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Abstract

This thesis seeks after the manifestation of the electric-dipole-induced spin resonance
(EDSR) in mesoscopics transport through a Rashba-type quantum channel. The EDSR
configuration involves a static field along the channel and an ac electric field in parallel
with the magnetic field.

Within a time dependent perturbation that induces first sideband, we study the spin
flipping in the transmitted wavefunction. For the case when the incident energy falls
within the Zeeman gap, and the sideband energies (¢ +w) outside of it, both the upper and
lower sideband involves intraband (interband) transition which is nonspin (spin) flipping.
Our major finding is that the spin flipping component exhibits resonance characteristics
when the sideband energy coincides with either the Zeeman gap edges or the subband
bottom, when the density of state is large. Furthermore, the spin density oscillates in space
according to the interference between the spin-flipping and non-spin-flipping comments.
Additional beating features in the spin density spatial profile is found to result from the
interference between the spin density oscillations due to (¢ +w) and (e — w) sidebands.

Our calculation has incorporated the effects of evanescent modes. We have performed
a detail analyze on the evanescent modes. The longitudinal wavevector k, is found to be
complex rather then pure imaginary.
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Chapter 1

Introduction

Manipulation of electron spin by pure electrical method is a challenging target for the
scientists. Ever since Dirac proposed, in 1928, his Dirac equation that leads to spin
particles and spin-orbit interaction(SOI) in the non-relativistic regime, the utilizationof
electron spin for applications has been very limited, due to the small spin-orbit interaction
in vacuum. The spin-orbit coupling is such enhanced in narrow gap semiconductors.
In the case of bulk inversion asymmetry(BIA), the spin-orbit interaction is the so-call
Dresselhaus SOI[1]. A most prominent example is in zinc-blende semiconductors. In case
of structure inversion asymmetry(SIA), the SOI is the so-call Rashba SOI[2]. A prominent
example is in asymmetric quantum wells. Most recently, it was proposed to invoke the

Rashba SOI for the generation of spin resonance without the need of ac magnetic fields.

1.1 Motivation: Electric-dipole-induced spin resonance
(EDSR)

The basic physical concepts of EDSR [3][4][5] are analogous to those of nuclear magnetic
resonance (NMR). We revisit NMR in Appendix A. The resonance occurs when the fre-
quency of an external rotating magnetic field closely matches the Larmor frequency of

spin precession in a static magnetic field. Our fundamental idea of the paper base on
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the concept that employ an effective magnetic field due to spin orbital interaction(SOT)
instead of the external rotating magnetic field.

In 2006, M.Duckheim and D. Loss [3] point out that one can take advantage of EDSR
mechanism to manufacture the out-of-plane magnetization which is robust in the presence
of disorder. The system they considered is a semiconductor nanochannel in the diffusive
regime and is applied by external fields of a longitudinal a.c. electric field and a parallel
static magnetic in-plane.

Accordingly, we can not help ourself to ask the question ”What would be the EDSR ef-
fects in a mesoscopic system of ballistic quantum channel?” we shall expect a new physics
appearance that spin resonance process should involve also inelastic intra-subband tran-
sitions. The system we considered is a quantum wells with Rashba spin orbit interaction
and is applied externally static in-plane magnetic field along longitudinal direction in the
all channel. And a longitudinal a.c. electric field is applied locally on a region of the
channel. The a.c. electric field not only drive the electron oscillate but also perform the
inelastic scattering to higher or lower energy levels. If the side band energy matches the
energy with large density of state and then spin-flip resonance occur. We will give detailed
discussions about time modulated wavefunction and one side band approximation in the

Chapters 3 and 4.

1.2 Motivation: Energy spectra of Evanescent mode

The processes of transitions to lower subbands bottom or into Zeeman gap should involve
Evanescent modes. Because of an external d.c. in-plane magnetic field can not be absent
from EDSR. The magnetic field lifts the degeneracy of two spin states which both are zero-
momentum states. This give rise to the Zeeman splitting phenomenon and Evanescent
modes exist inside the gap.

Very recently, the importance of the evanescent modes has been pointed out by other

groups also. L.Serra’s group publish ”Strongly modulated transmission of a spin-split
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quantum wire with local Rashba interaction” [6]. They point out what the role played
by Evanescent mode and how does it affect the quantum transport; Z.Q. Yang’s group
publish "Influence of evanescent waves on spin polarization in a ballistic Rashba bar”
[7][8]. They find out the pure evanescent waves can lead to obvious variations of spin
polarization near the interfaces up to a range of several hundred nanometers.

Besides,we will discuss another kind of evanescent modes out of the gap which have
not been discussed numerously so far. The two kinds of Evanescent modes have different
behaviors individually. we will give detailed discussions about energy dispersions and

wavefunctions including evanescent modes the Chapters 2 and 4.



Chapter 2

Basic physical structures considered

in this work

In this chapter, we will introduce our system profile and its Hamiltonian and wavefunctions
without modulated time term, a.c. electric field, in the first section. In the second section,
we will use perturbed method to calculate the energy dispersion which involve subband
mixing term due to Rashba interaction analytically. And we use numerical method to get
an identical result to confirm it. In the following section, in order to obtain all kinds of
energy dispersion including evanescent modes, they will be discussed in magnetic fields

with different magnitudes.

2.1 Basic Structure of our mesoscopic system

Schematic illustration of the Rashba-type quantum channel based on heterostructure
InAs/GaSh is shown in Fig. 2.1. And an in-plane magnetic field B is applied in the
x axis as well as a time-modulated electric field E(t) is applied parallel with B. Due to
structure inversion asymmetry in heterostructure in Fig. 2.2, a build-in electric field is in-
duced and electron moving in 2DEG can be affected by an effective magnetic field, leading

to Rashba spin-orbital interaction. The experimental parameter are give by: electron con-
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I II I1I

Egcos(o t)

Bo

Figure 2.1: Top view of the mesoscopic system. In the all quantum channel, there are
Rashba SOI and in-plane d.c. magnetic field along longitudinal direction. And an a.c.
electric field is applied locally on gray region.

centration n, = 5.7 x 10em =2, effective mass m* = 0.023 m,, Rashba strength constant

a = 0.94 x 107" (evm) [9], Lande g-factor g = 8 [10], width of channeld = 41.5(nm);

magnetic field strength B = 2.656 (mT). The time-modulated field is Egcos(wt) with

frequency w = 2.058 x 107! (GHz), electric field strength Eg = 5.472 x 10~ (kvolt/cm)
The Hamiltonian of the system can be written as the expression

"= % b+ eA<t)9(§ - ]:c|)]2 4 [9 <p + eA(t)@(g - |:1:|)) 4 bo] o4V, (2.1)

where the spin-orbital field is Q(p) = ap x é,, A = — ft dt'Eo(t') = —L2sin(wt)z is a
vector potential corresponding to electric field E(t) = Ey cos(wt)z, (% — |z]) is a step
function, by = #2By is the energy due to magnetic field along x-direction; V. is a confining
potential in y-direction; V, = 0 for y = 0 ~ d and V, = co otherwise.

