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內嵌介面問題之矩陣分解法 
 
 
 
 

學生：謝先皓                    指導教授：賴明治 教授 

 
 
 
 

國立交通大學應用數學系﹙研究所﹚碩士班 

 
 
 
 

 
摘  要 

 
 

 嵌入邊界法(immersed boundary method)是一種模擬不可壓縮流體的數學模

型，他的特色在於解決有無質量的嵌入邊界的情況。而解決嵌入邊界法的問題，

矩陣分解法(matrix factorization method)是一種利用類似分部步驟法

(fractional step method)的方法，將嵌入邊界法分解成三個步驟，在前兩個步

驟我們會面對解一個對稱正定的線性系統，在此我們可以利用共軛梯度法

(conjugate gradient method)來解決這個問題。在這份論文之中，我們利用矩

陣分解法來模擬流場通過各種嵌入之物體，包括流過靜止與可動的圓柱、兩個靜

止的圓柱、以及機翼形狀的物體。 
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Abstract 

 
 

 The immersed boundary method is a model to simulate a viscous incompressible 
fluid with immersed massless boundary. It comes from the Navier-Stokes equation of 
viscous incompressible fluid with the interaction term between the immersed 
boundary and the fluid. The matrix factorization method is a formulation of immersed 
boundary method, and the idea is the fractional step method for Navier-Stokes 
equation. The immersed boundary problem could be factorized to three steps, and the 
conjugate gradient method can be applied to solve the first and second step. In this 
paper, we use the matrix factorization method simulate the flow past stationary or 
movable immersed object, including the flow past a stationary and a moving cylinder, 
the flow past two stationary cylinders, and the flow past a winglike object. 
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1 Introduction 
 

As we all know, the immersed boundary method has played an important 
role in the fluid–solid interaction problems. Peskin [7] first introduced the 
method to simulate the blood flow with an elastic membrane which can be 
regarded as the immersed boundary in the fluid. He discretizes the flow field 
with Eulerian grid, and discretizes the immersed boundary with Lagrangian 
points. The immersed boundary exerts a force on the fluid, and moves with a 
velocity, so the immersed object can move or be deformed. 

 
The origin fractional step method is introduced by Chorin [1] to solve the 

incompressible Navier-Stokes equation. Perot [3] regards the fractional step 
method as a matrix factorization method, and the idea comes from the LU 
decomposition. The fractional step method can be written in three steps, which 
the first and second step can be solved by the conjugate gradient method, and 
the third step is a projection. Taira and Colonius [9] extend the fractional step 
method from Navier-Stokes equation to immersed boundary problem by 
observing the symmetric relationship between the discrete interpolation and 
regularization operators, and also factorize the scheme to three steps. The 
conjugate gradient method can be applied to the first and second step. 

 
In Section 2, we introduce how to discretize the incompressible Navier- 

Stokes equations with the staggered marker-and-cell mesh, and review the 
fractional step method. The detailed matrix forms of each operator are 
introduced in Section 2.4 with the Dirichlet and the Neumann boundary 
conditions. In Section 3, we review the immersed boundary method first, and 
then consider the discretization of the discrete interpolation and regularization 
operators. The matrix factorization method is introduced in Section 3.3. 

 
The numerical result is shown in Section 4. We can see the second-order 

temporal accuracy from the error estimate, and the simulation of the flow past 
a stationary or moving immersed object, including the flow past a stationary 
and an oscillating cylinder, the flow past two stationary cylinders, and the flow 
past a winglike object. 
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2 Fractional Step Method 
2.1   Navier-Stokes equation 
 

Consider the incompressible Navier-Stokes equations consisting of the 
momentum and continuity equations as: 

 
∂ 1

∆  

0  
 

where t, , p t, , Re are the velocity vector, pressure, and Reynolds 
number, respectively. Usually, the initial condition |  and the boundary 
condition | Ω are known. If we consider that  , t  is a two dimensional 
vertor, that is, , t u , t , v , t , then we can rewrite the incompressible 
Navier-Stokes equations to: 
 

1
 

1
  

0 
 
with the initial conditions , , 0 , , , 0 , and the boundary conditions 

, , |  , , , |  . 
 
