a pipe with considering first-order decay reaction is written as (Biswas et al., 

1993) 
2

x r2
1( )C C C CUf r D D r k C

t x r r rx
∂ ∂ ∂ ∂ ∂⎛ ⎞+ = + −⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠

d  (1) 

where C is the concentration of free chlorine, (mg/L); t is time, (s); U is the average flow 

velocity in the pipe, (m/s); r is the radial coordinate; x is the axial coordinate; Dr and Dx are 

the radial and axial effective diffusivities of chlorine species in the water, respectively, (m2/s); 

kd is the first-order decay constant in the bulk water, (1/s) and f(r) is a flow parameter 

representing actual velocity profile as function of radial direction in a pipe and depending on 

the flow regime.  Flow parameter, f(r) is equal to 2[1-(r/r0)2] for laminar flow and is 

assumed approximate to 1 for turbulent flow.  The first term on the left-hand side (LHS) of 

Eq. (1) represents the change of chlorine concentration with time in a pipe.  The second LHS 

term represents the axial advective flux.  The first and second terms on the right-hand side 

(RHS) of Eq. (1) account for the axial dispersive flux and the radial diffusive flux, 

respectively.  The last RHS term is the first-order decay rate of chlorine in the bulk flow. 

The associated initial and boundary conditions of Eq. (1) are as follows: 

( ) )(0,, initial xCxrC =  (2) 

( ) )(,0, inletl tCtrC =  (3) 

( ) 0,, =∞ trC  (4) 

( ) 0,,
0

=
∂

∂

=rr
txrC  (5) 

( ) ( txrCw
r

txrCD
rr

,,,,
0dr

0

−=
∂

∂

=

)  (6) 
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where r0 is the pipe radius, (m); and wd is the pipe wall surface reaction constant and also 

referred to “intrinsic wall decay constant”, (m/s).  The initial concentration Cinitial may be 

spatially distributed along the axial direction in a pipe and the inlet concentration Cinlet may 

vary with time.  Note that the chlorine concentration is well mixed over the cross-section. 

Under the turbulent condition, Eq. (1) can then be cast in the following dimensionless 

form as:   

KC
R
CR

RR
D

X
C

PX
C

T
C

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

L

1   (7) 

subject to the dimensionless initial and boundary conditions 

( ) )(0,, initial XCXRC =  (8) 

( ) )(,0, inletl TCTRC =   (9) 

( ) 0,, =∞ TRC  (10) 

( ) 0,,0
0

=
∂

∂

=RR
TXC  (11) 

( ) ( TXWC
R

TXRC
R

,,1,,
1

−=
∂

∂

=

)

)

 (12) 

where T = tU/L, X = x/L, R = r/r0, PL = LU/Dx, D = LDr/r0
2U, K = kdL/U, and W = wdr0/Dr.  

The dimensionless parameters D, K, and W represent the radial effective diffusivity, the 

chlorine decay rate constant in the bulk water, and pipe wall surface reaction constant, 

respectively.  If the decay reactions occurring in the bulk water and at the pipe wall are 

assumed the first-order kinetics, the initial concentration and inlet concentration are 

respectively expressed as 

( ) ( XXC αβ ˆexpˆ
initial −=  (13) 

and 

( ) ( )TTC αβ ~exp~
inlet −=  (14) 

where the  and β̂ β~  are the concentration parameter (mg/L) and α̂  and α~  are the 

dimensionless reaction parameter.  A diagram of control volume in a dimensionless form 
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for chlorine concentration in a pipe with related initial and inlet conditions is illustrated in 

Figure 1. 

2.2 Analytical solution  

    Eq. (7) with the initial and boundary conditions, Eqs. (8) - (12), describes the transient 

chlorine transport in a pipe.  The closed-form solution to Eqs. (7) - (12) can be obtained 

through utilization of Laplace transform with respect to time and generalized Fourier series 

expansion, which simplifies the differential term in the radial direction.  The detailed 

derivation of the solution is shown in Appendix A and the Laplace-domain solution is   

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

1

1 n 0 n
2 2

1 n 0 n

L
n2

LL n

2
L n

2
, ,   

ˆ 4                      exp 1 1
2ˆ ˆ/

ˆ
ˆ                        exp

ˆ ˆ/

n n

J J R
C R X s

J J

P X s
s PP s

X
P s

λ λ
λ λ λ

β β
α α α

β α
α α

∞

=

=
⎡ ⎤+⎣ ⎦

⎧⎡ ⎤ ⎡ ⎤⎛ ⎞⎪⎢ ⎥+ − + Γ +⎢ ⎥⎜ ⎟⎨ ⎜ ⎟+ + −Γ −⎢ ⎥ ⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎣ ⎦⎩
⎫⎪− − ⎬

+ −Γ − ⎪⎭

∑

%

%
 (15) 

where C  is the concentration in Laplace domain; s is a Laplace parameter related to T; Γn is 

equal to (K + λn
2D); J0 and J1 are the zero and first order Bessel functions, respectively; and λn 

is the nth root of following equation. 

n 1 n 0 n( ) ( ) 0 J WJλ λ λ− =

X

 (16) 

After taking Laplace inverse transform of Eq. (15), the solution for the cup-mixing average 

concentration Cav can be expressed as  

( ){ }av n L n
1

ˆ ˆ ˆ ˆexp( ) ( , ) exp / ( , ) exp( )  
n

C T A X T P T B X Tβ α β α α α
∞

=

⎡ ⎤= Ψ × − − + −Γ − −⎡ ⎤⎣ ⎦⎣ ⎦∑ % %  (17) 

where Ψn is [4W / λn
2(λn

2 + W)] and A(X, T) and B(X, T) are respectively expressed as 

( )

( )

L L
n L n

L L
n L n

1( , ) exp 1 4 / erfc
2 2 2

            exp 1 4 / erfc
2 2

P X PXA X T P T
T

P X PXP T
T

η η

η η

⎧ ⎛ ⎞⎛ ⎞⎪= + × +⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩
⎫⎛⎛ ⎞ ⎞⎪+ − × −⎜ ⎟⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪⎝ ⎠⎭

 (18) 
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( )

( )

L L
L

L L
L

1( , ) exp 1 4 / erfc
2 2 2

           + exp 1 4 / erfc
2 2

P X PXB X T P T
T

P X PXP T
T

ω ω

ω ω

⎧ ⎛ ⎞⎛ ⎞⎪= + × +⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩
⎫⎛⎛ ⎞ ⎪− × −⎜ ⎟⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪⎝ ⎠⎭

⎞

4)

 (19) 

The variable ηn in Eq. (18) and ω in Eq. (19) are defined as n L( /PαΓ − +%  and 

, respectively.  If neglecting the axial dispersion (i.e., PL → ∞), Eq. (17) 

can be reduced to  

2
L Lˆ ˆ( / / 4P Pα α+ + )

H X T( ){
( ) ( ) }

av n n
1

n

ˆ ˆexp exp( ) ( )

                    exp exp ( )
n

C T X T

X T X H T

β α

β α

∞

=

⎡ ⎤= Ψ × − −Γ × −⎣ ⎦

⎡ ⎤+ − −Γ ×⎣ ⎦

∑
% % X−

 (20) 

where the symbol H represents the Heaviside function.  If inlet concentration is equal to 

constant, β%  (i.e., α% = 0), Eq. (20) under steady state can be reduced to the analytical 

solution developed by Biswas et al. (1993), written as 

(av n n
n 1

exp  C β
∞

=

= × Ψ × −Γ∑% )X   (21) 

    To compute Cav’s using Eqs. (17), (20) and (21), the roots of the Eq. (16), λn, must be 

determined first.  Eq. (16) is a nonlinear equation and its roots λn’s can be determined by 

Newton’s method which has the advantage of quadratic convergence in finding the roots (Yeh, 

1987).  The Cav can be calculated at any location and time in the pipe if the values of λn’s, PL, 

D, K, and W are known.  The Cav’s in Eqs. (17), (20) and (21) are represented as an infinite 

series; however, the relative error in estimating Cav is less than 5% if only the first term of the 

series is computed.  Therefore, it may be appropriate to use the first three terms of the series 

in Eqs. (17), (20) and (21) to compute Cav. 

