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Abstract

The immersed boundary method is a model to simulate a viscous incompressible
fluid with immersed massless boundary. It comes from the Navier-Stokes equation of
viscous incompressible fluid with the interaction term between the immersed
boundary and the fluid. The matrix factorization method is a formulation of immersed
boundary method, and the idea is the fractional step method for Navier-Stokes
equation. The immersed boundary problem could be factorized to three steps, and the
conjugate gradient method can be applied to solve the first and second step. In this
paper, we use the matrix factorization method simulate the flow past stationary or
movable immersed object, including the flow past a stationary and a moving cylinder,
the flow past two stationary cylinders, and the flow past a winglike object.
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Introduction

As we all know, the immersed boundary method has played an important
role in the fluid-solid interaction problems. Peskin [7] first introduced the
method to simulate the blood flow with an elastic membrane which can be
regarded as the immersed boundary in the fluid. He discretizes the flow field
with Eulerian grid, and discretizes the immersed boundary with Lagrangian
points. The immersed boundary exerts a force on the fluid, and moves with a
velocity, so the immersed object can move or be deformed.

The origin fractional step method is introduced by Chorin [1] to solve the
incompressible Navier-Stokes equation. Perot [3] regards the fractional step
method as a matrix factorization method, and the idea comes from the LU
decomposition. The fractional step method can be written in three steps, which
the first and second step can be solved by the conjugate gradient method, and
the third step is a projection. Taira and Colonius [9] extend the fractional step
method from Navier-Stokes equation to immersed boundary problem by
observing the symmetric relationship between the discrete interpolation and
regularization operators, and also factorize the scheme to three steps. The
conjugate gradient method can be applied to the first and second step.

In Section 2, we introduce how to discretize the incompressible Navier-
Stokes equations with the staggered marker-and-cell mesh, and review the
fractional step method. The detailed matrix forms of each operator are
introduced in Section 2.4 with the Dirichlet and the Neumann boundary
conditions. In Section 3, we review the immersed boundary method first, and
then consider the discretization of the discrete interpolation and regularization
operators. The matrix factorization method is introduced in Section 3.3.

The numerical result is shown in Section 4. We can see the second-order
temporal accuracy from the error estimate, and the simulation of the flow past
a stationary or moving immersed object, including the flow past a stationary
and an oscillating cylinder, the flow past two stationary cylinders, and the flow
past a winglike object.
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Fractional Step Method

2.1  Navier-Stokes equation

Consider the incompressible Navier-Stokes equations consisting of the
momentum and continuity equations as:

o w-Vu=—Tp+a
ot T YT TP TR A

V-u=20

where u(t,x), p(t,x), Re are the velocity vector, pressure, and Reynolds
number, respectively. Usually, the initial condition u|,—, and the boundary
condition ul,q are known. If we consider thatu(x,t) is a two dimensional
vertor, that is, u(x,t) = (u(x,t), v(x,t)), then we can rewrite the incompressible
Navier-Stokes equations to:

1
ut+u-ux+v-uy+px=R—e(uxx+uyy)

1
vt+u-vx+v-vy+py=E(vxx+vyy)

Uy +v, =0

with the initial conditions u(x,y,0), v(x,y,0), and the boundary conditions
u(x,y't)km ) U(x,%t)hm :

2.2  Staggered grid discretization

To discretize the equations, refer to [1, 2, 3, 4], we can use the staggered
marker-and-cell mesh that introduced by Harlow and Welsh [5] with implicit
Crank-Nicolson for the viscous term and explicit second-order Adams-Bashforth
for the convective term:

uttl —u® 3 1. . L™ + L(u™)
—N n ——N n-1y — _
o ta N —oN@™) = -6() + T
D‘(un+1) =0



where u™*?! = (u™*?1,v™* )T and ¢ are the discrete velocity and pressure. N,
G, L and D are the discrete convection, gradient, laplacian and divergence
operator, respectively. Before introducing how to discretize these terms, we have
to know how staggered marker-and-cell mesh can be applied here.

Suppose the two-dimensional domain of this equation is a rectangle. Let the
domain Q = [0,X] % [0,Y], then divide [0,X] and [0,Y] into [ parts and m
parts, respectively. See figure 1, there are [ x m cells. To apply the staggered
grid discretization to Navier-Stokes equations, we define the discrete velocity of
horizontal direction u at the center of each cell’s left and right edges, and the
discrete velocity of vertical direction v at the center of each cell’s upper and
lower edges. The discrete pressure ¢ is defined at the center of each cell.
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Fig. 1. The staggered marker-and-cell mesh



To make the scheme simple, suppose Ax; = Ay; =h forall 1 <i <1 and
1 <j<m, then the discrete horizontal velocity u;; can be regarded as the
approximation of u((i — 1)h, (j — 1.5)h,ndt). Similarly, the discrete vertical
velocity v approximates to v((i—l.S)h,(j—l)h,nAt) and the discrete

1)

pressure ¢i*** approximates to p((i — 0,5)h, (j — 0.5)h, (n + 0.5)4t).

