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第二型能帶結構硒化錳鋅/碲硒化鋅多重量子井之光學特性研究 

 

研究生：邱鏡學            指導教授：周武清 博士 

 

國立交通大學電子物理學系 

中文摘要 

    利用光激螢光量測技術來分析硒化錳鋅/碲硒化鋅(碲含量佔8和20莫耳百

分比)多重量子井之光學特性。此多重量子井是以分子束磊晶系統所成長，碲硒

化鋅層井寬分別為 2、3 和 5 奈米。隨著雷射功率強度的增加，量測到光激螢光

光譜峰值有明顯的藍位移，這是能帶彎曲效應所造成，由此可以驗證此多重量

子井是第二型能帶結構。由光激螢光變溫光譜實驗，可求得樣品的活化能。我

們也利用時間解析光譜實驗分析載子的複合機制，發現載子的生命期會隨著不

同的碲含量以及碲硒化鋅厚度而改變，這是因為電子與電洞的波函數重疊情形

受到了改變。時間解析光譜隨雷射功率強度而呈現的非單一指數曲線，也可以

用能帶彎曲模型解釋。 
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Optical characteristics of Type-II 

Zn0.97Mn0.03Se/ZnSe1-xTex Multiple quantum wells 

Student：Ching-hsueh Chiu             Advisor：Dr. Wu-Ching Chou 

Institute of Electrophysics 

National Chiao Tung University 

 

Abstract 

The Zn0.97Mn0.03Se/ZnSe1-xTex (x = 0.08 and 0.20) multiple quantum wells (MQWs) 

grown by molecular beam epitaxy were studied by photoluminescence (PL) 

measurements. The ZnSe1-xTex well thickness varies among 2, 3, and, 5 nm. The PL 

peak energy shows a giant blue-shift with excitation power due to the band-bending 

effect. The activation energies of the MQWs were also obtained by 

temperature-dependent PL measurements.  We also studied the mechanism of carrier 

recombination by the time-resolved photoluminescence (TRPL) experiments. The 

dependence of PL lifetimes on the Te concentration and well width can be explained by 

the variation of electron-hole wavefunction overlapping. Moreover, the 

non-single-exponential PL decays of the power-dependent TRPL measurements can be 

understood by the band-bending model. 
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Chapter 1：Introduction 

Wide-band-gap II-VI isoelectronic semiconductor, ZnSe1-xTex, has attracted much 

attention due to their applications in blue/green light-emitter materials [1-2]. The optical 

properties of isoelectronic localized states have also been studied in the past decades, 

such as GaAsN [3], ZnSTe [4,5], and ZnSeTe [6-8]. Recently, ZnSe1-xTex alloys have 

been under extensive investigation. For example, Spectacular atomic ordering has been 

observed in ZnSe0.5Te0.5 specimens, which self-organize to form modulated ZnSe1-xTex 

superlattices [9]. In order to investigate the recombination dynamics of ZnSe1-xTex ternary 

compound semiconductor, the time-resolved photoluminescence (TRPL) technique was 

used. It was shown that the PL decay time of bulk ZnSe is about 200 ps [10] while it is 

about 30 ns for ZnSe1-xTex (x = 0.12) epilayer [11]. Due to the spatial separation of 

electrons and holes in a type-II quantum structure, the wavefunction overlap between 

electrons and holes is largely decreased. Therefore, the observed PL lifetime will be 

longer than that in a type-I structure. For example, the PL decay time for type-II 

ZnTe/ZnSe superlattice is about 100 ns [12].  

In this thesis, the type-II Zn0.97Mn0.03Se/ZnSe1-xTex multiple quantum wells (MQWs) 

are studied by PL and TRPL. The PL decay time are expected to be longer than the 

normal type-II quantum structure because of the existence of Te isoelectronic center. In 

chapter 2, the sample preparations of molecular-beam epitaxy (MBE) are introduced. In 
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addition, the optical measurements are also introduced, including photoluminescence (PL) 

and TRPL. In chapter 3, the experimental results about power-dependent PL, 

temperature-dependent PL, and carrier recombination dynamics are discussed. Finally, a 

brief conclusion of current work is given in chapter 4. 
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Chapter 2：Experiment 

 

In this chapter, the sample growth of Zn0.97Mn0.03Se/ZnSe1-xTex MQWs and the 

experimental techniques used in this thesis are described. The experimental techniques 

include the conventional PL, power-dependent PL and TRPL. 