 

2.3 Approximate solution 

2.3.1 Biswas et al.’s approximate solution (1993) 
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In the case of no chlorine consumption at the pipe wall (i.e., W = 0) for Eq. (21), the 

cup-mixing average chlorine concentration can be expressed as (Biswas et al., 1993): 

(av expC β′ = −% )KX  (22) 

A fractional error ε was defined to simplify the analytical solution as (Biswas et al., 1993):    

( ) avavav / CCC −′=ε  (23) 

Substituting Eq. (22) into Eq. (23), Cav becomes  

( )
( )av

exp
1

KX
C

β
ε
−

=
+

%
 (24) 

Once ε is assigned, the Cav can then be determined by Eq. (24).  Biswas et al. (1993) used the 

regression technique to express ε in terms of D and W as 

22.4416 0.1559DW DWε = −  for 0.01 10W≤ ≤  (25) 

Eq. (24) along with Eq. (25) was then used to approximate Eq. (21) in computing the Cav. 

2.3.2 New approximate solution 

The Cav may be approximated by retention of the first term of the infinite series and 

neglect of higher order terms in Eq. (21) as  

[ ]av 1 1exp  C β= ×Ψ × −Γ% X  (26) 

For 0 ≤ λn ≤ 12, the Bessel functions J0 and J1 in Eq. (16) can be respectively written as (Yang 

and Yeh, 2002)  

( )
( ) ( ) ( )

L+
⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

+−= 2

3
2

n

2

2
2

n

2

2
n

n0 !3
4
1

!2
4
1

!1
4
1

1
λλλ

λJ  (27) 

and 

( ) ( )( ) ( )( ) ( )( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

+−⎟
⎠
⎞

⎜
⎝
⎛= L

!4!3
4
1

!3!2
4
1

!2!1
4
1

1
2

3
2

n

2
2

n
2

n
n

n1

λλλλλJ  (28) 
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The value of λn increases with W which equals wdr0/Dr.  Dr, is assumed to equal to the eddy 

diffusivity suggested by Edwards et al. (1979) as Deddy = 1.233×10-2Ur0.  Rossman et al. 

(1994) used EPANET program to simulate chlorine residual in the network in New Haven, 

Connecticut including 41 pipes and 36 nodes where the range for the value of W is form 

7.3×10-4 to 7.0×10-2 under turbulent flow.  This network was also studied by Biswas et al. 

(1993) and W ranges from 1.49×10-5 to 1.3×10-2.  Additionally, in the experimental study for 

chlorine decay, the value of W is about from 2.49×10-4 to 3.48×10-3 under turbulent flow (e.g., 

Ozdimer and Ger, 1998; Rossman et al., 2001; Rossman, 2006).  The value of W is 

considered smaller than 0.1.  The first root λ1 is less than 0.5 when W < 0.1.  Therefore, the 

third and higher order terms in Eq. (27) and the second and higher order terms in Eq. (28) are 

relatively small and negligible.  Accordingly, based on Eq. (16), λ1 becomes  

1
4

2
W
W

λ =
+

 (29) 

Eq. (26) can then be expressed as 

av 2

2 41 exp
4 2 2

WC
W W W

β DWK X⎡ ⎤⎛ ⎞ ⎛= × + − +⎜ ⎟ ⎜
⎞
⎟⎢ ⎥+ + +⎝ ⎠ ⎝ ⎠⎣ ⎦

%  (30) 

As an approximate solution to Eq. (21), Eq. (30) is very simple and easy to use to compute the 

Cav.  When W is smaller than 0.1, the second term on the RHS of Eq. (30) is much less than 

1.  Thus, the approximate solution is further simplified to 

av
4exp
2

DWC K
W

β ⎡ ⎛= − +⎜⎢ +⎝ ⎠⎣ ⎦
% X ⎤⎞

⎟ ⎥  (31) 
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CHAPTER 3 METHODOLOGY OF PRESENT MODEL 

 

3.1 Hydraulic time step and water quality time step 

    Before simulating the chlorine residual in a water distribution system by a water quality 

model, the hydraulic simulation should be performed first.  The water-use rate at every node 

in a water distribution system is taken as an average value within a discrete time interval, th, 

called the hydraulic time step (HTS).  The computer program such as EPANET (Rossman et 

al., 1994) or KYPIPEF (Wood, 1986) can be used with known pipe information and nodal 

water-use rates to perform hydraulic simulation for all the necessary HTSs.  The average 

flow velocities in pipes for all the HTSs can then be obtained from the hydraulic simulations.  

A HTS is usually divided into several water quality time steps (WQTSs), ts.  Rossman et al. 

(1994) used a time interval of 1 hr in their hydraulic simulation and a smaller time step 

dependent on the pipe length and flow velocity for simulating chlorine transport in the water 

networks.  Thus we also use 1 hr for the HTS when performing the hydraulic simulation and 

a smaller time interval such as 1 min for the WQTS.   

3.2 Segment of a pipe 

    For simulating the chlorine transport in a water network, the influence of axial dispersion 

on the chlorine transport is small and, therefore, negligible in comparison with the axial 

advection.  In addition, the fluid velocity is considered uniform over the pipe cross-section; 

in other words, the water network has plug flow in pipes.  At the beginning of the first HTS, 

each pipe is considered as a segment and the concentration in each pipe (i.e., initial 

concentration) is assumed as uniform (well-mixed) and equal to the observed concentration at 

its downstream node.  Figure 2 shows an example of the chlorine transport, which acts as 

plug flow, in a single pipe line at the first HTS, i.e., from t = 0 to t = th, for the flow from left 

to right.  The black, gray, and light gray colors denote the water residing in the pipes j+1, j, 

and j-1, respectively, at the beginning of simulation.  At t = th/3, pipe j may contain gray and 
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light gray water because a part of water in pipe j-1 (in light gray color) flows into pipe j.  At 

t = 2th/3, the water originally resides in pipe j-1 at t = 0 may all flow into the pipe j if the 

hydraulic retention time of water in pipe j-1 is equal to 2th/3.  At the end of the first HTS 

(i.e., t = th), a part of the water originally resides in pipe j may still stay in pipe j.  We refer to 

this portion of pipe as segment 1 for the second HTS and marked with grey color which is the 

last panel in Figure 2.  This panel also demonstrates that the water originally resides in pipe 

j-1 and now all stays in the segment 2 of pipe j for the second HTS.  Moreover, the third 

segment for the second HTS (with white color) in pipe j is occupied by the water originally 

residing in pipe j-2.  Therefore, in the second and succeeding HTSs, each pipe is divided into 

a number of segments dependent upon the pipe length, flow velocity, and the origin at 

previous HTS for water residing in each pipe at beginning of HTS.  Therefore, the water 

within a segment of a pipe at beginning of HTS comes from the same segment at the previous 

HTS or treatment plant.  Different pipes may have different diameter and thus are of 

different hydraulic radius and radial effective diffusivity.  Therefore, at beginning of each 

HTS, the number of segments in each pipe should be determined in order to predict the spatial 

distribution of chlorine concentration in the pipe network at every HTS using the present 

analytical solution.  In addition, the number of segments in a pipe is in an order starting from 

the outlet node and ending at the inlet node.   