In order to simplify our calculation loading, the dimensionless Hamiltonian is intro-
duced by choosing proper physical units. Length a is in the unit of Fermi wavelength,a* =

2k‘2
L = 59.5mewv, frequency w

As = 5.28nm; energy E in the unit of Fermi energy E* = r

2m*
in the unit of w* = E—h*, time ¢ in the unit t* = %, electric field strength Ejy in the unit
of E; = £, Rashba constant « in the unit of a” = % After standard dimensionless
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2DEG

Fermi energy

EVZ(Z)

Ev1 (Z)

Figure 2.2: Sketch of heterostructures potential profile. FE. is conduction band energy

of material 1, InAs; FE,; is valence band energy of material 1, InAs; Material 2 is GaSh.
Electric field is form InAs toward GaSb.

process, one obtain

H(z,y,t) =
0o Ey . L S 0 0 aFysin(wt) (L
_ % — ’LU sm(wt)& <§ — |I‘|>:| + ; (—%Uy =+ a—yO'm) + TQ 5 |.7)| O'y
2
+by- 0y — ==+ Ve

Oy?
(2.2)

The first of overall, the influence of a.c. electric field is not considered in this chapter, we

turn off electric field, Ey = 0, to find wavefunctions and energy spectra.

0? 0? 10 10
—-__ _ _ T _a = - 2.3
H(x,y) 02 o =50y + a- ayax + boo, + Vo(y) (2.3)
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2.2 Electronic states

In this section, we will discuss two modes of electron energy spectrum. First part, for
propagating mode, the perturbed method can be employed to get the energy dispersion
analytically. Besides, we can also numerically obtain very well-agreed result to compare
with perturbed result. In the second part for evanescent mode, we use secular equation
and quadratic solution to solve the evanescent momenta k for a given E which point out

electron energy spectrum of evanescent mode.

2.2.1 Insignificant effect in Rashba-induced subband mixing

In this subsection, we analytically solve wavefunction and electron energy spectrum for

the Hamiltonian Eq. (2.3) without dropping the Rashba-induced subband mixing term

o
7

8%095 with the perturbed method. Then, we use numerical method to get electron energy
spectrum to confirm the previous result. First, we treat %a%ar term as perturbed term
and have to drop it to get the exact wavefunction as the basis for complete wavefunction

including an influence of subband mixing. Accordingly we employ the time independent

Schrodinger equation
HO\IITLO' = Ey(:();)\];lna (24)

where n denotes subband index due to energy splitting from confining potential in y axis,
o denote for different branches in the same subband.
0? 0? 10
H=—-——-——a-—— boo, + V. 2.5
0= "o T~ Yiag T TVl (2.5)
and ¥, can be expanded by spatial wavefunction and spin state, ¥(x)p,(y)x,. Since

electron in x-direction is free without any scatterer, the momentum k is a good quantum
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number to label the state, we can easily obtain plane-wave wavefunction along x-direction

Y(x) =™ (2.6)

Because we choose a hard wall confinement in the lateral direction, the well-known solution

on(y) = \/gsin (%y) and ¥ = <%>2 (2.7)

can be found in any Quantum mechanics text book. Last one unknown spin state, x,,

can be obtained by solving eigenvalue problem for eigenstate and eigenenergy

1 o iak+bg
Xo=—= Vbiatk? (2.8)
V2 1

EQ =210 —gy/B2 +a2k2, 0= +£1 (2.9)

where n is the subband index due to the energy splitting of lateral confinement po-
tential; the o is the index of branches in the same subband. See Fig. 2.3
After we have prepared those basis already, the Hamiltonian including the perturbed

term %8%% becomes

5> 0 10
H=Hy+H = (kz ~ g~ kg0t boos + Vc(y)) + (a;a—yax) (2.10)

And perturbed wavefunction is represented as

wna(y) = ¢n<y>XJ + Z cn’a’¢n’ (y)XU’ + Z C’I’L”O’”¢TLN (y)XU” + ... (211)

n'#n,o'#o n''#n,o' #o

where ¢,/ is the first order correction coefficient; ¢, .~ is the second order correction

coefficient and so on.
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0=0.03 ,b0=0.5(h)

energy € (bo)

| | | | | | |
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
momentum k ( kf)

Figure 2.3: Two branches in the same subband, the first subband n=1. The ¢ = 1
branch is plotted by blue line; The other branch o = —1 is plotted by red line with empty

dot.x-axis is momentum k in unit of k; = 1.89 x 10*(1/m); y-axis is energy F in unit of
bo = 0.013(mev).
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After detailed calculation process, the result of first order correlation to energy EY =0

and correction coefficient to wavefunction is shown

¢ (3nlmn) (Xifaxxo)
(ET(L%') - E;(qggl)

, M F#MN (2.12)

We can go on calculating the second order correction to energy and show

1 a2
= X (S50 A rlon 213
n'#n,o#£o!
where ¢ is first order correction coefficients to wavefunction; A, is coupling factor

between two different subband.

n

e = 1= 0] [t ]

(2.14)

In Eq. (2.13), we sum enough n’ and the result turns out E® = —0.2502. Typically max

of n’ =100 can give a good convergence.

Here we have to mention a brief summary for the result of perturbed method that
the correction of Rashba-induced subband mixing to energy is an insignificant effect. The
effect is a second order correction.

In order to confirm previous result we use numerical method to calculate energy dis-

persion again. And the assuming Schrodinger equation [7][8] generally be expressed by

mm 2 Cm(k) 2 Qo NTT Cn(k) Cm(k>
B4 (—) — arkoy + byo, +— ——0,| An =F
#(7) ooy |72 7] Dk || Duth)
(2.15)

where [C,,(k) D,,(k)]T is an assuming wavefunction.

10
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Eq. (2.15) can be reduced to the compact matrix form is shown following.

(2 + (22)° = By Cnlk) +

(k2 + (2)" = By ) Dulk) +

S (2222 A 4 i0kGym + bodum) Da(k) = 0
n (2.16)
>

~

=.|Q
&F

(9282 A — kG + boOum) Cu(k) =0

The size of matrix is dependent on the number of subbands we considered. For example,
if total N=10 (N is maximum of indexes , m and n.) subbands are involved and then the
size of matrix is 20 x 20. Here we can solve 2N eigenenergys for a given k. However we
can solve 4N momenta for a given incident energy also.

