

國 立 交 通 大 學

應用數學系

碩 士 論 文

內嵌界面問題之矩陣分解法

Matrix Factorization Method
for the Immersed Boundary problem

研 究 生：謝先皓

指導教授：賴明治 教授

中 華 民 國 九 十 七 年 六 月

內嵌界面問題之矩陣分解法

Matrix Factorization Method
for the Immersed Boundary Problem

研 究 生：謝先皓 Student：Hsen-Hao Hsieh

指導教授：賴明治 Advisor：Ming-Chih Lai

國 立 交 通 大 學
應 用 數 學 系
碩 士 論 文

A Thesis

Submitted to Department of Applied Mathematics

College of Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Applied Mathematics

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

i

內嵌介面問題之矩陣分解法

學生：謝先皓 指導教授：賴明治 教授

國立交通大學應用數學系﹙研究所﹚碩士班

摘 要

 嵌入邊界法(immersed boundary method)是一種模擬不可壓縮流體的數學模

型，他的特色在於解決有無質量的嵌入邊界的情況。而解決嵌入邊界法的問題，

矩陣分解法(matrix factorization method)是一種利用類似分部步驟法

(fractional step method)的方法，將嵌入邊界法分解成三個步驟，在前兩個步

驟我們會面對解一個對稱正定的線性系統，在此我們可以利用共軛梯度法

(conjugate gradient method)來解決這個問題。在這份論文之中，我們利用矩

陣分解法來模擬流場通過各種嵌入之物體，包括流過靜止與可動的圓柱、兩個靜

止的圓柱、以及機翼形狀的物體。

ii

Matrix Factorization Method for the
Immersed Boundary Problem

Student : Hsen-Hao Hsieh Advisor : Ming-Chih Lai

Department of Applied Mathematics

National Chiao Tung University

Abstract

 The immersed boundary method is a model to simulate a viscous incompressible
fluid with immersed massless boundary. It comes from the Navier-Stokes equation of
viscous incompressible fluid with the interaction term between the immersed
boundary and the fluid. The matrix factorization method is a formulation of immersed
boundary method, and the idea is the fractional step method for Navier-Stokes
equation. The immersed boundary problem could be factorized to three steps, and the
conjugate gradient method can be applied to solve the first and second step. In this
paper, we use the matrix factorization method simulate the flow past stationary or
movable immersed object, including the flow past a stationary and a moving cylinder,
the flow past two stationary cylinders, and the flow past a winglike object.

iii

誌 謝

本篇論文的完成，首先要感謝我的指導老師－賴明治教授。老師帶領我從大

四下學期至今兩年半的時光，領導我走入了數值計算與數學建模這塊領域。每當

我有不解與疑惑的時候，老師總是有耐心的指導我如何去面對問題，挑戰問題，

並且給我正確的學習態度。我印象最深刻的，是當我遇見瓶頸停滯不前的時候，

老師給我的一段話：「做學問就像打網球一樣，一個人開始學網球，絕不是一個

人苦練一年才開始出去參加比賽，一定是邊練邊出去比賽。」使我了解到做學問，

不是從學中做，而是從做中學，讓我對於研究的本質有更深一層的體會。而老師

不僅是學業的傳授者，更是心靈成長的導師。老師給我們的一句銘言：「做人比

做學問更重要。」讓我在鑽研知識的同時，更進一步的思考我們能夠為社會以及

人群做些什麼。學生在此謹致最誠摯的謝意。在研究的過程中，也感謝曾孝捷學

長與陳冠羽學長，給予我的指導與協助，讓我無論在接觸數值分析這塊領域的時

候，或是學習新的程式語言，都給我相當大的幫助。也感謝曾昱豪學長，將自己

做內嵌邊界法的經驗傳授給我，在此獻上最真誠的謝意。

在論文口試期間，承蒙王偉仲教授、洪子倫教授與吳金典助理教授費心審閱

並提供許多寶貴意見，使本論文得以更加完備，學生永銘在心。

此外，我也要感謝曾鈺傑同學、郭乂維同學、陳建明同學、蔡修齊同學以及

胡偉帆同學。在這兩年的研究生涯裡，一直陪伴我走過了最艱難的日子，在我面

對生命中挫折與打擊的時候，始終在我身旁鼓勵著我，在此謝謝他們。

最後，我要感謝我的母親與外婆，是他們悉心的照顧與栽培，才會有今日的

我。願與他們，以及所有在我周圍關心我的人，一同分享此篇論文完成之喜悅與

榮耀。

iv

目 錄

中文提要 ……………………………………………………… i

英文提要 ……………………………………………………… ii

誌謝 ……………………………………………………… iii

目錄 ……………………………………………………… iv

一、 Introduction …………………………………… 1

二、 Fractional Step Method ………………………… 2

2.1 Navier-Stokes equation ………………………… 2

2.2 Staggered grid discretization ……………… 2

2.3 Fractional step method ………………………… 6

2.4 Boundary conditions …………………………… 10

三、 Matrix Factorization Method ………………… 17

3.1 Mathematical formulation ……………………… 17

3.2 Discretization ………………………………… 18

3.3 Matrix factorization method ………………… 21

四、 Numerical Results ……………………………… 23

4.1 Error estimate of fractional step method … 23

4.2 The flow past a cylinder ……………………… 24

4.3 The flow past two cylinders ………………… 27

4.4 The flow past a wing …………………………… 29

4.5 The flow past an oscillating cylinder ……… 31

五、 Conclusion ……………………………………… 33

Reference ……………………………………………………… 34

1

1 Introduction

As we all know, the immersed boundary method has played an important
role in the fluid–solid interaction problems. Peskin [7] first introduced the
method to simulate the blood flow with an elastic membrane which can be
regarded as the immersed boundary in the fluid. He discretizes the flow field
with Eulerian grid, and discretizes the immersed boundary with Lagrangian
points. The immersed boundary exerts a force on the fluid, and moves with a
velocity, so the immersed object can move or be deformed.

The origin fractional step method is introduced by Chorin [1] to solve the

incompressible Navier-Stokes equation. Perot [3] regards the fractional step
method as a matrix factorization method, and the idea comes from the LU
decomposition. The fractional step method can be written in three steps, which
the first and second step can be solved by the conjugate gradient method, and
the third step is a projection. Taira and Colonius [9] extend the fractional step
method from Navier-Stokes equation to immersed boundary problem by
observing the symmetric relationship between the discrete interpolation and
regularization operators, and also factorize the scheme to three steps. The
conjugate gradient method can be applied to the first and second step.

In Section 2, we introduce how to discretize the incompressible Navier-

Stokes equations with the staggered marker-and-cell mesh, and review the
fractional step method. The detailed matrix forms of each operator are
introduced in Section 2.4 with the Dirichlet and the Neumann boundary
conditions. In Section 3, we review the immersed boundary method first, and
then consider the discretization of the discrete interpolation and regularization
operators. The matrix factorization method is introduced in Section 3.3.

The numerical result is shown in Section 4. We can see the second-order

temporal accuracy from the error estimate, and the simulation of the flow past
a stationary or moving immersed object, including the flow past a stationary
and an oscillating cylinder, the flow past two stationary cylinders, and the flow
past a winglike object.

2

2 Fractional Step Method
2.1 Navier-Stokes equation

Consider the incompressible Navier-Stokes equations consisting of the
momentum and continuity equations as:

ܝ∂
ݐ߲ ൅ ܝ ڄ ܝ׏ ൌ െ݌׏ ൅

1
ܴ݁ ܝ∆

׏ ڄ ܝ ൌ 0

where ܝሺt, ሻܠ , pሺt, ሻܠ , Re are the velocity vector, pressure, and Reynolds
number, respectively. Usually, the initial condition ܝ|୲ୀ଴ and the boundary
condition ܝ|பΩ are known. If we consider that ܝሺܠ, tሻ is a two dimensional
vertor, that is, ܝሺܠ, tሻ ൌ ሺuሺܠ, tሻ, vሺܠ, tሻሻ, then we can rewrite the incompressible
Navier-Stokes equations to:

௧ݑ ൅ ݑ ڄ ௫ݑ ൅ ݒ ڄ ௬ݑ ൅ ௫݌ ൌ
1
ܴ݁ ൫ݑ௫௫ ൅ ௬௬൯ݑ

௧ݒ ൅ ݑ ڄ ௫ݒ ൅ ݒ ڄ ௬ݒ ൅ ௬݌ ൌ
1
ܴ݁ ൫ݒ௫௫ ൅ ௬௬൯ݒ

௫ݑ ൅ ௬ݒ ൌ 0

with the initial conditions ݑሺݔ, ,ݕ 0ሻ, ݒሺݔ, ,ݕ 0ሻ, and the boundary conditions
,ݔሺݑ ,ݕ ,ݔሺݒ , ሻ|డఆݐ ,ݕ . ሻ|డఆݐ

2.2 Staggered grid discretization

 To discretize the equations, refer to [1, 2, 3, 4], we can use the staggered
marker-and-cell mesh that introduced by Harlow and Welsh [5] with implicit
Crank-Nicolson for the viscous term and explicit second-order Adams-Bashforth
for the convective term:

௡ାଵܝ െ ௡ܝ

ݐ∆ ൅
3
2
෡ܰሺܝ௡ሻ െ

1
2
෡ܰሺܝ௡ିଵሻ ൌ െܩ෠ሺ߶ሻ ൅

௡ାଵሻܝ෠ሺܮ ൅ ௡ሻܝ෠ሺܮ
2ܴ݁

௡ାଵሻܝ෡ሺܦ ൌ 0

where ܝ୬ାଵ ൌ ሺݑ୬ାଵ, ,୬ାଵሻT and ߶ are the discrete velocity and pressure. ෡ܰݒ
෠ܮ ,෠ܩ and ܦ෡ are the discrete convection, gradient, laplacian and divergence
operator, respectively. Before introducing how to discretize these terms, we have
to know how staggered marker-and-cell mesh can be applied here.