3.3 Flow time for water in different segments 

    The dimensionless axial location in pipe j is denoted as Xj and the retention time in pipe j 

is .  The retention times of ith and vth segments of pipe j at the mth HTS are denoted as 

 and , respectively.  In pipe j, when water at the end of the vth segment flows to 

Xj at mth HTS, the arrival time is equal to 

m
jPT

m
j i,ST m

j v,ST

1
m

i, j
1

v

i

ST
−

=
∑ - ( )m

j 1PT X− j  in which the first term is the 

retention time for water at the end of the segment to the end of pipe j and the second is the 

retention time for water flow from Xj to the end of pipe j.  Therefore, at mth HTS, the flow 
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time for water in the vth segment of pipe j passing through Xj ranges from 

 to .  Moreover, the arrival time for water in the 

vth segment of upstream pipe k when passing through Xj at mth HTS can be divided into three 

time intervals.  The first interval is  representing the retention time for water at the 

end of the vth segment to the outlet node of pipe k; the second is  standing for the 

retention time for water at the outlet node of pipe k to the inlet node of pipe j and the last is 

 denoting the retention time for water at the inlet node of pipe j to Xj.  Thus, the flow 

time for water in the vth segment of upstream pipe k passing through Xj starts from 

 and ends at 

(
1

m m
i, j j j

1

1
v

i

ST PT X
−

=

− −∑

j jPT X×

-11
m

i, k i j
1 1

jv

i i k

ST PT PT
−

= = +

+ +∑ ∑

) )(m m
i, j j j

1

1
v

i

ST PT X
=

− −∑

1
m

i, k
1

v

i

ST
−

=
∑

j× m
i, k

v

ST

-1

i
1

j

i k

PT
= +
∑

X
-1

i j j
1 1

j

i i k

PT PT X
= = +

+ + ×∑ ∑ . 

3.4 Concentration distribution in a pipe line predicted by the present model 

Based on Eq. (13), the initial spatial distribution of chlorine concentration in the vth 

segment of pipe j at the mth HTS can be expressed as  

  (32) ( )m
v, j jˆ Xα−m m

initialv, j v, j
ˆC =

m
v, j

ˆ

expβ

m
v,ˆ  jα and where β  respectively denote the concentration and dimensionless reaction 

parameters in the vth segment of pipe j at the mth HTS.   

Eq. (20) which is expressed in terms of an infinite series can be used to describe the 

cup-mixing average concentration, Cav.  For the ease of computing, this term is used to 

develop the analytical model for the simulation of chlorine concentration distribution in a 

single pipe.  Accordingly, the concentration at Xj within pipe j at mth HTS is 

( )

( )

m m
j j

m m
 i j j

1 1

)

1
v

i i

X T

PT X

γ

τ
= =

⎡ ⎤−⎣ ⎦

− − <∑ ∑ ( )1
v

ST X< − −

m m m
av j j v, j

ˆ

                              

ψ β= × m m
v, j j j

1

j,

ˆ exp (

              for     

C T

ST

α

−

⎡ ⎤−⎣ ⎦

m m
j, i jPT j

exp

     
 (33) 
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where τ is the time within a HTS raging from 0 to th, is a dimensionless time of pipe j and 

equal to τ divided by the retention time of pipe j, and 

m
jT

j
mγ  and m

jψ  represent Ψ1 and Γ1 for 

the pipe j at the mth HTS, respectively.  Based on Eq. (33), the concentration distribution at 

the outlet node in pipe j (i.e., Xj = 1) can be written as 

( )
1

m m m m m m m m
av j j v, j v, j j v, j j i, j i, j

1 1

ˆ ˆ ˆexp exp ( )              for   
v v

i i

C T ST STψ β α γ α τ
−

= =

⎡ ⎤= × − − + < <⎣ ⎦
m∑ ∑   (34) 

This equation can also be used to describe the concentration distribution at the inlet node 

of pipe j+1 if the  in Eq. (34) is changed to  because the retention times for water 

flow in pipes j and j+1 may be different.  The relationship between the variables  and 

 can be expressed by mean of the parameter 

m
jT m

j+1T

m
j+1,j

m
jT

m
j+1T θ , which is the ratio of m

j+1PT  to m
jPT , 

so the variable  is equal to m
jT m

j+1,jθ  multiplied by .  Based on the second term on the 

RHS of Eq. (20), the concentration distribution at Xj+1 for water coming from the vth segment 

of pipe j can be obtained by the relationships of 

m
j+1T

( )m m
j v, j v

ˆ exβ ψ β=% m
, jα− ˆp  and 

m m
j+1, j v, jˆ m

j( )α θ α γ= −% . 

Similarly, the concentration distribution at Xj for water coming from the vth segment of 

the upstream pipe k can be written as 

( ) (

1 -1
m m m m m m m m

av j i v, k v, k i v, k k i, k
1 1

m m m m m
j, k v, k k j j j j

ˆ ˆ ˆexp ( )

ˆ                                                        exp ( ) exp

           

j j j

i k i ki k

C

T X X

ψ β α γ α γ θ

θ α γ γ

−

= + = +=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= × − + + −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤× − − −⎣ ⎦

∑ ∑∏

-1 -11
m m

i i, k j j i v, k j
1 1 1 1

       for    
j jv v

i k i i k i

)

jPT ST PT X PT ST PT Xτ
−

= + = = + =

+ + × < < + +∑ ∑ ∑ ∑ ×

 (35) 

The concentration distribution at any location in a pipe line can be estimated at every WQTS 

using Eq. (33) for k = j or Eq. (35) for k ≠  j once the retention time in every segment within 
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the HTS and the upstream segment, which the passing water at the location Xj within the 

WQTS comes from, are determined. 

3.5 Searching the segment within a water quality time step 

At the mth HTS, the flow time is  for water at the end of pipe k (k 

≦ j) to arrive at Xj.  Similarly, the flow time is +  for water at 

the end of the segment v in pipe k to arrive at Xj.  Therefore, the segment in which the water 

passes through Xj at time τ can be determined based on the following relationship: 

( )m
i j

1

1
j

i k

PT X PT
= +

− −∑

1

1
j

i k

PT
= +
∑

m
j

m
 

1
k

( )m
i jX PT− − m

j ∑
−

=

1

1

m
k ,

v

i
iST

( )
1

m m m
i, i j j i,

1 1

1
jv v

k
i i k i

ST PT X PT STτ
−

= = + =

⎡ ⎤
< − − − <⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑  (36) 

3.6 Segment division in a pipe line at each hydraulic time step  

    At the first HTS, the length of segment in each pipe is equal to the pipe length; thus, the 

retention time of each segment equals the pipe length divided by the average flow velocity.  

The dimensionless time at the end of the mth HTS in pipe j, m
jT ′ , is equal to th / m

jPT .  

