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Chapter 4 Proposed Procedures

In this study, we propose a discritization algorithm, named Extended Chi2

algorithm for the VPRS model to discrete real value attributes for deriving

classification rules. We also develop an effective approach to select β-reducts in the

datasets.

4.1 A Discretization Algorithm

The modified Chi2 algorithm utilizes the quality of approximation (Chmielewski et

al. 1996), in which it considers the effect of degrees of freedom. However, there are

two shortcomings of this algorithm that should be overcome.

First, the rough sets approach is inspired by the notion of inadequacy in the

available information to perform a complete classification of objects; that is, to

perform a complete classification requires that the collected data must be fully correct

or certain. Nevertheless, in real-world decision making, the objects of classes often

overlap, suggesting that predictor information may be incomplete. Thus, we need a

new method to determine the inconsistency rate to replace the quality of

approximation in the RST.

Ziarko (1993) defined the measure of the inconsistency rate of the set X with

respect to Y as:
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Here, card denotes set cardinality.

We utilize a simple method to determine the inconsistency rate in the VPRS, which

is based on the least upper bound ),( DC of the data set, where C is the equivalence
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relation set, D is the decision set, and },...,,{ 21 nEEEC  is the equivalence classes.

According to Ziarko (1993) the specified majority requirement, the admissible

classification error β , must be within the range .5.00  Since we determine

the β value in the VPRS model, which is based on the least upper bound ),( DC of

the data set, if one chooses the max value in 1m and the min value in 2m then this

leads to the calculated ),( DC <  ( : the exact classification error of data set),

which cannot be discernible the data set. Therefore, we propose to choose the min

value in 1m and the max value in 2m . The following equality is used for calculating

the least upper bound of the data set.
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:denotes the threshold, which is determined by the decision maker based on

the relative degree. Usually,  is set at 0.5.

In the extended Chi2 algorithm, inconsistency checking (InConCheck (data)<) of

the Chi2 algorithm is replaced by the lease upper bound  after each step of

discretization ( ddiscretize < original ). By doing this, the inconsistency rate is utilized as

the termination criterion.

Secondly, Tay, et al. (2002) proposed that the difference in degrees of freedom must

be considered if there exists a 2 value calculated from the adjacent two intervals (I)

and the threshold difference is greater than the other 2 value calculated from the

adjacent two intervals and threshold difference. This means that the independence of

the adjacent two intervals (I) is greater than the other adjacent intervals. In this case we
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suggest that the adjacent two intervals (I) should be merged first.

Although the modified Chi2 algorithm considers the effect of the degrees of

freedom, this algorithm only considers the difference in the 2 value and the

threshold. It ignores the effect of variance in the two merging intervals. From the view

of statistics, the compared baseline is not equal, and the interpretation is depicted as

follows: Consider when we have a pair of two adjacent intervals. By formula (4.2), the

first two adjacent intervals of the 2 value are 3.94, while the corresponding

threshold is 7.344 (degrees of freedom  8; significant level  0.5), the difference

between the 2 value and the corresponding threshold is 3.404, the second two

adjacent intervals of the 2 value are 0.54, while the corresponding threshold is

3.357 (degrees of freedom  4; significant level  0.5), and the difference in the

2 value and the threshold is 2.817. If the variance in the two adjacent intervals is

considered, the normalized difference (



*2

difference ) in the first two adjacent

intervals is 0.851; the normalized difference in the second two adjacent intervals is

0.996. Therefore, the second two adjacent intervals should be merged.

The extended Chi2 algorithm

Step 1. Initialize:

Set the significant level as =0.5; calculate the pre-defined inconsistency

rate.

Step 2. Calculate the chi-square value:

For each numeric attribute, sort data on the attribute and use formula (4.2) to

compute the 2x value.

Step 3. Merge:

For a Comparison, compute the 2x value and corresponding threshold;

merge the adjacent two intervals which have the maximal normalize
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difference and the computed 2x value is smaller than the corresponding

threshold. If no adjacent two intervals satisfy this condition, then go to Step

5.

Step 4. Check inconsistency rate for merger:

Check the merged inconsistency rate, and if the merged inconsistency rate

exceeds the pre-defined inconsistency rate, then discard the merger. Go to

step 5. Otherwise, go to step 2.

Step 5. Decrease the significance level:

Decrease 0 .

Step 6. Calculate finer the chi-square value:

For each numeric attribute, sort data on the attribute and use formula (4.2) to

compute the 2x value.

Step 7. Finer merge:

For a comparison, compute the 2x value and corresponding threshold;

merge the adjacent two intervals which have a maximal normalize difference

and the computed 2x value is smaller than the corresponding threshold. If

no adjacent two intervals satisfy this condition, then go to Step 9.

Step 8. Check the inconsistency rate much finer for a merger:

Check the merged inconsistency rate; if the merged inconsistency rate exceeds

the pre-defined inconsistency rate, then discard merge. Go to step 9.

Otherwise, go to step 6.

Step 9. Decrease finer the significance level:

Decrease the significance level; then stop.

The formula for computing the 2 value is:
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where n = 2 ( two intervals being compared);

k = number of classes;

Aij = number of objects in the ith interval, jth class;

Ri = number of objects in the ith interval 

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;

Cj = number of objects in the jth class 
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N = total number of objects 
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N
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If either iR or jC is 0, then ijE is set to 0.1. The degree of freedom of the 2

statistic is one less than the number of classes

4.2 An Approach for the β-reducts

When performing a VPRS analysis, how the β-reducts are selected is a key point

of the process. The precision parameter value can control the choice of β-reducts.

Previous related research studies lacked an effective method to determine a precision

parameter value. Ziarko (1993) defined the measure of the relative degree of

misclassification of the set X with respect to Y as:
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where card denotes set cardinality.

Let X and Y be non-empty subsets of U. We say that X is included in Y, if for

every element that belongs to X, then that also belongs to Y. The measure of relative

misclassification can define the inclusion relationship between X and Y without

explicitly using a general quantifier:

.0),(  YXcXY
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According to the specified majority requirement, the admissible β must be within

the range .5.00  Based on this assumption the majority inclusion relation is

defined as:

.),( 


 YXcXY

The above definition covers the entire family of β-majority relations.

In this study we propose an effective approach to select the β-reducts, which

involves two steps:

Step 1: Obtain the candidates of β-reducts using precision parameter (β)

The determination of the β value in the VPRS model is based on the

least upper bound ),( DC of the data set, where C is the condition

attributes set, D is the decision attributes set, and },...,,{ 21 nEEEC  is

the equivalence classes.

Step 2: Find the β-reducts

(1) For each candidate of β-reducts (subset P), calculate the quality of

classification based on (2.2).

(2) Remove redundant attributes

Let subset PX  . For each subset ( ,,( DC β) ,,( DP β)), if

,,( DX β ) ,,( DC β ), then remove the attributes XP \ .

Otherwise, do not remove any attribute from subset P.

(3) Find the β-reducts

Any subset X, which has ,,( DX β) ,,( DC β) is a β-reduct.


