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摘要 

 

  此論文主要探索在經過Rashba形式量子通道的介觀傳輸系統中由電偶極引起

的自旋共振（EDSR）現象。EDSR 的形態包含了沿著通道方向的一個靜態的磁場和

一個平行於磁場的交流電場。 

  用時間微擾產生出的旁帶（sideband）研究了傳輸後波函數的自旋翻轉。在

入射能量因微擾而落到黎曼間隙外（旁帶能量為ε±ω）的情況下，上旁帶和下旁

帶包含了 intraband（interbabd）躍遷此無（有）自旋翻轉。 

我們主要的發現在自旋翻轉共振特徵存在，當能量吻合黎曼間隙的邊緣或是

副帶（sideband）的底端，也就是狀態密度很大的時候。更進一步發現自旋密度

在空間有震盪現象是基於由有自旋翻轉和無自旋翻轉的波函數的干涉產生出的。      

此外，由上下（ε±ω）兩旁帶的自旋密度震盪產生的干涉會有自旋密度拍（beat）。 

次之，我們的計算包括 evanescent modes 的效應。我們做了仔細的

evanescent modes 分析，在能量低於副帶底的時候，縱方向波量 kx被發現是複數

而非存虛數。 
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Abstract

This thesis seeks after the manifestation of the electric-dipole-induced spin resonance
(EDSR) in mesoscopics transport through a Rashba-type quantum channel. The EDSR
configuration involves a static field along the channel and an ac electric field in parallel
with the magnetic field.

Within a time dependent perturbation that induces first sideband, we study the spin
flipping in the transmitted wavefunction. For the case when the incident energy falls
within the Zeeman gap, and the sideband energies (ε±ω) outside of it, both the upper and
lower sideband involves intraband (interband) transition which is nonspin (spin) flipping.
Our major finding is that the spin flipping component exhibits resonance characteristics
when the sideband energy coincides with either the Zeeman gap edges or the subband
bottom, when the density of state is large. Furthermore, the spin density oscillates in space
according to the interference between the spin-flipping and non-spin-flipping comments.
Additional beating features in the spin density spatial profile is found to result from the
interference between the spin density oscillations due to (ε + ω) and (ε− ω) sidebands.

Our calculation has incorporated the effects of evanescent modes. We have performed
a detail analyze on the evanescent modes. The longitudinal wavevector kx is found to be
complex rather then pure imaginary.
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Chapter 1

Introduction

Manipulation of electron spin by pure electrical method is a challenging target for the

scientists. Ever since Dirac proposed, in 1928, his Dirac equation that leads to spin

particles and spin-orbit interaction(SOI) in the non-relativistic regime, the utilizationof

electron spin for applications has been very limited, due to the small spin-orbit interaction

in vacuum. The spin-orbit coupling is such enhanced in narrow gap semiconductors.

In the case of bulk inversion asymmetry(BIA), the spin-orbit interaction is the so-call

Dresselhaus SOI[1]. A most prominent example is in zinc-blende semiconductors. In case

of structure inversion asymmetry(SIA), the SOI is the so-call Rashba SOI[2]. A prominent

example is in asymmetric quantum wells. Most recently, it was proposed to invoke the

Rashba SOI for the generation of spin resonance without the need of ac magnetic fields.

1.1 Motivation: Electric-dipole-induced spin resonance

(EDSR)

The basic physical concepts of EDSR [3][4][5] are analogous to those of nuclear magnetic

resonance (NMR). We revisit NMR in Appendix A. The resonance occurs when the fre-

quency of an external rotating magnetic field closely matches the Larmor frequency of

spin precession in a static magnetic field. Our fundamental idea of the paper base on

1



CHAPTER 1. INTRODUCTION

the concept that employ an effective magnetic field due to spin orbital interaction(SOI)

instead of the external rotating magnetic field.

In 2006, M.Duckheim and D. Loss [3] point out that one can take advantage of EDSR

mechanism to manufacture the out-of-plane magnetization which is robust in the presence

of disorder. The system they considered is a semiconductor nanochannel in the diffusive

regime and is applied by external fields of a longitudinal a.c. electric field and a parallel

static magnetic in-plane.

Accordingly, we can not help ourself to ask the question ”What would be the EDSR ef-

fects in a mesoscopic system of ballistic quantum channel?” we shall expect a new physics

appearance that spin resonance process should involve also inelastic intra-subband tran-

sitions. The system we considered is a quantum wells with Rashba spin orbit interaction

and is applied externally static in-plane magnetic field along longitudinal direction in the

all channel. And a longitudinal a.c. electric field is applied locally on a region of the

channel. The a.c. electric field not only drive the electron oscillate but also perform the

inelastic scattering to higher or lower energy levels. If the side band energy matches the

energy with large density of state and then spin-flip resonance occur. We will give detailed

discussions about time modulated wavefunction and one side band approximation in the

Chapters 3 and 4.

1.2 Motivation: Energy spectra of Evanescent mode

The processes of transitions to lower subbands bottom or into Zeeman gap should involve

Evanescent modes. Because of an external d.c. in-plane magnetic field can not be absent

from EDSR. The magnetic field lifts the degeneracy of two spin states which both are zero-

momentum states. This give rise to the Zeeman splitting phenomenon and Evanescent

modes exist inside the gap.

Very recently, the importance of the evanescent modes has been pointed out by other

groups also. L.Serra’s group publish ”Strongly modulated transmission of a spin-split

2



CHAPTER 1. INTRODUCTION

quantum wire with local Rashba interaction” [6]. They point out what the role played

by Evanescent mode and how does it affect the quantum transport; Z.Q. Yang’s group

publish ”Influence of evanescent waves on spin polarization in a ballistic Rashba bar”

[7][8]. They find out the pure evanescent waves can lead to obvious variations of spin

polarization near the interfaces up to a range of several hundred nanometers.

Besides,we will discuss another kind of evanescent modes out of the gap which have

not been discussed numerously so far. The two kinds of Evanescent modes have different

behaviors individually. we will give detailed discussions about energy dispersions and

wavefunctions including evanescent modes the Chapters 2 and 4.

3



Chapter 2

Basic physical structures considered

in this work

In this chapter, we will introduce our system profile and its Hamiltonian and wavefunctions

without modulated time term, a.c. electric field, in the first section. In the second section,

we will use perturbed method to calculate the energy dispersion which involve subband

mixing term due to Rashba interaction analytically. And we use numerical method to get

an identical result to confirm it. In the following section, in order to obtain all kinds of

energy dispersion including evanescent modes, they will be discussed in magnetic fields

with different magnitudes.

2.1 Basic Structure of our mesoscopic system

Schematic illustration of the Rashba-type quantum channel based on heterostructure

InAs/GaSb is shown in Fig. 2.1. And an in-plane magnetic field B is applied in the

x̂ axis as well as a time-modulated electric field E(t) is applied parallel with B. Due to

structure inversion asymmetry in heterostructure in Fig. 2.2, a build-in electric field is in-

duced and electron moving in 2DEG can be affected by an effective magnetic field, leading

to Rashba spin-orbital interaction. The experimental parameter are give by: electron con-

4



CHAPTER 2. BASIC PHYSICAL STRUCTURES CONSIDERED IN THIS WORK

Figure 2.1: Top view of the mesoscopic system. In the all quantum channel, there are
Rashba SOI and in-plane d.c. magnetic field along longitudinal direction. And an a.c.
electric field is applied locally on gray region.

centration ne = 5.7× 1011cm−2, effective mass m∗ = 0.023 me, Rashba strength constant

α = 0.94 × 10−11(evm) [9], Lande g-factor g = 8 [10], width of channel d = 41.5(nm);

magnetic field strength B = 2.656 (mT). The time-modulated field is E0cos(ωt) with

frequency ω = 2.058× 10−1 (GHz), electric field strength E0 = 5.472× 10−5 (kvolt/cm)

The Hamiltonian of the system can be written as the expression

H =
1

2m

[
p + eA(t)θ(

L

2
− |x|)

]2

+

[
Ω

(
p + eA(t)θ(

L

2
− |x|)

)
+ b0

]
· σ + Vc (2.1)

where the spin-orbital field is Ω(p) = αp × êz, A = − ∫ t
dt′E0(t

′) = −E0

ω
sin(ωt)x̂ is a

vector potential corresponding to electric field E(t) = E0 cos(ωt)x̂, θ(L
2
− |x|) is a step

function, b0 = gµ0

2
B0 is the energy due to magnetic field along x-direction; Vc is a confining

potential in y-direction; Vc = 0 for y = 0 ∼ d and Vc = ∞ otherwise.