Suppose the two-dimensional domain of this equation is a rectangle. Let the
domain Ω ൌ ሾ0, Xሿ ൈ ሾ0, Yሿ, then divide ሾ0, Xሿ and ሾ0, Yሿ into ݈ parts and ݉
parts, respectively. See figure 1, there are ݈ ൈ ݉ cells. To apply the staggered
grid discretization to Navier-Stokes equations, we define the discrete velocity of
horizontal direction ݑ at the center of each cell’s left and right edges, and the
discrete velocity of vertical direction ݒ at the center of each cell’s upper and
lower edges. The discrete pressure ߶ is defined at the center of each cell.

Fig. 1. The staggered marker-and-cell mesh

3

4

 To make the scheme simple, suppose ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄ for all 1 ൑ ݅ ൑ ݈ and
1 ൑ ݆ ൑ ݉, then the discrete horizontal velocity ݑ୧,୨୬ can be regarded as the
approximation of ݑ൫ሺ݅ െ 1ሻ݄, ሺ݆ െ 1.5ሻ݄, ൯. Similarly, the discrete verticalݐ߂݊
velocity ݒ୧,୨୬ approximates to ݒ൫ሺ݅ െ 1.5ሻ݄, ሺ݆ െ 1ሻ݄, ൯ݐ߂݊ and the discrete
pressure ߶୧,୨୬ା଴.ହ approximates to ݌൫ሺ݅ െ 0,5ሻ݄, ሺ݆ െ 0.5ሻ݄, ሺ݊ ൅ 0.5ሻݐ߂൯.

 Use staggered marker-and-cell mesh to discretize the convection, gradient ,
Laplacian and divergence terms. We can easily obtain the staggered grid
discretization of the Navier-Stokes equations. Consider the Laplacian term, using
the Taylor expansion, we have

௜ିଵ,௝ݑ ൎ ௜,௝ݑ െ ሺݑ௫ሻ௜,௝∆ݔ௜ିଵ ൅
1
2!
ሺݑ௫௫ሻ௜,௝∆ݔ௜ିଵଶ

௜ାଵ,௝ݑ ൎ ௜,௝ݑ ൅ ሺݑ௫ሻ௜,௝∆ݔ௜ ൅
1
2!
ሺݑ௫௫ሻ௜,௝∆ݔ௜ଶ

 Add these two formulas, then ሺu୶୶ሻ୧,୨ is:

ሺݑ௫௫ሻ௜,௝ ൌ
௜ିଵ,௝ݑ2

ݔ∆௜ିଵሺݔ∆ ൅ ݔ∆ ሻ௜ିଵ ௜
െ

௜,௝ݑ2
ݔ∆ ௜௜ିଵݔ∆

൅
௜ାଵ,௝ݑ2

௜ିଵݔ∆௜ሺݔ∆ ൅ ௜ሻݔ∆

 Similarly, let ∆ݕ௝ି଴.ହ ൌ ൫∆ݕ௝ିଵ ൅ ௝൯ݕ∆ 2⁄ , then

൫ݑ௬௬൯௜,௝ ൌ
௜,௝ିଵݑ2

௝ିଵ.ହݕ∆௝ିଵ.ହ൫ݕ∆ ൅ ௝ି଴.ହ൯ݕ∆
െ

௜,௝ݑ2
௝ି଴.ହݕ∆௝ିଵ.ହݕ∆

൅
௜,௝ାଵݑ2

௝ିଵ.ହݕ∆௝ି଴.ହ൫ݕ∆ ൅ ௝ି଴.ହ൯ݕ∆

The discrete Laplacian form can be written as:

Δݑ௜,௝ ൌ ሺݑ௫௫ሻ௜,௝ ൅ ൫ݑ௬௬൯௜,௝

 Since we suppose that ∆ݔ ൌ ௝ݕ∆ ൌ ݄, we obtain: ௜

Δݑ௜,௝ ൌ ൫ݑ௜,௝ିଵ ൅ ௜ିଵ,௝ݑ െ ௜,௝ݑ4 ൅ ௜ାଵ,௝ݑ ൅ ௜,௝ାଵ൯ݑ ݄ଶ⁄

Similarly,

Δݒ௜,௝ ൎ ൫ݒ௜,௝ିଵ ൅ ௜ିଵ,௝ݒ െ ௜,௝ݒ4 ൅ ௜ାଵ,௝ݒ ൅ ௜,௝ାଵ൯ݒ ݄ଶ⁄

5

Although the discrete pressure Ԅ is defined at the center of each cell, ܩ෠ሺ߶ሻ
is defined at the same place that the discrete velocity ݑ and ݒ are defined. We

use the same index ݅ , ݆ to represent the discrete ሺ݌௫ሻ௜,௝ and ൫݌௬൯௜,௝ . Let

௜ି଴.ହݔ∆ ൌ ሺ∆ݔ௜ିଵ ൅ ݔ∆ ሻ 2⁄ The form can be written as: ௜

ሺ݌௫ሻ௜,௝ ൎ ൫߶௜,௝ିଵ െ ߶௜ିଵ,௝ିଵ൯ ⁄௜ି଴.ହݔ∆

൫݌௬൯௜,௝ ൎ ൫߶௜ିଵ,௝ െ ߶௜ିଵ,௝ିଵ൯ ௝ି଴.ହൗݕ∆

 Consider the convection term. The discretization of the convection term is:

൫ݑ ڄ ௫ݑ ൅ ݒ ڄ ௬൯௜,௝ݑ ൎ ௜,௝ݑ ൬
௜ାଵ,௝ݑ െ ௜ିଵ,௝ݑ
௜ିଵݔ∆ ൅ ௜ݔ∆

൰ ൅ ݒ
௜ାଵଶ,௝ି

ଵ
ଶ
ቆ
௜,௝ାଵݑ െ ௜,௝ିଵݑ

௝ିଵ.ହݕ∆ ൅ ௝ି଴.ହݕ∆
ቇ

where ݒ௜ାభమ,௝ି
భ
మ
 is the mean of the values of neighbor ݒ. That is,

ݒ
௜ାଵଶ,௝ି

ଵ
ଶ
ൌ
௜,௝ିଵݒ ൅ ௜ାଵ,௝ିଵݒ ൅ ௜,௝ݒ ൅ ௜ାଵ,௝ݒ

4

Similarly,

൫ݑ ڄ ௫ݒ ൅ ݒ ڄ ௬൯௜,௝ݒ ൎ ݑ
௜ିଵଶ,௝ା

ଵ
ଶ
൬
௜ାଵ,௝ݒ െ ௜ିଵ,௝ݒ

௜ିଵ.ହݔ∆ ൅ ௜ି଴.ହݔ∆
൰ ൅ ௜,௝ݒ ቆ

௜,௝ାଵݒ െ ௜,௝ିଵݒ
௝ିଵݕ∆ ൅ ௝ݕ∆

ቇ

where

ݑ
௜ିଵଶ,௝ା

ଵ
ଶ
ൌ
௜ିଵ,௝ݑ ൅ ௜,௝ݑ ൅ ௜ିଵ,௝ାଵݑ ൅ ௜,௝ାଵݑ

4

 If ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄, then ∆ݔ௜ି଴.ହ ൌ ௝ି଴.ହݕ∆ ൌ ݄

6

 Consider the discrete divergence term. We can use divergence theorem here.
Integrate the continuity equation on each cell.

0 ൌ න સ ڄ ܸ݀ܝ
ୡୣ୪୪

ൌ ෍ න ܝ ڄ ܵ݀ܖ
୤ୟୡୣ೔ୡୣ୪୪ ୤ୟୡୣୱ

where ܖ is the outward normal vector of cell face. Suppose the domain is
two-dimensional, then ܸ݀ can be rehash to ݀ݕ݀ݔ, and ݀ܵ can be rehash to ݀ݔ
or ݀ݕ. We obtain the discrete continuity equation:

െݑ ଵ∆ݕ௝ ൅ ݑ ௝ݕ∆ െ ௜ݔ∆௜ାଵ,௝ݒ ൅ ௜ାଵ,௝ݒ ݔ∆ ൌ 0 ௜,௝ା ௜ାଵ,௝ାଵ ାଵ ௜

for all 1 ൑ ݅ ൑ ݈ and 1൑ ݆ ൑ ݉. Since we suppose that ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄, it can
be written as:

൫െݑ௜ିଵ,௝ ൅ ௜,௝ݑ െ ௜,௝ିଵݒ ൅ ௜,௝൯݄ݒ ൌ 0

2.3 Fractional step method

 After discretize the incompressible Navier-Stokes equations, we have to
solve the velocity ܝ୬ାଵ and the pressure ߶. Put the unknown ܝ୬ାଵ and ߶ on
the left side of the equal sign, and the other terms on the right side. The discrete
formulations of incompressible Navier-Stokes equations are:

൬
1
Δݐ ۷ െ

1
2ܴ݁ ۺ

መ ൰ ௡ାଵܝ ൅ ۵෡߶ ൌ ൬
1
Δݐ ۷ ൅

1
2ܴ݁ ۺ

መ ൰ ௡ܝ െ
3
2
෡ܰሺܝ௡ሻ ൅

1
2
෡ܰሺܝ௡ିଵሻ ൅ ܾ෢ܿଵ

 ۲෡ܝ௡ାଵ ൌ 0 ൅ ܾܿଶ

where ܾ෢ܿଵ and ܾܿଶ are the boundary conditions. The boundary conditions
appear in equations because we regard the discrete operators as matrix form,

෡ۯ ௡ାଵ and ߶ both are vectors. Letܝ ൌ ଵ
୼௧
۷ െ ଵ

ଶோ௘
መۺ , and ̂ݎ be the right side of

the momentum equation. That is, ̂ݎ ൌ ቀ ଵ
୼௧
۷ ൅ ଵ

ଶோ௘
መۺ ቁ ௡ܝ െ ଷ

ଶ
෡ܰሺܝ௡ሻ ൅ ଵ

ଶ
෡ܰሺܝ௡ିଵሻ.