Consider that the water passing through the outlet node of pipe j at the end of mth HTS comes 

from v′th segment of pipe k′.  The variables k′ and v′ can be determined by Eq. (36) when Xj 

= 1 and τ = th.  However, the water in v′th segment of pipe k′ may not reside completely in 

pipe j at the end of mth HTS because a part of the water may travel through the outlet node of 

pipe j.  The flow time for the water in v′th segment of pipe k′ passing through the outlet node 

of pipe j is equal to .  The remaining part of the water staying in 

pipe j becomes the first segment of pipe j at the (m+1)th HTS and its flow time is 

.  Therefore, the retention time for the first segment of 

pipe j at the (m+1)th HTS,  is  where 

1
m

h i  
1 1

(
j v

i k i
t PT ST

′−

′= + =

− −∑ ∑

1
m m

i i, k
1 1

)]
v

i
T ST

′−

=

−∑

m+1
1, jST ju S

m
i, k )

1

m
k , v h[ (

j

i k
ST t P′ ′

′= +

− − ∑

1
m m m m+

k , v h i, k j
1 1

[ ( )] /
j v

i k i
T t ST u

′−

′ ′
′= + =

− − −m
iPT∑ ∑
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m
ju and  are the average flow velocities in pipe j at the mth and (m+1)th HTS, 

respectively. 

m+1
ju

The water in the second segment of pipe j at the (m+1)th HTS may come from a whole 

segment situated at the upstream of the v′th segment in pipe k′.  Therefore, the retention time 

for water in the 2nd segment  is equal to  if the v′th segment is the 

last segment in pipe k′ or  if the v′th segment is not the last one.  Similarly, 

the retention times for succeeding segments in pipe j at the (m+1)th HTS except for the last 

one can then be determined. 

m+1
2, jST

m m+1
j j/ (u u S

m m m
j 1, k-1 j( ) /u ST u +1

)

, j

m
v -1, kT ′

The sum of the retention time for water in each segment within a pipe must equal the 

hydraulic retention time for water flowing through the pipe j.  If the sum of the retention 

time for water from the first segment to the Nth segment is greater than or equal to the 

hydraulic retention time of pipe j, the Nth segment is indeed the last segment of pipe j.  Thus, 

the retention time for water in the Nth segment  is equal to . m+1
N, jST

1
m+1 m+1

j i  
1

N

i
PT ST

−

=

−∑

The initial concentration distribution in each segment at the (m+1)th HTS can be 

determined based on Eq. (33) or (35), once the origin of the water in each segment of pipe j at 

the (m+1)th HTS is known.  For example, the concentration distribution in the first segment 

at the (m+1)th HTS can be determined with known m
jT ′ , v′, and k′ according to Eq. (33) if k′ 

= j or Eq. (35) if k′ ≠ j . 

3.7 Network 

In a water network, there may be more than one pipe connected to a node.  Assume that 

the concentration at the confluent node is well mixed and its concentration, Cm, can be 

calculated as (Rossman et al., 1994) 
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i
m

m
i

i g

I G
i g

av j

I

q
C

Q
∈

∈
∈

⎛ ⎞
⎜ ⎟

= ⎜
⎜ ⎟
⎝ ⎠

∏
∑ ∏

C ⎟  (37) 

where G is the number of flow path, g is the number of confluent node in a flow path, Qi is 

the total flow rate at confluent node i, and qi is the flow rate at confluent node i in a single 

flow path.  Figure 3 shows an example network which comprises nine pipes, seven nodes, 

and two confluent nodes denoted as black circles.  For the outlet node in pipe 9, there are 

three flow paths.  Path 1 includes pipes 1, 2, 3, 5, 6 and 9; path 2 has pipes 1, 2, 4, 6, and 9; 

path 3 contains pipes 1 and 7 to 9.  Based on Eq. (37), the mixing concentration at the outlet 

node of pipe 9 is  

( )( ) ( ) ( )( ) ( ) ( ) (
m m5 6 4 6 6

m av9 av9 av91 2
4 5 6 8 4 5 6 8 6 8

q q q q qC C C
q q q q q q q q q q )m

3
C× ×

= + +
+ + + + +

 (38) 

3.8 Flowchart of water quality simulation 

The flowchart for the simulation of chlorine concentration in a water network using the 

present model is illustrated in Figure 4.  The flowchart includes three parts.  The first part is 

to set the initial condition of the retention time and the initial concentration distribution in 

each segment for each flow path at the fist HTS.  Then, the present model is proceeding to 

the second part for the estimation of the chlorine concentration at each WQTS.  The second 

part, which includes the main solution algorithm of the present model, includes three steps.  

The first step is to determine the vth segment of pipe k for each flow path in which the water 

passes through the location Xj at the current WQTS using Eq. (36).  The second step is to 

calculate the chlorine concentration in each flow path using Eq. (33) or (35) and the last step 

is to calculate the mixed concentration for the current WQTS by Eq. (37).  The last part is to 

determine the retention times and concentration distribution in each segment for all flow paths 

for the next HTS.  Then, the algorithm of the present model will go back to the second part 

to estimate the chlorine concentration for the next HTS.  When accomplishing all the HTSs, 

the analytical model will complete the network concentration simulations. 
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CHAPTER 4 RESULTS AND DISCUSSION 

 

4.1 Accuracy comparisons of the approximate solutions 

The present approximate solution is compared with both the analytical and approximate 

solutions given in Biswas et al. (1993).  Three figures are plotted to investigate the effect of 

the parameters D, K, and W on the corresponding predicted chlorine concentration.  Figures 

5(a), 5(b) and 5(c) show the curves for the chlorine concentration distribution of, Cav with 

initial concentration equal to one, at the outlet (X = 1) versus the dimensionless wall decay 

rate (W) with different values of dimensionless radial diffusivity (D) for the dimensionless 

water decay rate (K) equal to 0.001, 0.1 and 1.  The solid line, dotted line, and dashed line 

represent the analytical solution, present approximate solution, and Biswas et al.’s 

approximate solution (1993), respectively. 

As indicated in Figures 5(a) - (c) for different K values, the value of Cav based on Biswas 

et al.'s approximate solution (1993), starts to be different from the analytical solution for W at 

0.003, 0.03 and 0.3 when D = 100, 10, and 1, respectively.  The present approximate 

solution is in good agreement with the analytical solution for K ranging from 0.001 to 1 with 

D equals 100, 10, and 1 except in the region where W > 0.5 and K = 1.  Those results 

indicate that the parameters of D and W have an apparent influence on the accuracy of those 

two approximate solutions.  In addition, the present approximate solution generally gives 

better prediction for the chlorine concentration than that of Biswas et al.’s approximate 

solution (1993).   

The poor accuracy of the Biswas et al.’s approximate solution (1993) stems from the fact 

that the expressions of fractional factor, ε, in terms of D and W were developed using the 

regression techniques as shown in Eq. (25).  On the other hand, the error of the present 

approximate solution is made mainly by neglecting the higher order terms of the Bessel 
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functions in Eqs. (27) and (28).  If the first eigenvalue λ1 is small, the errors of neglecting the 

high order terms in the Bessel functions of Eqs. (27) and (28) will be very small.   

Figure 6 shows the plots of the true and approximate values of λ1 against W.  The solid 

line represents the true λ1 obtained from Eq. (16) by Newton’s method and the dashed line 

denotes the approximate λ1 calculated from Eq. (29).  This figure indicates that both the 

value of λ1 and the difference in λ1 increase with W.  In addition, Table 1 shows the relative 

errors of the approximate λ1 to the true λ1 for W ranging from 0.001 to 0.5 and the relative 

error is about 1.2 % at W = 0.1.  Accordingly, the present approximate solution gives 

accurate results when W < 0.1 and is thus appropriate for most of field cases. 

4.2 Two case studies for the approximate solution 

    The first-order reaction kinetics is usually used to represent the chlorine decay in the 

bulk liquid of the pipe and at the pipe wall.  The decay parameters can be determined based 

on an appropriate mathematical model and measured chlorine concentration data.  Two cases 

are chosen to demonstrate the application of the present approximate solution.  The wall 

surface reaction constant estimated based on the approximate solution is compared with those 

obtained from Biswas et al. (1993) and Rossman (2006) in Case 1 and from the water network 

of SCCRWA (Biswas et al., 1993) in Case 2.  