2.1 Sample preparation 

The type-II Zn0.97Mn0.03Se/ZnSe1-xTex MQWs were grown on GaAs (001) substrates 

by Veeco Applied EPI 620 molecular-beam epitaxy (MBE) system. Low-temperature 

effusion cells were used for elemental Zn, Se, and Te sources. A standard effusion cell 

was used for Mn element. The growth conditions were listed in Table 2-1.  

The schematic sample structure of Zn0.97Mn0.03Se/ZnSe1-xTex  MQWs was shown in 

Fig. 2-1. The GaAs substrate was mounted on molybdenum disk holder by Indium. After 

the substrate holder was loaded on the transfer rod in the introduction chamber, the 

oil-free mechanical diaphragm pump and then the turbo pump were turned on. When the 

pressure of introduction chamber is below 10-8 torr, the manual gate valve was opened 

and the substrate holder (molybdenum disk) was transferred to the growth chamber by 

the substrate transfer arm. The substrate temperature was raised up to 650 0C for 

removing the oxide on the GaAs substrate. The deposition procedure was monitored by 

the reflection high energy electron diffraction (RHEED). When clear RHEED pattern was 
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observed, the substrate temperature was decreased to 300 oC for the deposition of ZnSe 

buffer layer. 

In order to decrease the lattice mismatch between GaAs and ZnMnSe layers, a ZnSe 

buffer layer of about 200 nm was grown before the ten periods of 

Zn0.97Mn0.03Se/ZnSe1-xTex (x = 0.08 and 0.20) MQWs. The Mn and Te concentration were 

determined by energy-dispersive x-ray (EDX) measurement on the respective 

Zn0.97Mn0.03Se and ZnSe1-xTex epilayers grown with the same parameters. For the 

Zn0.97Mn0.03Se/ZnSe1-xTex MQWs, the thickness of the Zn0.97Mn0.03Se layers is fixed at 20 

nm while the thickness of ZnSe1-xTex layers varies from 5, 3, to, 2 nm. Finally, a 

Zn0.97Mn0.03Se capping layer of about 20 nm was grown on the ZnSe1-xTex layer. The 

sample list was shown in Table 2-2. 
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2.2 Photoluminescence (PL) system 

The schematic setup of the photoluminescence system is shown in Fig. 2-2. The 

samples were loaded on the cold finger of a closed cycle cryostat. The temperature can be 

controlled between 10 and 325 K. The sample was excited by an He-Cd 325 nm laser. 

The incident laser beam was focused on the sample by a convex lens (L1). The 

combination of a set of convex lenses (L2 and L3) guided the luminescence into the 

double-grating spectrometer. A SPEX 1403 double-grating spectrometer equipped with a 

thermoelectrically cooled photo-multiplier tube (R928, Hamamatsu) was used to analyze 

the PL spectra. The spectrometer was controlled by a computer, which was used to store 

and plot the collected data. 
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2.3 Time-resolved Photoluminescence (TRPL) system 

The schematic setup of the Time-resolved photoluminescence system is shown in 

Fig. 2-3. The GaN pulsed laser (405 nm) with a pulse width of 50 ps and a repetition rate 

of 2.5 MHz was used as an excitation source. The laser light was focused on the sample 

by a convex lens (L1). The combination (L2 and L3) lenses guided the luminescence into 

the double-grating spectrometer. The signal was dispersed by a 0.85 m double-grating 

spectrometer and detected by a high-speed photomutiplier tube. The signal was further 

analyzed by a computer plug-in time-correlated counting card. The overall temporal 

resolution of the time-resoved PL measurement is about 0.3 ns. 
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Table 2-1. Effusion cell temperature (oC) and substrate temperature (oC) for the 
growth of the Zn0.97Mn0.03Se/ZnSe1-xTex MQWs.  