The equations can be written as:

7

൬ۯ෡ ۵෡
۲෡ 0

൰ ڄ ൬ܝ
௡ାଵ

߶ ൰ ൌ ቀ̂0ݎቁ ൅ ൬ܾ
෢ܿଵ
ܾܿଶ

൰

 The details of the matrix form of the discrete operators could be found in [3].
These matrices will be introduced detailed with the boundary conditions in
Section 2.4, but brief here. First, we define ܝ୬ାଵ ൌ ሺݑ୬ାଵ, :߶ ୬ାଵሻT andݒ

௡ାଵݑ ൌ ൫ݑଶ,ଶ, … ,ଶ,ଷݑ ,௟,ଶݑ … ௟,ଷݑ ,ଶ,௠ାଵݑ , ڮ , ௟,௠ାଵ൯ݑ…
்

௡ାଵݒ ൌ ൫ݒଶ,ଶ, … ,ଶ,ଷݒ ,௟ାଵ,ଶݒ … ௟ାଵ,ଷݑ ,ଶ,௠ݒ , ڮ , ௟ାଵ,௠൯ݑ…
்

 ߶ ൌ ൫߶ଵ,ଵ, …߶௟,ଵ, ߶ଵ,ଶ, …߶௟,ଶ ,ଵ,௠߶ , ڮ , …߶௟,௠൯
்

 Moreover, we define two matrices ܀ and ۻ෡ :

܀ ൌ

ۉ

ۈۈ
ۈ
ۇ

ଵ۷௟ିଵݕ∆
ڰ

௠۷௟ିଵݕ∆
0

0
ଵܠ܀

ڰ
ی௠ିଵܠ܀

ۋۋ
ۋ
ۊ
 , ୨ܠ܀ ൌ ቌ

ଵݔ∆ 0
ڰ

0 ௟ݔ∆
ቍ

෡ۻ ൌ

ۉ

ۈۈ
ۈ
ۇ

ଵܠۻ
ڰ

௠ܠۻ
0

0
ଵ.ହ۷௟ݕ∆

ڰ
ݕ∆ ି଴.ହ۷௟ی୫

ۋۋ
ۋ
ۊ
୧ܠۻ, ൌ ቌ

ଵ.ହݔ∆ 0
ڰ

0 ௟ି଴.ହݔ∆
ቍ

 If ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄, then ܀ ൌ ෡ۻ ൌ ݄۷ሺ௟ିଵሻ௠ା௟ሺ௠ିଵሻ, where ۷ is the identity
matrix. We take the discrete momentum equation product ۻ෡ , then there is a new
matrix form:

ቊۻ
෡ۯ෡ܝ୬ାଵ ൅ ߶෡۵ۻ ൌ ෡ۻ ݎ̂ ൅ ෡ܾ෢ܿଵۻ

۲෡ܝ௡ାଵ ൌ ܾܿଶ

 Define ݍ௡ାଵ ൌ ୬ାଵ, thenܝ܀

8

ቊۻ
෡ۯ෡ି܀૚ݍ୬ାଵ ൅ ߶෡۵ۻ ൌ ෡ۻ ݎ̂ ൅ۻ෡ܾ෢ܿଵ

۲෡ି܀૚ݍ୬ାଵ ൌ ܾܿ

ଶ

T simpler, let ۯ ൌ ,૚ି܀෡ۯ෡ۻ ۵ ൌ ,෡۵ۻ ݎ ൌ ෡ۻ ,ݎ̂

 o make the matrix form
ܾܿଵ ൌ ,෡ܾ෢ܿଵۻ ܽ݊݀ ۲ ൌ ۲෡ି܀૚, the matrix form can be written as:

ቀۯ ۵
۲ ૙ቁ ڄ ൬

௡ାଵݍ
߶ ൰ ൌ ቀ0ݎቁ ൅ ൬ܾܿଵܾܿଶ

൰

 There is an interesting fact that ۲ ൌ െ۵T, that is the reason why we rehash
the origin matrix form to the new matrix form. The origin fractional step method
is introduced by Chorin in [1], Now, we use the fractional step method which is
introduced by Perot in [3]. The idea of the fractional step method comes from the
LU decomposition:

ቀۯ ۵
۲ ૙ቁ ڄ ൬

௡ାଵݍ
߶ ൰ ൌ ቀ ۯ ૙

െ۵T ۵Tିۯ૚۵ቁ ൬
۷ ૚۵ିۯ
૙ ۷

൰ ڄ ൬ݍ
௡ାଵ

߶ ൰ ൌ ቀ0ݎቁ ൅ ൬ܾܿଵܾܿଶ
൰

 To handle the inverse matrix of A, there is a approximation introduce by
Témam [16], let ۻ ൌ ۺ ,૚ି܀෡ۻ ൌ ሺۻ෡ۺመ ૚ሻି܀ ܴ݁⁄ , the matrix ۯ can be written
as :

ۯ ൌ ૚ି܀෡ۯ෡ۻ ൌ ෡ۻ ൬
1
ݐ߂ ۷ െ

1
2ܴ݁ ۺ

መ ൰ି܀૚ ൌ
1
ۻݐ߂ െ

1
ۺ2 ൌ

1
൬۷ۻݐ߂ െ

ݐ߂
2 ൰ۺ૚ିۻ

 The inverse matrix of ۯ can be approximated by :

൬۷ െ
ݐ߂
2 ൰ۺ૚ିۻ

ି૚

ൎ ۷ ൅
ݐ߂
2 ۺ૚ିۻ ൅

ଶݐ߂

2ଶ
ሺିۻ૚ۺሻ૛ ൅ ൅ڮ

ேݐ߂

2ே
ሺିۻ૚ۺሻN

૚ିۯ ൎ෍
௞ݐ߂

2௞ିଵ
ሺିۻ૚ۺሻ୩ିଵିۻ૚

N

୩ୀଵ

൅
ேାଵݐ߂

2ே
ሺିۻ૚ۺሻNିۻ૚

 ۰N ൌ ∑ ௱௧ೖ

ଶೖషభ
ሺିۻ૚ۺሻ୩ିଵିۻ૚N

୩ୀଵ is the Nth order Talyor expansion of ିۯ૚,

let ିۯ૚ ൌ ۰N ൅ ௱௧ಿశభ

ଶಿ
ሺିۻ૚ۺሻNିۻ૚, then

9

ቀ ۯ ૙
െ۵T ۵T۰N۵ቁ ൬

۷ ۰N۵
૙ ۷

൰ ڄ ൬ݍ
௡ାଵ

߶ ൰ ൌ ቀ0ݎቁ ൅ ൬ܾܿଵܾܿଶ
൰ ൅ ቆെݐ߂

ே൫ିۻۺ૚൯N۵߶ 2ேൗ
0

ቇ

 The last term is the truncation error from ۰N. If ݐ߂ is small and ܰ is large
enough, the last term can be ignored. Here we want to solve ݍ௡ାଵ and ߶ , so
we define כݍ ൌ ௡ାଵݍ ൅ ۰N۵߶ , then

൬
૙ ۷

൰ ڄ ߶ ߶

ቀ ۯ ૙
െ۵T ۵T۰N۵ቁ ൬

כݍ
߶൰ ൌ ൬

כݍۯ

െ۵Tכݍ ൅ ۵T۰N۵߶൰ ൌ ቀ0ݎቁ ൅ ൬ܾܿଵܾܿଶ
൰

۷ ۰N۵ ൬ݍ
௡ାଵ

൰ ൌ ൬ݍ
௡ାଵ ൅ ۰N۵߶

߶ ൰ ൌ ൬ݍ
כ
൰

 The fractional step method can be written in three steps:

כݍۯ ൌ ݎ ൅ ܾܿଵ ሺSolve כݍሻ
۵T۰N۵߶ ൌ ۵Tכݍ ൅ ܾܿଶ ሺSolve ߶ሻ
௡ାଵݍ ൌ כݍ െ ۰N۵߶ ሺGet ݍ௡ାଵሻ

 The matrix ۯ ൌ ෡ۻ ቀ ଵ
୼௧
۷ െ ଵ

ଶோ௘
መۺ ቁି܀૚ is symmetric positive definite because

the discrete laplacian operator ۺመ is symmetric and negative definite. If ݐ߂ is
small and ܰ is large enough, ۰N is symmetric and positive definite, too. It is
easy to check that ۵T۰N۵ is symmetric and positive definite.

ሺ۵T۰N۵ሻT ൌ ۵Tሺ۰NሻT۵ ൌ ۵T۰N۵
xT۵T۰N۵x ൌ ሺ۵xሻT۰Nሺ۵xሻ ൐ 0

 Since ۯ and ۵T۰N۵ are symmetric and positive definite, conjugate
gradient method can be applied to solve כݍ and ߶. The fractional step method
has second-order temporal error form implicit Crank-Nicolson and explicit
second-order Adams-Bashforth, and Nth order error from ۰N, which is the
approximation of ିۯ૚ . The numerical results of second-order accurate
approximation of velocity could be found in chapter 4. The discrete pressure ߶
is first-order approximation of ݌୬ାଵ/ଶ [3]. The second-order accurate
approximation of pressure could be found in [6].

10

2.4 Boundary conditions

 First, we discuss the case of Dirichlet boundary conditions where the domain
Ω ൌ ሾ0, Xሿ ൈ ሾ0, Yሿ . That is, the boundary conditions ݑሺ0, ,ݕ ሻݐ ,ሺXݑ , ,ݕ ሻݐ ,
,ݔሺݑ 0, ሻݐ ,ݔሺݑ , Y, ሻݐ ,ሺ0ݒ , ,ݕ ሻݐ ,ሺXݒ , ,ݕ ሻݐ ,ݔሺݒ , 0, ሻݐ and ݒሺݔ, Y, ሻݐ are
known.