The numerical result of energy dispersion of the first subband is shown in Fig. 2.4.
The correction of subband mixing due to ¢ 030 is second order and the numerical result

is identified with the perturbed result.

2.2.2 Energy spectra of Evanescent mode

In previous part, we know the Rashba-induce subband mixing is so weak that we ignore
it and discuss Evanescent modes.

The evanescent modes are [11] found that their behaviors are quite different in weak
(B < B.) and strong magnetic field (B > B.). The critical field B. is given by the Rashba
spin-orbit interaction (typically B, ~10mT).

We will discuss in three cases: The external magnetic energy is smaller, lager, and
equal to the SOI energy due to Rashba effect. The three kinds of evanescent modes have
different energy spectra individually.

If Eq. (2.3) does not include %a%amv the Rashba-induced subband mixing term, then
each subband labelled by different n is independently described by Hamiltonian Hy, and

energy Eq. (2.9)

Hy, = —== —a=—=0, + byo, + &, (2.17)
x

11
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0=0.03 ,b0=0.5(b )=0a*/4

energy € (bo)

_4 | | |
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
momentim k ( kf)

Figure 2.4: Comparing energy in the first subband with and without perturbed term
%8%0,,:. The unperturbed energy is plotted by red solid line and perturbed energy is
plotted by blue dashed line. They are a difference of a?/4 = 2.5 x 10~%. The numerical
result of correction to energy dispersion due to subband mixing term is identified with
the perturbed result. X-axis is momentum k& in unit of ky = 1.89 x 10%(1/m); y-axis is

energy E in unit of by = 0.013(mev).

12
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The two energy spectra of Zeeman and Rashba regimes have one different character
at zero momentum k. The second derivative is positive(negtive) in former(latter) regime.
The character gives us a good criterion to determinate the magnitude of the critical
magnetic field b.. We can take derivative on energy dispersion Eq. (2.9) twice and set it
zero and the magnitude of critical magnetic energy b, = /2.

We take an example of three magnitudes of magnetic energy, by < b., by = b. and
by > b, cases.

For a given energy in arbitrary regime, the four momenta k can be obtained analyt-
ically by Eq. (2.9) with quadratic relation. The four momenta have different modes in
different energy regimes, generally speaking:

1. Above Zeeman gap (E — &1 > by): Four momenta in two branches are all real, propa-
gating modes.

2. Between Zeeman gap (by > E — &1 > —bp): Two momenta k in outside branch, o = 1,
are real and two momenta k in inside branch, o = —1, are pure imaginary, pure evanes-
cent modes.

3. Between subband bottom and low terminal of Zeeman gap [—by > E — 1 > (a?/4 —
b2/a?)], four momenta in two branches are all real, propagating modes.

4. Under subband bottom: Four momenta in two branches are all complex, propagating
and evanescent modes couple together.

In by < b, case, see Fig. 2.5, the magnetic energy is not large enough to compete SOI.
Therefore not only the "Rashba” shape is still observable but also the degeneracy at zero k
is left. In the Zeeman gap, the evanescent mode with pure imaginary momentum k which
is plotted by blue circle line. Below the subband bottom the other kind of evanescent
mode exists that momentum k is a complex number, i.e. the evanescent property couple
with the propagating property. The real part of this evanescent momentum is almost
constant with decreasing energy. And it is worth to mention that the energy of maximum
imaginary k£ in Zeeman gap is F/ = 1 — 2—‘2;7 i.e the shape of the evanescent mode is not

symmetric with respect to the center, £ = ¢;.
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0=0.03 , b =0.5(b )
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Figure 2.5: Energy dispersion of evanescent mode in magnetic energy small then the
SOI energy case.The Rashba effect still dominates. Solided line is propagating mode(k is
real). Line with circle is evanescent mode(k is imaginary); Under energy bottom region,
the two modes couple together(k is complex). X-axis is momentum k£ in unit of ky =
1.89 x 10%(1/m); y-axis is energy E in unit of by = 0.013(mev).
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0=0.03 , b =1(b)
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Momentum k {kf}

Figure 2.6: Energy dispersion of evanescent mode in magnetic energy equal to the SOI
energy case.The Rashba effect and Zeeman effect compete; the subband bottom is flat.
Solided line is propagating mode(k is real). Line with circle is evanescent mode(k is
imaginary); Under energy bottom region, the tow modes couple together(k is complex).
X-axis is momentum % in unit of k; = 1.89 x 10%(1/m); y-axis is energy F in unit of
by = 0.013(mev).
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0=0.03 , b_=2(b )
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Figure 2.7: Energy dispersion of evanescent mode in magnetic energy larger then the SOI
energy case.The Zeeman effect dominates. Solided line is propagating mode(k is real).

Line with circle is evanescent mode(k is imaginary); In £ < ¢, — 2—(2; regime, the two modes
couple together(k is complex). X-axis is momentum k in unit of k; = 1.89 x 10%(1/m);
y-axis is energy F in unit of by = 0.013(mev).

In by = b. case, see Fig. 2.6, the magnetic energy is comparable with the SOI. The
feature of Rashba dispersion disappears and the flat subband bottom is a remarkable
feature. With increasing magnetic field strength, the £ = ¢; — Z—% is decreasing.

In by > b, case, see Fig. 2.7, the magnetic energy is larger than the SOI, i.e. Zeeman
effect dominates and two parabola dispersions show. Finally, the magnetic field is such
large that the energy of maximum imaginary k& overstretch the subband bottom. The
propagating mode and evanescent mode couple together while the energy lower than

b3
&1 — o2
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Chapter 3

Calculation of time modulated

wavefunction

In this chapter main work in the first section is to consider about the influence of the
time modulated electric field on the wave functions. The influence includes inelastic
scattering process and make sidebands attached to wavefunction. In the second section,
the number current density is introduced and the interesting thing is the contribution

from the interference of intraband wavefunction will be introduced.

3.1 Time modulated wavefunction and transforma-

tions

We start to apply the a.c. electric field on our mesoscopic system, Fig. 2.1 mentioned in
chapter 2, and calculate the wavefunction.

The time dependent Schrodinger equation is written as

HU(r,t) = i—U(r, 1) (3.1)

17
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where

o B2, 2E, | )
<—@ + —28in (wt) + = Sln(wt)a—x>

H= (3.2)

+ O a9 +aa +b +V+a%mmw
- A o5 __0- -V a xT €T C - w
oy  i0x Y i (9y(7 0o W %

But Eq. (3.2) is really too complaint to solve out wavefunction immediately. Here we
must employ transformations[12][13] to simplify the ”terrible” time-dependent Schrodinger
equation.