 
 ZnSe Zn0.97Mn0.03Se ZnSe0.92Te0.08 ZnSe0.80Te0.20

T (Zn) 300 290 290 290 
T (Mn) - 690 - - 
T (Se) 170 170 170 170 
T (Te) - - 295 280 

T (Substrate) 300 320 320 320 
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Table 2-2. Sample parameters of the type-II Zn0.97Mn0.03Se/ZnSe1-xTex multiple 
quantum wells. 

 
Sample Code ZnSe (buffer layer) Zn0.97Mn0.03Se ZnSe0.80Te0.20 

Sample A 200nm 20nm 5nm 
Sample B 200nm 20nm 3nm 
Sample C 200nm 20nm 2nm 

 ZnSe (buffer layer) Zn0.97Mn0.03Se ZnSe0.92Te0.08 
Sample D 200nm 20nm 5nm 
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Fig. 2-1. Sample structure of Zn0.97Mn0.03Se/ZnSe1-xTex MQWs 
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Fig. 2-2. The experimental setup of PL measurements. 
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Fig. 2-3. The experimental setup of TRPL measurements. 
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Chapter 3：Results and Discussion 

 

In this chapter, we present the interesting optical characteristics of 

Zn0.97Mn0.03Se/ZnSe1-xTex (x = 0.08 and 0.20) MQWs measured by the conventional and 

time-resolved PL. The type-II band alignment of the Zn0.97Mn0.03Se/ZnSe1-xTex MQWs 

was verified by power-dependent PL measurement. The thermal activation energy (Ea) 

was determined from temperature-dependent PL spectra. The wavelength-dependent 

and temperature-dependent time-resolved PL measurements were used to study the 

carrier recombination processes and recombination kinetics of Te isoelectronic centers 

in the Zn0.97Mn0.03Se/ZnSe1-xTex MQWs system. 

 

3.1 PL studies of Zn0.97Mn0.03Se/ZnSe1-xTex MQWs 

Fig. 3-1 shows the PL spectra of Zn0.97Mn0.03Se/ZnSe0.80Te0.20 MQWs with 

different well thickness of ZnSe0.80Te0.20 layer at low temperature. All of the spectra 

consist of two emission bands. The sharp emission peak near 2.798 eV is attributed to 

the near band edge transition of Zn0.97Mn0.03Se layer. The other emission, which is more 

sensitive to the well thickness, is due to the recombination in MQWs. A significant 

blue-shift about 200 meV was observed as the Lw decrease from 5 nm to 2 nm. This can 

be attributed to the quantum confinement effect. The broad PL peak exhibits asymmetry 
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line shape at low energy side. Due to holes are more strongly trapped by Te impurities 

at low energy. The broad PL line width is mainly due to inhomogeneous broadening 

caused by Te composition fluctuation that leads to asymmetrical PL curves. In addition 

the full width at half maximum (FWHM) of the PL curves increases with the decreasing 

of well thickness. This is due to the increasing well-width fluctuation [13-14].  

The band alignment was determined by power-dependent PL. Fig. 3-2 (Fig.3-3) 

presents the results for the MQW of sample A (sample C). The PL peak has a blue-shift 

of about 48 meV (23 meV) when the pumping intensity changes from 0.1 mW to 45.0 

mW. The peak position of PL spectra shows a significant blue-shift with the increasing 

excitation intensity. The inset shows the blue-shift of PL peak energy as a function of 

the cube of excitation power. The relationship is linear. This phenomenon is usually 

interpreted as the results of band-bending effect in type-II quantum structures [15-17]. 

The band-bending effect is caused by the spatially separated photo-excited carriers, in 

which electrons are confined in the ZnMnSe layers and holes are confined in the 

ZnSeTe layers. The electron-hole pairs are attracted through the Coulomb interaction. 