2.2 Staggered grid discretization 
 
   To discretize the equations, refer to [1, 2, 3, 4], we can use the staggered 
marker-and-cell mesh that introduced by Harlow and Welsh [5] with implicit 
Crank-Nicolson for the viscous term and explicit second-order Adams-Bashforth 
for the convective term: 
 

∆
3
2

1
2 2  

0 
 
 



where , T and  are the discrete velocity and pressure. , 
,  and  are the discrete convection, gradient, laplacian and divergence 

operator, respectively. Before introducing how to discretize these terms, we have 
to know how staggered marker-and-cell mesh can be applied here. 
 

Suppose the two-dimensional domain of this equation is a rectangle. Let the 
domain Ω 0, X 0, Y , then divide 0, X  and 0, Y  into  parts and  
parts, respectively. See figure 1, there are  cells. To apply the staggered 
grid discretization to Navier-Stokes equations, we define the discrete velocity of 
horizontal direction  at the center of each cell’s left and right edges, and the 
discrete velocity of vertical direction  at the center of each cell’s upper and 
lower edges. The discrete pressure  is defined at the center of each cell. 
 
 

 
Fig. 1. The staggered marker-and-cell mesh 
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   To make the scheme simple, suppose ∆ ∆  for all 1  and 
1 , then the discrete horizontal velocity ,  can be regarded as the 
approximation of 1 , 1.5 , . Similarly, the discrete vertical 
velocity ,  approximates to 1.5 , 1 ,  and the discrete 
pressure ,

.  approximates to 0,5 , 0.5 , 0.5 . 
 
   Use staggered marker-and-cell mesh to discretize the convection, gradient , 
Laplacian and divergence terms. We can easily obtain the staggered grid 
discretization of the Navier-Stokes equations. Consider the Laplacian term, using 
the Taylor expansion, we have 
 

, , , ∆
1
2! , ∆  

, , , ∆
1
2! , ∆  

 
   Add these two formulas, then u ,  is: 
 

,
2 ,

∆ ∆ ∆
2 ,

∆ ∆
2 ,

∆ ∆ ∆  

 
   Similarly, let ∆ . ∆ ∆ 2⁄ , then 
 

,

2 ,

∆ . ∆ . ∆ .

2 ,

∆ . ∆ .

2 ,

∆ . ∆ . ∆ .
 

 
The discrete Laplacian form can be written as: 

 

Δ , , ,
 

 
   Since we suppose that ∆ ∆ , we obtain: 

Δ , , , 4 , , , ⁄  
 

 
Similarly, 

 
Δ , , , 4 , , , ⁄  
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Although the discrete pressure  is defined at the center of each cell,  
is defined at the same place that the discrete velocity  and  are defined. We 

use the same index  ,  to represent the discrete ,  and 
,

. Let 

∆ . ∆ ∆ 2⁄  The form can be written as: 

, , , ∆ .⁄  

, , , ∆ .   

 

 
   Consider the convection term. The discretization of the convection term is: 
 

, ,
, ,

∆ ∆ ,
, ,

∆ . ∆ .
 

 

where ,  is the mean of the values of neighbor . That is, 

 

,
, , , ,

4  

 
Similarly, 

 

, ,
, ,

∆ . ∆ .
,

, ,

∆ ∆  

 
where 
 

,
, , , ,

4  

 
   If ∆ ∆ , then ∆ . ∆ .   
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   Consider the discrete divergence term. We can use divergence theorem here. 
Integrate the continuity equation on each cell. 
 

0
 

  

 
where  is the outward normal vector of cell face. Suppose the domain is 
two-dimensional, then  can be rehash to , and  can be rehash to  
or . We obtain the discrete continuity equation: 
 

∆ ∆ , ∆ , ∆ 0 , ,

for all 1  and 1 . Since we suppose that ∆ ∆ , it can 
be written as: 

 

 

, , , , 0 
 
2.3 Fractional step method 
 
   After discretize the incompressible Navier-Stokes equations, we have to 
solve the velocity  and the pressure . Put the unknown  and  on 
the left side of the equal sign, and the other terms on the right side. The discrete 
formulations of incompressible Navier-Stokes equations are: 
 
1
Δ

1
2

1
Δ

1
2

3
2

1
2  

                                        0  
 
where  and  are the boundary conditions. The boundary conditions 
appear in equations because we regard the discrete operators as matrix form,  

 and  both are vectors. Let  , and ̂  be the right side of 

the momentum equation. That is, ̂ . 