First we can employ the first transformation

U(r, 1) = exp (M) (e, 1) (3.3)

4w3

and the identity 2sin?(wt) = 1 — cos(2wt). Substituting transformation Eq. (3.3) into the
time dependent Schrédinger equation Eq. (3.1), we have the time dependent Schrodinger

. EZ . . .
equation whose =5 sin*(wt) is eliminated

2 2
( 0 + E02 + Z'QEO sin(wt)ﬁ)
w

02 2w ox 0
t) =i—(r,t
2 oo ad aE, . Pl ) =i (e, )
(3.4)
Second we use the second transformation.
2F 0
P(r,t) = exp [—7 cos(wt)%] f(r,t) (3.5)

Substituting transformation Eq. (3.5) into the time dependent Schrédinger equation
Eq. (3.4), we have the time dependent Schrodinger equation whose i222 sin(wt) < is elim-

inated

18
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02 E? #?  ad a 0 aEy .
{(—@ + ﬁ) + <_a_y2 — ;%Uy + 78—y0'z + boO'm + ‘/c + T Sln(u)t)O'y):| f(r, t)

0

= Z.Ef(rv t)

(3.6)

The first two transformations can eliminate the time dependent terms which do not
couple with spin operator o.
Finally we can easily eliminate the constant term with the transformation

F(r.t) = exp (—iQE—ait) g(r, 1) (3.7)

and get more "simple” time dependent Schrodinger equation

0? 9 a0 a 0 aFy . 0
(—@ — 8_3/2 — ;%Uy + ;8_y0x +booy + V. + “ sm(wt)ay) g(r,t) = zag(r, t)

(3.8)

When an incident wave go into the time dependent region from left infinite, see in Fig. 3.1,
the QTEO sin(wt)o, term not only gives rise to inelastic scattering precess which change the
energy F +w and momentum k(E £ w) but also produces time modulated wavefunctions
which remain the same momentum £ with incident wave but their energy change +w.
As is mentioned in previous Chapter 2, plane wave ¢(x) = ¢** and standing wave
only) = \/g sin (%y) are spatial wavefunctions in x and y direction. Substituting them

into Eq. (3.8), the wavefunctions of Eq. (3.1) is solved out as fallowing

4w3 2w?

S T2 2
U(r, B,t) = exp (M) exp (_2_60 cos(wt)ag) exp <_iﬂt> B2 5, (y)ye ]
w T

(3.9)
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I II

K(E)

Figure 3.1: Sketch of side band wavefunction due to inelastic scattering process (red and
blue solid lines)and time modulated wavefunction (black dotted line) at the first interface
between time-independent and time dependent regions. In this figure, the inelastic scat-
tering wavefunctions still have time modulated wavefunctions but are not shown. The
unit of frequency w is in energy unit.

where spin state x have not determinated. We will determinate it in different energy

regimes and explicitly show it in the next chapter.

3.2 Particle current density

In this section we reproduce the current density from the continuity equation. It is worth
to mention the contributions to current due to the interference two wavefunctions of the

intraband seem to appear and are position-dependent. Here we emphasize that the result
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CHAPTER 3. CALCULATION OF TIME MODULATED WAVEFUNCTION

will be demonstrated in detail again in section 4.1.4.
—J(r,t 3.10
(1) (310)

where p is number density and J is a particle current density. After performing de-
tailed calculation process for current density in Appendix B, we have the current density

expression.

J(z,t) = Ui(x,t) <—z'(% - %ay) U(z,t) + cc. (3.11)

where W is two components wavefunction and the abbreviation, c.c., is standing for com-
plex conjugate of the former terms. In order to get a steady current result, time average

expression is introduced

(3.12)

where T = %’T, a periodic duration. And it always is valid when the time scale of the

measurement is much greater than the time scale of periodic duration. For an example,

we calculate current flow with wavefunction in right time-independent region

U(z,t) =
too €xP [ikro®] Xroe ' + tos exp [ikps®] Yo (F)e -
3.13

1o XD [ikRos @] Xrose " EH + 1, exp [ikposx] Yrose EH

—i(E—w) (B-w)t

+t_15 exp [ikro— 7] XRo—€ "+ to15explikps—a] XRo—€

and it originates from the incident wavefunction exp [ikg, x| X roe Ft with momentum kg,
in left time-independent region. Where the first footnote of coefficient denotes the times
of electric inelastic scatterer and the + for energy absorb or emit a photon; the second

footnote denotes branch. And the first footnote of momentum denotes R-ight or L-eft
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CHAPTER 3. CALCULATION OF TIME MODULATED WAVEFUNCTION

going, the second one is for branch and third one is for energy absorb or emit a photon.

The transmission involves the effect of the second interface i.e. we have considered the
multiple scattering processes. The reason will be explained and calculation will be shown
in chapter 4.

Substituting wavefunction Eq. (3.13) into steady current Eq. (3.12), we can get a
steady current expression. Because the different energy domains, £ and F+w, are orthog-
onal in one periodic duration. However the current density expression looks like position-
dependent which mean the electron accumulation or disappearance occurs. Besides, it is
very not conventional terms, the crossing terms due to the two the non-orthogonal spin

state .

1 T

exXp [_Z (k}k?a - kRU‘) ‘T] [(k}k%cr + kRo) 35 QXEUUyXRU]
+ (ﬁotlﬂ) eXp [_Z (k}k%aJr T kRo+) JI} [(k}kza-l— N kRa—I—) . aX}+20+O-yXRU+:|
+ (t15t1,5) exp [_i (k>1k%5+ - kRa+) x} [(k?%&+ + kR5+) - O‘XEZTJFUyXR&Jr]

+ (tilot—lff) exXp [_Z (k}kfo— - kRo‘—) J]] [(kjl}a— + kRU—) - OéXEO’—O-yXRG—]

+ (t15t-10) exp [~i (Fro— — ko) @] [(Kro- + krs—) — OX s 0y XRs-]
+ (ti,t1,5) €xp [—i ( Rot — kR5+> x} [( Rot+ T kR&-ﬁ-) XEU+XR&+ - aXJJ:zaJrUyXR&Jr]
+ (ti5t10) €Xp [_i (kj':aJr - kLa-l—) x} [(kiﬂ + kLJ+) XE&JFXRUJF - aXJIgz&+0yXRa+]

+ (t*—lat—l,ﬁ) exXp [_i (sz— - kL&—) x} [(kia_ + kL&—) XIU—XLﬁ— - O‘XzafayXLa—}

+ (t*—la—tflo) exXp [_i (k;‘%a—— - kRa—) x} [(k}k%— + kRa—) X2_57XLJ— - O‘X—Ls_afgyXLa—}
(3.14)

where the second bracket is the contribution to current density due to the interference of
two different k& wavefunction which are not orthogonal with each other. Will these terms
contribute to current density and be position dependent? We will answer this puzzle in

the next chapter.
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Chapter 4

Method of electric dipole spin

resoinarce

In this chapter main work is to evaluate time dependent wavefunction and spin-dependent
reflection and transmission coefficients with two methods. In the first section, we use one
side band approximation approach to solve it for a main influence due to electric field.
In second section, we use exact numerical approaches, three terms recursive relation and

continue fraction, to solve again to confirm one side band approximation result.