In order to simplify our calculation loading, the dimensionless Hamiltonian is intro-

duced by choosing proper physical units. Length a is in the unit of Fermi wavelength,a∗ =

λf = 5.28nm; energy E in the unit of Fermi energy E∗ =
~2k2

f

2m∗ = 59.5mev, frequency ω

in the unit of ω∗ = E∗
~ , time t in the unit t∗ = ~

E∗ , electric field strength E0 in the unit

of E∗
0 = E∗

ea∗ , Rashba constant α in the unit of α* = E∗
~kf

. After standard dimensionless

5
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Figure 2.2: Sketch of heterostructures potential profile. Ec1 is conduction band energy
of material 1, InAs; Ev1 is valence band energy of material 1, InAs; Material 2 is GaSb.
Electric field is form InAs toward GaSb.

process, one obtain

H(x, y, t) =

−
[

∂

∂x
− i

E0

ω
sin(ωt)θ

(
L

2
− |x|

)]2

+
α

i

(
− ∂

∂x
σy +

∂

∂y
σx

)
+

αE0 sin(ωt)

ω
θ

(
L

2
− |x|

)
σy

+b0 · σx − ∂2

∂y2
+ Vc

(2.2)

The first of overall, the influence of a.c. electric field is not considered in this chapter, we

turn off electric field, E0 = 0, to find wavefunctions and energy spectra.

H(x, y) = − ∂2

∂x2
− ∂2

∂y2
− α

1

i

∂

∂x
σy + α

1

i

∂

∂y
σx + b0σx + Vc(y) (2.3)

6
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2.2 Electronic states

In this section, we will discuss two modes of electron energy spectrum. First part, for

propagating mode, the perturbed method can be employed to get the energy dispersion

analytically. Besides, we can also numerically obtain very well-agreed result to compare

with perturbed result. In the second part for evanescent mode, we use secular equation

and quadratic solution to solve the evanescent momenta k for a given E which point out

electron energy spectrum of evanescent mode.

2.2.1 Insignificant effect in Rashba-induced subband mixing

In this subsection, we analytically solve wavefunction and electron energy spectrum for

the Hamiltonian Eq. (2.3) without dropping the Rashba-induced subband mixing term

α
i

∂
∂y

σx with the perturbed method. Then, we use numerical method to get electron energy

spectrum to confirm the previous result. First, we treat α
i

∂
∂y

σx term as perturbed term

and have to drop it to get the exact wavefunction as the basis for complete wavefunction

including an influence of subband mixing. Accordingly we employ the time independent

Schrodinger equation

H0Ψnσ = E(0)
nσ Ψnσ (2.4)

where n denotes subband index due to energy splitting from confining potential in y axis,

σ denote for different branches in the same subband.

H0 = − ∂2

∂x2
− ∂2

∂y2
− α

1

i

∂

∂x
σy + b0σx + Vc(y) (2.5)

and Ψnσ can be expanded by spatial wavefunction and spin state, ψ(x)φn(y)χσ. Since

electron in x-direction is free without any scatterer, the momentum k is a good quantum

7
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number to label the state, we can easily obtain plane-wave wavefunction along x-direction

ψ(x) = eikx (2.6)

Because we choose a hard wall confinement in the lateral direction, the well-known solution

φn(y) =

√
π

d
sin

(nπ

d
y
)

and ε(0)
n =

(nπ

d

)2

(2.7)

can be found in any Quantum mechanics text book. Last one unknown spin state, χσ,

can be obtained by solving eigenvalue problem for eigenstate and eigenenergy

χσ =
1√
2



−σ iαk+b0√

b20+α2k2

1


 (2.8)

E(0)
nσ = k2 + ε(0)

n − σ
√

b2
0 + α2k2, σ = ± 1 (2.9)

where n is the subband index due to the energy splitting of lateral confinement po-

tential; the σ is the index of branches in the same subband. See Fig. 2.3

After we have prepared those basis already, the Hamiltonian including the perturbed

term α
i

∂
∂y

σx becomes

H = H0 + H ′ =
(

k2 − ∂2

∂y2
− αk

∂

∂x
σy + b0σx + Vc(y)

)
+

(
α

1

i

∂

∂y
σx

)
(2.10)

And perturbed wavefunction is represented as

ψnσ(y) = φn(y)χσ +
∑

n′ 6=n,σ′ 6=σ

cn′σ′φn′(y)χσ′ +
∑

n′′ 6=n,σ′′ 6=σ

cn′′σ′′φn′′(y)χσ′′ + . . . (2.11)

where cn′σ′ is the first order correction coefficient; cn′′σ′′ is the second order correction

coefficient and so on.
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Figure 2.3: Two branches in the same subband, the first subband n=1. The σ = 1
branch is plotted by blue line; The other branch σ = −1 is plotted by red line with empty
dot.x-axis is momentum k in unit of kf = 1.89× 108(1/m); y-axis is energy E in unit of
b0 = 0.013(mev).
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After detailed calculation process, the result of first order correlation to energy E
(1)
nσ = 0

and correction coefficient to wavefunction is shown

c
(1)
mσ′ =

α
i

(
2
d
n∆mn

) (
χ†σ′σxχσ

)
(
E

(0)
nσ − E

(0)
mσ′

) , m 6= n (2.12)

We can go on calculating the second order correction to energy and show

E(2)
nσ =

∑

n′ 6=n,σ 6=σ′
c
(1)
n′σ′

(
α

i

2

d
n′∆nn′

)
χ†σσxχσ′ (2.13)

where c(1) is first order correction coefficients to wavefunction; ∆nn′ is coupling factor

between two different subband.

∆nn′ =
[
1− (−1)n−n′

] [
n

(n2 − n′2)

]
(2.14)

In Eq. (2.13), we sum enough n′ and the result turns out E
(2)
nσ = −0.25α2. Typically max

of n′ = 100 can give a good convergence.

Here we have to mention a brief summary for the result of perturbed method that

the correction of Rashba-induced subband mixing to energy is an insignificant effect. The

effect is a second order correction.

In order to confirm previous result we use numerical method to calculate energy dis-

persion again. And the assuming Schrödinger equation [7][8] generally be expressed by

[
k2 +

(mπ

d

)2

− α1kσy + b0σx

]



Cm(k)

Dm(k)


+

2

π

∑

n6=m

[α2

i

nπ

d
σx

]
∆mn




Cn(k)

Dn(k)


 = E(k)




Cm(k)

Dm(k)




(2.15)

where [Cm(k) Dm(k)]T is an assuming wavefunction.
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Eq. (2.15) can be reduced to the compact matrix form is shown following.