4.2.1 Case 1 

Rossman (2006) used a distribution system simulator which consisted of a 27 m long 

loop with 0.15 m diameter unlined ductile iron pipe, a recirculation pump and a heat 

exchanger cooling system.  An experiment was made to measure the reaction rate of chlorine 

in a simulated pipe for water treated by different forms of advanced treatment at US EPA’s 

Test and Evaluation Facility in Cincinnati, Ohio.  In Case 1, the present approximate 

solution is used to determine the pipe wall surface reaction constants wd for water applied by 

three different treatments.  The initial chlorine was about 6 mg/L and the values of kd shown 

in the second column of Table 2 (Rossman, 2006) for lab-tested water under different 
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treatments were determined based on the analysis of the kinetic test data.  The wall surface 

reaction constants, wd, for three sorts of lab-tested water can then be determined from the 

experiment-observed data based on the present approximate solution.  In the experiment, the 

flow velocity was maintained constant, so steady-state flow condition was considered.  Note 

that the axial distance from the inlet along the pipe, x, is equal to the flow velocity multiplied 

by the flow time in pipe.  Under the turbulent condition, the eddy diffusion is greater than 

the molecular diffusion.  Thus, the effective diffusivity in the radial direction, Dr, is only 

considered the eddy diffusivity which can be obtained from Edwards et al. (1979) because of 

turbulent flow.  With the known values of pipe radius, pipe length, flow velocity, and 

chlorine bulk decay constant, wd can be determined based on the present approximate solution, 

Eq. (31), when minimizing the objective function defined as the sum of square errors between 

the observed and predicted chlorine concentrations.  In order to determine the optimal value 

of wd for three sorts of lab-tested water, simulated annealing (SA) is applied.  The SA is a 

generic probabilistic meta-algorithm for the global optimization problem based on the 

annealing concept, namely locating a good approximation to the global optimum of an 

objective function in a large search space.  The initial temperature of the SA is chosen as 100 

and the temperature is decreased by the temperature reduction factor (0.85) after 8100 

calculations.  The annealing process will be terminated if the absolute differences between 

two successive objective function values are all less than 10-10 within 20 iterations or the 

number of evaluations is greater than 107.  The SA has been successfully applied in 

forecasting THM Species (Lin and Yeh, 2005), parameter estimations (e.g., Yeh and Chen, 

2007; Yeh et al., 2007a), and source identifications (e.g., Lin and Yeh, 2007; Yeh et al., 

2007b). 

As suggested by Rossman (2006), a first-order reaction model for describing the 

first-order decay of chlorine in bulk flow and at the pipe wall was expressed as 
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where rh is hydraulic radius of pipe.  Table 2 lists the wd estimated by the present 

approximate solution, the first-order reaction model (Rossman, 2006), and Biswas et al.’s 

approximate solution (1993) for three sorts of lab-tested water.  The table shows that the 

values of wd estimated by these three models are close for the same lab-tested water.  Note 

that the first-order reaction model neglects the radial diffusion and thus the estimated wd 

slightly differs from those given by the other two solutions.  Figure 7 shows the 

experiment-observed data (Rossman, 2006) and the simulated results by the present 

approximate solution and Biswas et al.’s approximate solution (1993).  The solid line 

represents the result of the present approximate solution and the dashed line represents the 

result of Biswas et al.’s approximate solution (1993).  The symbols of circle, rhombus, and 

triangle displayed in Figure 7 denote experiment-observed values for lab-tested water treated 

by reverse osmosis, conventional treatment, and ozonation, respectively.  This figure 

indicates the simulated results of the present approximate solution are in good agreement with 

experiment-observed values from Rossman (2006).  In contrast, the simulated results of 

Biswas et al.’s approximate solution (1993) are discordant in the case of the lab-tested water 

treated by ozonation with greater wd value.  This problem may be attributed to the fact that 

the chlorine concentration is inversely proportional to the quadratic of wall decay constant in 

Biswas et al.’s approximate solution (1993) as expressed in Eqs. (24) and (25).  Chlorine 

concentration is considered to decay exponentially with increasing retention time as indicted 

in Eq. (39) and thus the chlorine concentration is inversely proportional to the exponent of kd 

and wd.  The present approximate solution expressed as Eq. (31) conforms to the form of the 

first-order decay reaction.  This may be the reason why the simulated results of the present 

approximate solution are better than those of Biswas et al.’s approximate solution (1993) 

when wd is large. 
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4.2.2 Case 2 

    In Case 2, the present approximate solution is employed to determine the wd in a field 

test conducted by the SCCRWA in New Haven, Connecticut.  The service area of this 

network covers 5.2 km2 and the network is composed of a storage tank, a pump station, 40 

pipes ranging from 76 to 731 m with constant diameters of 20.3 and 30.5 cm, and totally 36 

nodes.  The schematic of this network is shown in Figure 8 which includes eight sample 

points denoted by the words “SP”.  The sampling results of chlorine concentration at the 

inlet and outlet points of these pipe segments are presented in the second and third columns of 

Table 3 (Biswas et al., 1993).  The geometrical and flow parameter including pipe length, 

pipe radius, flow velocity (Biswas et al., 1993) and diffusion coefficients for all the pipes are 

listed in Table 4.  The diffusion coefficients were determined by the eddy diffusivity, as 

obtained from Edwards et al. (1979).  In addition, the chlorine bulk decay constant, kd, was 

6.4×10-6 (1/s) (Biswas et al., 1993) obtained by bench kinetic tests performed with the water 

sample taken at the inlet to the network. 

    In pipes 1 to 3, 6 to 16, 21, and 26 to 28 of this network (Figure 8), those pipes numbered 

3, 10 and 21 are dead end pipes while the other pipes are main branch.  The present 

approximate solution expressed in Eq. (31) is used to determine the wall surface reaction 

constant, wd, in this network.  The average value of wd for the main pipes such as 7, 9, 11 to 

15, and 26 to 28 in this network can be determined first.  Assume that the wall surface 

reaction constant for the main pipes are all the same because those pipes were made by the 

same material.  Based on Eq. (31), the average concentrations at X = 1, the outlet of pipe 7, 

can be expressed as  

7 7
av 7 in 7 7

7

4exp
2
D WC C K

W
⎡ ⎤⎛ ⎞

= × − +⎢ ⎜ +⎢ ⎥⎝ ⎠⎣ ⎦
⎥⎟  (40) 

The subscript in each variable represents the pipe number and Cin 7 is the inlet concentration 

of pipe 7.  The average concentrations at the outlet of other main pipes can be expressed in a 
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similar manner.  The chlorine concentrations are only measured at the inlet and outlet nodes 

of the segment and a segment usually contains several pipes.  The outlet concentration of a 

pipe is in fact the inlet concentration of the next pipe.  Thus, the concentration Cav at the 

outlet of a segment is equal to the product of Cav of each pipe within the segment.  The 

concentration at the outlet of pipe 28, Cout 28 in the segment containing main pipes 7, 9, 11 to 

15 and 26 to 28 can be written as 

i i
in 7 i out 28

 main pipes i

4exp
2i

DWC K
W∈

⎡ ⎤⎛ ⎞
× − + =⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

∏ C   (41) 

Furthermore, Eq. (41) can be simplified and expressed in term of W as 

i i
out 28 in 7 i

 main pipes  main pipesi

4 ln( / )
2i i

DW C C K
W∈ ∈

⎡ ⎤
= − +⎢+ ⎣ ⎦

∑ ⎥∑  (42) 

where D and K are known dimensionless parameters and W is a function of wd.  Note that W 

equals wd Dr/r0 and is the only unknown in Eq. (42).  Solving Eq. (42) by Newton’s method, 

the average value of wd for the main branches including pipes 7, 9, 11 to 15 and 26 to 28 is 

obtained as 3.47×10-7 (m/s).  This value presents the average wall surface reaction constant 

in the main branch.  The same approach and the main branch wd are then employed to further 

evaluate the wd for the dead ends pipes 3, 10, and 21 as shown in Figure 8.  The estimated wd 

including those three pipes are in the range from 3.47×10-7 to 1.01×10-5 (m/s) and listed in the 

last column of Table 4.  Note that the value of wd ranges from 0 to 7.06×10-5 (m/s) reported 

from field or experimental studies (Biswas et al., 1993; Rossman et al., 1994; Vasconcelos et 

al., 1997; Ozdemir and Ger, 1998; Munavalli and Kumar, 2006; Rossman, 2006).  With the 

known geometrical and flow parameters and the estimated values of wd, the concentration Cav 

for all the segments in this network predicted by Biswas et al.’s analytical solution (1993), Eq. 