4.1 One side band approximation approach

4.1.1 Time modulated wavefunctions with one side band ap-

proximation approach

Over all, in order to get analytic solution, we ignore the %6%033 which is so weak and is

discussed in Chapter 2.

We start to consider the electric field effect, the side band may contain evanescent
mode, even the wavefunctions are not in the time dependent region. In time-independent
region, the wavefunctions in x-direction can be described by the different expressions

according to different energy regimes, see Fig. 4.1.
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0=0.03
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Figure 4.1: We divide the energy into five regimes. The first energy regime is £ > 1 + by,
the second is g, — (b3/a?) < E < &1 + by and the critical energy e, — b2 give rise to the
maximum pure evanescent momentum, the third is ey —by < E < g1 — (b3 /a?), the fourth
ise; — (@?/4+4b3/a?) < E < &1 — by, and the last is £ < &1 — (a?/4 + b3 /a?).
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CHAPTER 4. METHOD OF ELECTRIC DIPOLE SPIN RESONANCE

Time-independent regions I and III: The wavefunction and energy dispersion can

be obtained analytically from Eq. (2.17)

QT — ik 0Bt (4.1)

The spin state xor, have different expressions according to different energy regimes, where

the first footnote denotes the times of electric inelastic scattering process and the + for
energy absorb or emit a photon, the second footnote denotes R-ight or L-eft going wave
and the third footnote denotes which branch the spin state belong to:

And we transform the energy dispersion into k& function of F

k(E)? = [(E —ep) + O‘;] + \/<(E —&) 4+ %2)2 —((E—-&)- 1)) (4.2)

Energy regime 1: Energy is above the Zeeman gap, F > 1+ bg,where € is first energy

splitting due to lateral hard wall confining potential and by is the magnetic energy due to
external d.c. magnetic field
o bo+iak

1 b2+ 2[2
= oo 4.3

where the four k are all real, ¢ = +1 spin states are for outside branch, ¢ = —1 spin

states are for inside branch where o is mentioned in Eq. (2.9). And Energy regime 4,

e1— D < E<e; —by, D=a?/4+b/a?, the spin states have same expression Eq. (4.3).

Energy regime 2: ¢, — (b2/a?) < E < g + by and the critical energy, e; — (b3/a?), give

rise to the maximum pure evanescent momentum. For two real momenta k£ in outside

branch, the spin states are the same with Eq. (4.3). For pure image momenta k in inside
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branch, the spin state

bo+iak
Yo = Vbo + alm(k) /b2 +azk? (4.4)
V/2bg 1

Energy regime 3: & — by < E < g — (b3/a?). For two real momenta k in outside

branch, the spin states are the same with Eq. (4.3). For pure imaginary momenta & in

inside branch, the spin state

bo+iak
Voo +adm(k) |~
o = Yhoalmb) | T (4.5)
No X

The signs of spin states with pure imaginary momentum in the Energy regime 2 and
Energy regime 3 are opposite. The sign changes suddenly while the energy cross the
critical energy e; — (b2/a?).

Energy regime 5: For energy under subband bottom, £ < ¢; — D, the spin state is

too complicated to distinguish in the diagram which branch does the spin state belong to.
But we can know the properties(right or left going decay and inside or outside branch) of

complex momentum k& by means of expression Eq. (4.2) and substitute k into their own

spin state
—1/2 _ bot+iak
2 2 L-* 2 2
V2 + 2bpa Im (k) + a2k*k )

where A = F — g1 is regarded as kinetic energy.

Position Region II: Time-dependent region, the Hamiltonian is Eq. (3.8) and time
modulated wavefunctions have the general expression Eq. (3.9).

In one side band approximation, the scattering process occurs only one time, the first

and third expoterms in Eq. (3.9) are eliminated since they involve two photon process.

26



CHAPTER 4. METHOD OF ELECTRIC DIPOLE SPIN RESONANCE

And the spin state x have the logistic form

iwt

X = Xo+ Xx_1€“" + xs1€”

where x4; denotes the spin states whose energy change 4+w under one time inelastic

scattering process and are evaluated by the following equation

w—FE iak+by ,
X—1 = tROyXo
—iak+by w-—F
(4.7)
—w—E ok +by »
X+1 = —1ROyXo

—tak+by —w-—F

where 2k = aFEy/w. The system of equations comes from the first order correction to
unperturbed spin state yo by means of perturbation theorem. Here we treat the term,
oI gin(wt)o,, as perturbation of Eq. (3.8). And it is valid in this criterion aEy/w? < 0.1
(dimensionless).

Finally we have the time modulated wavefunction in time-dependent region whose one

side band approximation as following

E W
Xo + {Xl — Zw—gk‘(E)Xo} et
\IJHI(E) — eikx 5 efiEt (48)
+ |:X+1 - i_gk(E)Xo} e
w

4.1.2 Intraband transition and multiple scattering procession

Before we start to calculate reflection and transmission coefficients, we have to emphasize
a particular phenomenon that intraband transition in the same subband occurs without
breaking symmetry in y-direction. See Fig. 4.2. The reason of why breaking symmetry
in y-direction is not necessary for the transition between difference branch in the same
subband is the external magnetic field mix the two spin state of o, and o, due to Rashba

effect and external magnetic field. Therefore the orthogonality between different branch
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Figure 4.2: Sketch of intraband transition, without breaking symmetry in y-direction,
rises from mixing spin states of Rashba and Zeeman terms due to an external magnetic
field B(z). Where kg, denotes the momentum of an incident wave; ryy 4 is the reflection
coefficients of once scattering to specific one branch; Because of no two photon scattering
process, the ro +1 the ro 41 are zero. The solid horizontal line denote incident energy; the
dashed line for the energy after inelastic scattering process.
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in the same subband disappears. Because of this reason, the intraband transition process
is allowed.

We can start to calculate reflection and transmission coefficients by multiple scattering
process which is the matching calculation at each interface step by step. Besides, all
scattering process is considered up to the first order only. In other words, we ignore the
second order process including:

1. Successive scatter to E' + 2w at one interface. (minus sign also)

2. First scatter to F 4+ w and then back to E at one interface. (minus sign also)

3. First scatter to E'+w at one interface and then to £+ 2w at the other interface. (minus
sign also)

Finally, we sum all contribution of the same energy level and branch from two interface,

see Fig. 4.3.