(
k2 +

(
mπ
d

)2 − E(k)

)
Cm(k) +

∑
n

(
α
i

nπ
d

2
π
∆mn + iαkδnm + b0δnm

)
Dn(k) = 0

(
k2 +

(
mπ
d

)2 − E(k)

)
Dm(k) +

∑
n

(
α
i

nπ
d

2
π
∆mn − iαkδnm + b0δnm

)
Cn(k) = 0

(2.16)

The size of matrix is dependent on the number of subbands we considered. For example,

if total N=10 (N is maximum of indexes , m and n.) subbands are involved and then the

size of matrix is 20 × 20. Here we can solve 2N eigenenergys for a given k. However we

can solve 4N momenta for a given incident energy also.

The numerical result of energy dispersion of the first subband is shown in Fig. 2.4.

The correction of subband mixing due to α
i

∂
∂y

σx is second order and the numerical result

is identified with the perturbed result.

2.2.2 Energy spectra of Evanescent mode

In previous part, we know the Rashba-induce subband mixing is so weak that we ignore

it and discuss Evanescent modes.

The evanescent modes are [11] found that their behaviors are quite different in weak

(B < Bc) and strong magnetic field (B > Bc). The critical field Bc is given by the Rashba

spin-orbit interaction (typically Bc ∼10mT).

We will discuss in three cases: The external magnetic energy is smaller, lager, and

equal to the SOI energy due to Rashba effect. The three kinds of evanescent modes have

different energy spectra individually.

If Eq. (2.3) does not include α
i

∂
∂y

σx, the Rashba-induced subband mixing term, then

each subband labelled by different n is independently described by Hamiltonian H0n and

energy Eq. (2.9)

H0n = − ∂2

∂x2
− α

1

i

∂

∂x
σy + b0σx + εn (2.17)
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Figure 2.4: Comparing energy in the first subband with and without perturbed term
α
i

∂
∂y

σx. The unperturbed energy is plotted by red solid line and perturbed energy is

plotted by blue dashed line. They are a difference of α2/4 = 2.5 × 10−4. The numerical
result of correction to energy dispersion due to subband mixing term is identified with
the perturbed result. X-axis is momentum k in unit of kf = 1.89 × 108(1/m); y-axis is
energy E in unit of b0 = 0.013(mev).
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The two energy spectra of Zeeman and Rashba regimes have one different character

at zero momentum k. The second derivative is positive(negtive) in former(latter) regime.

The character gives us a good criterion to determinate the magnitude of the critical

magnetic field bc. We can take derivative on energy dispersion Eq. (2.9) twice and set it

zero and the magnitude of critical magnetic energy bc = α2/2.

We take an example of three magnitudes of magnetic energy, b0 < bc, b0 = bc and

b0 > bc cases.

For a given energy in arbitrary regime, the four momenta k can be obtained analyt-

ically by Eq. (2.9) with quadratic relation. The four momenta have different modes in

different energy regimes, generally speaking:

1. Above Zeeman gap (E − ε1 > b0): Four momenta in two branches are all real, propa-

gating modes.

2. Between Zeeman gap (b0 > E − ε1 > −b0): Two momenta k in outside branch, σ = 1,

are real and two momenta k in inside branch, σ = −1, are pure imaginary, pure evanes-

cent modes.

3. Between subband bottom and low terminal of Zeeman gap [−b0 > E − ε1 > (α2/4 −
b2
0/α

2)], four momenta in two branches are all real, propagating modes.

4. Under subband bottom: Four momenta in two branches are all complex, propagating

and evanescent modes couple together.

In b0 < bc case, see Fig. 2.5, the magnetic energy is not large enough to compete SOI.

Therefore not only the ”Rashba” shape is still observable but also the degeneracy at zero k

is left. In the Zeeman gap, the evanescent mode with pure imaginary momentum k which

is plotted by blue circle line. Below the subband bottom the other kind of evanescent

mode exists that momentum k is a complex number, i.e. the evanescent property couple

with the propagating property. The real part of this evanescent momentum is almost

constant with decreasing energy. And it is worth to mention that the energy of maximum

imaginary k in Zeeman gap is E = ε1 − b20
α2 , i.e the shape of the evanescent mode is not

symmetric with respect to the center, E = ε1.
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Figure 2.5: Energy dispersion of evanescent mode in magnetic energy small then the
SOI energy case.The Rashba effect still dominates. Solided line is propagating mode(k is
real). Line with circle is evanescent mode(k is imaginary); Under energy bottom region,
the two modes couple together(k is complex). X-axis is momentum k in unit of kf =
1.89× 108(1/m); y-axis is energy E in unit of b0 = 0.013(mev).
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Figure 2.6: Energy dispersion of evanescent mode in magnetic energy equal to the SOI
energy case.The Rashba effect and Zeeman effect compete; the subband bottom is flat.
Solided line is propagating mode(k is real). Line with circle is evanescent mode(k is
imaginary); Under energy bottom region, the tow modes couple together(k is complex).
X-axis is momentum k in unit of kf = 1.89 × 108(1/m); y-axis is energy E in unit of
b0 = 0.013(mev).
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Figure 2.7: Energy dispersion of evanescent mode in magnetic energy larger then the SOI
energy case.The Zeeman effect dominates. Solided line is propagating mode(k is real).

Line with circle is evanescent mode(k is imaginary); In E < ε1− b20
α2 regime, the two modes

couple together(k is complex). X-axis is momentum k in unit of kf = 1.89 × 108(1/m);
y-axis is energy E in unit of b0 = 0.013(mev).

In b0 = bc case, see Fig. 2.6, the magnetic energy is comparable with the SOI. The

feature of Rashba dispersion disappears and the flat subband bottom is a remarkable

feature. With increasing magnetic field strength, the E = ε1 − b20
α2 is decreasing.

In b0 > bc case, see Fig. 2.7, the magnetic energy is larger than the SOI, i.e. Zeeman

effect dominates and two parabola dispersions show. Finally, the magnetic field is such

large that the energy of maximum imaginary k overstretch the subband bottom. The

propagating mode and evanescent mode couple together while the energy lower than

ε1 − b20
α2 .
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Chapter 3

Calculation of time modulated

wavefunction

In this chapter main work in the first section is to consider about the influence of the

time modulated electric field on the wave functions. The influence includes inelastic

scattering process and make sidebands attached to wavefunction. In the second section,

the number current density is introduced and the interesting thing is the contribution

from the interference of intraband wavefunction will be introduced.

3.1 Time modulated wavefunction and transforma-

tions

We start to apply the a.c. electric field on our mesoscopic system, Fig. 2.1 mentioned in

chapter 2, and calculate the wavefunction.

The time dependent Schrödinger equation is written as

HΨ(r, t) = i
∂

∂t
Ψ(r, t) (3.1)

17
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where

H =




(
− ∂2

∂x2
+

E2
0

ω2
sin2(wt) + i

2E0

ω
sin(ωt)

∂

∂x

)

+

(
− ∂2

∂y2
− α

i

∂

∂x
σy +

α

i

∂

∂y
σx + b0σx + Vc +

αE0

ω
sin(ωt)σy

)


 (3.2)

But Eq. (3.2) is really too complaint to solve out wavefunction immediately. Here we

must employ transformations[12][13] to simplify the ”terrible” time-dependent Schrödinger

equation.