The equations can be written as: 
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0
̂
0  

 
   The details of the matrix form of the discrete operators could be found in [3]. 
These matrices will be introduced detailed with the boundary conditions in 
Section 2.4, but brief here. First, we define , T and : 
 

, , … , ,    , , … , ,       ,    , , … ,  

, , … , ,    , , … , ,       ,    , , … ,   

        , , … , ,    , , … , ,       ,    , , … ,  

 
   Moreover, we define two matrices  and : 
 

∆

∆
0

0

   ,
∆ 0

0 ∆
 

 

0

0
∆ .

∆ .

  ,
∆ . 0

0 ∆ .

 

 
   If ∆ ∆ , then , where  is the identity 
matrix. We take the discrete momentum equation product , then there is a new 
matrix form: 
 

̂  

 
   Define , then 
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̂
    

 

T simpler, let , , ̂ ,  
 
   o make the matrix form 

,   , the matrix form can be written as: 
 

0  

 
    There is an interesting fact that T, that is the reason why we rehash 
the origin matrix form to the new matrix form. The origin fractional step method 
is introduced by Chorin in [1], Now, we use the fractional step method which is 
introduced by Perot in [3]. The idea of the fractional step method comes from the 
LU decomposition: 
 

T T 0  

 
   To handle the inverse matrix of A, there is a approximation introduce by 
Témam [16], let , ⁄ , the matrix  can be written 
as : 
 

1 1
2

1 1
2

1
2  

 
   The inverse matrix of  can be approximated by : 
 

2 2 2 2
N 

2

N

2
N  

 

   N ∑N  is the Nth order Talyor expansion of , 

let N N , then 

 



9 
 

T T N
N

0
N 2

0
 

 
   The last term is the truncation error from N. If  is small and  is large 
enough, the last term can be ignored. Here we want to solve  and  , so 
we define N  , then 
 

T T N T T N 0  

N N
 

 
   The fractional step method can be written in three steps: 
 

                            Solve     
T N T          Solve     

N                  Get     
 

   The matrix  is symmetric positive definite because 

the discrete laplacian operator  is symmetric and negative definite. If  is 
small and  is large enough, N is symmetric and positive definite, too. It is 
easy to check that T N  is symmetric and positive definite. 
 

T N T T N T T N  
xT T N x x T N x 0 

 
   Since  and T N  are symmetric and positive definite, conjugate 
gradient method can be applied to solve  and . The fractional step method 
has second-order temporal error form implicit Crank-Nicolson and explicit 
second-order Adams-Bashforth, and Nth order error from N, which is the 
approximation of . The numerical results of second-order accurate 
approximation of velocity could be found in chapter 4. The discrete pressure  
is first-order approximation of / [3]. The second-order accurate 
approximation of pressure could be found in [6]. 
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2.4 Boundary conditions 
 
   First, we discuss the case of Dirichlet boundary conditions where the domain 
Ω 0, X 0, Y . That is, the boundary conditions 0, , , X, , , 

, 0, ,   , Y, , 0, , , X, , , , 0,  and   , Y,  are 
known.  
 
   Suppose ∆ ∆ , we know the values of the boundary velocity , , 

, , ,  and , , they are 

, 0, 1.5 , 1 ∆  

, X, 1.5 , 1 ∆  

, 1.5 , 0, 1 ∆  

, 1.5 , Y, 1 ∆  

 

for 2 1 and 2 j 1. 
 

 
   But the other discrete boundary conditions , , , , ,  and ,  
are not defined at the boundary. We approximate these boundary conditions as 
follows:  
 

, 2 1 , 0, 1 ∆ ,  

, 2 1 , Y, 1 ∆ ,  

, 2 0, 1 , 1 ∆ ,  

, 2 X, 1 , 1 ∆ ,  
 
for 1 1 and 1 j 1. 
 