4.1.3 Reflection and transmission coefficients

Our aim is to solve the reflection and transmission coefficients by the imposed boundary
conditions: (i) wave functions are continuous at = 0 and « = [. (ii) the slope of wave

functions are continuous at x = 0 and = = [.

(i)

UL(07) = wl(0T) at first interface (49)
UL (]=) = W (]*) at second interface

(4.10)

The wavefunctions in each position region have been introduced by Eq. (4.1) and Eq. (4.8).
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And these boundary conditions necessarily are satisfied at arbitrary time. Therefore
we can evaluate the coefficients with three different energy levels, F, E + w, separately.
Besides, Eq. (4.9) and Eq. (4.10) are two components wavefunction. So the four equations
give us 24 equations which can exactly solve out 24 unknown variables. There are 12
unknown variables of reflection shown in Fig. 4.2 with respect to one of interfaces.

After conventional matching calculation, we obtain the expression, i.g. casel.l [ kg,
incident and at first interface | , for reflection and transmission coefficients of up(down)

energy level

AoLok+ AoLsk+ —AoRok+ —Aorok+ T+1o
Borok+ Borsk+ —BoRok+ —Borsk+ T+16
kro+Aorok+ kro+Aorsk+ —FkrotAorok+ —FKro+Aorskt tiis
kro+Borok+ krs+Borsk+ —Fkro+Borok+ —Fkrs+Borskt tiis

(4.11)
Aj1ro — 18 kp, Aors

~ B b
Biipe — 128kg, Boro
E it it E‘ %
:FZQ_LSAORU + kRO’ (A-HRU - Zw_gkRaAORU>

as well as casel.2 [ kg, incident and at second interface | , for reflection and transmission

coefficients of up(down) energy level
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Aorot Aors+ —Aoro+ —Aopot T+10 €XP (1krosl)
Boro+ Bors+ —Boro+ —Bypst r115 €xp (tkrs+l)
(kro+) Aoro+  (Krs+) Aors+ — (Frox) Aore+ — (Kro+) Aore+ t115exp (tkposl)
(Kro+) Boro+ (krot) Borst+ — (KRrox) Boro+ — (Krs+) Bors+ ts15 exp (ikry+l)
—exp (tkgol) [(AHR ) — i2%kp, <A0Ra>i|
— exp (ikpgol) [(BH RU) — i%kRo <BORU):|
— exp (ikg,l) <$ Aoro + (kro) [AH,R,U - i%kRaAORU]>
— exp (ikp,l) ( Bygo + (kro) [BH,RJ - i%kRJBORJ]>

(4.12)

where upper(lower) sign is denoted for up(down) side band energy, A and B are two
elements of spin state and the tilde sign in A or B mean the energy level remain at E,
the same with incident wave energy, and the + sign in k4 means the energy in Eq. (4.2)
absorb or emit one photon energy.

Here are similar results as follow we do not show for a short make-up,
case2.1 [ kgr_, incident and at first interface |,
case2.2 [ kr_, incident and at second interface ].

Until now, the coefficient ¢y is not mentioned since it contain second order correction.
It can not be obtained by one side band approach method previous mentioned. But it
can be calculated by an indirect method. Through the conservation of number current

flow identity

Jin = Jg + Jr (4.13)

where J;, is the incident current flow, Jg is reflection current flow and Jr is the trans-
mission current flow.

Therefore the calculation of number current flow is introduced in the next section.
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Figure 4.3: Sketch of multiple scattering procession in order to evaluate reflection and
transmission coefficients. For example, kgr, wave incident, the reflection comes from both
interfaces 741 1, = rill)ia + rfl)ia. The upper index denotes the first interface (1) and
the second interface (2). ro 1, = 0 are not shown in this figure.

Actually, by means of this conservation identity we just obtain |t0|2, the magnitude

square of the ty coefficient.

4.1.4 Revisit particle current density

The wavefunctions in each region are introduced in the previous section as well as reflection
and transmission coefficients considered up to one side band. Now we can use them to
evaluate particle current.

The particle current operator can be calculated from ”continuity equation” and the
particle current flow can be written as Eq. (3.11) For an example, we calculate particle

current flow with the wavefunction ¥(r,t) = exp(ikry)Pn(y)Xors €xp(—Ft) where

1 _ botiakrs
XoRo = —= Vb ok, (4.14)
V2 1
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Substituting the wave function into Eq. (3.12), we can obtain the current flow

OZQI{JRU

The result can be demonstrated by derivative the energy dispersion Eq. (2.9) with

J(z,t) =2kp, — 0 (4.15)

respect to k, dE/dk . It turns out group velocity expression which is same with Eq. (4.15).

Therefore we can answer the question we asked in the Chapter 3 "Will these inter-
ference terms between different wavefunction which are not orthogonal with each other
contribute to current density? ”

This is easy to answer the question by substituting spin states Eq. (4.3)~ Eq. (4.6) into
Eq. (4.16) to demonstrate what role these cross terms play but the calculation process is
very complicated and boring. Here we just justify that the cross terms contribute NOTH-
ING to the current density in any energy regime, even all momenta k are propagating

mode. Therefore Eq. (3.14) can be reduced to

1 T

expli (kore = Kiny) o) | (s + Kore) = aXhpo@ X0
+ (115710) €XP [—i (kima - k‘+1La) 513] [( Lot T kHLo) - aXiri-lLaO—yX-i-lLa}
+ (risr10) exp [—i (ki1 15 — ky1rs) 7] [( i + kyie) — aX:-lL6JyX+1L6]

+ (Tilor—lg) exp [_i (kichr - k—chr) 95} |:(ki1La + kflLa) - 04XT_1LU‘7yX—1L0}

+ (7“:57"71,5—) exXp [—i (king - kflLa') x} [(—Ufza + k—lLa) - OKXT,lLaUyXflLa]
(4.16)

When all momenta are real, it is obvious the result of particle current is not position-
dependent. Besides, it is easy to demonstrate that the current is not position-dependent

by substituting proper spin states when all momenta are not real.
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4.2 Exact numerical approach

In this section, exact numerical approaches [14], three-term recursive relation and contin-

ued fraction, are introduced here. we start from the Hamiltonian

0 by + ik E 0 —
" + 2% in (wt) X = z'gx (4.17)
by —iak 0 “ i 0

We define v = (by + iak) and k = a—io and expand spin state y as Fourier expansion