First we can employ the first transformation

Ψ(r, t) = exp

(
iE2

0 sin(2ωt)

4ω3

)
ψ(r, t) (3.3)

and the identity 2 sin2(ωt) = 1− cos(2ωt). Substituting transformation Eq. (3.3) into the

time dependent Schrödinger equation Eq. (3.1), we have the time dependent Schrödinger

equation whose
E2

0

ω2 sin2(ωt) is eliminated




(
− ∂2

∂x2
+

E2
0

2ω2
+ i

2E0

ω
sin(ωt)

∂

∂x

)

+

(
− ∂2

∂y2
− α

i

∂

∂x
σy +

α

i

∂

∂y
σx + b0σx + Vc +

αE0

w
sin(ωt)σy

)


 ψ(r, t) = i

∂

∂t
ψ(r, t)

(3.4)

Second we use the second transformation.

ψ(r, t) = exp

[
−2E0

ω2
cos(ωt)

∂

∂x

]
f(r, t) (3.5)

Substituting transformation Eq. (3.5) into the time dependent Schrödinger equation

Eq. (3.4), we have the time dependent Schrödinger equation whose i2E0

ω
sin(ωt) ∂

∂x
is elim-

inated
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[(
− ∂2

∂x2
+

E2
0

2ω2

)
+

(
− ∂2

∂y2
− α

i

∂

∂x
σy +

α

i

∂

∂y
σx + b0σx + Vc +

αE0

ω
sin(ωt)σy

)]
f(r, t)

= i
∂

∂t
f(r, t)

(3.6)

The first two transformations can eliminate the time dependent terms which do not

couple with spin operator σy.

Finally we can easily eliminate the constant term with the transformation

f(r, t) = exp

(
−i

E2
0

2ω2
t

)
g(r, t) (3.7)

and get more ”simple” time dependent Schrödinger equation

(
− ∂2

∂x2
− ∂2

∂y2
− α

i

∂

∂x
σy +

α

i

∂

∂y
σx + b0σx + Vc +

αE0

w
sin(ωt)σy

)
g(r, t) = i

∂

∂t
g(r, t)

(3.8)

When an incident wave go into the time dependent region from left infinite, see in Fig. 3.1,

the αE0

ω
sin(ωt)σy term not only gives rise to inelastic scattering precess which change the

energy E±ω and momentum k(E±ω) but also produces time modulated wavefunctions

which remain the same momentum k with incident wave but their energy change ±ω.

As is mentioned in previous Chapter 2, plane wave ψ(x) = eikx and standing wave

φn(y) =
√

π
d

sin
(

nπ
d

y
)

are spatial wavefunctions in x and y direction. Substituting them

into Eq. (3.8), the wavefunctions of Eq. (3.1) is solved out as fallowing

Ψ(r, E, t) = exp

(
iE2

0 sin(2ωt)

4ω3

)
exp

(
−2E0

ω2
cos(ωt)

∂

∂x

)
exp

(
−i

E2
0

2ω2
t

) [
eik(E)xφn(y)χe−iEt

]

(3.9)
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Figure 3.1: Sketch of side band wavefunction due to inelastic scattering process (red and
blue solid lines)and time modulated wavefunction (black dotted line) at the first interface
between time-independent and time dependent regions. In this figure, the inelastic scat-
tering wavefunctions still have time modulated wavefunctions but are not shown. The
unit of frequency ω is in energy unit.

where spin state χ have not determinated. We will determinate it in different energy

regimes and explicitly show it in the next chapter.

3.2 Particle current density

In this section we reproduce the current density from the continuity equation. It is worth

to mention the contributions to current due to the interference two wavefunctions of the

intraband seem to appear and are position-dependent. Here we emphasize that the result
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will be demonstrated in detail again in section 4.1.4.

∂

∂t
ρ(r, t) = − ∂

∂x
J(r, t) (3.10)

where ρ is number density and J is a particle current density. After performing de-

tailed calculation process for current density in Appendix B, we have the current density

expression.

J(x, t) = Ψ†(x, t)

(
−i

∂

∂x
− α

2
σy

)
Ψ(x, t) + c.c. (3.11)

where Ψ is two components wavefunction and the abbreviation, c.c., is standing for com-

plex conjugate of the former terms. In order to get a steady current result, time average

expression is introduced

J(x) =

∫ T

0
J(x, t)dt

T
(3.12)

where T = 2π
ω

, a periodic duration. And it always is valid when the time scale of the

measurement is much greater than the time scale of periodic duration. For an example,

we calculate current flow with wavefunction in right time-independent region

Ψ(x, t) =

t0σ exp [ikRσx] χ̃Rσe
−iEt + t0,σ̄ exp [ikRσ̄x] χ̃Rσ̄(E)e−iEt

+t1σ exp [ikRσ+x] χRσ+e−i(E+ω)t + t1,σ̄ exp [ikRσ̄+x] χRσ̄+e−i(E+ω)t

+t−1σ exp [ikRσ−x] χRσ−e−i(E−ω)t + t−1,σ̄ exp [ikRσ̄−x] χRσ̄−e−i(E−ω)t

(3.13)

and it originates from the incident wavefunction exp [ikRσx] χ̃Rσe
−iEt with momentum kRσ

in left time-independent region. Where the first footnote of coefficient denotes the times

of electric inelastic scatterer and the ± for energy absorb or emit a photon; the second

footnote denotes branch. And the first footnote of momentum denotes R-ight or L-eft
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going, the second one is for branch and third one is for energy absorb or emit a photon.

The transmission involves the effect of the second interface i.e. we have considered the

multiple scattering processes. The reason will be explained and calculation will be shown

in chapter 4.

Substituting wavefunction Eq. (3.13) into steady current Eq. (3.12), we can get a

steady current expression. Because the different energy domains, E and E±ω, are orthog-

onal in one periodic duration. However the current density expression looks like position-

dependent which mean the electron accumulation or disappearance occurs. Besides, it is

very not conventional terms, the crossing terms due to the two the non-orthogonal spin

state χ.

1

T

∫ T

0

J(x, t)dt =




exp [−i (k∗Rσ − kRσ) x]
[
(k∗Rσ + kRσ)− αχ̃+

Rσσyχ̃Rσ

]

+ (t∗1σt1σ) exp
[−i

(
k∗Rσ+ − kRσ+

)
x
] [(

k∗Rσ+ + kRσ+

)− αχ+
Rσ+σyχRσ+

]

+ (t∗1σ̄t1,σ̄) exp
[−i

(
k∗Rσ̄+ − kRσ̄+

)
x
] [(

k∗Rσ̄+ + kRσ̄+

)− αχ+
Rσ̄+σyχRσ̄+

]

+
(
t∗−1σt−1σ

)
exp

[−i
(
k∗Rσ− − kRσ−

)
x
] [(

k∗Rσ− + kRσ−
)− αχ+

Rσ−σyχRσ−
]

+
(
t∗−1σ̄t−1,σ̄

)
exp

[−i
(
k∗Rσ̄− − kRσ̄−

)
x
] [(

k∗Rσ̄− + kRσ̄−
)− αχ+

Rσ̄−σyχRσ̄−
]




+




+ (t∗1σt1,σ̄) exp
[−i

(
k∗Rσ+ − kRσ̄+

)
x
] [(

k∗Rσ+ + kRσ̄+

)
χ+

Rσ+χRσ̄+ − αχ+
Rσ+σyχRσ̄+

]

+ (t∗1σ̄t1σ) exp
[−i

(
k∗Lσ̄+ − kLσ+

)
x
] [(

k∗Lσ̄+ + kLσ+

)
χ+

Rσ̄+χRσ+ − αχ+
Rσ̄+σyχRσ+

]

+
(
t∗−1σt−1,σ̄

)
exp

[−i
(
k∗Lσ− − kLσ̄−

)
x
] [(

k∗Lσ− + kLσ̄−
)
χ+

Lσ−χLσ̄− − αχ+
Lσ−σyχLσ̄−

]

+
(
t∗−1σ̄t−1σ

)
exp

[−i
(
k∗Rσ̄− − kRσ−

)
x
] [(

k∗Rσ̄− + kRσ−
)
χ+

Lσ̄−χLσ− − αχ+
Lσ̄−σyχLσ−

]




(3.14)

where the second bracket is the contribution to current density due to the interference of

two different k wavefunction which are not orthogonal with each other. Will these terms

contribute to current density and be position dependent? We will answer this puzzle in

the next chapter.
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Chapter 4

Method of electric dipole spin

resonance

In this chapter main work is to evaluate time dependent wavefunction and spin-dependent

reflection and transmission coefficients with two methods. In the first section, we use one

side band approximation approach to solve it for a main influence due to electric field.