   After we know the discrete boundary conditions, the discrete operators can 
be written as matrices. Consider the laplacian term , it contains the laplacian 
operators to the horizontal velocity and vertical velocity, called  and . 
 

0
0  

 
   The discrete Δ ,  and Δ ,  have been introduced already. Since we 
suppose ∆ ∆ ,  and  can be written as : 
 



0
       

0

  ,
4 1
1 4

0

0
1

1 4

 

0
           

0  

  ,
4 1
1 4

0

0
1

1 4

 

 
   Obviously,  is symmetric and negative definite.  
 

The boundary condition term  comes from .  can be written as 
, T/2 , where  and  are 

, , 0, ,0, , ,    , , 0, ,0, , ,        , , , 0,        ,0, ,
T

, , , , , , ,       0,                                ,0  , , , , , , ,
T

 

 

, , 0, ,0, , ,    , , 0, ,0, , ,        , , , 0,            ,0, ,
T

, , , , , , ,   0,                                ,0  , , , , , , ,
T

 

 

 
 
   To introduce  and , refer to [19], 
let’s see a simple example. Consider the 
two cells case. There are only four 
horizontal velocity terms and three vertical 
velocity terms, called , , , , 

, , . See fig. 2.  
Fig. 2. The two cells case 

 
   Consider the discrete divergence term, we know that 

∆ ∆ ∆ ∆ 0 
∆ ∆ ∆ ∆ 0  

 

 
   If we rewrite it to the matrix form, then 

11 
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1 1 0
0 1 1

1 0
0 1

1 0
0 1

∆
∆

∆
0

0

∆
∆

∆
∆

0 

 
   Notice that the center matrix is  . Let the left matrix be , so we get the 
simple factorization . 
 
   Similarly, we also can get the matrix form of  and factorize . In the two 
cells case,  can be written as: 
 

∆ 0.5
∆ 1.5

∆ 2.5

0

0

∆ 0.5
∆ 0.5

∆ 1.5
∆ 1.5

  1   0
1   1
  0 1
  1    0
0    1
1   0
  0 1

 

 
   Let the left matrix be  and the center matrix be . We can see that 

 and T. 
 
   In general, the matrix form of  is 
 

 

0

0
 ,

1 1

0

0

1 1
 

0

0

   

  ,  

 
   The relation that T still exists in general situation. 
 
 



The boundary condition term  comes from .  can be written as:  
 

, , 0, ,0, , ,    , , 0, ,0, , ,        , , , 0,        ,0, ,
T

, , , , , , ,       0,                                  ,0  , , , , ,   , ,
T

 
 
   If there are not Dirichlet boundary conditions at all. That is, some boundary 
conditions maybe are Neumann boundary conditions. Let the boundary 
∂Ω ∂Ω ∂Ω ∂Ω ∂Ω , and the boundary conditions , , | Ω , 

, , | Ω , ∂ , , | Ω , ∂ , , | Ω  are known, where  is the 
outer normal vector of the boundary. 
 
   For example, we suppose that ∂Ω , Ω| 0 , ∂Ω ∂Ω\ ∂Ω , 
∂Ω , Ω| X , and ∂Ω ∂Ω\ ∂Ω . In figure 3, it shows the 
relationship between the boundary condition type and the place. The boundary 
conditions that we know are 0, , , X, , , , 0, ,   , Y, , 
0, , , X, , , , 0,  and   , Y, . 

 
But the thing we really care about is the discrete boundary condition. We 

have known how to handle the discrete boundary condition when the boundary 
condition is Dirichlet. Now we discuss the discrete boundary condition when the 
boundary condition is Neumann. 
 
 
 

 
Fig. 3. The left figure represents the boundary condition type of u. The right figure represents the 

boundary condition type of v. 
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   We can use the central difference to approximate , 0, . 

1 , 0, 1 ∆ , ,

∆ .