A ‘ Z Aneinwt
X = = eZEt £ ) . (4 18)
B Bne'mw

where n is integral and ¢ is an undetermined constant which is not necessary to be the

incident energy. Substituting Eq. (4.18) into Eq. (4.17), we have a system of equations

h/ — K (eiwt _ efiwt)] Z Bneinwt 1 O3 (5 8 nw) Z Aneinwt
| A S S (4.19)
[,y* + K (elwt _ efzwt)] ZAneznwt St (5 + TLLA)) Z Bneznwt

n

The e~™* terms in the system of equation are

B, — kB,_1 + kB4 = — (e +nw) A,
g 1 +1 ( ) (4.20)

VA, 4+ KA1 — KA = — (e 4+ nw) By,

The two equations have very similar formulism and the ansatz, B, = (—1)" A%, is sug-

n’

gested which satisfies with the both of Eq. (4.20).
Substituting it into the first equation of Eq. (4.20), we can obtain the three terms

recursive relation of B,,

vB,, — kBy_1+ kBpy1 = — (—=1)" (e + nw) B}, (4.21)
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CHAPTER 4. METHOD OF ELECTRIC DIPOLE SPIN RESONANCE

The Eq. (4.21) can be represented by continuous fraction of B

B, K

Boot oy 4 (=1)" (e + nw) =

(4.22)

For very large n = N, this is a very small probability for an electron to excite to such

BNt
BN

high energy level. Therefore can be ignore in order to obtain the approximation

N
gy = — =Y <§N+1N”> (4.23)
V= KRBy

where Jy = g—g is the twice of azimuth of By. Therefore % is known and substituted
into Eq. (4.22) of n = N — 1. And we iterate the process until n = 0. On the other hand,
we can perform the iterating process from n = —N to n = 0. The two iterating processes
is sufficient to determinate the value of € mentioned in Eq. (4.18)

So far, one(or not only one) undeterminate value(s) remained in the iteration is(are)
the azimuth of B,. But Eq. (4.17) is a first order differential equation with two com-
ponents. Since that, two undeterminate parameter are necessary, i.e. one is € and the
other is the azimuth of B,. It turns out that the ¢, is not n dependent. And how to

determinate the value of 9 is the same with that of €.

In principle, one can employ this way to solve the solution Eq. (4.18) of Eq. (4.17).
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Chapter 5

Results and discussions

In this chapter, the basic and important result is energy dispersion and is introduced in
the first section. The following are time dependent numerical results of one side band
approach which contain transmission, beat of spin density and number density and spin

flip resonance.

5.1 The energy dispersion

The energy dispersions which contain propagating mode and evanescent mode are basic
results of this mesoscopic system. They have been introduced in the Fig. 2.5 «~ Fig. 2.7
in the Section 2.2. We especially focus on the condition of magnetic field strength is
comparable with SOI energy and Fig. 2.5 is such important that the following time-

dependent results can not be interpreted without it.

36
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5.2 Numerical results of one side band approach

5.2.1 Transmission

The first result of one side band approximation is the total transmission 7" obtained from

number current continuity Eq. (4.13).

T= T (5.1)
where particle currents J;, and Jr are calculated by Eq. (4.16). And the result is shown in
the Fig. 5.1. The first arrow indicates that an electron with energy E = —0.5(bgy) absorbs
a photon with energy w = 1.5(by) and excites to energy level E = 1(by), see Fig. 2.5, which
has larger density of state[15]. When electron is trapped, the transmission dip appears.
For the same reason, the second arrow indicates that an electron with energy £ = 0.25(by)
emits a photon with energy w = 1.5(bp) and transmits to energy level £ = —1.25(bo).
And the third arrow indicates that an electron with energy E = 0.5(by) emits a photon
with energy w = 1.5(by) and transmits to energy level E' = —1(by). And the fourth arrow
indicates that an electron with energy E = 2.5(by) emits a photon with energy w = 1.5(b)

and transmits to energy level E = 1(b).

5.2.2 Spatial beat patterns of spin density and particle density

In the previous chapter, the wavefunction and coefficients in the region III are obtained
and now the spin density can be evaluated by the means of the expectation value of
Pauli matrix, 0g,,.. Particularly to mention that the expectation value of oy = 1 denotes

particle density.
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Figure 5.1: The transmission dips appear when the first side band involves the top and
bottom of Zeeman gap or subband bottom(shown in the inserted plot), i.e. which are
states with larger density of state. The w/by indicates the photon energy is in unit of by,
the L is the length of time modulated region and e; is the first spitting energy due to
lateral confinement.
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Figure 5.2: Beat pattern of transmitted number density in regione III with 4um period-
icity.

The difference between the two interferences of up and down side bands

2Re ((tio¥(kpys)| 0i [tiot (kpsy)))

and where 1 =0,x,y, z
2 Re (<t,1g¢(k}RU,)| ofi |t716¢(kR57)>)

give rise to oscillating beat pattern, see Fig. 5.2 and Fig. 5.3. Generally speaking, in the
condition of the coefficients ¢, and t_; are comparable, the obvious beat pattern occurs
when Ak = |0k, — 0k_| is large where 0k, = |k, (E 4+ w) — k_,(E + w)| and dk_ =
|kto(E—w)—k_,(E—w)| and the o denotes branch index. The reason for the interference
appearance is that the magnetic field mix the two branch of bare Rashba energy spectrum.
Therefore the two branch are not orthogonal any more and the interference terms survive.
And periodicity of density can be proposed to measure coherent length. [16]. The length

of beat pattern is the coherent length of this mesoscopic system.
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Figure 5.3: Beat pattern of transmitted spin density of o, in regione III with 4pum peri-
odicity.

5.2.3 Spin flip resonance

The concept of this section is analog to conventional nuclear magnetic resonance(NMR).
In NMR, the resonance occurs while the electron in one specific spin state emits or absorb
a photon with energy w and then flip the spin state into the other spin state. The photon
energy w matches the energy difference between the two spin states. Besides the two
states both have large density od state. In this thesis, the resonance is indicated by
the wavefunction ¥, ,. The magnitude square of these wavefunctions stand for the
probability of transition to the branch labelled by —¢ which is different with that labelled
by o of incident wave. These two branches, +c have different spin states respectively
mentioned in Chapter 4. The resonance result is shown in the Fig. 5.4 ~ Fig. 5.6. In
these figures, the incident wave comes from the o branch. The resonance peaks of |¢L,_,|?
indicate that transition trend to change spin state while side band involve the states which

have larger density of state. This configuration is analog to conventional MNR condition
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Figure 5.4: Incident wave comes from ¢ branch and the magnitude square of ¥, _, is the
probability of changing branch(spin flip).

of two discrete state also.