Use staggered marker-and-cell mesh to discretize the convection, gradient ,
Laplacian and divergence terms. We can easily obtain the staggered grid
discretization of the Navier-Stokes equations. Consider the Laplacian term, using
the Taylor expansion, we have

1
2
Ujq,j = Wy — (W) jAx_1 + E(uxx)i,iji—l
1 2
Uipr,j = Ui+ (W) jAx; + E(uxx)i,iji

Add these two formulas, then (uyy);; is:

2Uj_q 2wy - 2Uj41,
Axi_l(Axi_l aF Axi) Axi_lei Axi(Axi_l + Axi)

(uxx)i,j =

Similarly, let Ay;_o5 = (Ayj_; + Ay;)/2, then

2u; i 2u; 2U; j4q

u L= — +
( yy)” Ayj_15(Ayj_15 + Ayj—os) AVj-158Yj-05  Ayj_o5(BYj_15 + AYj_os)

The discrete Laplacian form can be written as:
Ay = (Ur)ij + (uyy)l-,j

Since we suppose that Ax; = Ay; = h, we obtain:
My = (Ugjoq + Upmqj — AUy + Upp j + U jiq )/ HP
Similarly,

~ 2
My ;= (Vijoq + Vimyj — 40y ) + Vigrj + Vi j41) /R

4



Although the discrete pressure ¢ is defined at the center of each cell, G(¢)
is defined at the same place that the discrete velocity u and v are defined. We

use the same index i , j to represent the discrete (p,);; and (py)ij. Let

Ax;_o5 = (Ax;_1 + Ax;)/2 The form can be written as:

P)ij ~ (Pijo1 — Bi-1,j-1)/DXi—g5
(Py)l-'j ~ (pic1j = bicrj-1)/BYj-0s

Consider the convection term. The discretization of the convection term is:

(u T ) ~u (ui+1,j - ui—l,j) L Ujjr1 — Ujj-1
: : L~ ii\ X~ . . 1.1
x Y7ij L Axl-_l + Axi +5J=3 ij_1.5 + ij—O.S

where Vi1 is the mean of the values of neighbor v. That is,

27 2

_ Vij1 T Vigqja TVt Vi

VE | =
TN 4

Similarly,

v.+1,.—v._1’. v.,.+1—v.'._1
(u-vx+v-vy)..zu,1.1< o )+vi,j<¥
bj impi4p \AX g5 + AXgs Ay;j_q + Ay;

where

Wiy T U U T U

u, 1.
i=pi+3 4

If Axi = Ay] = h, then Axi_o_s = ij_0_5 =h



Consider the discrete divergence term. We can use divergence theorem here.
Integrate the continuity equation on each cell.

O=jV-udV= Z u-ndS

cell cell faces face;

where n is the outward normal vector of cell face. Suppose the domain is
two-dimensional, then dV can be rehash to dxdy, and dS can be rehash to dx
or dy.We obtain the discrete continuity equation:

—U; j41AY) + Uih1j+18Y) = Vigr, jAX; + Vigq j418% = 0

forall 1<i<1! and 1< j < m. Since we suppose that Ax; = Ay; = h, it can
be written as:

(—ui_l’j + ui,j — vi,j—l o vi,j)h =0
2.3 Fractional step method

After discretize the incompressible Navier-Stokes equations, we have to
solve the velocity u™*! and the pressure ¢. Put the unknown u®*! and ¢ on
the left side of the equal sign, and the other terms on the right side. The discrete
formulations of incompressible Navier-Stokes equations are:

At At ' 2Re

(1 I—Lt)unﬂ +Gp = (il+it)un 3 Ram + 2R + e
2Re 2 2 1
Du™+! =0+ bc,

where bc; and bc, are the boundary conditions. The boundary conditions
appear in equations because we regard the discrete operators as matrix form,

u™*! and ¢ both are vectors. Let A = il — ;%ei ,and # be the right side of

the momentum equation. That is, # = (Aitl + ﬁi.) u — %N(un) + %N(u"‘l).

The equations can be written as:



B 9=+

The details of the matrix form of the discrete operators could be found in [3].
These matrices will be introduced detailed with the boundary conditions in
Section 2.4, but brief here. First, we define u®*! = (w1, v™*1)T and ¢:

un+1 = (uZ'z, ...ullz, u2'3, ...ul,3, e, uZ,m+1, ...ul'm_l_l)
vt = (172,2: wVir1,2, V23 W13, 7 Vom ---ul+1,m)
T
= (¢1,1' ¢l,1' ¢1,2' d)l,Z' Tt ¢1,m' d)l,m)

Moreover, we define two matrices R and M:

Ay L4
0
Axy 0

R — Aymll—l R .,
X
0 L 0 Ax;

\ Ax 0
_ Mx 15
M= | m | ,Mx; =
Ay, sl / ! ( )

\ 0 0 Axl_0.5
Aym_osh

If Ax; = Ay; = h, then R =M = hl_1ym4i0n-1), Where T is the identity
matrix. We take the discrete momentum equation product M, then there is a new
matrix form:

MAu™*! + MG¢p = M7 + Mbc,
ﬁun+1 = bCz

Define g"*1 = Ru™*?, then



MAR 1™ + MG¢ = M7 + Mbc,
ﬁR—lqn+1 = bc,

To make the matrix form simpler, let A = MAR™!,G = MG, r = M7,
bc; = Mbc,, and D = DR, the matrix form can be written as:

G 9" )=+

There is an interesting fact that D = —GT, that is the reason why we rehash
the origin matrix form to the new matrix form. The origin fractional step method
is introduced by Chorin in [1], Now, we use the fractional step method which is
introduced by Perot in [3]. The idea of the fractional step method comes from the
LU decomposition:

(3 g) ' (q’;bﬂ) - (_éT GT/?‘lG) ((l) A—IIG) ' (q;ﬂ) - ((r)) + (Zg)

To handle the inverse matrix of A, there is a approximation introduce by
Témam [16], let M = MR™!, L = (MLR1)/Re, the matrix A can be written
as:

A = MAR™! —l\7l<1 I 1 L)R-1 = M 1L ! M<l AtM‘1L>
B ~ " \At  2Re At 2" At 2
The inverse matrix of A can be approximated by :
At -1 At At? AtV
(I—7M IL) zl+7M 1L+—(M 1)2 + - oy ~M1L)N
N Atk N+1
= M LMt + M- 1L)NM?
k=1

k
N = lef:l;%_l(M‘lL)k‘lM‘l is the Nth order Talyor expansion of A1,

let A=l =BN + (M 1L)NM~1, then



(o )y %19 () =0+ (o) (e es/2")

The last term is the truncation error from BN. If At is small and N is large
enough, the last term can be ignored. Here we want to solve g™*! and ¢ , so
we define g* = q"*! + BNG¢ , then

G %) () =" )= (5)

(—éT GTgNG) (cczb) B <—GTq* I:q(;TBNG¢) B (g) ' <Z§l)

The fractional step method can be written in three steps:

Aq" =1+ b (Solve g*)
G'™BNGop = GTq* + bc, ~ (Solve ¢)
qn+1 " q* _ BNG¢ (Get qn+1)

The matrix A =M (Aitl — ﬁi.) R~1 is symmetric positive definite because

the discrete laplacian operator L is symmetric and negative definite. If At is
small and N is large enough, BN is symmetric and positive definite, too. It is
easy to check that GTBNG is symmetric and positive definite.

(GTBNG)T = GT(BM)TG = GTBNG
xTGTBNGx = (Gx)TBN(Gx) > 0

Since A and G'BNG are symmetric and positive definite, conjugate
gradient method can be applied to solve g* and ¢. The fractional step method
has second-order temporal error form implicit Crank-Nicolson and explicit
second-order Adams-Bashforth, and Nth order error from BN, which is the
approximation of A~1. The numerical results of second-order accurate
approximation of velocity could be found in chapter 4. The discrete pressure ¢
is first-order approximation of p™*/2 [3]. The second-order accurate
approximation of pressure could be found in [6].



2.4  Boundary conditions

First, we discuss the case of Dirichlet boundary conditions where the domain
Q=1[0,X] x[0,Y]. That is, the boundary conditions u(0,y,t), u(X,y,t),
u(x,0,t), ulxY,t), v,yt), vX,yt), v(x0,t) and v(x,Y,t) are
known.

Suppose Ax; = Ay; = h, we know the values of the boundary velocity u’fjl,

ultl, vt and vl they are

utt = u(0, j — 1.5)h, (n + 1)At)
uitl = ulX, (G — 1.5)h, (n + 1)At)
vt = v((i — 1.5)h, 0, (n + 1)At)

vimi = v(( — L5AY, (n + 1At)

for 2<i<l+1and 2<j<m+1.

But the other discrete boundary conditions u?y"', ul'y},, vit' and vty
are not defined at the boundary. We approximate these boundary conditions as

follows:

ul = 2u((i = DA, 0, (n + 1)At) — uly
ufiia = 2u(( — DAY, (0 + DAL) = ufyp iy
v & 2v(0, j — Dh, (n + DAL) — v}
Uzn++zb ~ 2v(X,(j — Dh,(n + 1AL) — vy

forl<i<l+1andl<j<m+1.
After we know the discrete boundary conditions, the discrete operators can

be written as matrices. Consider the laplacian term L, it contains the laplacian
operators to the horizontal velocity and vertical velocity, called L, and L,.

. (L, 0
L‘(O h)

The discrete Au;; and Av;; have been introduced already. Since we
suppose Ax; = Ay; = h, L; and L, can be written as :

10



Li; I 0 -4 1 0

I,.i Ly _| 1 -4
L, = I, | S 1
0 L1 Lim 0 1 -4 (1-1)x(1-1)
L, I, 0 4 1 0
Il L22 1 _4‘
L, = A A L w1
0 I Lymq 0 1 -4/

Obviously, L is symmetric and negative definite.