 

 

 
   The discrete boundary condition  can be approximated by ,

, , ∆ . · 1 , 0, 1 ∆  
 

 
   But we do not know , , so this part can be replace by , , or use the 
velocity at the time step n and n-1 to approximate , . That is, 
 

, 2 , ,  
 
   This approximation also can be applied when the boundary condition is 
Dirichlet. So the discrete boundary condition  can be approximated by ,

, 2 , , ∆ . · 1 , 0, 1 ∆  
 

 
   Similarly, the other discrete boundary conditions can be written as 
 

, 2 , , ∆ . · 1 , Y, 1 ∆  

, 2 , , ∆ . · X, 1 , 1 ∆  

, 2 , , ∆ · X, 1.5 , 1 ∆  
 
   Notice that we are not use the central difference to approximate , . 
Because these boundary conditions are approximated by  and . After 
solving , we need to update the discrete boundary conditions. At the next 
time step, they will be used to compute N . 
 
   Although we use the Neumann boundary conditions approximate the 
boundary velocity, we would rather use the Neumann boundary conditions than 
use the approximated boundary velocity. 
 

Consider the laplacian operator . For example, we would rather use 
0.5 , 0, 1 ∆  than , , ∆⁄  when we compute the 

approximation of ∆ , . Suppose ∆ ∆ , the discretization of ∆ ,  is 
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∆ ,
, 2 , ,

, , 0.5 , 0, 1 ∆
 

            , 3 , , , 0.5 , 0, 1 ∆
 

 
   Follow this idea, the matrix  and the boundary condition  also have 
some change. In this case, the matrix  changes to 
 

0
0  

0
       

0

  ,

0
           

0  

 

 
where  and  are 
 

3 1
1 3

0

0

1
1 3 1

1 2

    if  1 or   

3 1
1 4

0

0

1
1 4 1

1 3

   for 2 1 

4 1
1 4

0

0

1
1 4 1

1 3
 
      The corresponding boundary condition    also has some change. First, 
e denote some values 

                 for 1 1 

w
 

1 , 0, 1 ∆  
1 , Y, 1 ∆  

X, 1.5 , 1 ∆  
X, 1 , 1 ∆  
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   The corresponding boundary condition    can be written as: 

, T/2  
 

 

where 
 

    , ,   0,        ,0, ,    , , 0, ,0, ,        , , , 0, ,0, T

h , , , ,       0,                           ,0  , , ,        , T 

 

, , 0,   ,0, ,    , , 0, ,0, ,         , , , 0,               ,0, T

, , , , , , ,   0,                            ,0  , , , , , , ,
T

 

   Neumann boundary condition also can be used to compute , but we 
still use the discrete boundary condition  and original . If we use the 
Neumann boundary condition, the matrix  would be changed, the 
symmetrization that T would be destroyed.  

 

 

  



3 Matrix Factorization Method 
3.1   Mathematical formulation 

     
    The immersed boundary method was first introduced by Peskin in [7, 8]. 
Consider the two-dimensional incompressible Navier-Stokes equation with an 
immersed massless boundary. Let the two-dimensional domain Ω 0, X
0, Y . Let the immersed boundary ∂ , which is a closed curve, as shown in 

Figure 4. The immersed boundary  is tracked by the parametric function s ,  
0 s , where  is the length of the immersed boundary . The 
mathematical formulation is 

∂ 1

17 
 

     

∆ , δ d  

0  

, , δ d  
Ω

where , , ,  is the Lagrangian boundary force defined on the 
immersed boundary, and ,  is the velocity at the immersed boundary 

. δ is the two-dimensional Dirac delta function. 

     

     

Fig. 4. The domain Ω , immersed object , immersed boundary , and the Lagrangian 

points  
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3.2   Discretization 
     

Similar to the discretization of the incompressible Navier-Stokes equations, 
we can discretize the mathematical formulation. Refer to [9] , the discretization 
can be written as: 

     

 
∆

3
2

1
2

G
2

bc

0 bc                       

                       

 

     
where  and  are the discrete regularization operator and the discrete interpolation 
operator, respectively.  

     
The discrete boundary force f and the discrete boundary velocity  are 

defined on the Lagrangian markers . We can regard  as , where  is a 
monotone sequence between 0 and , 1  , as shown in figure 4. Let 

, , we define the distance between each Lagrangian markers ∆  as 
follows: 

     
∆ | |     for 1 1 

∆  

     
If the arc length of each part is known, we would rather define the arc length  

∆  then use distance. Then, we use ∆  define ∆  as follows: 

∆ ∆ ∆ 2⁄  
∆ ∆ ∆ 2⁄     for 2  

 

     
Before we introduce  and , the discrete delta function should be introduced 

first. Here, we use the discrete delta function which was introduced by Roma et al [10]. 
 