In the panel (b) of Fig. 5.4 ~ Fig. 5.6, arrows point out a small resonance peak. These
arrows appear at higher frequency w i.e. higher photon energy. This higher frequency
makes the time modulated term 22 sin(wt)o, in Eq. (3.8) too small to be side band

mechanism any more. Therefore a smaller resonance appears.

5.3 More discussions

Over all, the time modulated electric field strength is 107 order in unit of kvolt/cm.
Actually this magnitude is such small. This limitation comes from one side band approx-
imation which must ignore two photon scattering process and high order correction to
wavefunction.

Second, Fig. 5.7 shows the SD, standard deviations of spin density o, is always larger

then SD,, that of particle density. At a.c. electric field length, L = 2.9um, it is a optimal
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Figure 5.5: Incident wave comes from ¢ branch and the magnitude square of ¥, is the
probability of changing branch(spin flip).
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Figure 5.6: Incident wave comes from o branch and the magnitude square of ¥4, _, is
the probability of changing branch(spin flip). The inserted plot in (b) is a re-scale view
of small peak at w = 1.35.
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whb,=1.125 E =2.74x10(kvolticm) E=0(b,)
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Figure 5.7: Standard deviations show that SD, > SD,, to guarantee that it is not nec-
essary to consider screening correction. At length of a.c. electric field is L = 2.9um, the
ratio between them is almost twice.

condition that SD, almost is twice of SD,,. The result indicates that it is not necessary
to consider about screening correction.

Third, all fields including external static magnetic, time modulated electric field and
induced magnetic field due to Rashba type SOI are in-plane fields. By intuition, spin
precession axis is in-plain and the expectation value of o, should be zero. But Fig. 5.3
does not agree and show the evidence of spin flip. It can be interpreted by a semi-classical
picture. In conventional NMR configuration and in rotating frame with frequency which
is the same with external rotating magnetic field B,..;, the spin performs precession about
B, instead of static magnetic field B, see Fig. 5.8.

Finally, Boundary conditions, Eq. (4.9) and Eq. (4.10) are spin- independent in in-
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Figure 5.8: The resonance occurs and spin flip that can be interpreted by rotating frame
with semi-classical picture. Where Bg is static magnetic field and B, is rotating magnetic

field. The dashed line indicates spin and precession.

elastic scattering process. If incident wave comes from branch o then it is impossible to

t+,_o # 0 unless the spin flip due to EDSR.
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Chapter 6

Future work

In the future, two incident waves coming from two different branches condition will be
considered and the one sideband approximation will be extend to exact numerical method
mentioned in section 4.2 in order to simulate realistic physics and explore new possible
to enhance effects.

The analysis and physical interpretation of fano profile shown in the Fig. 5.6 are in

progress.
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Appendix A

Review of nuclear magnetic

resonance and sideband

Let we review nuclear magnetic resonance(NMR). The configuration of fields of NMR is
composed of Bj static magnetic field along z axis and Bs(t) rotating field in  — y plane.
The time-dependent Schrodinger equation of this configuration is described as

.0
Hy = zax (A.1)

where H = By cos(wt)o, + Bysin(wt)o, + Bio, and x is a spin state. The analytically

general solution can be solved as following
exp(—iBt) [cl exp (%ﬂﬁ) + cpexp (%ﬂ_tﬂ

x(t) = (BAt) oxp(—i50) 4 ; (A-2)
— =P 1236? 2 [Brerexp (58+t) + B-caexp (30-t)]

where ¢; and ¢y are two undeterminate coefficients which can be determinanted by an
initial condition, f; = £ \/m , B = 2By —w and w is angular frequency of By
rotating field.

If the initial state of x(0) = [1 0]7 is employed then the evaluation in time of proba-

bility of the spin-down state [0 1], called P(t), is
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Figure A.1: When w = 2(unit of energy), the resonance occurs, i.e the max of probability
of spin down is one. symmetrically, the max of probability of spin down decay with the
fluctuation of the resonance frequency w = 2.

B2 w2
P(t) = 2 in? \/B—— + B3t A3
= G ™ (Bi-%) +53 (A3)

The numerical result of Eq. (A.3) is shown in Fig. A.1. The strength of rotating field,
B, is relative about the coupling between two states of spin up and spin down. In other
word, The ability of spin flip resonance is proportional to the value of B,. For example,
the value of B, is more small, the full width at half maximum of resonance profile is
shaper. It indicates that the frequency of By(t) is necessary to closely match the Lamor

frequency due to By and then the resonance occurs.
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Figure A.2: The strength of rotating field, By, is proportional to the coupling between
two states of spin up and spin down. The full width at half maximum of resonance profile
is larger when the strength of rotating field, Bs, is larger.
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Figure A.3: The relation between NMR and sideband.

The relation between NMR and sideband is introduced in Fig. A.3. First, The sideband
of rotating field By offers a energy hw is not match with the energy difference between
the two states of spin up and spin down. The spin flip happens but the probability
is small, see in the Fig. A.1. On the other hand, the spin resonance occurs while the
sideband match the state with large density of state. Second, although the sideband does
not closely match the spin-down state the probability is enough large unless the coupling

between the two spin states is strength enough, i.e. the value of By is large enough, see

Fig. A.2.
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Appendix B

Derivation of particle current

We start the derivation from the Hamiltonian Eq. (B.1) which just is considered along

longitudinal direction without subband mixing term %a%az
2 0 .0
(—@ + iag 0y + boax) ac: o Za—tl/)(x, t) (B.1)

Producting v'(z,t) on left hand side of Eq. (B.1), we can obtain

2

(o) | g0t 0)| 4w (o) | L oyte )| oot o0t 0] = 0100 | (o)

(B.2)

Taking dagger to Eq. (B.1) and product —w(x,t) on right hand side of it, we can

obtain

{aa_;w(x,ﬂ} b, t)+ia [%W(m,t)ay} (@, )b [¥1(a, o (z, 1)) = {%w*(x,t)} bz, t)

(B.3)
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APPENDIX B. DERIVATION OF PARTICLE CURRENT

The summation of Eq. (B.2) and Eq. (B.3) is

O 14tz (e, )]

ot
0 10 10
= o [¢1 @02 ol 1) = = ol ) (. ) — avl (Do (e, 1)

(B.4)

According to continuity equation,

0 0
aP—F%J—O

the L.H.S. of Eq. (B.4) is regarded as time derivative of particle density and R.H.S of
Eq. (B.4) is regarded as spatial derivative of particle current with respect to z. The

compact format of particle current is shown as following

J(z,t) = (x,1) (—z(% - %oy) T, (B.5)

where the abbreviation, c.c., is standing for complex conjugate of the former terms.

QED
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