The boundary condition term bc; comes from L. be, can be written as
bc; = (bcu™ ! + beu™, bev™ ! 4+ bev™)T /2Reh?, where bcu™ and bcv™ are

bcu™
T
=(uf2,0,---,0,u{’+1'2, uf3,0,---,0,u{1+1_3, """ 'uil,m+1'0r 'O'u?+1,m+1)
T
+ (ug,pug,p ""u{fl' " TIT 0, U 2 USmez) ""uln+1,m+2)
bcv™
T
= (UEZ'O'.'.’O’U{I+2,2' v£3’ 0,...,0’ vln+2'3, ...... ,v:rll’m’ 0’ . ,0,U{1+2,m)
T
+ (U?,1'u§,1r""vln+1,1' 0, R ,0 .Uz’)’,m+1'u§‘,m+1»""Uz“+1,m+1)
To introduce G and D, refer to [19], v, Yy
let’s see a simple example. Consider the T p/]'\ . p’P
u 2 u
two cells case. There are only four Ay, ! A N
horizontal velocity terms and three vertical N3 T T
velocity terms, called u,, u,, us, v,
FA){I%}% szﬁl

vy, V3, V. See fig. 2.
Fig. 2. The two cells case

Consider the discrete divergence term, we know that

_ulAyl + uszl - ‘Ulel + U3Ax1 = 0
—uszl + u3Ay1 - Uzsz + U4AX2 = O

If we rewrite it to the matrix form, then

11



2
3
4

— ~~
;I I I s & g8

I
/

Notice that the center matrix is R. Let the left matrix be D, so we get the
simple factorization D = DR.

Similarly, we also can get the matrix form of G and factorize G. In the two
cells case, G¢ can be written as:

AxO.S

Axqs 0 /_11 (1)\
~ Axy 5 0 —1 -
Gop = Ay 1 0 (p )
0 Ay, o 1|7
Ay15 —1 0
R, 0 -1

Let the left matrix be M~1 and the center matrix be G. We can see that
G=M"1G and D = —G".

In general, the matrix form of G is

Gy, 0 11 0
Gl = , Gl] = < )
0 Gim 0 -1 1/g-1x
—Gy1 Gy 0
G2 = ( ) ,sz = Il
0 —Gom-1 Gamot

The relation that D = —GT still exists in general situation.

12



The boundary condition term bc, comes from D. bc, can be written as:

bc,
T
— n n n n n n
= (u1,2'0""'0: —Upt12 U1z 0,000, —up g5, e yUms1, 0, 0, _ul+1,m+1)
T
n n n n n n
+ (U2,1'u3,1' Uy, 000 e 0,V me1 V3mar 'Ul+1,m+1)

If there are not Dirichlet boundary conditions at all. That is, some boundary
conditions maybe are Neumann boundary conditions. Let the boundary
00 =90, U0Q, = 903U dQ,, and the boundary conditions u(x,y,t)|sq, .
v(x,y,t)|a0,, Inu(x,y,)]a0,, Onv(x,y,t)|aq, are known, where n is the
outer normal vector of the boundary.

For example, we suppose that 0Q, = {(x,y) € Q|x = 0}, 9Q, = dQ\ 0Q,,
00, ={(x,y) € Qx =X}, and 9Q; =90\ 0Q,. In figure 3, it shows the
relationship between the boundary condition type and the place. The boundary
conditions that we know are u(0,y,t), u,(X,y,t), u,(x,0,t), u,(xY,1),
v(0,v,t), v,(X,y,t), v(x,0,t) and v(x,Y,t).

But the thing we really care about is the discrete boundary condition. We
have known how to handle the discrete boundary condition when the boundary
condition is Dirichlet. Now we discuss the discrete boundary condition when the
boundary condition is Neumann.

V) D

Fig. 3. The left figure represents the boundary condition type of u. The right figure represents the

boundary condition type of v.

13



We can use the central difference to approximate u,,(x,0,t).

un+1 _ un+1
w,((i — D0, (n + DAL) ~ —2——1
Ayos

The discrete boundary condition u"+1 can be approximated by

ult = ulyt — Aygs uy((i — 1h,0,(n + 1)At)
But we do not know u{fz”l, so this part can be replace by uf,, or use the
velocity at the time step n and n-1 to approximate u;*. That is,
uldt =~ 2ul, —ust
This approximation also can be applied when the boundary condition is
Dirichlet. So the discrete boundary condition u"+1 can be approximated by

ultt = (2ufy — uf5") = Ayos - uy (= DA O, (n + 1)At)

Similarly, the other discrete boundary conditions can be written as

n+1

Uimy2 = (2u2m+1 Lm+1) + A3’m+05 uy((l - 1)h Y, (n + 1)At)
Uln++21] ~ (zvln+1,j - vl+1,j) + Axp05 - (X, G — Dh, (n + 1)At)
ultl =~ (2ully —ui ) + 8x - u (X, (G — 1.5)h, (n + 1)AL)
Notice that we are not use the central difference to approximate ujyy;.
Because these boundary conditions are approximated by u"™ and u™!. After
solving u™*!, we need to update the discrete boundary conditions. At the next

time step, they will be used to compute N(u).