δ , ·  
 

where the function  is 
     



  5 3
| |
∆ 1 3 1

| |
∆

1
6∆
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       for 
∆
2

| |
3∆
2

  1 1 3
| |
∆

1
3∆                              for | |

∆
2               

0                                                                           otherwise                 

 

     
     

To make the scheme simple, 
suppose that ∆ ∆
when near the Lagrangian points. 
Consider the two cells case, as 
shown in fig. 5. Let 

, , where 
and  are the horizontal and 
vertical direction of discrete boun- 
dary velocity fields, respectively. 

Fig. 5. The two cells case with the Lagrangian  

points 

     
       Consider the discrete interpolation operator . The original formulation 

, , δ dΩ  in this case can be discretized to the 

form as: 
     

,  

,  

     
    where , · , and ,  is the coordinate that 

 is defined. The matrix form of u  can be written as: 
     

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2
0

0 1, 1 2, 1

1, 2 2, 2

3, 1 4, 1

3, 2 4, 2

1
2

4

1
2

1
2
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       Similarly, consider the discrete regularization operator . Let , , 
where  and  are the horizontal and vertical direction discrete boundary 

force, respectively. We can discretize the term  , δ d  as 

follows: 
 

1, 1 1, 2

2, 1 2, 2

3, 1 3, 2

0

0

1, 1 1, 2

2, 1 2, 2

3, 1 3, 2

4, 1 4, 2

∆
∆ 0

0 ∆
∆

1

2

1

2

 

 
       In general case,  and  can be written as: 
 

, T 
 
    where  and  are 
 

0
0  

2,2, 1 2,2,

, 1, 1 , 1,

 

2,2, 1 2,2,

1, , 1 1, ,

 

0
0

 

∆ 0

0 ∆
 

 

       Notice that for each row of , there are only nine values are nonzero because 
of the definition of the discrete delta function if we let ∆ . 
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3.3   Matrix factorization method 
 
   Put the unknown terms , , and  on the left side of the equal sign, 
and the other terms on the right side. The discretization can be written as: 
 

2 2
3
2

1
2

 

                                              0  
                                               

 

   Let 
2

 and ̂
2

3
2

1
2

1 , then 

 
1 ̂ 1 
                        0  
                         

 
   The matrix factorization method is a projection approach of the immersed 
boundary method introduced by Taira and Colonius [9]. Similar to the fractional 
step method, we have known the facts that  and . The 
discretization can be rewritten to 
 

1 ̂ 1 
1                                         0 2 

                                        

   Let 1 , , , ̂ ,  and 

. It can be represented by the matrix form as follow: 

 

 
1

0
1

1

2
0

 

 
   We know that T, but  and  do not have the symmetric relation 
directly. So a transformed forcing function  was introduced by Taira and Colonius 
[9]. It satisfies T . That is, T . The matrix form becomes: 
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T

T

1

0
1

1

2
0

 

 
   Let T , λ T,  , and 2

1 T: 1

T
1

λ
 

 

 
   The fractional step method could be applied here. 
 

T
1

λ T T
1

λ
 

 
   Here we use N to approximate , there will exist an Nth order error 
term. 
 

T T N
N 1

λ
N λ 2⁄

0
 

 
   Let N λ, the matrix factorization method can be written in 
three steps: 
 

                                      Solve     
T N λ T             Solve   λ  

N λ                 Get     
 
   Since  and T N  are symmetric and positive definite, conjugate 
gradient method can be applied to solve  and λ. Consider a special case that 
∆ ∆ , then . T  can be regard as: 

 
 

                       
T 2  

 
   So in this case, . 
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4 Numerical Results 
4.1   Error estimate of fractional step method 

 
   Consider the incompressible Navier-Stokes equations consisting of the 
momentum and continuity equations. There exists an exact solution that satisfies 
the Navier-Stokes equations. They are 
 

, , 2 ⁄  
, , 2 ⁄  
, , 2 2 4 ⁄ 4⁄  

 
   Use this data, we can know the initial and boundary conditions, and compare 
the numerical solution with the exact solution. We set the computational domain 
Ω 0,1 0,1 , the computational time T 1, and the Reynolds number 
Re 40.  
 