This leads to the bending of the valence and conduction band. The quantization energy 

was found to increase proportionally with the cube root of the excitation power. The 

type-II band alignment of Zn0.97Mn0.03Se/ZnSe1-xTex MQWs system was schematically 

shown in Fig. 3-4. The PL signal is generated from the recombination of the 



 14

)exp(1
)( 0

Tk
EA

ITI

B

a−+
=

accumulated holes trapped by Te isoelectronic impurities and electrons near the 

interface. The emission energy of the PL peak is smaller than the band gap of ZnMnSe 

and ZnSeTe.  

The temperature-dependent PL spectra of sample A are shown in Fig. 3-5. The 

intensity gradually decreases as the temperature is increased from 13 to 300 K. Fig. 3-6 

shows the variation of the integrated PL intensity as a function of the reciprocal 

temperature of sample A. The temperature-dependence of the integrated PL intensity 

(IPL) could be expressed as 

 

 

 

where I0 is the integrated PL intensity at 0 K, T is the temperature, A is fitting constant, 

and kB = 8.62×10-5 (eV．K-1) is the Boltzmann constant. We have fitted our data using 

Eq. (1). The results of fitting are given in Table 3-1 and show that the Ea value is in the 

range of 60 - 46 meV for different quantum well thickness. Quenching of the 

luminescence with increasing temperature can be explained by thermal activation of 

carriers out of a confining potential [18-19]. 

 

 

(1) 
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3.2 TRPL studies of Zn0.97Mn0.03Se/ZnSe1-xTex MQWs     

In order to understand the carrier recombination mechanism of the type-II MQWs, 

TRPL measurements are studied. Fig.3-7 displays the spectral distribution of τPL of the 

Zn0.97Mn0.03Se/ZnSe1-xTex MQWs (x=0.08 and 0.20). The decay time is composed of a 

faster initial component and a slower tail component. In order to resolve the time constant, 

all of the experimental data were fitted by a biexponential function described by 

 

 

 

where I(t) is the PL intensity at time t, I1 and I2 are the relative intensity for τ1 and τ2, 

respectively, β means the decay rate distribution. As shown in Fig. 3-7, the PL decay 

times decrease with the increasing detection energy. The samples of higher Te 

concentration exhibit longer PL decay times. Because when the Te concentration is 

increased, the holes are trapped by more Te-clusters, leading to less electron-hole 

wavefunction overlap. In addition, the τPL decreases with decreasing well thickness. It is 

due to the stronger electron-hole wavefunction overlap with the decreasing well width. 

Fig. 3-8 (a) displays the PL spectrum of sample A at 13K. The PL decay times of 

sample A at various detection energies are shown in the Fig. 3-8 (b). The same behavior 

is also observed in other samples discussed herein. The PL decay curves are well-fitted 

(2) 
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by equation (2). The decay time monotonically decreases with the increasing of 

detection energies. It is attributed to the stronger trapping of holes by the Te-clusters. It 

results in the suppression of electron-hole wavefunction overlap in low energy. Such a 

non-exponential decay is attributed to the band bending effect [20-21]. After the 

photoexcitation, a dipole layer is formed between the holes in the ZnSe1-xTex layer and 

electrons attracted in the surrounding Zn0.97Mn0.03Se. It builds up an electric field in 

type-II MQWs, which in turn gives rise to the bending of valence and conduction band. 

It further changes the overlapping of the electron and hole wave function. The faster 

initial decay time is attributed to the increasing spatial overlap due to the band-bending 

effect. After most of carriers recombined, the electron-hole wavefunction overlap 

decreases and the band become un-bended as shown in Fig. 3-9 (a) and (b). 

To further support our investigations, we perform the power-dependent 

time-resolved PL measurements shown in Fig.3-10. The PL decay time is 

multi-exponential at high excitation intensities and it approaches a single exponential 

under lower excitation energy. The band bending effect depends strongly on the 

photo-excited carrier concentration. The initial fast decay time results from the higher 

carrier concentration caused by higher excitation intensity. 

