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Chapter 3 Variable Precision Rough Sets

The variable precision rough sets model is an extension of the original rough set

model, which was proposed to analyze and identify data patterns that represent

statistical trends rather than being functional. Compared to the original rough set

model, VPRS introduces a precision parameter β. The β value represents a bound

on the conditional probability of a proportion of objects in a condition class that are

classified to the same decision class. Ziarko (1993) defined theβ value as a

classification error and the range in the domain 5.0,0.0 . However, An et al. (1996)

and Beynon (2001) considered β to denote the proportion of correct classifications,

in which case the appropriate range is 0.1,5.0 . In this study we use the Ziarko’s

notion.

VPRS operates on what may be described as a knowledge representation system or

information system. An information system (S) consisting of four parts is shown as:

S = (U, A, V, f),

where U is a non-empty set of objects;

A is the collection of objects; we have DCA  and DC  , where C is a

non-empty set of condition attributes, and D is a non-empty set of decision

attributes;

V is the union of attribute domains, i.e., a
Aa
VV


 , where aV is a finite

attribute domain and the elements of aV are called values of attribute a;

f is an information function such that ai Vauf ),( for every Aa and

Uui  .

Every object that belongs to U is associated with a set of values corresponding to the
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condition attributes C and decision attributes D.

3.1 β-lower and β-upper Approximations

Suppose that information system S = (U, A, V, f), with each subset UZ  and

an equivalence relation R, referred to as an indiscernibility relation, corresponds to a

partitioning of U into a collection of equivalence classes }...,,{ ,21 nEEER  . We

will assume that all sets under consideration are finite and non-empty (Ziarko, 2002).

The variable precision rough sets approach to data analysis hinges on two basic

concepts: namely, the β-lower and the β-upper approximations of a set. The

β-lower and the β-upper approximations can also be presented in an equivalent

form as shown below:

The β-lower approximation of the set UZ  and CP  :
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  ;

The β-upper approximation of the set UZ  and CP  :
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where )(E denotes a set of equivalence classes (in the above definitions, they are

condition classes based on a subset of attributes P).
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Quality of classification

Based on Ziarko (1993), the measure of quality of classification for the VPRS

model is defined as:

,,( DP β)
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, (3.1)

where CPDEZ  and)( , for a specified value of β. The value ,,( DP )
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measures the proportion of objects in the universe (U) for which a

classification (based on decision attributes D) is possible at the specified

value of β.

3.2 Core and β-reducts

If the set of attributes is dependent, then we are interested in finding all possible

minimal subsets of the attribute, which leads to the same number of elementary sets

as the whole attributes (β-reduct), and in finding the set of all indispensable

attributes (core). The concepts of core and β-reduct are two fundamental concepts

of the VPRS. The β-reduct is the essential part of the information system, which

can discern all discernable objects by the original information system. The core is

the common part of all β-reducts.

We will call a β-reduct for an information system any subset B, CB  such

that (Lin, et al. 1997):

(1) III DCDCBDD 
  )(, .

(2)  DDBA I, , .)( II DCDCA  

where D denotes a set of equivalence classes; ID denotes the ith category of

D*.

A -reduct of the set of condition attributes P ( CP  ) with respect to a set of

decision attributes D is a subset ,,( DPRED β) of P which satisfies the following

two criteria (Ziarko, 1993):

(1) ,,( DP β) = ,,(( DPRED β), D, β);

(2) no attributes can be eliminated from ,,( DPRED β) without affecting the

requirement (1).

To compute reducts and core, the discernibility matrix is used. Let the information
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system S=(U, A) with U= },...,,{ 1 nx xxx . We use a discernibility matrix of S, denoted

as M (S), which has the dimension nn , where n denotes the number of

elementary sets, defined as:

}.,...,2,1,)()(|{)( njiforxaxaAac jiij 

Thus, entry ijc is the set of all attributes which discern objects ix and jx .

The core can be defined as the set of all single element entries of the discernibility

matrix (Pawlak, 1991), i.e.

},),(|{)( jisomeforacAaAcore ij  .

The discernibility matrix can be used to find the minimal subset(s) of attributes,

which leads to the same partition of the data as the whole set of attributes A. To do

this, we have to construct the discernibility function )(Af . This is a Boolean function

constructed in the following way: to each attribute from the set of attributes, which

discern two elementary sets, (e.g., },,,{ 4321 aaaa ), we assign a Boolean variable ‘a’, 

and the resulting Boolean function attains the form ( 4321 aaaa  ), or it can be

presented as ( 4321 aaaa  ). If the set of attributes is empty, then we assign to it

the Boolean constant 1 (Walczak, et al. 1999).

3.3 Rules Extraction

Procedures for generating decision rules from an information system has two

main steps as follows:

Step 1: Selection of the best minimal set of attributes (i.e. β-reduct selection).

Step 2: Simplification of the information system can be achieved by dropping

certain values of attributes that are unnecessary for the information

system.

Ziarko (1993) indicated that every minimal set of attributes may be perceived as
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an alternative group of attributes, which could be used instead of all the available

attributes in the decision making based on cases. The main difficulty is how to select

an optimal β-reduct. Two approaches can be used in this case. In the first one, the

β-reduct with the minimal number of attributes is selected. In the second approach,

the β-reduct that has the least number of combinations of values of its attributes is

selected.