In second section, we use exact numerical approaches, three terms recursive relation and

continue fraction, to solve again to confirm one side band approximation result.

4.1 One side band approximation approach

4.1.1 Time modulated wavefunctions with one side band ap-

proximation approach

Over all, in order to get analytic solution, we ignore the α
i

∂
∂y

σx which is so weak and is

discussed in Chapter 2.

We start to consider the electric field effect, the side band may contain evanescent

mode, even the wavefunctions are not in the time dependent region. In time-independent

region, the wavefunctions in x-direction can be described by the different expressions

according to different energy regimes, see Fig. 4.1.
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Figure 4.1: We divide the energy into five regimes. The first energy regime is E > ε1 + b0,
the second is ε1 − (b2

0/α
2) ≤ E < ε1 + b0 and the critical energy ε1 − b2

0 give rise to the
maximum pure evanescent momentum, the third is ε1− b0 < E < ε1− (b2

0/α
2), the fourth

is ε1 − (α2/4 + b2
0/α

2) < E < ε1 − b0, and the last is E < ε1 − (α2/4 + b2
0/α

2).
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Time-independent regions I and III: The wavefunction and energy dispersion can

be obtained analytically from Eq. (2.17)

ΨI/III = eikxχ0Rσe
−iEt (4.1)

The spin state χ0Rσ have different expressions according to different energy regimes, where

the first footnote denotes the times of electric inelastic scattering process and the ± for

energy absorb or emit a photon, the second footnote denotes R-ight or L-eft going wave

and the third footnote denotes which branch the spin state belong to:

And we transform the energy dispersion into k function of E

k(E)2 =

[
(E − ε1) +

α2

2

]
±

√(
(E − ε1) +

α2

2

)2

− (
(E − ε1)

2 − b2
0

)
(4.2)

Energy regime 1: Energy is above the Zeeman gap, E > ε1+b0,where ε1 is first energy

splitting due to lateral hard wall confining potential and b0 is the magnetic energy due to

external d.c. magnetic field

χ0 =
1√
2




σ b0+iαk√
b20+α2k2

1


 (4.3)

where the four k are all real, σ = +1 spin states are for outside branch, σ = −1 spin

states are for inside branch where σ is mentioned in Eq. (2.9). And Energy regime 4,

ε1 −D < E < ε1 − b0, D = α2/4 + b2
0/α

2, the spin states have same expression Eq. (4.3).

Energy regime 2: ε1− (b2
0/α

2) ≤ E < ε1 + b0 and the critical energy, ε1− (b2
0/α

2), give

rise to the maximum pure evanescent momentum. For two real momenta k in outside

branch, the spin states are the same with Eq. (4.3). For pure image momenta k in inside
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branch, the spin state

χ0 =

√
b0 + αIm(k)√

2b0




b0+iαk√
b20+α2k2

1


 (4.4)

Energy regime 3: ε1 − b0 < E < ε1 − (b2
0/α

2). For two real momenta k in outside

branch, the spin states are the same with Eq. (4.3). For pure imaginary momenta k in

inside branch, the spin state

χ0 =

√
b0 + αIm(k)√

2b0



− b0+iαk√

b20+α2k2

1


 (4.5)

The signs of spin states with pure imaginary momentum in the Energy regime 2 and

Energy regime 3 are opposite. The sign changes suddenly while the energy cross the

critical energy ε1 − (b2
0/α

2).

Energy regime 5: For energy under subband bottom, E < ε1 − D, the spin state is

too complicated to distinguish in the diagram which branch does the spin state belong to.

But we can know the properties(right or left going decay and inside or outside branch) of

complex momentum k by means of expression Eq. (4.2) and substitute k into their own

spin state

χ0 =

(√
b2
0 − 2b0α Im(k) + α2k∗k√

b2
0 + 2b0α Im(k) + α2k∗k

+ 1

)−1/2



− b0+iαk

α2

2
−

√(
∆+α2

2

)2−(∆2−b20)

1


 (4.6)

where ∆ = E − ε1 is regarded as kinetic energy.

Position Region II: Time-dependent region, the Hamiltonian is Eq. (3.8) and time

modulated wavefunctions have the general expression Eq. (3.9).

In one side band approximation, the scattering process occurs only one time, the first

and third expoterms in Eq. (3.9) are eliminated since they involve two photon process.
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And the spin state χ have the logistic form

χ = χ0 + χ−1e
iωt + χ+1e

−iωt

where χ±1 denotes the spin states whose energy change ±ω under one time inelastic

scattering process and are evaluated by the following equation




ω − E iαk + b0

−iαk + b0 ω − E


 χ−1 = iκσyχ0




−ω − E iαk + b0

−iαk + b0 −ω − E


 χ+1 = −iκσyχ0

(4.7)

where 2κ ≡ αE0/ω. The system of equations comes from the first order correction to

unperturbed spin state χ0 by means of perturbation theorem. Here we treat the term,

αE0

ω
sin(ωt)σy, as perturbation of Eq. (3.8). And it is valid in this criterion αE0/ω

2 < 0.1

(dimensionless).

Finally we have the time modulated wavefunction in time-dependent region whose one

side band approximation as following

ΨIII(E) = eikx





χ0 +

[
χ−1 − i

E0

ω2
k(E)χ0

]
eiωt

+

[
χ+1 − i

E0

ω2
k(E)χ0

]
e−iωt





e−iEt (4.8)

4.1.2 Intraband transition and multiple scattering procession

Before we start to calculate reflection and transmission coefficients, we have to emphasize

a particular phenomenon that intraband transition in the same subband occurs without

breaking symmetry in y-direction. See Fig. 4.2. The reason of why breaking symmetry

in y-direction is not necessary for the transition between difference branch in the same

subband is the external magnetic field mix the two spin state of σy and σx due to Rashba

effect and external magnetic field. Therefore the orthogonality between different branch
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Figure 4.2: Sketch of intraband transition, without breaking symmetry in y-direction,
rises from mixing spin states of Rashba and Zeeman terms due to an external magnetic
field B(x̂). Where kRσ denotes the momentum of an incident wave; r±1,±1 is the reflection
coefficients of once scattering to specific one branch; Because of no two photon scattering
process, the r0,±1 the r2,±1 are zero. The solid horizontal line denote incident energy; the
dashed line for the energy after inelastic scattering process.
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in the same subband disappears. Because of this reason, the intraband transition process

is allowed.

We can start to calculate reflection and transmission coefficients by multiple scattering

process which is the matching calculation at each interface step by step. Besides, all

scattering process is considered up to the first order only. In other words, we ignore the

second order process including:

1. Successive scatter to E + 2ω at one interface. (minus sign also)

2. First scatter to E + ω and then back to E at one interface. (minus sign also)

3. First scatter to E+ω at one interface and then to E+2ω at the other interface. (minus

sign also)

Finally, we sum all contribution of the same energy level and branch from two interface,

see Fig. 4.3.