Although we use the Neumann boundary conditions approximate the
boundary velocity, we would rather use the Neumann boundary conditions than
use the approximated boundary velocity.

Consider the laplacian operator L. For example, we would rather use

u,(0.5h,0,(n + 1At) than (ul$' - uytt)/Auy, when we compute the
approximation of Au,,. Suppose Ax; = Ay; = h, the discretization of Au,, is

14



u —u
u3'2 - 2u2’2 + ul,z + % - u'y (O'Sh! 0! (n + 1)At)

Auzlz =

h? h
_ ul’z - 3u2‘2 + u3’2 + u2‘3 . uy(OSh, 0, (Tl + 1)At)
B h2 h

Follow this idea, the matrix L and the boundary condition bc; also have
some change. In this case, the matrix L changes to

. (L 0
L‘(O h)
Li1 I 0 Ly I 0
I,_ L I L
L1 — -1 . 12 I , LZ l . 22 ' I
‘. -1 . . l
0 I,y Ly 0 I, Ly
where L;; and L,; are
/—3 1 0 \
1 =3
Li; = | 1 | ifj =1orm
\ T /
0 1 =2/ g-pxa-1
/—3 1 0 \
1 —4
Ly =| S s | for2<j<m-—1
\ Bt 145 /
0 1 =3/ q-pxa-1n
-4 1 0
1 -4 :
Ly = w1 fori<j<m-1
\ 1 -4 1 /
0 1 =3/

The corresponding boundary condition bc; also has some change. First,
we denote some values

ud* = u,((i — 1h,0,(n + 1)At)
wu = u,((( — DAY, (n + 1)At)
ur* = u, (X, j — 1.5)h, (n + 1)At)
v = v, (X, (G — Dh, (n + 1)At)
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The corresponding boundary condition bc; can be written as:

bc, = (bcu™* + beu™, bcv™*t + bcv™)T /2Reh?

where
bcu™
T

— n n n n n n
- (ullz, 0, b ,0, urz h, u1'3, 0,"',0, LLT‘3 h, """ ,ul,m_'_l, 0,"',0, uTl+1h)
+ h(—ud}, —ud},---,—ud}, 0, - 0 uud, uud, - uuM)?

bcv™

J— n O 0 n n 0 0 n n 0 0 n T

= (1]1’2’ ,t ’vrz’ v1’3’ ,oo,0, vy, e e ’vl,m’ , oo , ’vrm)

T
n n n n n n
+ (172,1'113,1' U 0000 e 0,V me 1 Usmets 171+1,m+1)

Neumann boundary condition also can be used to compute Du™*?!, but we
still use the discrete boundary condition bc, and original D. If we use the
Neumann boundary condition, the matrix D would be changed, the
symmetrization that D = —GT would be destroyed.
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3  Matrix Factorization Method

3.1 Mathematical formulation

The immersed boundary method was first introduced by Peskin in [7, 8].
Consider the two-dimensional incompressible Navier-Stokes equation with an
immersed massless boundary. Let the two-dimensional domain Q = [0, X] X
[0,Y]. Let the immersed boundary 0B = I', which is a closed curve, as shown in
Figure 4. The immersed boundary I' is tracked by the parametric function X(s),
0<s<Lp, where Ly is the length of the immersed boundary I'. The
mathematical formulation is

ou 1 Lr
M u-Vu=-Vp+—Au+t f £(X(s), 8(x — X(s))ds
ot Re 0

V-u=0
w(X(s),t) = f u(x, t)8(x — X(s))dx

Q

where x = (x,y), f(X(s),t) is the Lagrangian boundary force defined on the
immersed boundary, and w(X(s),t) is the velocity at the immersed boundary
r'. & is the two-dimensional Dirac delta function.

0 X

Fig. 4. The domain Q , immersed object B, immersed boundary I', and the Lagrangian

points &,
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3.2 Discretization

Similar to the discretization of the incompressible Navier-Stokes equations,
we can discretize the mathematical formulation. Refer to [9] , the discretization
can be written as:

(ut—ut 3 1 Lu™*! 4+ Lu®

N — ZN(um1 = —C i e
i AL +2N(u) 2N(u ) Gop + Re +Hf +bcy

Du™*! =0 + b,
Funtl = yntt

where H and E are the discrete regularization operator and the discrete interpolation
operator, respectively.

The discrete boundary force f and the discrete boundary velocity w™*! are
defined on the Lagrangian markers &,. We can regard &, as X(sy), where s, isa
monotone sequence between 0 and Ly, 1 <k < N, , as shown in figure 4. Let
& = (X, Yy), we define the distance between each Lagrangian markers Al as
follows:

Al = &1 — &l = ¥ Kirr = Xi)2 = Wpesr = Yi)? for1 <k < N —1

Aly, = [§n, — &1| = \/(XNk -X,) - (Yo — r)*

If the arc length of each part is known, we would rather define the arc length
Al then use distance. Then, we use Al, define As; as follows:

Asy = (Aly, +AlL)/2
Ask = (Alk + Alk_l)/Z for2 <k < Nk

Before we introduce H and E, the discrete delta function should be introduced
first. Here, we use the discrete delta function which was introduced by Roma et al [10].