 Suppose ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄, we know the values of the boundary velocity ݑଵ,௝௡ାଵ,
௟ାଵ,௝௡ାଵݑ ௜,௠ݒ ௜,ଵ௡ାଵ andݒ , ଵ

௡ାଵ , they are ା

ଵ,௝௡ାଵݑ ൌ ,ሺ0ݑ ሺ݆ െ 1.5ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ
௟ାଵ,௝௡ାଵݑ ൌ ,ሺXݑ ሺ݆ െ 1.5ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ
௜,ଵ௡ାଵݒ ൌ ൫ሺ݅ݒ െ 1.5ሻ݄, 0, ሺ݊ ൅ 1ሻ∆ݐ൯
௜,௡ାଵݒ ൌ ൫ሺ݅ݒ െ 1.5ሻ݄, Y, ሺ݊ ൅ 1ሻ∆ݐ൯

௠ାଵ

for 2 ൑ ݅ ൑ ݈ ൅ 1 and 2 ൑ j ൑ ݉ ൅ 1.

 But the other discrete boundary conditions ݑ௜,ଵ௡ାଵ, ݑ௜,௠ାଶ

௡ାଵ ௟ାଶ,௝௡ାଵݒ ଵ,௝௡ାଵ andݒ ,
are not defined at the boundary. We approximate these boundary conditions as
follows:

௜,ଵ௡ାଵݑ ൎ ൫ሺ݅ݑ2 െ 1ሻ݄, 0, ሺ݊ ൅ 1ሻ∆ݐ൯ െ ௜,ଶ௡ݑ
௜,௠ାଶݑ
௡ାଵ ൎ ൫ሺ݅ݑ2 െ 1ሻ݄, Y, ሺ݊ ൅ 1ሻ∆ݐ൯ െ ௜,௠ାଵݑ

௡
ଵ,௝௡ାଵݒ ൎ ,ሺ0ݒ2 ሺ݆ െ 1ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ െ ଶ,௝௡ݒ
௟ାଶ,௝௡ାଵݒ ൎ ,ሺXݒ2 ሺ݆ െ 1ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ െ ௟ାଵ,௝௡ݒ

for 1൑ ݅ ൑ ݈ ൅ 1 and 1൑ j ൑ ݉ ൅ 1.

 After we know the discrete boundary conditions, the discrete operators can
be written as matrices. Consider the laplacian term ۺመ , it contains the laplacian
operators to the horizontal velocity and vertical velocity, called ۺଵ and ۺଶ.

መۺ ൌ ൬ۺଵ 0
0 ଶۺ

൰

 The discrete Δݑ௜,௝ and Δݒ௜,௝ have been introduced already. Since we
suppose ∆ݔ௜ ൌ ௝ݕ∆ ൌ : ଶ can be written asۺ ଵ andۺ ,݄

ଵۺ ൌ ൮

ଵଵۺ ۷௟ିଵ
۷௟ିଵ ଵଶۺ

0
ڰ

ڰ
0

ڰ ۷௟ିଵ
۷௟ିଵ ଵ௠ۺ

൲ , ଵ௝ۺ ൌ ൮

െ4 1
1 െ4

0
ڰ

ڰ
0

ڰ 1
1 െ4

൲

ሺ௟ିଵሻൈሺ௟ିଵሻ

ଶۺ ൌ ൮

ଶଵۺ ۷௟
۷௟ ଶଶۺ

0
ڰ

ڰ
0

ڰ ۷௟
۷௟ ଶ ௠ିଵۺ

൲ , ଶ௝ۺ ൌ ൮

െ4 1
1 െ4

0
ڰ

ڰ
0

ڰ 1
1 െ4

൲

௟ൈ௟

 Obviously, ۺመ is symmetric and negative definite.

The boundary condition term ܾ෢ܿଵ comes from ۺመ . ܾ෢ܿଵ can be written as
ܾ෢ܿଵ ൌ ሺܾܿݑ௡ାଵ ൅ ,௡ݑܾܿ ௡ାଵݒܾܿ ൅ ௡ areݒܾܿ ௡ andݑܾܿ ௡ሻT/2ܴ݄݁ଶ, whereݒܾܿ

௡ݑܾܿ

ൌ ൫ݑଵ,ଶ୬ , ڮ,0 ,0, ௟ାଵ,ଶ୬ݑ ଵ,ଷ୬ݑ , , ڮ,0 ,0, ௟ାଵ,ଷ୬ݑ ڮڮ , , ଵ,௠ାଵݑ
୬ , 0, ڮ ,0, ௟ାଵ,௠ାଵݑ

୬ ൯T

൅ ൫ݑଶ,ଵ୬ , ଷ,ଵ୬ݑ ڮ, , ௟,ଵ୬ݑ , 0, ڮڮ ,0 , ଶ,௠ାଶݑ
୬ , ଷ,௠ାଶݑ

୬ ڮ, , ௟ାଵ,௠ାଶݑ
୬ ൯T

௡ݒܾܿ

ൌ ൫ݒଵ,ଶ୬ , ڮ,0 ,0, ௟ାଶ,ଶ୬ݒ ଵ,ଷ୬ݒ , , ڮ,0 ,0, ௟ାଶ,ଷ୬ݒ ڮڮ , , ଵ,௠୬ݒ , 0, ڮ ,0, ௟ାଶ,௠୬ݒ ൯T

൅ ൫ݒଶ,ଵ୬ , ଷ,ଵ୬ݑ ڮ, , ௟ାଵ,ଵ୬ݒ , 0, ڮڮ ,0 , ଶ,௠ାଵݒ
୬ , ଷ,௠ାଵݑ

୬ ڮ, , ௟ାଵ,௠ାଵݒ
୬ ൯T

 To introduce ۵෡ and ۲෡ , refer to [19],
let’s see a simple example. Consider the
two cells case. There are only four
horizontal velocity terms and three vertical
velocity terms, called ݑଵ ଶݑ , ଷݑ , ଵݒ , ,
 .ସ. See fig. 2ݒ ,ଷݒ ,ଶݒ

Fig. 2. The two cells case

 Consider the discrete divergence term, we know that

െݑଵ∆ݕଵ ൅ ଵݕ∆ଶݑ െ ଵݔ∆ଵݒ ൅ ଵݔ∆ଷݒ ൌ 0
െݑଶ∆ݕଵ ൅ ଵݕ∆ଷݑ െ ଶݔ∆ଶݒ ൅ ଶݔ∆ସݒ ൌ 0

 If we rewrite it to the matrix form, then

11

12

ቀെ1 1 0
0 െ1 1

െ1 0
0 െ1

1 0
0 1ቁ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

ଵݕ∆
ଵݕ∆

ଵݕ∆
0

0

ଵݔ∆
ଶݔ∆

ଵݔ∆
یଶݔ∆

ۋ
ۋ
ۋ
ۋ
ۊ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵݑ
ଶݑ
ଷݑ
ଵݒ
ଶݒ
ଷݒ
یସݒ

ۋ
ۋ
ۋ
ۊ
ൌ 0

 Notice that the center matrix is ܀. Let the left matrix be ۲, so we get the
simple factorization ۲෡ ൌ .܀۲

 Similarly, we also can get the matrix form of ۵෡ and factorize ۵෡. In the two
cells case, ۵෡߶ can be written as:

۵෡߶ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

0.5ݔ∆
1.5ݔ∆

2.5ݔ∆
0

0

0.5ݕ∆
0.5ݕ∆

1.5ݕ∆
ی1.5ݕ∆

ۋ
ۋ
ۋ
ۋ
ۊ

ିଵ

ۉ

ۈۈ
ۈ
ۇ

 1 0
െ1 1
 0 െ1
 1 0
0 1

െ1 0
 0 െ1ی

ۋۋ
ۋ
ۊ
ቀ
ଵ݌
 ଶቁ݌

 Let the left matrix be ۻ෡ ି૚ and the center matrix be ۵. We can see that
۵෡ ൌ ෡ۻ ି૚۵ and ۲ ൌ െ۵T.

 In general, the matrix form of ۵ is

۵ ൌ ൬۵ଵ۵ଶ
൰

۵ଵ ൌ ቌ
۵ଵଵ 0

ڰ
0 ۵ଵ୫

ቍ , ۵ଵ୨ ൌ ൭
െ1 1

ڰ
0

0
ڰ
െ1 1

൱
ሺ௟ିଵሻൈ௟

۵ଶ ൌ ൭
െ۵ଶଵ ۵ଶଵ

ڰ
0

0
ڰ

െ۵ଶ ୫ିଵ ۵ଶ ୫ିଵ
൱ , ۵ଶ୨ ൌ ۷௟

 The relation that ۲ ൌ െ۵T still exists in general situation.

The boundary condition term ܾܿଶ comes from ۲෡ . ܾܿଶ can be written as:

ܾܿଶ
ൌ ൫ݑଵ,ଶ୬ , ڮ,0 ,0, െݑ௟ାଵ,ଶ୬ ଵ,ଷ୬ݑ , , ڮ,0 ,0, െݑ௟ାଵ,ଷ୬ ڮڮ , , ଵ,௠ାଵݑ

୬ , 0, ڮ ,0, െݑ௟ାଵ,௠ାଵ
୬ ൯T

൅ ൫ݒଶ,ଵ୬ , ଷ,ଵ୬ݑ ڮ, , ௟ାଵ,ଵ୬ݑ , 0, ڮڮ ,0 , ଶ,௠ାଵݒ
୬ , ଷ,௠ାଵݒ

୬ , ڮ, ௟ାଵ,௠ାଵݒ
୬ ൯T

 If there are not Dirichlet boundary conditions at all. That is, some boundary
conditions maybe are Neumann boundary conditions. Let the boundary
∂Ω ൌ ∂Ωଵ ׫ ∂Ωଶ ൌ ∂Ωଷ ׫ ∂Ωସ , and the boundary conditions ݑሺݔ, ,ݕ ሻ|பΩభݐ ,
,ݔሺݒ ,ݕ ሻ|பΩయݐ ,ݔሺݑܖ∂ , ,ݕ ሻ|பΩమݐ ,ݔሺݒܖ∂ , ,ݕ ሻ|பΩరݐ are known, where ܖ is the
outer normal vector of the boundary.