4.1.3 Reflection and transmission coefficients

Our aim is to solve the reflection and transmission coefficients by the imposed boundary

conditions: (i) wave functions are continuous at x = 0 and x = l. (ii) the slope of wave

functions are continuous at x = 0 and x = l.

(i)





ΨI(0−) = ΨII(0+) at first interface

ΨII(l−) = ΨIII(l+) at second interface
(4.9)

(ii)





− ∂
∂x

Ψ
∣∣0+

0− + iE0

ω
sin(ωt)Ψ (0) = 0 at first interface

− ∂
∂x

Ψ
∣∣l+
l− − iE0

ω
sin(ωt)Ψ (l) = 0 at second interface

(4.10)

The wavefunctions in each position region have been introduced by Eq. (4.1) and Eq. (4.8).
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And these boundary conditions necessarily are satisfied at arbitrary time. Therefore

we can evaluate the coefficients with three different energy levels, E,E ± ω, separately.

Besides, Eq. (4.9) and Eq. (4.10) are two components wavefunction. So the four equations

give us 24 equations which can exactly solve out 24 unknown variables. There are 12

unknown variables of reflection shown in Fig. 4.2 with respect to one of interfaces.

After conventional matching calculation, we obtain the expression, i.g. case1.1 [ kRσ

incident and at first interface ] , for reflection and transmission coefficients of up(down)

energy level




A0Lσk± A0Lσ̄k± −A0Rσk± −A0Rσ̄k±

B0Lσk± B0Lσ̄k± −B0Rσk± −B0Rσ̄k±

kLσ±A0Lσk± kLσ̄±A0Lσ̄k+ −kRσ±A0Rσk± −kRσ̄±A0Rσ̄k±

kLσ±B0Lσk± kLσ̄±B0Lσ̄k+ −kRσ±B0Rσk± −kRσ̄±B0Rσ̄k±







r±1σ

r±1σ̄

t±1σ

t±1σ̄




=




Ã+1Rσ − iE0

ω2 kRσÃ0Rσ

B̃+1Rσ − iE0

ω2 kRσB̃0Rσ

∓iE0

2ω
Ã0Rσ + kRσ

(
Ã+1Rσ − iE0

ω2 kRσÃ0Rσ

)

∓iE0

2ω
B̃0Rσ + kRσ

(
B̃+1Rσ − iE0

ω2 kRσB̃0Rσ

)




(4.11)

as well as case1.2 [ kRσ incident and at second interface ] , for reflection and transmission

coefficients of up(down) energy level
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A0Lσ± A0Lσ̄± −A0Rσ± −A0Rσ̄±

B0Lσ± B0Lσ̄± −B0Rσ± −B0Rσ̄±

(kLσ±) A0Lσ± (kLσ̄±) A0Lσ̄± − (kRσ±) A0Rσ± − (kRσ̄±) A0Rσ̄±

(kLσ±) B0Lσ± (kLσ̄±) B0Lσ̄± − (kRσ±) B0Rσ± − (kRσ̄±) B0Rσ̄±







r±1σ exp (ikLσ±l)

r±1σ̄ exp (ikLσ̄±l)

t±1σ exp (ikRσ±l)

t±1σ̄ exp (ikRσ̄±l)




=




− exp (ikRσl)
[(

Ã+1,R,σ

)
− iE0

ω2 kRσ

(
Ã0Rσ

)]

− exp (ikRσl)
[(

B̃+1,R,σ

)
− iE0

ω2 kRσ

(
B̃0Rσ

)]

− exp (ikRσl)
(
∓iE0

2ω
Ã0Rσ + (kRσ)

[
Ã+1,R,σ − iE0

ω2 kRσÃ0Rσ

])

− exp (ikRσl)
(
∓iE0

2ω
B̃0Rσ + (kRσ)

[
B̃+1,R,σ − iE0

ω2 kRσB̃0Rσ

])




(4.12)

where upper(lower) sign is denoted for up(down) side band energy, A and B are two

elements of spin state and the tilde sign in Ã or B̃ mean the energy level remain at E,

the same with incident wave energy, and the ± sign in k± means the energy in Eq. (4.2)

absorb or emit one photon energy.

Here are similar results as follow we do not show for a short make-up,

case2.1 [ kR−σ incident and at first interface ],

case2.2 [ kR−σ incident and at second interface ].

Until now, the coefficient t0 is not mentioned since it contain second order correction.

It can not be obtained by one side band approach method previous mentioned. But it

can be calculated by an indirect method. Through the conservation of number current

flow identity

Jin = JR + JT (4.13)

where Jin is the incident current flow, JR is reflection current flow and JT is the trans-

mission current flow.

Therefore the calculation of number current flow is introduced in the next section.
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Figure 4.3: Sketch of multiple scattering procession in order to evaluate reflection and
transmission coefficients. For example, kRσ wave incident, the reflection comes from both
interfaces r±1,±σ = r

(1)
±1,±σ + r

(2)
±1,±σ. The upper index denotes the first interface (1) and

the second interface (2). r2,±σ = 0 are not shown in this figure.

Actually, by means of this conservation identity we just obtain |t0|2, the magnitude

square of the t0 coefficient.

4.1.4 Revisit particle current density

The wavefunctions in each region are introduced in the previous section as well as reflection

and transmission coefficients considered up to one side band. Now we can use them to

evaluate particle current.

The particle current operator can be calculated from ”continuity equation” and the

particle current flow can be written as Eq. (3.11) For an example, we calculate particle

current flow with the wavefunction Ψ(r, t) = exp(ikRσx)φn(y)χ0Rσ exp(−Et) where

χ0Rσ =
1√
2



−σ b0+iαkRσ√

b20+α2k2
Rσ

1


 (4.14)
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Substituting the wave function into Eq. (3.12), we can obtain the current flow

J(x, t) = 2kRσ − σ
α2kRσ√

b2
0 + α2k2

Rσ

(4.15)

The result can be demonstrated by derivative the energy dispersion Eq. (2.9) with

respect to k, dE/dk . It turns out group velocity expression which is same with Eq. (4.15).

Therefore we can answer the question we asked in the Chapter 3 ”Will these inter-

ference terms between different wavefunction which are not orthogonal with each other

contribute to current density? ”

This is easy to answer the question by substituting spin states Eq. (4.3)∼ Eq. (4.6) into

Eq. (4.16) to demonstrate what role these cross terms play but the calculation process is

very complicated and boring. Here we just justify that the cross terms contribute NOTH-

ING to the current density in any energy regime, even all momenta k are propagating

mode. Therefore Eq. (3.14) can be reduced to

1

T

∫ T

0

J(x, t)dt =




exp [i (k0Rσ − k∗0Rσ) x]
[
(k∗0Rσ + k0Rσ)− αχ†0Rσσyχ0Rσ

]

+ (r∗1σr1σ) exp
[−i

(
k∗+1Lσ − k+1Lσ

)
x
] [(

k∗+1Lσ+ + k+1Lσ

)− αχ†+1Lσσyχ+1Lσ

]

+ (r∗1σ̄r1,σ̄) exp
[−i

(
k∗+1Lσ̄ − k+1Lσ̄

)
x
] [(

k∗+1Lσ̄ + k+1Lσ̄

)− αχ†+1Lσ̄σyχ+1Lσ̄

]

+
(
r∗−1σr−1σ

)
exp

[−i
(
k∗−1Lσ − k−1Lσ

)
x
] [(

k∗−1Lσ + k−1Lσ

)− αχ†−1Lσσyχ−1Lσ

]