To check the order of accuracy of the fractional step method, let ∆t
1 400⁄  , 1 800⁄  , 1 1600⁄ , 1 3200⁄  , and  1 6400⁄ , respectively. N 3. Suppose 
that ∆ ∆ , and let 40∆t . We define the maximum error by 
subtracting the numerical solution from the exact solution and take infinite 
norms. The order is known by taking  on the ratio of the errors. As shown 
in table. 1, the fractional step method has second-order accuracy in time. 
 
 
 
Table 1 
The max um errors from different ∆t im
             maximum error          order   ∆t            

                    3.2781e-004            2.47 1 400⁄ 1 10⁄  
                 5.9040e-005            1.97 1 800⁄   1 20⁄   
                  1.5094e-005            2.01 1 1600⁄ 1 40⁄   
                  3.7449e-006            1.96 1 3200⁄ 1 80⁄   
    1 6400⁄      1 160⁄           9.6555e-007            － 

 
 

  



4.2   The flow past a cylinder 
 
   Consider a situation that the flow past a cylinder, where the diameter of the 
cylinder is . The matrix factorization method can be applied here to simulate 
this situation. 
 
   In this test, the computational domain is set by Ω 0,16 0,8 . The 
Reynolds number Re 100 and 200 , respectively. We choose ∆t 1 640⁄  
and ∆x ∆y 1 16⁄ . The initial condition is given by | 0  and 
| 0. The boundary condition is shown in Fig.6. To construct the cylinder, 

we put the center of the cylinder at the position 4,4 , and let the diameter 
1. Choose the number of the markers 64, then ∆ 64⁄  . Notice 

that ∆ 0.785 . 

 

Fig. 6. The boundary condition and the computational domain 

 
   The simulations which the flow past a cylinder at Reynolds number 100 and 
200 show the periodic vortex shedding. In figure 7, we can see the periodic 
vortex shedding in the vorticity contours. The vorticity of the flow is defined as 

. 
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Fig. 7. The vorticity contours at Reynolds number 100(left) and 200(right) at the time T 60 



   There are three quantities, the drag coefficient , lift coefficient , and 
the Strouhal number . We can use the three quantities to compare this 
simulation with others. The three quantities are defined as: 

2⁄

 

 

2⁄
 

 

 
where  and  are the drag force and lift force, 1 in this simulation, 

 is the frequency of the vortex shedding.  and  can be obtain in [11], 
which are 

, , δ d d
Ω

 

 

 
    and  are approximated by 

·  

 

·  

 
   In figure 8 and 9, we can observe the periodic vortex shedding. In table 2 and 
3, we compare the three quantities with the previous numerical results which 
refer to [9, 11, 12, 13, 14, 15] at Reynolds number Re 100 and 200. 
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Fig. 8. The time evolution of drag(left) and lift(right) coefficients at Reynolds number Re 100 
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Fig. 9. The time evolution of drag(left) and lift(right) coefficients at Reynolds number Re 200 
 
 
 
Table 2 
The comparisons of lift and drag coefficients and Strouhal number of Re 100 
      Present    Lai and Peskin[11]    Kim et al.[12]    Silva et al.[13] 

     1.64         1.44               1.33            1.39 
     0.177        0.165                -             0.16 

     0.40         0.33               0.32             -   

 
 
 
 

Table 3 
The comparisons of lift and drag coefficients and Strouhal number of Re 200 
     Present  Taira and Colonius [9]  Linnick and Fasel[14]  Liu et al[15]

    1.56         1.36               1.34              1.31 
    0.206        0.197              0.197             0.192 

    0.72         0.69               0.69              0.69 

 
 

 
  



4.3   The flow past two cylinders 
 
   In this test, we simulate the flow past two cylinders at the Reynolds number 
Re 200. Let the diameter  of the two cylinders are the same, and set to be 

1. Similar to the previous case, we set the computation domain Ω
0,16 0,8 , ∆t 1 640⁄  and ∆x ∆y 1 16⁄ . The initial and boundary 

conditions are as before, too. To construct the cylinder, we put the centers of this 
two cylinders at the position 4, 2.5  and 4, 5.5 . We also choose ∆
64⁄  , so the number of the markers 128. The time evolution of drag and 

lift coefficients and the vorticity contours are shown in figure 10 and 11. We can 
observe that the drag coefficients of the two cylinders are similar, and the lift 
coefficients of the two cylinders are symmetric. 
 