 For example, we suppose that ∂Ωଵ ൌ ሼሺݔ, ሻݕ א Ω|ݔ ൌ 0ሽ, ∂Ωଶ ൌ ∂Ω\ ∂Ωଵ,
∂Ωସ ൌ ሼሺݔ, ሻݕ א Ω|ݔ ൌ Xሽ , and ∂Ωଷ ൌ ∂Ω\ ∂Ωସ . In figure 3, it shows the
relationship between the boundary condition type and the place. The boundary
conditions that we know are ݑሺ0, ,ݕ ,௫ሺXݑ ,ሻݐ ,ݕ ,ݔ௬ሺݑ ,ሻݐ 0, ,ݔ௬ሺݑ ,ሻݐ Y, ,ሻݐ
,ሺ0ݒ ,ݕ ,௫ሺXݒ ,ሻݐ ,ݕ ,ݔሺݒ ,ሻݐ 0, ,ݔሺݒ ሻ andݐ Y, .ሻݐ

But the thing we really care about is the discrete boundary condition. We
have known how to handle the discrete boundary condition when the boundary
condition is Dirichlet. Now we discuss the discrete boundary condition when the
boundary condition is Neumann.

Fig. 3. The left figure represents the boundary condition type of u. The right figure represents the

boundary condition type of v.

13

14

 We can use the central difference to approximate ݑ ሺݔ, 0, ሻ. ௬ݐ

௬൫ሺ݅ݑ െ 1ሻ݄, 0, ሺ݊ ൅ 1ሻ∆ݐ൯ ൎ
௜,ଶ௡ାଵݑ െ ௜,ଵ௡ାଵݑ

଴.ହݕ∆

 The discrete boundary condition ݑ௡ାଵ can be approximated by ௜,ଵ

௜,ଵ௡ାଵݑ ൌ ௜,ଶ௡ାଵݑ െ ଴.ହݕ∆ · ௬൫ሺ݅ݑ െ 1ሻ݄, 0, ሺ݊ ൅ 1ሻ∆ݐ൯

 But we do not know ݑ௜,ଶ௡ାଵ, so this part can be replace by ݑ௜,ଶ௡ , or use the
velocity at the time step n and n-1 to approximate ݑ௜,ଶ௡ାଵ. That is,

௜,ଶ௡ାଵݑ ൎ ௜,ଶ௡ݑ2 െ ௜,ଶ௡ିଵݑ

 This approximation also can be applied when the boundary condition is
Dirichlet. So the discrete boundary condition ݑ௡ାଵ can be approximated by ௜,ଵ

௜,ଵ௡ାଵݑ ൎ ൫2ݑ௜,ଶ௡ െ ௜,ଶ௡ିଵ൯ݑ െ ଴.ହݕ∆ · ௬൫ሺ݅ݑ െ 1ሻ݄, 0, ሺ݊ ൅ 1ሻ∆ݐ൯

 Similarly, the other discrete boundary conditions can be written as

௜,௠ାଶݑ
௡ାଵ ൎ ൫2ݑ௜,௠ାଵ

௡ െ ௜,௠ାଵݑ
௡ିଵ ൯ ൅ ௠ା଴.ହݕ∆ · ௬൫ሺ݅ݑ െ 1ሻ݄, Y, ሺ݊ ൅ 1ሻ∆ݐ൯

௟ାଶ,௝௡ାଵݒ ൎ ൫2ݒ௟ାଵ,௝௡ െ ௟ାଵ,௝௡ିଵݒ ൯ ൅ ௟ା଴.ହݔ∆ · ,௫ሺXݒ ሺ݆ െ 1ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ
௟ାଵ,௝௡ାଵݑ ൎ ൫2ݑ௟,௝௡ െ ௟,௝௡ିଵ൯ݑ ൅ ௟ݔ∆ · ,௫ሺXݑ ሺ݆ െ 1.5ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ

 Notice that we are not use the central difference to approximate ݑ௟ାଵ,௝௡ାଵ .
Because these boundary conditions are approximated by ܝ୬ and ܝ୬ିଵ. After
solving ܝ୬ାଵ, we need to update the discrete boundary conditions. At the next
time step, they will be used to compute Nሺܝሻ.

 Although we use the Neumann boundary conditions approximate the
boundary velocity, we would rather use the Neumann boundary conditions than
use the approximated boundary velocity.

Consider the laplacian operator ۺመ . For example, we would rather use
,௬ሺ0.5݄ݑ 0, ሺ݊ ൅ 1ሻ∆ݐሻ than ൫ݑଶ,ଶ௡ାଵ െ ଶ,ଵ௡ାଵ൯ݑ ⁄ଵݕݑ∆ when we compute the
approximation of ∆ݑଶ,ଶ. Suppose ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄, the discretization of ∆ݑଶ,ଶ is

15

ଶ,ଶݑ∆ ൌ
ଷ,ଶݑ െ ଶ,ଶݑ2 ൅ ଵ,ଶݑ

݄ଶ ൅
ଶ,ଷݑ െ ଶ,ଶݑ

݄ െ ,௬ሺ0.5݄ݑ 0, ሺ݊ ൅ 1ሻ∆ݐሻ
݄

 ൌ
ଵ,ଶݑ െ ଶ,ଶݑ3 ൅ ଷ,ଶݑ ൅ ଶ,ଷݑ

݄ଶ െ
,௬ሺ0.5݄ݑ 0, ሺ݊ ൅ 1ሻ∆ݐሻ

݄

 Follow this idea, the matrix ۺመ and the boundary condition ܾ෢ܿଵ also have
some change. In this case, the matrix ۺመ changes to

መۺ ൬ۺଵ 0
0 ଶۺ

൰ ൌ

ଵۺ ൌ ൮

ଵଵۺ ۷௟ିଵ
۷௟ିଵ ଵଶۺ

0
ڰ

ڰ
0

ڰ ۷௟ିଵ
۷௟ିଵ ଵ௠ۺ

൲ , ଶۺ ൌ ൮

ଶଵۺ ۷௟
۷௟ ଶଶۺ

0
ڰ

ڰ
0

ڰ ۷௟
۷௟ ଶ ௠ିଵۺ

൲

where ۺଵ௝ and ۺ ௝ are ଶ

ଵ௝ۺ ൌ

ۉ

ۈ
ۇ
െ3 1
1 െ3

0
ڰ

ڰ

0

ڰ 1
1 െ3 1

1 െ2ی

ۋ
ۊ

ሺ௟ିଵሻൈሺ௟ିଵሻ

 if ݆ ൌ 1 or ݉

ଵ௝ۺ ൌ

ۉ

ۈ
ۇ
െ3 1
1 െ4

0
ڰ

ڰ

0

ڰ 1
1 െ4 1

1 െ3ی

ۋ
ۊ

ሺ௟ିଵሻൈሺ௟ିଵሻ

 for 2 ൑ ݆ ൑ ݉ െ 1

ଶ௝ۺ ൌ

ۉ

ۈ
ۇ
െ4 1
1 െ4

0
ڰ

ڰ

0

ڰ 1
1 െ4 1

1 െ3ی

ۋ
ۊ

௟ൈ௟

 The corresponding boundary condition ܾ෢ܿଵ also has some change. First,
e denote some values

 for 1 ൑ ݆ ൑ ݉ െ 1

w

௜௡ାଵ݀ݑ ൌ ௬൫ሺ݅ݑ െ 1ሻ݄, 0, ሺ݊ ൅ 1ሻ∆ݐ൯
௜௡ାଵݑݑ ൌ ௬൫ሺ݅ݑ െ 1ሻ݄, Y, ሺ݊ ൅ 1ሻ∆ݐ൯
௝௡ାଵݎݑ ൌ ,௫ሺXݑ ሺ݆ െ 1.5ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ
௝௡ାଵݎݒ ൌ ,௫ሺXݒ ሺ݆ െ 1ሻ݄, ሺ݊ ൅ 1ሻ∆ݐሻ

16

 The corresponding boundary condition ܾ෢ܿ can be written as: ଵ

ܾ෢ܿଵ ൌ ሺܾܿݑ௡ାଵ ൅ ,௡ݑܾܿ ௡ାଵݒܾܿ ൅ ௡ሻT/2ܴ݄݁ଶݒܾܿ

where

௡ݑܾܿ

ൌ ൫ݑଵ,ଶ୬ , 0, ڮ ,0, ଵ,ଷ୬ݑ ,ଶ୬݄ݎݑ , ڮ,0 ,0, ,ଷ୬݄ݎݑ ڮڮ , ଵ,௠ାଵݑ
୬ , ڮ,0 ,0, ௟ାଵ୬ݎݑ ݄൯T

൅ hሺെ݀ݑଶ୬, െ݀ݑଷ୬,ڮ ,െ݀ݑ௟୬, 0, ڮڮ ,0 , ,ଶ୬ݑݑ ଷ୬ݑݑ ڮ , , ௟୬ሻTݑݑ

௡ݒܾܿ

ൌ ൫ݒଵ,ଶ୬ , ,0, ڮ,0 ଵ,ଷ୬ݒ ,ଶ୬ݎݒ , ڮ,0 ,0, ଷ୬ݎݒ ڮڮ , , ଵ,௠୬ݒ , 0, ڮ ,0, ௠୬൯ݎݒ
T

൅ ൫ݒଶ,ଵ୬ , ଷ,ଵ୬ݑ ڮ, , ௟ାଵ,ଵ୬ݒ , 0, ڮڮ ,0 , ଶ,௠ାଵݒ
୬ , ଷ,௠ାଵݑ

୬ ڮ, , ݒ ାଵ,௠ାଵ
୬ ൯T ௟

 Neumann boundary condition also can be used to compute ۲෡ܝ௡ାଵ, but we
still use the discrete boundary condition ܾܿଶ and original ۲෡ . If we use the
Neumann boundary condition, the matrix ۲ would be changed, the
symmetrization that ۲ ൌ െ۵T would be destroyed.