+
(
r∗−1σ̄r−1,σ̄

)
exp

[−i
(
k∗−1Lσ̄ − k−1Lσ̄

)
x
] [

(−1k∗Lσ̄ + k−1Lσ̄)− αχ†−1Lσ̄σyχ−1Lσ̄

]




(4.16)

When all momenta are real, it is obvious the result of particle current is not position-

dependent. Besides, it is easy to demonstrate that the current is not position-dependent

by substituting proper spin states when all momenta are not real.
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4.2 Exact numerical approach

In this section, exact numerical approaches [14], three-term recursive relation and contin-

ued fraction, are introduced here. we start from the Hamiltonian








0 b0 + iαk

b0 − iαk 0


 +

αE0

ω
sin (ωt)




0 −i

i 0








χ = i
∂

∂t
χ (4.17)

We define γ ≡ (b0 + iαk) and κ ≡ αE0

2ω
and expand spin state χ as Fourier expansion

χ =




A

B


 = eiεt




∑
n

Ane
inωt

∑
n

Bne
inωt


 (4.18)

where n is integral and ε is an undetermined constant which is not necessary to be the

incident energy. Substituting Eq. (4.18) into Eq. (4.17), we have a system of equations





[γ − κ (eiωt − e−iωt)]
∑
n

Bneinωt = − (ε + nω)
∑
n

Aneinωt

[γ∗ + κ (eiωt − e−iωt)]
∑
n

Aneinωt = − (ε + nω)
∑
n

Bne
inωt

(4.19)

The e−iωt terms in the system of equation are





γBn − κBn−1 + κBn+1 = − (ε + nω) An

γ∗An + κAn−1 − κAn+1 = − (ε + nω) Bn

(4.20)

The two equations have very similar formulism and the ansatz, Bn = (−1)n A∗
n, is sug-

gested which satisfies with the both of Eq. (4.20).

Substituting it into the first equation of Eq. (4.20), we can obtain the three terms

recursive relation of Bn

γBn − κBn−1 + κBn+1 = − (−1)n (ε + nω) B∗
n (4.21)
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The Eq. (4.21) can be represented by continuous fraction of B

Bn

Bn−1

=
κ

γ + (−1)n (ε + nω) B∗n
Bn

+ κBn+1

Bn

(4.22)

For very large n = N , this is a very small probability for an electron to excite to such

high energy level. Therefore BN+1

BN
can be ignore in order to obtain the approximation

ϑN =
− (−1)N (ε + Nω)

γ − κBN−1

BN

(4.23)

where ϑN = BN

B∗N
is the twice of azimuth of BN . Therefore Bn

Bn−1
is known and substituted

into Eq. (4.22) of n = N − 1. And we iterate the process until n = 0. On the other hand,

we can perform the iterating process from n = −N to n = 0. The two iterating processes

is sufficient to determinate the value of ε mentioned in Eq. (4.18)

So far, one(or not only one) undeterminate value(s) remained in the iteration is(are)

the azimuth of Bn. But Eq. (4.17) is a first order differential equation with two com-

ponents. Since that, two undeterminate parameter are necessary, i.e. one is ε and the

other is the azimuth of Bn. It turns out that the ϑn is not n dependent. And how to

determinate the value of ϑ is the same with that of ε.

In principle, one can employ this way to solve the solution Eq. (4.18) of Eq. (4.17).
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Chapter 5

Results and discussions

In this chapter, the basic and important result is energy dispersion and is introduced in

the first section. The following are time dependent numerical results of one side band

approach which contain transmission, beat of spin density and number density and spin

flip resonance.

5.1 The energy dispersion

The energy dispersions which contain propagating mode and evanescent mode are basic

results of this mesoscopic system. They have been introduced in the Fig. 2.5 v Fig. 2.7

in the Section 2.2. We especially focus on the condition of magnetic field strength is

comparable with SOI energy and Fig. 2.5 is such important that the following time-

dependent results can not be interpreted without it.
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5.2 Numerical results of one side band approach

5.2.1 Transmission

The first result of one side band approximation is the total transmission T obtained from

number current continuity Eq. (4.13).

T =
JT

Jin

(5.1)

where particle currents Jin and JT are calculated by Eq. (4.16). And the result is shown in

the Fig. 5.1. The first arrow indicates that an electron with energy E = −0.5(b0) absorbs

a photon with energy ω = 1.5(b0) and excites to energy level E = 1(b0), see Fig. 2.5, which

has larger density of state[15]. When electron is trapped, the transmission dip appears.

For the same reason, the second arrow indicates that an electron with energy E = 0.25(b0)

emits a photon with energy ω = 1.5(b0) and transmits to energy level E = −1.25(b0).

And the third arrow indicates that an electron with energy E = 0.5(b0) emits a photon

with energy ω = 1.5(b0) and transmits to energy level E = −1(b0). And the fourth arrow

indicates that an electron with energy E = 2.5(b0) emits a photon with energy ω = 1.5(b0)

and transmits to energy level E = 1(b0).

5.2.2 Spatial beat patterns of spin density and particle density

In the previous chapter, the wavefunction and coefficients in the region III are obtained

and now the spin density can be evaluated by the means of the expectation value of

Pauli matrix, σ0xyz. Particularly to mention that the expectation value of σ0 = 1 denotes

particle density.
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Figure 5.1: The transmission dips appear when the first side band involves the top and
bottom of Zeeman gap or subband bottom(shown in the inserted plot), i.e. which are
states with larger density of state. The ω/b0 indicates the photon energy is in unit of b0,
the L is the length of time modulated region and ε1 is the first spitting energy due to
lateral confinement.
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Figure 5.2: Beat pattern of transmitted number density in regione III with 4µm period-
icity.

The difference between the two interferences of up and down side bands

2 Re
(〈

t1σψ(kRσ+)
∣∣ σi

∣∣t1σ̄ψ(kRσ̄+)
〉)

and

2 Re
(〈

t−1σψ(kRσ−)
∣∣σi

∣∣t−1σ̄ψ(kRσ̄−)
〉)

where i = 0, x, y, z

give rise to oscillating beat pattern, see Fig. 5.2 and Fig. 5.3. Generally speaking, in the

condition of the coefficients t+1 and t−1 are comparable, the obvious beat pattern occurs

when ∆k = |δk+ − δk−| is large where δk+ = |k+σ(E + ω) − k−σ(E + ω)| and δk− =

|k+σ(E−ω)−k−σ(E−ω)| and the σ denotes branch index. The reason for the interference

appearance is that the magnetic field mix the two branch of bare Rashba energy spectrum.

Therefore the two branch are not orthogonal any more and the interference terms survive.

And periodicity of density can be proposed to measure coherent length. [16]. The length

of beat pattern is the coherent length of this mesoscopic system.
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Figure 5.3: Beat pattern of transmitted spin density of σz in regione III with 4µm peri-
odicity.

5.2.3 Spin flip resonance

The concept of this section is analog to conventional nuclear magnetic resonance(NMR).

In NMR, the resonance occurs while the electron in one specific spin state emits or absorb

a photon with energy ω and then flip the spin state into the other spin state. The photon

energy ω matches the energy difference between the two spin states. Besides the two

states both have large density od state. In this thesis, the resonance is indicated by

the wavefunction ψ±ω−σ. The magnitude square of these wavefunctions stand for the

probability of transition to the branch labelled by −σ which is different with that labelled

by σ of incident wave. These two branches, ±σ have different spin states respectively

mentioned in Chapter 4. The resonance result is shown in the Fig. 5.4 ∼ Fig. 5.6. In

these figures, the incident wave comes from the σ branch. The resonance peaks of |ψ±ω−σ|2

indicate that transition trend to change spin state while side band involve the states which

have larger density of state. This configuration is analog to conventional MNR condition
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Figure 5.4: Incident wave comes from σ branch and the magnitude square of ψ±ω−σ is the
probability of changing branch(spin flip).

of two discrete state also.