8(x,y) = d(x) - d(y)

where the function d(r) is

18



( 1 td |7 2 Ar 3Ar
5-3—— [1-3|1—— f0r7S|T|S—

6AT Ar Ar 2

d(r) = A :

v Y11+ J1 3|r|2 for [r] < &
3Ar Ar orirt=1
\o otherwise
To make the scheme simple,
3
suppose  that Ax; =Ay; =h V?;\ ""‘/T\
when near the Lagrangian points. N !

' grangian p " l_\u2 s
Consider the two cells case, as V4 e T4 -
shown in fig. 5. Let wp*l= 11\ LS

Ar
(wax*, wy*1) | where walt? ¥y oy,
and wy*1 are the horizontal and
vertical direction of discrete boun- Fig. 5. The two cells case with the Lagrangian
dary velocity fields, respectively. points

Consider the discrete interpolation operator E . The original formulation
w(X(s),t) = [, u(x,£)8(x — X(s))dx in this case can be discretized to the

form as:

3
— 2
wx; = E uidy, ¢ h
i=1

4
Wy = z vl-dl,j_();kh2
j=1

where dy, ¢, = d(xy, — X)) - d(yy, — Vi), and (xy,,3,,) is the coordinate that
u; is defined. The matrix form of Eu = w can be written as:

d d d

u1,$1 u2,$1 u3,$; 0 Uy wxq

B2 durg, Gupg, Ausg, Uz | _ WXz
0 dv1,51 de.fl dv3.51 dwufl 17 xil

dvbf 2 dvzjfz dv&ffz dwof 2 ! 2
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Similarly, consider the discrete regularization operator H. Let fi, = (fxk, fVi),
where fx; and fy, are the horizontal and vertical direction discrete boundary

force, respectively. We can discretize the term fOLF f(X(s),t)8(x — X(s))ds as

follows:
duljfl dulrfz
duzvfl duZ’fz A fx
du?ﬂfl du3'§2 51 0 1\
= d d ASZ fxz
Hf = 171'51 Ul,fz \ A51 fy
1
0 dvz’gl dvz’fz 0 Asy/ \fy 2
dv3.f 1 dv&fz
d”4'§1 d”ébfz

In general case, H and E can be written as:

H=FS, E=h?FT
where F and S are
_(FL 0
F= (G F,
duz,z,fl duz,z,ka
Fl =
dul,m+1r§1 dul,m+1»€1vk
dvz,zfl dUz,z,ka
F2 -
dvl+1,mr§1 dul+1,m»€Nk
S = (S 9)
0 S
Asy 0
S =
0 ASNk

Notice that for each row of F, there are only nine values are nonzero because
of the definition of the discrete delta function if we let Ar = h.
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3.3  Matrix factorization method

Put the unknown terms u™*l, ¢, and f on the left side of the equal sign,
and the other terms on the right side. The discretization can be written as:

LS u™tl + Gp — Hf = L+i u”—gl/\l\(u”)+lﬁ(u”‘1)+55
At  2Re 2Re 2 2 1

At
ﬁun+1 =0+ bCZ
EFuntl = wntl

let A=~ —— and # = (l + L) u' — SR + 2N (™), then
At 2Re At ' 2Re 2 2

Au™! + Gp — Hf = 7 + bcy
ﬁun+1 =0+ bCZ
Funtt = wntl

The matrix factorization method is a projection approach of the immersed
boundary method introduced by Taira and Colonius [9]. Similar to the fractional
step method, we have known the facts that D = DR and G = M~1G. The
discretization can be rewritten to

MAR~(Ru™*!) + MG¢ — MHf = M7 + Mbc,
—D(Ru™*?) =0-bc,

ER—l(Run+1) = pntl

Let ¢"*' =Ru""!, A=MAR™', H=MH, r =M#, bg =Mb¢, and
E = ER™L. It can be represented by the matrix form as follow:

A G -H\ /q""! r bc,
(2o o)(e)-(2) ()
E 0 0 f whtl 0

We know that —D = GT, but E and H do not have the symmetric relation
directly. So a transformed forcing function f was introduced by Taira and Colonius
[9]. It satisfies Hf = —ETf. Thatis, f = —(EET)_lEHf. The matrix form becomes:
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A G EN /¢ r be,
(GT 0 O) ¢ |= < 0 > + <—bc2>
E 0 0 ]'5 Wn+1 0
let Q=(G EMN, A=(p DT, m=r+bc ,and r, = (=bc, w*)T:
(o o)(%)=()
QT o/\ A/ \n
The fractional step method could be applied here.
A Q\ (g1 (A 0 I A—lQ) (q””) (M
<QT 0)( A )_ (QT —QTA‘IQ) (o I AT (rz)

Here we use BN to approximate A~1, there will exist an Nth order error
term.