Fig. 3-11 shows the spectral distribution of PL decay time at different temperatures. 

The decay time monotonically decreases with the increasing of detection energies. The 
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sharp drop of decay times are much more pronounced at low temperature (13K). It is 

because the holes are strongly trapped by Te-clusters at 13 K. It leads to the decrease of 

electron-hole wavefunction overlap. At high temperature, the holes are less trapped by 

Te-clusters, then the electron-hole wavefunction overlap increases. Therefore, it 

manifests that the Te isoelectronic centers play an important role in the recombination 

dynamics of Zn0.97Mn0.03Se/ZnSe1-xTex MQWs. 
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Table 3-1. Activation energy of the Zn0.97Mn0.03Se/ZnSe0.80Te0.20 MQWs. 
 

The ZnSe0.80Te0.20 thickness Ea(meV) 
5nm 60±1 
3nm 50±1 
2nm 46±1 
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Fig. 3-1. Normalized PL spectra of Zn0.97Mn0.03Se/ZnSe0.80Te0.20 MQWs with 

different ZnSe0.80Te0.20 layer thickness at 13 K. The inset shows the 
measured PL peak energies as a function of the well width. 
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Fig. 3-2. PL spectra of Zn0.97Mn0.03Se/ZnSe0.80Te0.20MQWs (sample A) under 

different excitation intensities at 13 K. The inset shows the measured PL 
energy (open circles) versus the cubic root of excitation power.  
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Fig. 3-3.  PL spectra of Zn0.97Mn0.03Se/ZnSe0.80Te0.20MQWs (sample C) under 

different excitation intensities at 13 K. The inset shows the measured PL 
energy (open circles) versus the cubic root of excitation power.  
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Fig. 3-4. Schematic diagram of type-II band alignment for 

Zn0.97Mn0.03Se/ZnSe1-xTex MQWs. 
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Fig. 3-5.  Temperature-dependent PL spectra of sample A. 
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Fig. 3-6.  Arrhenius plot of the integrated PL intensity, fitted by using Eq. (1) with 

sample A.  
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Fig. 3-7. The spectral distributions of the decay times for the 

Zn0.97Mn0.03Se/ZnSe1-xTex (x=0.08 and 0.20) MQWs.  
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                   (a)                             (b) 
 
Fig. 3-8.     (a) PL spectrum of sample A at 13 K. 

(b) The spectral distribution of PL decay time of sample A at 13 K. 
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(a) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 
 

Fig. 3-9.  Schematic representations for the electron and hole wave function 
distribution for (a) strong band-bending effect (b) weak band-bending 
effect. 
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Fig. 3-10. The TRPL spectra of sample A recorded at different excitation 

intensities. 
 
 
 
 
 
 
 

0 100 200 300

PL
 P

ea
k 

In
te

ns
ity

 (a
. u

.)

Time (ns)

T=13K   Sample A

0.01 mW

0.03 mW

0.30 mW

 

 

Deteced at 2.09 eV



 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3-11.  The PL spectra and PL decay times of Zn0.97Mn0.03Se/ZnSe0.80Te0.20 

MQWs for sample A in different temperature.  
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Chapter 4：Conclusions 

In summary, we have studied the optical properties of Zn0.97Mn0.03Se/ZnSe1-xTex (x 

= 0.08 and 0.20) MQWs structures by using PL and TRPL measurements. The quantum 

confinement effect is confirmed by the energy shift of the PL peak energy. From 

excitation power-dependent PL, a type-II band alignment of the 

Zn0.97Mn0.03Se/ZnSe1-xTex MQWs is verified. The activation energies of the samples are 

about 46、50 and 60meV. 

In addition, the long PL decay times from different well width and Te 

concentration is well-explained by wavefunction overlap. It indicates that the Te 

isoeletronic center plays an important role in the carrier recombination. The decay time 

is composed of a slower tail and a faster initial decay due to the band-bending effect. 

The results are supported by power-dependent TRPL measurements.  
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