(21) are listed in the fifth column of Table 3.  

    The sampled concentrations in the inlet and outlet of segments in the network are listed 

in the second and third columns of Table 3, respectively.  In addition, the dimensionless 
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sampled concentration at each segment is listed in the fourth column.  The segments of pipes 

7, 9, 11 and 12 to 15, 26 to 28 consist of the main branch.  Table 3 lists the Cav/Cin predicted 

based on the analytical solution and the sampling concentration given in Biswas et al. (1993) 

at some inlets and outlets of the pipe segments.  Table 3 indicates that the predicted Cav/Cin 

for the segments containing dead-end pipe agrees with the dimensionless sampling 

concentration (Cout/Cin) for the same segment.  This demonstrates that the present 

approximate solution can be applied to determine wd for the field application problem.  Table 

4 indicates that the wd’s in the dead-end pipes 3, 10, and 21 are much greater than those in the 

main branch pipes.  High value of wd denotes that wall decay is significant.  Biswas et al. 

(1993) also mentioned that significant biofilm growth occurs in the dead-end pipe where the 

flow velocity is relatively low if compared with that in main branch pipe.  Low water flow 

velocity causes more retention time in the pipe, and consequently, yields lower chlorine 

concentration due to the decay reaction.  Once the chlorine concentration is lowered, the 

microorganisms formed as biofilm on the pipe wall is then increased.  Consequently, the 

high values of pipe wall surface reaction may result in large values of wd for the dead-end 

pipes 3, 10, and 21 as demonstrated in the last column of Table 4.  

4.3 Network simulation  

    The present model is used to simulate the chlorine distribution in the water distribution 

system of the SCCRWA as indicated in Figure 8.  The water supply network of the 

SCCRWA was employed as a study site many times in the past to test various water quality 

models (e.g., Clark et al., 1993, 1994; Rossman et al., 1994).  The water flows into the 

network from the pump station (denoted as node 1) after the water level in the storage tank is 

lower than the lowest standard of water level.  When the storage tank is filled, the water 

supply from pump station is stopped and then the water is supplied from the storage tank 

(denoted as node 26).  The hydraulic simulation is performed using EAPNET program to 

determine the flow rate and velocity for all pipes in this network within 1 hr time interval over 
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53 sampling period with the pipe and nodal demand data given by Rossman (personal 

communication).  For water quality simulation, each nodal data for the sampling chlorine 

concentration provided by Rossman (personal communication) is used as the initial 

concentration of the present model for its upstream pipe.   

A value of 6.4 × 10-6 from the bottle test (Rossman et al., 1994) is assigned as the 

first-order reaction constant kd for chlorine in the network.  The flow velocities are high in 

pipes 1 to 7, 9 to 15 and 26 to 28 and their variations are very small within the first three 

HTSs.  Therefore, the flow is considered steady in those pipes within the first three HTSs.  

There are two flows into node 25 at time equal to 3 hr.  One is the treated water from pump 

station, which has flowed through the node 25; the other is from node 4 to node 25 at the end 

of third HTS, as shown in Figure 8.  Note that the flow rate and chorine concentration in 

pipe 17, i.e., from node 17 to node 15, are very small and negligible.  Initial observed 

concentrations at node 4 is 1.15 mg/L; the chorine concentration at the pump station is kept as 

a constant 1.15 mg/L and the sampling concentration at node 25 is 0.98 mg/L at the time of 3 

hr.  Thus, the wall reaction parameter wd is 1×10-6 m/s determined by the methodology of the 

present approximate solution.  With this wd value, the temporal chlorine concentration 

distribution at the storage tank, i.e., node 26, is simulated over 53 hr using the EPANET 

program. 

Rossman et al. (1994) mentioned that the determined water usages at nodes 10, 28 and 

34 are not accurate; therefore, these three nodes are excluded in the simulations for the nodal 

chlorine concentrations.  The simulated results obtained from the present model are 

compared with those obtained from Rossman et al.’s model (1994) computed by EPANET 

program and the observed data.  Figures 9(a) - 9(e) show the chlorine concentration versus 

time at nodes 3, 6, 11, 19 and 25, respectively.  The solid line represents the simulated 

results of the present model with the WQTS of one minute, dashed line represents the results 

of Rossman et al.’s model (1994) with the wall decay constant of 1.74×10-6 (m/s) obtained 

 25



from regression technique with all observations (Rossman et al., 1994), and the dot represents 

the observed data.  Both models, the present model and Rossman et al.’s model (1994), give 

good agreement with the observed data except that at node 19.  As indicated in these figures, 

the concentration varies periodically with time due to the cyclic operation of pump station.  

The predicted chlorine concentrations at node 19 obtained from these two models give poor 

fit to the observed data.  There seems a fixed time lag of several hours between the observed 

data and both predicted results.  The existence of time lag may be attributed to the 

discrepancy indicated in the result of fluoride simulation shown in Rossman et al. (1994, 

Figure 6a). 

4.4 Model comparison  

The chlorine concentrations determined by the present model and Rossman et al.’s model 

(1994) at node 3 have obvious differences as indicated in Figure 9(a).  The wall decay 

parameter wd used in the present model is smaller than that used in the Rossman et al.’s model 

(1994).  The simulated concentration at node 3 by the present model is also smaller than that 

of Rossman et al.’s model (1994) in the period of water supply from the storage tank.  In this 

period, the water flow velocity in pipe 3 from node 2 to node 3 ranges from 0.006 to 0.03 (m/s) 

which are about one order of magnitude lower if compared with most of the flow velocities in 

the network.  Two major differences between these two models are the dimension of the 

model and the mechanism for mass transfer from the bulk flow to the pipe wall.  The present 

model is developed based on an analytical solution of 2-D CTE which utilizes the diffusive 

mechanism to express the chlorine transport at the pipe wall represented by Eq. (6).  On the 

other hand, Rossman et al.’s model (1994) used a mass transfer coefficient kf depending on 

Reynolds number to reflect the mass transport from the bulk flow to the pipe wall.  The mass 

transfer coefficients under turbulent and laminar flow conditions are estimated by separate 

empirical equations given by Rossman (2000). 
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The overall decay constant is represented by [kd + 2wdkf/r0(wd + kf)] in Rossman et al. 

(1994) and by (kd + λ1
2Dr/r0

2) which has the dimensionless form of Γ1 (K + λ1
2D) in the first 

term of Eq. (20) in the present model.  Figure 10 shows the curves for the overall decay 

constant versus the Reynolds number Re with different values of pipe radiuses when wd 

equals 1×10-6 m/s for pipe 3 with the length of 400 m.  The solid line and dashed line 

represent the present study and the Rossman et al.’s model (1994), respectively.  In fact, the 

effect of the reaction constant in the bulk water on the overall decay constant is not 

considered in both two models.   