 
 

 
Fig. 10. The time evolution of drag(left) and lift(right) coefficients of the upper(up) and lower 

(down) cylinders. 
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(a)  (b)

(c)  (d)

(e)  (f)

(g)  (h)

(i)   (j)

(k)  (l)  
Fig. 11. The vorticity contours when the flow past two cylinders : (a)t=7, (b)t=8, (c)t=9, (d)t=10, 

(e)t=11, (f)t=12, (g)t=30, (h)t=31, (i)t=32, (j)t=33, (k)t=34, (l)t=35.  
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4.4   The flow past a wing 
 
   Here, we simulate the flow past through a wing of the airplane at the 
Reynolds number Re 200. We use the same computational domain, mesh, 
initial condition and boundary conditions as before, but the immersed object. See 
figure 12, the shape of the immersed object is a airfoil, which is a thin winglike 
structure. We rotate the wing by an angle, which is 30° here, as shown in 
figure 13. The periodic vortex shedding also can be observed behind the wing in 
figure 14. 
 
 

 

Fig. 12. The shape of the immersed object 

 
 

 

Fig. 13. The placement of the wing 

 

29 
 



(a)  (b)  
 

(c)  (d)  
 

(e)  (f)  
 

(g)  (h)  
 

(i)   (j)  
Fig. 14. The vorticity contours when the flow past a wing : (a)t=51, (b)t=52, (c)t=53, (d)t=54, (e)t=55, 

(f)t=56, (g)t=57, (h)t=58, (i)t=59, (j)t=60. 
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4.5   The flow past an oscillating cylinder 
 
   Consider the same simulation as the flow past a cylinder at Reynolds number 
Re 100, but the cylinder is moving here. We impose the velocity ,  
at the boundary  as , 0, 0.14 cos 2 , where  is the 
frequency that the cylinder oscillates. That is, the cylinder oscillates vertical to 
the stream. Here we choose 2 . The time evolution of drag coefficient and 
the vorticity contours are shown in figure 15 and 16. Compare with figure 8, we 
can see that the frequency of the vortex shedding is influenced by the oscillation 
of the cylinder after the cylinder moves. In table 4, we compare the drag and lift 
coefficients with the previous numerical results which refer to [17, 18]. 
 

 
Fig. 15. The time evolution of the lift(right) coefficients 

 
 
Table 4 
The comparisons of the lift and drag coefficients 
        Present            Su et al.[17]          Hurlbut et al.[18] 

       1.84                1.70                  1.68 
       1.75                0.97                  0.95 
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(a)  (b)  
 

(c)  (d)  
 

(e)  (f)  
 

(g)  (h)  
Fig. 16. The vorticity contours when the flow past a oscillating cylinder : (a)t=4.21875, (b)t=4.921875, 

(c)t=5.625, (d)t=6.328125, (e)t=7.03125, (f)t=7.734325, (g)t=8.4375, (h)t=9.140625. 
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5 Conclusion 
 

In this thesis, we use the matrix factorization method introduced by Taira 
and Colonius [9] to simulate the flow past as immersed object. In the 
numerical result, we see that this method can handle the immersed object with 
complex shape, and which the immersed object is moving, even the two or 
more objects. It is useful in the engineering applications. In Section 4.4, we 
simulate the situation when the flow past a wing. The flow produces vortex 
shedding behind the wing. 

 
Here we suppose that the mesh widths of each cell are the same, that is, we 

let ∆ ∆  for all , . In fact, the matrix factorization method can use 
the different grid size of each cell. If the higher accuracy is desired, the grid 
size near the immersed object has to be small. We can adapt the code to handle 
the different mesh widths, to improve the accuracy. 
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