3 Matrix Factorization Method
3.1 Mathematical formulation

 The immersed boundary method was first introduced by Peskin in [7, 8].
Consider the two-dimensional incompressible Navier-Stokes equation with an
immersed massless boundary. Let the two-dimensional domain Ω ൌ ሾ0, Xሿ ൈ
ሾ0, Yሿ. Let the immersed boundary ∂߀ ൌ which is a closed curve, as shown in ,߁
Figure 4. The immersed boundary ߁ is tracked by the parametric function ܆ሺsሻ,
0 ൑ s ൑ ௰ܮ , where ܮ௰ is the length of the immersed boundary ߁ . The
mathematical formulation is

ܝ∂
ݐ߲ ൅ ܝ ڄ ܝ׏ ൌ െ݌׏ ൅

1
ܴ݁

17

ܝ∆ ൅ න ,ሻݏሺ܆ሺ܎ ܠሻδ൫ݐ െ ݏሻ൯dݏሺ܆
௅೨

଴

׏ ڄ ܝ ൌ 0

,ሻݏሺ܆ሺܟ ሻݐ ൌ න ,ܠሺܝ ܠሻδ൫ݐ െ ܠሻ൯dݏሺ܆
Ω

where ܠ ൌ ሺݔ, ,ሻݏሺ܆ሺ܎ ,ሻݕ ሻ is the Lagrangian boundary force defined on theݐ
immersed boundary, and ܟሺ܆ሺݏሻ, ሻ is the velocity at the immersed boundaryݐ
 .δ is the two-dimensional Dirac delta function .߁

Fig. 4. The domain Ω , immersed object ܤ, immersed boundary ߁, and the Lagrangian

points ߦ௞

18

3.2 Discretization

Similar to the discretization of the incompressible Navier-Stokes equations,
we can discretize the mathematical formulation. Refer to [9] , the discretization
can be written as:

ە
۔

 ۓ
௡ାଵܝ െ ௡ܝ

ݐ∆
൅
3
2
෡ܰሺܝ௡ሻ െ

1
2
෡ܰሺܝ௡ିଵሻ ൌ െG෡߶ ൅

௡ାଵܝ෠ܮ ൅ ௡ܝ෠ܮ

2ܴ݁
൅ ෡݂ܪ ൅ bc෢ଵ

௡ାଵܝ෡ܦ ൌ 0 ൅ bcଶ

௡ାଵܝ෠ܧ ൌ ௡ାଵݓ

where ܪ෡ and ܧ෠ are the discrete regularization operator and the discrete interpolation
operator, respectively.

The discrete boundary force f and the discrete boundary velocity ݓ௡ାଵ are

defined on the Lagrangian markers ߦ௞. We can regard ߦ௞ as ܆ሺݏ௞ሻ, where ݏ௞ is a
monotone sequence between 0 and ܮ௰, 1 ൑ ݇ ൑ ௞ܰ , as shown in figure 4. Let
௞ߦ ൌ ሺܺ௞, ௞ܻሻ, we define the distance between each Lagrangian markers ∆݈௞ as
follows:

∆݈௞ ൌ ௞ାଵߦ| െ |௞ߦ ൌ ඥሺܺ௞ାଵ െ ܺ௞ሻଶ െ ሺ ௞ܻାଵ െ ௞ܻሻଶ for 1 ൑ ݇ ൑ ௞ܰ െ 1

∆݈ேೖ ൌ หߦேೖ െ ଵหߦ ൌ ට൫ܺேೖ െ ଵܺ൯
ଶ െ ൫ ேܻೖ െ ଵܻ൯

ଶ

If the arc length of each part is known, we would rather define the arc length

∆݈௞ then use distance. Then, we use ∆݈ define ∆ݏ௞ as follows: ௞

ଵݏ∆ ൌ ൫∆݈ேೖ ൅ ∆݈ଵ൯ 2⁄
௞ݏ∆ ൌ ሺ∆݈௞ ൅ ∆݈௞ିଵሻ 2⁄ for 2 ൑ ݇ ൑ ௞ܰ

Before we introduce ܪ෡ and ܧ෠, the discrete delta function should be introduced

first. Here, we use the discrete delta function which was introduced by Roma et al [10].

δሺݔ, ሻݕ ൎ ݀ሺݔሻ · ݀ሺݕሻ

where the function ݀ሺݎሻ is

቎ 5 െ 3
|ݎ|
ݎ∆ െ

ඨ1 െ 3ቆ1 െ
|ݎ|
ݎ∆

݀ሺݎሻ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ 1
ݎ∆6

19

ቇ
ଶ

 ቏ for
ݎ∆
2 ൑ |ݎ| ൑

ݎ∆3
2

቎ 1 ൅ ඨ1 െ 3ቆ
|ݎ|
ݎ∆

1
ݎ∆3 ቇ

ଶ

 ቏ for |ݎ| ൑
ݎ∆
2

0 otherwise

To make the scheme simple,
suppose that ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄
when near the Lagrangian points.
Consider the two cells case, as
shown in fig. 5. Let ݓ௞௡ାଵ ൌ
ሺݔݓ௞௡ାଵ, ௞௡ାଵሻݕݓ , where ݔݓ௞௡ାଵ

and ݕݓ௞௡ାଵ are the horizontal and
vertical direction of discrete boun-
dary velocity fields, respectively.

Fig. 5. The two cells case with the Lagrangian

points

 Consider the discrete interpolation operator ܧ෠ . The original formulation

,ሻݏሺ܆ሺܟ ሻݐ ൌ ׬ ,ܠሺܝ ܠሻδ൫ݐ െ Ωܠሻ൯dݏሺ܆ in this case can be discretized to the

form as:

௞ݔݓ ൌ෍ ௜݀௨೔,కೖ݄ݑ
ଶ

ଷ

௜ୀଵ

௞ݕݓ ൌ෍ ௜݀௩ೕ,కೖ݄ݒ
ଶ

ସ

௝ୀଵ

 where ݀௨೔,కೖ ൌ ݀൫ݔ௨೔ െ ܺ௞൯ · ݀൫ݕ௨೔ െ ௞ܻ൯, and ൫ݔ௨೔, ௨೔൯ is the coordinate thatݕ

௜ is defined. The matrix form of ۳෠uݑ ൌ :can be written as ݓ

݄ଶ

ۉ

ۈ
ۇ

1ߦ,1ݑ݀ 1ߦ,2ݑ݀ 1ߦ,3ݑ݀
2ߦ,1ݑ݀ 2ߦ,2ݑ݀ 2ߦ,3ݑ݀

0

0
1ߦ,1ݒ݀ 1ߦ,2ݒ݀
2ߦ,1ݒ݀ 2ߦ,2ݒ݀

1ߦ,3ݒ݀ 1ߦ,4ݒ݀
2ߦ,3ݒ݀ ی2ߦ,4ݒ݀

ۋ
ۊ
൮

1ݑ
2ݑ
ڭ
4ݒ

൲ ൌ ൮

1ݔݓ
2ݔݓ
1ݕݓ
2ݕݓ

൲

20

 Similarly, consider the discrete regularization operator ܪ෡. Let ௞݂ ൌ ሺ݂ݔ௞, ,௞ሻݕ݂
where ݂ݔ௞ and ݂ݕ௞ are the horizontal and vertical direction discrete boundary

force, respectively. We can discretize the term ׬ ,ሻݏሺ܆ሺ܎ ܠሻδ൫ݐ െ ௅೨ݏሻ൯dݏሺ܆
଴ as

follows:

۶෡݂ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

1ߦ,1ݑ݀ 2ߦ,1ݑ݀
1ߦ,2ݑ݀ 2ߦ,2ݑ݀
1ߦ,3ݑ݀ 2ߦ,3ݑ݀

0

0

1ߦ,1ݒ݀ 2ߦ,1ݒ݀
1ߦ,2ݒ݀ 2ߦ,2ݒ݀
1ߦ,3ݒ݀ 2ߦ,3ݒ݀
1ߦ,4ݒ݀ ی2ߦ,4ݒ݀

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

ۉ

ۇ

ଵݏ∆
ଶݏ∆

0

0 ଵݏ∆
یଶݏ∆

ۊ

ۉ

ۈ
ۇ
1ݔ݂
2ݔ݂
1ݕ݂
ی2ݕ݂

ۋ
ۊ

 In general case, ۶෡ and ۳෠ can be written as:

۶෡ ൌ ,܁۴ ۳෠ ൌ ݄ଶ۴T

 where ۴ and ܁ are

۴ ൌ ൬۴ଵ 0
0 ۴ଶ

൰

۴ଵ ൌ ൮

1ߦ,2,2ݑ݀ ڮ ݇ܰߦ,2,2ݑ݀
ڭ ڭ

1ߦ,൅1݉,݈ݑ݀ ڮ ݇ܰߦ,൅1݉,݈ݑ݀

൲

۴ଶ ൌ ൮

1ߦ,2,2ݒ݀ ڮ ݇ܰߦ,2,2ݒ݀
ڭ ڭ

1ߦ,݉,൅1݈ݒ݀ ڮ ݇ܰߦ,݉,൅1݈ݑ݀

൲

܁ ൌ ൬܁෠ 0
0 ෠܁

൰

෠܁ ൌ ቌ
ଵݏ∆ 0

ڰ
0 ݇ܰݏ∆

ቍ

 Notice that for each row of ܨ, there are only nine values are nonzero because
of the definition of the discrete delta function if we let ∆ݎ ൌ ݄.