(@ —amo)lo %)) = () + (M)

Let g* = g™** + BNQA, the matrix factorization method can be written in
three steps:

Ag"=n (Solve q%)
Q"BNQA = QTg* — 1, (Solve 2)
qn+1 — q* _ BNQK (Get qn+1)

Since A and QTBNQ are symmetric and positive definite, conjugate
gradient method can be applied to solve g* and A. Consider a special case that
Ax; = Ay; = h,then R = M= hl_1ym+im-1y- Hf = —ETf can be regard as:

MHf = MFSf = hF(Sf)
= —R7'E'f = —?R"'Ff = hF(-f)

So in this case, f = —Sf.
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A

Numerical Results

4.1  Error estimate of fractional step method

Consider the incompressible Navier-Stokes equations consisting of the
momentum and continuity equations. There exists an exact solution that satisfies
the Navier-Stokes equations. They are

u(x,y,t) = —cos(nx)sin(my)exp(—2m%t/Re)
v(x,y,t) = sin(nx)cos(my)exp(—2m?t/Re)
p(x,y,t) = — (cos(an) + sin(27ry))exp(—4n2t/Re)/4

Use this data, we can know the initial and boundary conditions, and compare
the numerical solution with the exact solution. We set the computational domain
Q =1[0,1] x [0,1], the computational time T =1, and the Reynolds number
Re = 40.

To check the order of accuracy of the fractional step method, let At =
1/400 ,1/800,1/1600,1/3200 ,and 1/6400, respectively. N= 3. Suppose
that Ax; = Ay; = h, and let h = 40At. We define the maximum error by
subtracting the numerical solution from the exact solution and take infinite
norms. The order is known by taking log, on the ratio of the errors. As shown
in table. 1, the fractional step method has second-order accuracy in time.

Table 1
The maximum errors from different At
At h maximum error order

1/400 1/10 3.2781e-004 2.47
1/800 1/20 5.9040e-005 1.97
1/1600 1/40 1.5094e-005 2.01
1/3200 1/80 3.7449e-006 1.96
1/6400 1/160 9.6555e-007 —
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4.2  The flow past a cylinder

Consider a situation that the flow past a cylinder, where the diameter of the
cylinder is D. The matrix factorization method can be applied here to simulate
this situation.

In this test, the computational domain is set by Q = [0,16] x [0,8]. The
Reynolds number Re = 100 and 200, respectively. We choose At =1/640
and Ax =Ay =1/16. The initial condition is given by u|,-o =0 and
V|t=o = 0. The boundary condition is shown in Fig.6. To construct the cylinder,
we put the center of the cylinder at the position (4,4), and let the diameter
D = 1. Choose the number of the markers N, = 64, then As = m/64 . Notice
that As ~ 0.785h.

a 1&

Fig. 6. The boundary condition and the computational domain

The simulations which the flow past a cylinder at Reynolds number 100 and
200 show the periodic vortex shedding. In figure 7, we can see the periodic
vortex shedding in the vorticity contours. The vorticity of the flow is defined as
Uy — Uy.

Fig. 7. The vorticity contours at Reynolds number 100(left) and 200(right) at the time T = 60
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There are three quantities, the drag coefficient Cp, lift coefficient C,, and
the Strouhal number St. We can use the three quantities to compare this
simulation with others. The three quantities are defined as:

Fp
Cp =77
Uw?D/2
F
CL="—2"77
Uw?D/2
faD
St =-1=
Usw

where F, and F; are the drag force and lift force, U, = 1 in this simulation,
fq 1s the frequency of the vortex shedding. F, and F, can be obtain in [11],

which are

(Fp,Fp) = —fﬂ fLFf(X(s), t)8(x — X(s))ds dx
0

F, and F, are approximated by

Fp ~ z (FS - fx), b
i

iy Z(Fzg - fy), n2
L

In figure 8 and 9, we can observe the periodic vortex shedding. In table 2 and
3, we compare the three quantities with the previous numerical results which
refer to [9, 11, 12, 13, 14, 15] at Reynolds number Re = 100 and 200.

2 T T T T T 1

191 B 0er
181 B 06F
17 1 04F

16l W

16F

02f

oF

The lift coefficient

141 a2t

The drag coefficient

1.3r 1 04t

121 B 061

11 B 08f

1

. L L . L K . L L . L
10 20 30 40 a0 B0 70 10 20 30 40 a0 B0 70
The time variable t The time variable t

Fig. 8. The time evolution of drag(left) and lift(right) coefficients at Reynolds number Re = 100
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2 . ‘ . . . . 1
18} 1 naf
18} 1 06}
17F q 04f
= -
=
g 18} 2 pof
3 5
8 15} g ot
= a
7 &
o 14 = 0zt
£ =
13F q 04F
12} 1 a6}
11} 1 aaf
[ 20 a0 n 50 B0 [0 20 a0 a0 50 B0

The tirme variable t The tire variable t

Fig. 9. The time evolution of drag(left) and lift(right) coefficients at Reynolds number Re = 200

Table 2
The comparisons of lift and drag coefficients and Strouhal number of Re = 100