These two overall decay constants decreases tardily in turbulent flow regime (Re > 2300) 

as indicated in Figure 10.  Under laminar flow condition, the curve of the Rossman et al.’s 

model (1994) drops suddenly, while the curve of present model starts to decline obviously at 

Re close to 100.  The mass transfer coefficient kf under laminar flow condition is much 

smaller than that under turbulent flow condition based on the empirical equations given by 

Rossman (2000).  Thus, for Rossman et al.’s model (1994), the mass transfer flux from bulk 

flow to the pipe wall will obviously decline and result in low overall decay constant under 

laminar flow condition.  On the other hand, the overall decay constant in the present model 

has a higher value under the laminar flow condition because the diffusivity is estimated using 

Edwards et al.’s formula. (1979).  Thus, the difference in the simulated concentrations 

determined by the present model and Rossman et al.’s model (1994) at node 3 is mainly 

caused by the presence of laminar flow. 
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CHAPTER 5 CONCLUSIONS 

 

The analytical solutions for unsteady 2-D CTE in a single pipe under turbulent flow 

condition with and without considering axial dispersion were derived using Laplace 

transform and generalized Fourier series expand technique.  The analytical model was then 

developed based on the assumption of negligible axial dispersion.  This model can be used 

to simulate the chlorine concentration distribution in a water distribution network when 

using the results of hydraulic simulations given by EPANET (Rossman et al., 1994).  This 

study also developed a new approximate solution for describing the average chlorine 

concentration in the pipe by mainly neglecting the high order terms in the analytical 

solution (Biswas et al., 1993) and Bessel functions.  Generally, this approximate solution 

provides a better prediction for a wide range of the parameters except that the dimensionless 

wall decay rate is greater than 0.1.  The present approximate solution has been shown to 

have merits of easy evaluation and good accuracy if compared with Biswas et al.’s 

approximate solution (1993). 

The approximate solution can be used either to predict the chlorine decay in pipes or to 

determine the wall decay parameter if coupled with an optimization algorithm such as the 

simulated annealing.  Two cases were chosen to demonstrate the application of the present 

approximate solution.  In the first case, the approximate solution coupled with the algorithm 

of simulated annealing was used to determine the wall surface reaction constants for water 

treated by the methods of reverse osmosis, conventional treatment, and ozonation held at US 

EPA’s Test and Evaluation Facility in Cincinnati, Ohio (Rossman, 2006).  The simulated 

concentrations obtained by the present approximate solution were in good agreement with the 

experiment-observed for lab-tested water applied by those three treatments.  In the second 

case, the present approximate solution was also used to determine the wall surface reaction 

constant of the dead-end pipes in a field test conducted by SCCRWA (Biswas et al., 1993).  
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The high values of wall surface reaction constant in the dead-end pipes determined by the 

present approximate solution may imply the growth of biofilm on the wall pipe and thus 

lower the chlorine concentration. 

    In the case study of network simulation, the methodology which integrates 

approximate solution and Newton’s method was first used to estimate the pipe wall surface 

reaction constant.  The present model was then employed to simulate concentration 

distribution for a portion of the network of SCCRWA over a period of 55 hr.  The 

concentrations determined by the present model gave good agreement with the field 

measurements.  The simulated results by the present model gave slightly large difference 

at node 3 when compared with those of Rossman et al.’s model (1994).  The difference 

between both models is mainly due to the chlorine transfer coefficient used in the 

simulations from bulk flow to pipe wall which is an important factor for wall decay rate.  

The use of the eddy diffusivity based on Edwards et al’s formula (1979) for the 

determination of concentration distribution under laminar flow condition may be not 

appropriate.  At the present time, only few attempts were made to deal with the diffusivity 

for solute transport under laminar flow regime.  Thus, the issue of how to determine the 

effective diffusivity in pipes when flow is laminar may be a practical and useful topic 

desired further study. 
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APPENDIX A: DERIVATION OF EQUATION (17) 

 

The Laplace transform for the concentration, C(R, X, T) can be expressed    

( ) (C R, X,T C R, X,s⎡ ⎤ =⎣ ⎦ L )  (A1) 

where s is the Laplace parameter.  After taking the Laplace transform subject to the initial 

condition, the transport equation, Eq. (7), becomes  

( )
2

2
L

1 ˆ ˆexp( )C C D CR K s C X
X P R R RX

β α
⎛ ⎞∂ ∂ ∂ ∂

= + − + + −⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠
 (A2) 

The Laplace transforms of the boundary conditions Eqs. (9) – (12) are 

( ),0,C R s
s
β
α

=
+

%

%
 (A3) 

( ), , 0C R s∞ =  (A4) 

( )
0

0, ,
0

R

C X s
R

=

∂
=

∂
 (A5) 

( ) (
1

, ,
1, ,

R

C R X s
WC X s

R
=

∂
= −

∂
)  A6) 

Note that the Sturm-Liouville boundary value problem (S-L BVP) is described as (Jeffrey, 

2002, p. 517) 

1 d dFR F
R dR dR

ξ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 A7) 

The associated boundary conditions are 

0

0
R

dF
dR =

=  (A8) 

1R

dF WF
dR =

= −  (A9) 

where F and ξ are the dependent variable of S-L BVP and a parameter respectively.  The 

second RHS term of Eq. (A2) along with the associated boundary condition can be considered 
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as a S-L BVP.  The eigenfunction of the S-L BVP is J0(λnR) given in Biswas et al. (1993) 

where the eigenvalue λn is the nth root of the eigenfunction, λnJ1(λn) = WJ0(λn) and equal to 

ξ0.5.  A function can be represented by the generalized Fourier series called the eigenfunction 

expansion (Jeffrey, 2002).  Thus, the function C  and the second RHS term of Eq. (A2) can 

be expanded using the zero order Bessel function, J0(λnR), as, respectively  

( ) (0 n
1

, , ( , )n
n

C R X s X X s J Rλ
∞

=

=∑ )

)

 (A10) 

and 

(n 0 n
1

ˆ ˆˆ ˆexp( ) exp( )
n

E J Rβ α β α λ
∞

=

− = − ∑  (A11) 

where En is (Biswas et al., 1993) 

( )
( )
0 n

n 2
0 n

1, J R
E

J R

λ

λ
=  (A12) 

Based on Biswas et al. (1993), En can be written as ( )0 n2J λ / ( ) ( )2 2
n 0 n 1 nJ Jλ λ λ⎡ ⎤+⎣ ⎦ .  

Substituting Eqs. (A10) and (A11) into Eq. (A2), the second RHS term of Eq. (A2) can be 

expressed based on Eq. (A7) as 

(2
n n n

1n

D C )R D X J R
R R R

λ λ
∞

=

⎛ ⎞∂ ∂
=⎜ ⎟∂ ∂⎝ ⎠
∑  (A13) 

and, thus, Eq. (A2) becomes 

( ) (n n n n n n n
1 1L

1 ˆ ˆexp( )
n n

)X X X J R E J
P

λ β α λ
∞ ∞

= =

⎧ ⎫′′ ′− + + Γ = −⎨ ⎬
⎩ ⎭

∑ R∑  (A14) 

where Γn represents (K + λn
2D).  The eigenfunction expansions for the boundary conditions 

of Eqs. (A3) and (A4) are respectively 

( ) ( )n 0 n
1

0,
n

X s J R
s
βλ
α

∞

=

=
+∑
%

%
 (A15) 

( ) ( )n 0 n
1

,
n

X s J Rλ
∞

=

∞∑ 0=  (A16) 
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Based on the formula of generalized Fourier series (Jeffrey, 2002), the nX ’s in Eqs. (A15) 

and (A16) can be respectively obtained as  

( )n n0,X s E
s
β
α

=
+

%

%
 (A17) 

( )n ,X s∞ = 0  (A18) 

As crossing out the Bessel function on both sides of Eq. (A14), an ordinary differential 

equation can be found as  

n n n n n
L

1 ˆ ˆexp( )X X X E
P

β α′′ ′− + +Γ = −  (A19) 

The Eq. (A20) subject to boundary conditions Eqs. (A17) and (A18) can be easily solved as 

( ) ( )
( ) ( )

( ) ( ) ( )
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n 2 2
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+ −Γ − ⎪⎭

%

%  (A20) 

Based on Eq. (A10), the Laplace-domain solution for unsteady 2-D CTE is developed as Eq. 