21

3.3 Matrix factorization method

 Put the unknown terms ܝ୬ାଵ, ߶, and ݂ on the left side of the equal sign,
and the other terms on the right side. The discretization can be written as:

ቆ
۷
ݐ߂

െ
መۺ
2ܴ݁ቇܝ

௡ାଵ ൅ ۵෡߶ െ ۶෡݂ ൌ ቆ
۷
ݐ߂

൅
መۺ
2ܴ݁ቇܝ

௡ െ
3
2
෡ܰሺܝ௡ሻ ൅

1
2
෡ܰሺܝ௡ିଵሻ ൅ ܾ෢ܿଵ

 ۲෡ܝ௡ାଵ ൌ 0 ൅ ܾܿଶ
 ۳෠ܝ௡ାଵ ൌ ௡ାଵݓ

 Let ۯ෡ ൌ ۷
ݐ߂
െ ෠ۺ

2ܴ݁
 and ̂ݎ ൌ ቀ ۷

ݐ߂
൅ ෠ۺ

2ܴ݁
ቁ ݊ܝ െ 3

2
෡ܰሺ݊ܝሻ ൅ 1

2
෡ܰሺ݊ܝെ1ሻ, then

൅1݊ܝ෡ۯ ൅ ۵෡߶ െ ۶෡݂ ൌ ݎ̂ ൅ ܾ෡ܿ 1
۲෡ܝ௡ାଵ ൌ 0 ൅ ܾܿଶ
۳෠࢛௡ାଵ ൌ ௡ାଵݓ

 The matrix factorization method is a projection approach of the immersed
boundary method introduced by Taira and Colonius [9]. Similar to the fractional
step method, we have known the facts that ۲෡ ൌ and ۵෡ ܀۲ ൌ ෡ۻ ି૚۵. The
discretization can be rewritten to

൅1ሻ݊ܝ܀૚ሺି܀෡ۯ෡ۻ ൅ ߶෡۵෡ۻ െۻ෡۶෡݂ ൌ ෡ۻ ݎ̂ ൅ ෡ܾ෡ܿۻ 1
െ۲ሺ݊ܝ܀൅1ሻ ൌ 0 െ ܾܿ2

۳෠܀െ૚ሺ࢛܀௡ାଵሻ ൌ ௡ାଵݓ

 Let ݍ௡ାଵ ൌ ൅1࢛݊܀ ۯ , ൌ ૚ି܀෡ۯ෡ۻ , ۶ ൌ ෡۶෡ۻ ݎ , ൌ ෡ۻ ݎ̂ , ܾܿଵ ൌ ෡ۻ ܾ෢ܿଵ and

۳ ൌ ۳෠܀െ૚. It can be represented by the matrix form as follow:

൭
ۯ ۵ െ۶
െ۲ ૙ ૙
۳ ૙ ૙

൱൭
൅1݊ݍ

߶
݂
൱ ൌ ቆ

ݎ
0

൅1݊ݓ
ቇ ൅ ൭

ܾܿ1
െܾܿ2
0

൱

 We know that െ۲ ൌ ۵T, but ۳ and ۶ do not have the symmetric relation
directly. So a transformed forcing function መ݂ was introduced by Taira and Colonius
[9]. It satisfies ۶݂ ൌ െ۳T መ݂. That is, መ݂ ൌ െ൫۳۳T൯ିଵ۳۶݂. The matrix form becomes:

22

൭
ۯ ۵ ۳T

۵T ૙ ૙
۳ ૙ ૙

൱ቌ
൅1݊ݍ

߶
෠݂
ቍ ൌ ቆ

ݎ
0

൅1݊ݓ
ቇ ൅ ൭

ܾܿ1
െܾܿ2
0

൱

 Let ۿ ൌ ሺ۵ ۳Tሻ, λ ൌ ሺ߶ ෠݂ሻT, ݎ ൌ ݎ ൅ ܾܿ , and ݎଶ ൌ ሺെܾܿ2 ൅1ሻT: ଵ݊ݓ 1

൬
ۯ ۿ
Tۿ ૙൰ ൬

൅1݊ݍ

λ
൰ ൌ ቀ

ଵݎ
 ଶቁݎ

 The fractional step method could be applied here.

൬
ۯ ۿ
Tۿ ૙൰ ൬

൅1݊ݍ

λ
൰ ൌ ൬ ۯ ૙

Tۿ െۿTିۯ૚ۿ൰ ൬
۷ ۿ૚ିۯ
૙ ۷

൰ ൬ݍ
݊൅1

λ
൰ ൌ ቀ

ଵݎ
 ଶቁݎ

 Here we use ۰N to approximate ିۯ૚, there will exist an Nth order error
term.

൬ ۯ ૙
Tۿ െۿT۰Nۿ൰ ൬

۷ ۰Nۿ
૙ ۷

൰ ൬ݍ
݊൅1

λ
൰ ൌ ቀ

ଵݎ
ଶቁݎ ൅ ൬െݐ߂

ேሺିۻۺ૚ሻNۿλ 2ே⁄
0

൰

 Let כݍ ൌ ௡ାଵݍ ൅ ۰Nۿλ, the matrix factorization method can be written in
three steps:

כݍۯ ൌ ሻכݍ ଵ ሺSolveݎ
λۿT۰Nۿ ൌ כݍTۿ െ ଶ ሺSolve λሻݎ
௡ାଵݍ ൌ כݍ െ ۰Nۿλ ሺGet ݍ௡ାଵሻ

 Since ۯ and ۿT۰Nۿ are symmetric and positive definite, conjugate
gradient method can be applied to solve כݍ and λ. Consider a special case that
௜ݔ∆ ൌ ௝ݕ∆ ൌ ݄, then ܀ ൌ ෡ۻ ൌ ݄۷ ௠ . ۶݂ ൌ െ۳T መ݂ can be regard as: ሺ௟ିଵሻ௠ା௟ሺ ିଵሻ

෡۶෡݂ۻ ൌ ݂܁෡۴ۻ ൌ ݄۴ሺ݂܁ሻ
ൌ െି܀૚۳෠T መ݂ ൌ െ݄2ି܀૚۴ መ݂ ൌ ݄۴ሺെ መ݂ሻ

 So in this case, መ݂ ൌ െ݂܁.

23

4 Numerical Results
4.1 Error estimate of fractional step method

 Consider the incompressible Navier-Stokes equations consisting of the
momentum and continuity equations. There exists an exact solution that satisfies
the Navier-Stokes equations. They are

,ݔሺݑ ,ݕ ሻݐ ൌ െܿݏ݋ሺݔߨሻ݊݅ݏሺݕߨሻ݁݌ݔሺെ2ߨଶݐ ܴ݁⁄ ሻ
,ݔሺݒ ,ݕ ሻݐ ൌ ݐଶߨሺെ2݌ݔሻ݁ݕߨሺݏ݋ሻܿݔߨሺ݊݅ݏ ܴ݁⁄ ሻ
,ݔሺ݌ ,ݕ ሻݐ ൌ െ ൫ܿݏ݋ሺ2ݔߨሻ ൅ ݐଶߨሺെ4݌ݔሻ൯݁ݕߨሺ2݊݅ݏ ܴ݁⁄ ሻ 4⁄

 Use this data, we can know the initial and boundary conditions, and compare
the numerical solution with the exact solution. We set the computational domain
Ω ൌ ሾ0,1ሿ ൈ ሾ0,1ሿ, the computational time T ൌ 1, and the Reynolds number
Re ൌ 40.

To check the order of accuracy of the fractional step method, let ∆t ൌ
1 400⁄ , 1 800⁄ , 1 1600⁄ , 1 3200⁄ , and 1 6400⁄ , respectively. Nൌ 3. Suppose
that ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄ , and let ݄ ൌ 40∆t . We define the maximum error by
subtracting the numerical solution from the exact solution and take infinite
norms. The order is known by taking ݈݃݋ଶ on the ratio of the errors. As shown
in table. 1, the fractional step method has second-order accuracy in time.

Table 1
The max um errors from different ∆t im
 maximum error order ∆t ݄

 3.2781e-004 2.47 1 400⁄ 1 10⁄
 5.9040e-005 1.97 1 800⁄ 1 20⁄
 1.5094e-005 2.01 1 1600⁄ 1 40⁄
 3.7449e-006 1.96 1 3200⁄ 1 80⁄
 1 6400⁄ 1 160⁄ 9.6555e-007 －

4.2 The flow past a cylinder

 Consider a situation that the flow past a cylinder, where the diameter of the
cylinder is ܦ. The matrix factorization method can be applied here to simulate
this situation.

 In this test, the computational domain is set by Ω ൌ ሾ0,16ሿ ൈ ሾ0,8ሿ. The
Reynolds number Re ൌ 100 and 200 , respectively. We choose ∆t ൌ 1 640⁄
and ∆x ൌ ∆y ൌ 1 16⁄ . The initial condition is given by ݑ|௧ୀ଴ ൌ 0 and
௧ୀ଴|ݒ ൌ 0. The boundary condition is shown in Fig.6. To construct the cylinder,
we put the center of the cylinder at the position ሺ4,4ሻ, and let the diameter
ܦ ൌ 1. Choose the number of the markers ௞ܰ ൌ 64, then ∆ݏ ൌ ߨ 64⁄ . Notice
that ∆ݏ ൎ 0.785݄.