Present Lai and Peskin[11] Kim et al.[12] Silva et al.[13]

o 0.40 0.33 0.32 -
Cp 1.64 1.44 1.33 1.39
St 0.177 0.165 - 0.16
Table 3

The comparisons of lift and drag coefficients and Strouhal number of Re = 200
Present Taira and Colonius [9] Linnick and Fasel[14] Liu et al[15]

Cy, 0.72 0.69 0.69 0.69
Cp 1.56 1.36 1.34 131
St 0.206 0.197 0.197 0.192
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4.3  The flow past two cylinders

In this test, we simulate the flow past two cylinders at the Reynolds number
Re = 200. Let the diameter D of the two cylinders are the same, and set to be
D = 1. Similar to the previous case, we set the computation domain Q =
[0,16] X [0,8], At =1/640 and Ax = Ay = 1/16. The initial and boundary
conditions are as before, too. To construct the cylinder, we put the centers of this
two cylinders at the position (4,2.5) and (4,5.5). We also choose As =
/64 , so the number of the markers N, = 128. The time evolution of drag and
lift coefficients and the vorticity contours are shown in figure 10 and 11. We can
observe that the drag coefficients of the two cylinders are similar, and the lift
coefficients of the two cylinders are symmetric.

2.1

1.9

The drag coefficient
The lift coefficient
=

1.8

o 10 20 30 40 o 10 20 30 40
The tirme variable t The time variable t

2.1

1.9

The drag coefficient
The lift coefficient
=

1.8

o 10 20 30 40 o 10 20 a0 40
The tirme variable t The time variable t

Fig. 10. The time evolution of drag(left) and lift(right) coefficients of the upper(up) and lower

(down) cylinders.
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Fig. 11. The vorticity contours when the flow past two cylinders : (a)t=7, (b)t=8, (c)t=9, (d)t=10,
(e)t=11, (Ht=12, (9)t=30, (h)t=31, (i)t=32, (j)t=33, (k)t=34, (1)t=35.
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4.4  The flow past a wing

Here, we simulate the flow past through a wing of the airplane at the
Reynolds number Re = 200. We use the same computational domain, mesh,
initial condition and boundary conditions as before, but the immersed object. See
figure 12, the shape of the immersed object is a airfoil, which is a thin winglike
structure. We rotate the wing by an angle, which is —30° here, as shown in
figure 13. The periodic vortex shedding also can be observed behind the wing in
figure 14.

65 T T T T T T T T T T

55F .

38F .

65 T T T T T T T T T T

55F .

445¢

38F

Fig. 13. The placement of the wing
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Fig. 14. The vorticity contours when the flow past a wing : (a)t=51, (b)t=52, (c)t=53, (d)t=54, (e)t=55,
(At=56, (g)t=57, (h)t=58, (i)t=59, (j)t=60.
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4.5  The flow past an oscillating cylinder

Consider the same simulation as the flow past a cylinder at Reynolds number
Re = 100, but the cylinder is moving here. We impose the velocity w(X(s),t)
at the boundary I' as w(X(s),t) = (0,0.14 cos(2rf.t)), where f. is the
frequency that the cylinder oscillates. That is, the cylinder oscillates vertical to
the stream. Here we choose f. = 2f,. The time evolution of drag coefficient and
the vorticity contours are shown in figure 15 and 16. Compare with figure 8, we
can see that the frequency of the vortex shedding is influenced by the oscillation
of the cylinder after the cylinder moves. In table 4, we compare the drag and lift
coefficients with the previous numerical results which refer to [17, 18].

1k i
natr [\ -

LA+ .

The lift coefficient
=)
1

2 1 1 1 ]
30 40 50 B0 70 a0

The time variable t

Fig. 15. The time evolution of the lift(right) coefficients

Table 4
The comparisons of the lift and drag coefficients
Present Suetal.[17] Hurlbut et al.[18]
Cy, 1.75 0.97 0.95
Cp 1.84 1.70 1.68
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@% + + 3+ + v 3 =+ w () i s+ 3 & 5w
Fig. 16. The vorticity contours when the flow past a oscillating cylinder : (a)t=4.21875, (b)t=4.921875,
(c)t=5.625, (d)t=6.328125, (e)t=7.03125, (f)t=7.734325, (g)t=8.4375, (h)t=9.140625.
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Conclusion

In this thesis, we use the matrix factorization method introduced by Taira
and Colonius [9] to simulate the flow past as immersed object. In the
numerical result, we see that this method can handle the immersed object with
complex shape, and which the immersed object is moving, even the two or
more objects. It is useful in the engineering applications. In Section 4.4, we
simulate the situation when the flow past a wing. The flow produces vortex
shedding behind the wing.

Here we suppose that the mesh widths of each cell are the same, that is, we
let Ax; = Ay; = h forall i,j. In fact, the matrix factorization method can use
the different grid size of each cell. If the higher accuracy is desired, the grid
size near the immersed object has to be small. We can adapt the code to handle
the different mesh widths, to improve the accuracy.
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