(15).  The inverse Laplace transforms can be obtained with the application of convolution 

theorem to the first and second terms on the RHS of Eq. (A20).  The first RHS term of Eq. 

(A20) can be expressed as  

( ) ( )

( ) ( )

L
n

L

L
n

0 L
=

4exp 1 1
2

4exp 1 1 d
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T T T

P X
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L
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⎫⎤
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 (A21) 

Applying the inverse Laplace transform (Oberhettinger and Badii, 1973), we get  

( ) (exp T
s
β )β α
α

⎡ ⎤
= −⎢ ⎥

+⎢ ⎥⎣ ⎦

%
% %

%
  -1L  (A22) 
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and 
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2

L L L
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L

4exp 1 1 exp
2 2 4

P X P P X Pxs
P TTπ

⎧ ⎫⎡ ⎤⎛ ⎞ L

4
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Thus, Eq. (A21) becomes 

( ) ( )

( )
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Based on the integral result given in Massabo et al. (2006, Eq. (2.31)), Eq. (A24) becomes  

( ) ( )1 L
n

L

4exp 1 1 ( , )
2

P X
s A X T

s P
β
α
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%
  -L
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where A(X, T) is defined in Eq. (18).  Similarly, the inverse Laplace transform of the second 

RHS term of Eq. (A20) can be obtained as  

( ) ( )-1 L
n2

LL n

ˆ 4exp 1 1 = ( , )
2ˆ ˆ/

P X
s B X T

PP s
β

α α
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  L ⎥  (A26) 

where B(X, T) is defined in Eq. (19).  The inverse Laplace transform of the third RHS term 

of Eq. (A20) is 

( ) ( ) ( ) (-1
L n2

L n

ˆ ˆˆ ˆ ˆexp exp / exp
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P s

β α β α α α
α α

⎡ ⎤
⎢ ⎥ ⎡ ⎤− = + −Γ −⎣ ⎦+ −Γ −⎢ ⎥⎣ ⎦

 L X  (A27) 

Based on Eq, (15) and Eqs. (A25) - (A27), the analytical solution of unsteady 2-D CTE under 

turbulent flow condition is  

( ) ( ) ( )
( ) ( ) {
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 (A28) 

The cup-mixing average concentration can now be expressed as 

⎟
⎠
⎞
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R

RRTXRCC
π
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Substituting C(R, X, T) into equation (A29), Eq. (17) can be found after performing the 

integration of (A29).  
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   Table 1. The values of λ1 at different W  

W  Newton’s method Approximate method Relative error (%) 

0.001 

0.01 

0.1 

0.5 

 0.04472 

0.01412 

0.44168 

0.94077 

0.04471 

0.01411 

0.43644 

0.89443 

-0.02 

-0.07 

-1.19 

-4.93 
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   Table 2. The values of kd and wd for three sorts of lab-tested water 

wd (m/s) 

Treatment 
 kd 

(1/s) 

 First-order reaction model

(Rossman, 2006) 

Present 

approximate solution 

 Biswas et al.’s 

approximate solution

(1993) 

RO 

CON 

O3 

 
 

 

8.10×10-8 

1.09×10-7 

5.56×10-7 

 

 

 

4.66×10-7 

6.73×10-7 

1.30×10-6 

4.50×10-7 

6.52×10-7 

1.33×10-6 

 

 

 

4.20×10-7 

6.43×10-7 

1.53×10-6 
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    Table 3. Chlorine concentrations at the inlet and outlet of various segments  

 Chlorine concentration at segment 
 

Pipe in segment  
Cin 

(Biswas et al., 1993)

Cout 

(Biswas et al., 1993)
 Cout/Cin  Cav/Cin

1,3  1.08 1.00  0.926  0.926

7, 9, 11  1.00 0.98  0.980  0.975

7, 8, 10  1.00 0.32  0.320  0.319

7, 9, 11 to 15, 26 to 28  1.00 0.94  0.940  0.940

12, 13, 16, 21  0.98 0.16  0.163  0.161

12 to 15, 26 to 28  0.98 0.94  0.959  0.964
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     Table 4. Parameters for different pipes in the network  

Pipe 
 

 

Length 

(m) 

 

 

Radius 

(m) 

Flow velocity 

(m/s) 

Diffusion coefficient 

(m2/s) 

 

 

wd  

(m/s) 

1  731.5  0.152 0.546 1.02×10-03  3.47×10-07

3  396.2  0.102 0.195 2.45×10-04  1.24×10-06

7  822.9  0.152 0.512 9.60×10-04  3.47×10-07

8  365.8  0.152 0.014 2.62×10-05  3.47×10-07

9  121.9  0.152 0.494 9.26×10-04  3.47×10-07

10  304.8  0.102 0.014 1.76×10-05  1.64×10-06

11  213.4  0.152 0.485 9.09×10-04  3.47×10-07

12  579.1  0.152 0.457 8.56×10-04  3.47×10-07

13  182.9  0.152 0.445 8.34×10-04  3.47×10-07

14  121.9  0.152 0.372 6.97×10-04  3.47×10-07

15  91.4  0.152 0.329 6.17×10-04  3.47×10-07

16  457.2  0.102 0.168 2.11×10-04  3.47×10-07

21  426.7  0.102 0.049 6.16×10-05  1.01×10-05

26  76.2  0.152 0.338 6.33×10-04  3.47×10-07

27  182.9  0.152 0.329 6.17×10-04  3.47×10-07

28  91.4  0.152 0.323 6.05×10-04  3.47×10-07

 41



 

Figure 1. A dimensionless control volume with initial and inlet conditions 

 

 

 

 

 

 

 

Figure 2. Example of a network for chlorine concentration calculation. 
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Figure 3. Example of network for chlorine calculation using analytical model. 
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Figure 4. Flowchart of the methodology analytical model. 
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Figure 5. Computed values of analytical solution, presented approximate solution and 

Biswas et al.’s approximate solution (1993) at the outlet of pipe against W at K = (a) 0.001, 

(b) 0.1, (c) 1. 
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Figure 6. The λ1 against W for the true values and approximate values. 

 

 

 

Figure 7. The experiment-observed data (Rossman, 2006) and simulated results of the 

present approximate solution and Biswas et al.’s approximate solution (1993) for three sorts 

of lab-tested water. 
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Figure 8. Schematic of water network at New Haven, Connecticut.  The arrows represent 

the flow direction at the 3rd HTS and “SP” is denoted as the sampling node. 
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(a) 

 

(b) 

 

(c) 

 48



 

(d) 

 

(e) 

Figure 9. The simulated concentration based on present model and Rossman et al.’s model 

(1994) comparing with sampling data against time at node (a) 3, (b) 6, (c) 11 (d) 19, (e) 25. 
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Figure 10. The curves of the overall decay constant computed based on the present model 

and the Rossman et al.’s model (1994) against Re at wd = 1×10-6 (m/s) and kd = 0 in pipe 3. 
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