In the panel (b) of Fig. 5.4 ∼ Fig. 5.6, arrows point out a small resonance peak. These

arrows appear at higher frequency ω i.e. higher photon energy. This higher frequency

makes the time modulated term αE0

w
sin(ωt)σy in Eq. (3.8) too small to be side band

mechanism any more. Therefore a smaller resonance appears.

5.3 More discussions

Over all, the time modulated electric field strength is 10−5 order in unit of kvolt/cm.

Actually this magnitude is such small. This limitation comes from one side band approx-

imation which must ignore two photon scattering process and high order correction to

wavefunction.

Second, Fig. 5.7 shows the SDz standard deviations of spin density σz is always larger

then SDn that of particle density. At a.c. electric field length, L = 2.9µm, it is a optimal
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Figure 5.5: Incident wave comes from σ branch and the magnitude square of ψ±ω−σ is the
probability of changing branch(spin flip).

Figure 5.6: Incident wave comes from σ branch and the magnitude square of ψ±ω−σ is
the probability of changing branch(spin flip). The inserted plot in (b) is a re-scale view
of small peak at ω = 1.35.
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Figure 5.7: Standard deviations show that SDz > SDn to guarantee that it is not nec-
essary to consider screening correction. At length of a.c. electric field is L = 2.9µm, the
ratio between them is almost twice.

condition that SDz almost is twice of SDn. The result indicates that it is not necessary

to consider about screening correction.

Third, all fields including external static magnetic, time modulated electric field and

induced magnetic field due to Rashba type SOI are in-plane fields. By intuition, spin

precession axis is in-plain and the expectation value of σz should be zero. But Fig. 5.3

does not agree and show the evidence of spin flip. It can be interpreted by a semi-classical

picture. In conventional NMR configuration and in rotating frame with frequency which

is the same with external rotating magnetic field Brot, the spin performs precession about

Brot instead of static magnetic field Bs, see Fig. 5.8.

Finally, Boundary conditions, Eq. (4.9) and Eq. (4.10) are spin- independent in in-
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Figure 5.8: The resonance occurs and spin flip that can be interpreted by rotating frame
with semi-classical picture. Where BS is static magnetic field and Brot is rotating magnetic
field. The dashed line indicates spin and precession.

elastic scattering process. If incident wave comes from branch σ then it is impossible to

t±ω−σ 6= 0 unless the spin flip due to EDSR.
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Future work

In the future, two incident waves coming from two different branches condition will be

considered and the one sideband approximation will be extend to exact numerical method

mentioned in section 4.2 in order to simulate realistic physics and explore new possible

to enhance effects.

The analysis and physical interpretation of fano profile shown in the Fig. 5.6 are in

progress.
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Appendix A

Review of nuclear magnetic

resonance and sideband

Let we review nuclear magnetic resonance(NMR). The configuration of fields of NMR is

composed of B1 static magnetic field along z axis and B2(t) rotating field in x− y plane.

The time-dependent Schrödinger equation of this configuration is described as

Hχ = i
∂

∂t
χ (A.1)

where H = B2 cos(ωt)σx + B2 sin(ωt)σy + B1σz and χ is a spin state. The analytically

general solution can be solved as following

χ(t) =




exp(−iB1t)
[
c1 exp

(
i
2
β+t

)
+ c2 exp

(
i
2
β−t

)]

− exp(iB1t) exp(−iβt)
2B2

[
β+c1 exp

(
i
2
β+t

)
+ β−c2 exp

(
i
2
β−t

)]


 (A.2)

where c1 and c2 are two undeterminate coefficients which can be determinanted by an

initial condition, β± = β ±
√

β2 + 4B2
2 , β = 2B1 − ω and ω is angular frequency of B2

rotating field.

If the initial state of χ(0) = [1 0]T is employed then the evaluation in time of proba-

bility of the spin-down state [0 1]T , called P↓(t), is
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Figure A.1: When ω = 2(unit of energy), the resonance occurs, i.e the max of probability
of spin down is one. symmetrically, the max of probability of spin down decay with the
fluctuation of the resonance frequency ω = 2.

P↓(t) =
B2

2(
B1 − ω

2

)2
+ B2

2

sin2

(√(
B1 − ω

2

)2

+ B2
2t

)
(A.3)

The numerical result of Eq. (A.3) is shown in Fig. A.1. The strength of rotating field,

B2, is relative about the coupling between two states of spin up and spin down. In other

word, The ability of spin flip resonance is proportional to the value of B2. For example,

the value of B2 is more small, the full width at half maximum of resonance profile is

shaper. It indicates that the frequency of B2(t) is necessary to closely match the Lamor

frequency due to B1 and then the resonance occurs.
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Figure A.2: The strength of rotating field, B2, is proportional to the coupling between
two states of spin up and spin down. The full width at half maximum of resonance profile
is larger when the strength of rotating field, B2, is larger.
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Figure A.3: The relation between NMR and sideband.

The relation between NMR and sideband is introduced in Fig. A.3. First, The sideband

of rotating field B2 offers a energy ~ω is not match with the energy difference between

the two states of spin up and spin down. The spin flip happens but the probability

is small, see in the Fig. A.1. On the other hand, the spin resonance occurs while the

sideband match the state with large density of state. Second, although the sideband does

not closely match the spin-down state the probability is enough large unless the coupling

between the two spin states is strength enough, i.e. the value of B2 is large enough, see

Fig. A.2.
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Appendix B

Derivation of particle current

We start the derivation from the Hamiltonian Eq. (B.1) which just is considered along

longitudinal direction without subband mixing term α
i

∂
∂y

σx

(
− ∂2

∂x2
+ iα

∂

∂x
σy + b0σx

)
ψ(x, t) = i

∂

∂t
ψ(x, t) (B.1)

Producting ψ†(x, t) on left hand side of Eq. (B.1), we can obtain

−ψ†(x, t)

[
∂2

∂x2
ψ(x, t)

]
+iαψ†(x, t)

[
∂

∂x
σyψ(x, t)

]
+b0ψ

†(x, t) [σxψ(x, t)] = iψ†(x, t)

[
∂

∂t
ψ(x, t)

]

(B.2)

Taking dagger to Eq. (B.1) and product −ψ(x, t) on right hand side of it, we can

obtain

[
∂2

∂x2
ψ†(x, t)

]
ψ(x, t)+iα

[
∂

∂x
ψ†(x, t)σy

]
ψ(x, t)−b0

[
ψ†(x, t)σxψ(x, t)

]
= i

[
∂

∂t
ψ†(x, t)

]
ψ(x, t)

(B.3)
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The summation of Eq. (B.2) and Eq. (B.3) is

∂

∂t

[
ψ†(x, t)ψ(x, t)

]

= − ∂

∂x

[
ψ†(x, t)

1

i

∂

∂x
ψ(x, t)− 1

i

∂

∂x
ψ†(x, t)ψ(x, t)− αψ†(x, t)σyψ(x, t)

] (B.4)

According to continuity equation,

∂

∂t
ρ +

∂

∂x
J = 0

the L.H.S. of Eq. (B.4) is regarded as time derivative of particle density and R.H.S of

Eq. (B.4) is regarded as spatial derivative of particle current with respect to x. The

compact format of particle current is shown as following

J(x, t) = ψ†(x, t)

(
−i

∂

∂x
− α

2
σy

)
ψ(x, t) + c.c. (B.5)

where the abbreviation, c.c., is standing for complex conjugate of the former terms.

QED
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