Fig. 6. The boundary condition and the computational domain

 The simulations which the flow past a cylinder at Reynolds number 100 and
200 show the periodic vortex shedding. In figure 7, we can see the periodic
vortex shedding in the vorticity contours. The vorticity of the flow is defined as
௫ݒ െ .௬ݑ

24

Fig. 7. The vorticity contours at Reynolds number 100(left) and 200(right) at the time T ൌ 60

 There are three quantities, the drag coefficient ܥ஽, lift coefficient ܥ௅, and
the Strouhal number ܵݐ . We can use the three quantities to compare this
simulation with others. The three quantities are defined as:

஽ܥ ൌ
஽ܨ

ܷஶଶܦ 2⁄

௅ܥ ൌ
௅ܨ

ܷஶଶܦ 2⁄

ݐܵ ൌ ௤݂ܦ
ܷஶ

where ܨ஽ and ܨ௅ are the drag force and lift force, ܷஶ ൌ 1 in this simulation,

௤݂ is the frequency of the vortex shedding. ܨ஽ and ܨ௅ can be obtain in [11],
which are

ሺܨ஽, ௅ሻܨ ൌ െන න ,ሻݏሺ܆ሺ܎ ܠሻδ൫ݐ െ ݏሻ൯dݏሺ܆
௅೨

଴
dܠ

Ω

 ௅ are approximated byܨ ஽ andܨ

ܨ ൎ෍ ൫ܨ መܵ · ൯ݔ݂ ݄ଶ

஽ ଵ ௜௜

௅ܨ ൎ෍ ൫ܨଶ መܵ · ൯௜௜ݕ݂
݄ଶ

 In figure 8 and 9, we can observe the periodic vortex shedding. In table 2 and
3, we compare the three quantities with the previous numerical results which
refer to [9, 11, 12, 13, 14, 15] at Reynolds number Re ൌ 100 and 200.

25

Fig. 8. The time evolution of drag(left) and lift(right) coefficients at Reynolds number Re ൌ 100

26

Fig. 9. The time evolution of drag(left) and lift(right) coefficients at Reynolds number Re ൌ 200

Table 2
The comparisons of lift and drag coefficients and Strouhal number of Re ൌ 100
 Present Lai and Peskin[11] Kim et al.[12] Silva et al.[13]

ܥ
 1.64 1.44 1.33 1.39

௅

஽ܥ
 0.16 - 0.165 0.177 ݐܵ

 0.40 0.33 0.32 -

Table 3
The comparisons of lift and drag coefficients and Strouhal number of Re ൌ 200
 Present Taira and Colonius [9] Linnick and Fasel[14] Liu et al[15]

ܥ
 1.56 1.36 1.34 1.31

௅

஽ܥ
 0.192 0.197 0.197 0.206 ݐܵ

 0.72 0.69 0.69 0.69

4.3 The flow past two cylinders

 In this test, we simulate the flow past two cylinders at the Reynolds number
Re ൌ 200. Let the diameter ܦ of the two cylinders are the same, and set to be
ܦ ൌ 1. Similar to the previous case, we set the computation domain Ω ൌ
ሾ0,16ሿ ൈ ሾ0,8ሿ, ∆t ൌ 1 640⁄ and ∆x ൌ ∆y ൌ 1 16⁄ . The initial and boundary
conditions are as before, too. To construct the cylinder, we put the centers of this
two cylinders at the position ሺ4, 2.5ሻ and ሺ4, 5.5ሻ . We also choose ∆ݏ ൌ
ߨ 64⁄ , so the number of the markers ௞ܰ ൌ 128. The time evolution of drag and
lift coefficients and the vorticity contours are shown in figure 10 and 11. We can
observe that the drag coefficients of the two cylinders are similar, and the lift
coefficients of the two cylinders are symmetric.

Fig. 10. The time evolution of drag(left) and lift(right) coefficients of the upper(up) and lower

(down) cylinders.

27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Fig. 11. The vorticity contours when the flow past two cylinders : (a)t=7, (b)t=8, (c)t=9, (d)t=10,

(e)t=11, (f)t=12, (g)t=30, (h)t=31, (i)t=32, (j)t=33, (k)t=34, (l)t=35.

28

4.4 The flow past a wing

 Here, we simulate the flow past through a wing of the airplane at the
Reynolds number Re ൌ 200. We use the same computational domain, mesh,
initial condition and boundary conditions as before, but the immersed object. See
figure 12, the shape of the immersed object is a airfoil, which is a thin winglike
structure. We rotate the wing by an angle, which is െ30° here, as shown in
figure 13. The periodic vortex shedding also can be observed behind the wing in
figure 14.

Fig. 12. The shape of the immersed object

Fig. 13. The placement of the wing

29

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Fig. 14. The vorticity contours when the flow past a wing : (a)t=51, (b)t=52, (c)t=53, (d)t=54, (e)t=55,

(f)t=56, (g)t=57, (h)t=58, (i)t=59, (j)t=60.

30

4.5 The flow past an oscillating cylinder

 Consider the same simulation as the flow past a cylinder at Reynolds number
Re ൌ 100, but the cylinder is moving here. We impose the velocity ܟሺ܆ሺݏሻ, ሻݐ
at the boundary ߁ as ܟሺ܆ሺݏሻ, ሻݐ ൌ ሺ0, 0.14 cosሺ2ߨ ௖݂ݐሻሻ , where ௖݂ is the
frequency that the cylinder oscillates. That is, the cylinder oscillates vertical to
the stream. Here we choose ௖݂ ൌ 2 ௤݂. The time evolution of drag coefficient and
the vorticity contours are shown in figure 15 and 16. Compare with figure 8, we
can see that the frequency of the vortex shedding is influenced by the oscillation
of the cylinder after the cylinder moves. In table 4, we compare the drag and lift
coefficients with the previous numerical results which refer to [17, 18].

Fig. 15. The time evolution of the lift(right) coefficients

Table 4
The comparisons of the lift and drag coefficients
 Present Su et al.[17] Hurlbut et al.[18]

௅ܥ
 ஽ 1.84 1.70 1.68ܥ

 1.75 0.97 0.95

31

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 16. The vorticity contours when the flow past a oscillating cylinder : (a)t=4.21875, (b)t=4.921875,

(c)t=5.625, (d)t=6.328125, (e)t=7.03125, (f)t=7.734325, (g)t=8.4375, (h)t=9.140625.

32

33

5 Conclusion

In this thesis, we use the matrix factorization method introduced by Taira
and Colonius [9] to simulate the flow past as immersed object. In the
numerical result, we see that this method can handle the immersed object with
complex shape, and which the immersed object is moving, even the two or
more objects. It is useful in the engineering applications. In Section 4.4, we
simulate the situation when the flow past a wing. The flow produces vortex
shedding behind the wing.

Here we suppose that the mesh widths of each cell are the same, that is, we

let ∆ݔ௜ ൌ ௝ݕ∆ ൌ ݄ for all ݅, ݆. In fact, the matrix factorization method can use
the different grid size of each cell. If the higher accuracy is desired, the grid
size near the immersed object has to be small. We can adapt the code to handle
the different mesh widths, to improve the accuracy.

34

References
[1] A.J. Chorin, “Numerical solution of the Navier–Stokes equations.” Math. Comput. Vol. 22, pp. 745–762, 1968.

[2] J. Kim, P. Moin, “Application of a fractional-step method to incompressible Navier–Stokes equations.” J. Comput. Phys.

Vol. 59, pp. 308–323, 1985.

[3] J.B. Perot, “An analysis of the fractional step method.” J. Comput. Phys. 108 51–58, 1993.

[4] R. Codina, “Pressure stability in fractional step finite element methods for incompressible flows.” J. Comput. Phys. Vol.

170, pp. 112–140, 2001.

[5] F.H. Harlow, J.E. Welsh, “Numerical calculation of time-dependent viscous incompressible flow of fluid with a free

surface.” Phys. Fluids. Vol. 8, pp. 2181-2189, 1965.

[6] D.L. Brown, R. Cortez, M.L. Minion, “Accurate projection methods for the incompressible Navier–Stokes equations.” J.

Comput. Phys. Vol. 168, pp. 464–499, 2001.

[7] C.S. Peskin, “Flow patterns around heart valves: a numerical method.” J. Comput. Phys. Vol. 10, pp. 252–271, 1972.

[8] C.S. Peskin, “The immersed boundary method”. Acta Numer. Vol. 11, pp. 479-517, 2002.

[9] K. Taira, T. Colonius, “The immersed boundary method: A projection approach.” J. Comput. Phys. Vol. 225, pp.

2118-2137, 2007.

[10] A.M. Roma, C.S. Peskin, M.J. Berger, “An adaptive version of the immersed boundary method.” J. Comput. Phys. Vol.

153, pp. 509–534, 1999.

[11] M. Lai, C.S. Peskin, “An immersed boundary method with formal second-order accuracy and reduced numerical

viscosity.” J. Comput. Phys. Vol. 160, pp. 705–719, 2000.

[12] J. Kim, D. Kim, H. Choi, “An immersed-boundary finite-volume method for simulations of flow in complex geometries.”

J. Comput. Phys. Vol. 171, pp. 132-150, 2001.

[13] A. L. F. Lima E Silva, A. Silveira-Neto, J. J. R. Damasceno, “Numerical simulation of two-dimensional flows over a

circular cylinder using the immersed boundary method.” J. Comput. Phys. Vol. 189, pp. 351-370, 2003.

[14] M.N. Linnick, H.F. Fasel, “A high-order immersed interface method for simulating unsteady incompressible flows on

irregular domains.” J. Comput. Phys. Vol. 204, pp. 157–192, 2005.

[15] C. Liu, X. Zheng, C.H. Sung, “Preconditioned multigrid methods for unsteady incompressible flows.” J. Comput. Phys.

Vol. 39, pp. 35–57, 1998. 1

[16] R. Témam, “Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires.”

Arch. Rat. Mech. Anal. Vol. 32 (2), pp. 135–153, 1969.

[17] S. Su, M. Lai, C. Lin, “An immersed boundary technique or simulating complex flows with rigid boundary.” Comput.

Fluids. Vol. 36, pp. 313-324, 2007.

[18] S.E. Hurlbut, M.L. Spaulding, F.M. White, “Numerical Solution for Laminar Two Dimensional Flow About a Cylinder

Oscillating in a Uniform Stream”, Trans ASME, J. Fluids Eng. Vol. 104, pp. 214-221, 1982.

[19] W. Chang, F. Giraldo, B. Perot, “Analysis of an exact fractional step method.” J. Comput. Phys. Vol. 180, pp. 183–199,

2002.

	封面1
	封面2
	摘要
	Matrix Factorization Method

