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ABSTRACT

A model of four integrate-and-fire oscillators facally coupled is studied. The problem was first
raised by Mirollo and Strogatz [SIAM J. Appl. Math., 50, 1645-1662(1990)]. We assume, as in
Mirollo and Strogatz's model, that each oscillator x.evolves aceording to a map f,. We show in this

thesis that the system of four convex oscilators (i.e.,- f,.< 0) that have nearest-neighbor coupling
with periodic boundary conditions is firing in.unison for.almost all initial conditions.

Key words: synchronization, integrate-and-fire, locally coupled.
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1. Introduction

Large assemblies of oscillator units can spontaneously evolve to a state of large
scale organization. Synchronization is the best known phenomenon of this kind,
where after some transient regime a coherent oscillatory activity of the set of os-
cillators emerges. This interesting phenomenon is quite common in many differ-
ent disciplines such as engineering [54], physics [13, 30] and [48], chemistry [31],
as well as biology [53]. For example, southeastern fireflies, where thousands of
individuals gathered on trees flash in unison. Other examples of biological oscil-
lators are the rhythmic activity of cells of the heart pacemaker [25, 35, 39] and
[51], of cells of pancreas [45] and [46], and of neural networks [11, 18, 39, 41]
and [47]. Synchronization of oscillators has been studied in both phase-coupled
(3,4, 5,6, 14, 15, 16, 17, 26, 27, 29, 32, 33, 34, 37, 40, 49, 50, 52] and [56], where the
interaction between the oscillators is smooth and continuous in time, and pulsed-
coupled models [1, 7, 9, 10, 19, 20, 21, 23, 24, 28, 31, 36, 42, 43, 44] and [55], where
the membrane voltage is discontinuously reset to a fixed value once it reaches a cer-
tain threshold. It should be noted that.pulse-coupled models are of greater relevance
for neuroscience applications since synaptic ¢oupling is often spike mediated.

The purpose of this thesigis to study synchronization in locally coupled integrate-
and-fire oscillators. We begingwith describing the Peskin’s model [39] of n integrate-
and-fire oscillators. Let the state of the i-th oscillator be denoted by x;, where z;

da;

are subject to the dynamies. 7o = —rjzif [;; 0 < x; < 1,4 = 1,2,--- ,n with

input I; > 0, a normalized threshold 1 and leakiness r; > 0. When z; = 1, the jth

oscillators fires and x; jumps back‘to zero. As a consequence of the firing of jth
oscillator, the activation of any other oscillator ¢ is incremented by the coupling €;;.
If €;; # 0 for all ¢ # j, then the system of n such oscillators is said to be globally
coupled. Otherwise, it is said to be locally coupled. This model was later generalized
by Mirollo and Strogatz [36]. Specifically, they assumed that the state variable x;
evolve according to a map f;. When z; reaches the threshold, the oscillator fires
and x; jumps back instantly to zero, and the activation of any other oscillator j
is incremented by the positive coupling €;;. Specifically, x; evolve according to

x; = fi(¢i), where f; : [0,1] — [0, 1] is smooth, and strictly increasing, i.e., f{ > 0

déi _ 1
at T

period for oscillator z; when evolving freely, (ii) ¢; = 0 when the oscillator is at its

on (0,1). Here ¢; is a phase variable so that (i) where T; is the cycle

lowest state z; = 0, and (iii) ¢; = 1 at the end of cycle when the oscillator reaches
the threshold x; = 1. Therefore, f; satisfy f;(0) =0, f;(1) = 1. These maps f; are

to be called evolution maps. The inverses of f; are to be denoted by g;. If f; = f,



FIGURE 1.1

gi =g, T; =T and ¢;; = ¢ for all ¢, j, then the corresponding system is called
identical.
For Peskin’s model, fi(¢) = £(1 — e ") and T; = Peskin [39]

conjectured that, first, for identical oscillators that are globally coupled, the system

I.
ln(ﬁ)

approaches a state in which all oscillators are firing synchronously for almost all
initial conditions and that, second, this remains true even when the oscillators
are not quite identical. The first part of the conjecture was essentially proved by
Mirollo and Strogatz [36] with convex oscillators (i.e., f/” < 0). The second part
of Peskin’s conjecture was verified by Senn and Urbanczik [44] with flat oscillators
(i.e., fI/ = 0). The key featufe'in those préoefs rely on the non-concavity of the
evolution functions f;. However, Bottani [8] numerical showed that even concave
oscillators (i.e., f/” > 0) ean-synchronize’ provided that the concavity is not too
large. Recently Chang and Juang [12]‘proves the second part of Peskin’s conjecture
for the system of convex wscillators. | Moreover, ‘they also reconfirm Mirollo and
Strogatz’s observation that comvexity of thesoscillators indeed plays an important
role in achieving synchrony. Specifically) they show that for concave oscillators if
they are "nearly” identical, then no synchronization is to occur for initial conditions
in a set of positive measure. That is to say, in general, concave oscillators may
synchronize for almost all initial conditions only if they are not that identical.
Indeed, they further prove that the imbalance between the speeds and/or coupling
strengthens of the oscillators induces the synchronization of the system provided
that the concavity of the evolution maps is sufficiently small. The last part of their
results verifies the numerical observation of Bottani [8].

In the celebrated paper of Mirollo and Strogatz, they also raise an open question.
How would the dynamics be affected if one replaces the all-to-all coupling with more
local interactions, e.g., between the nearest neighbors or on a ring of d-dimensional
chain, or more general graph [2, 22, 38]? Would the system still always end up firing
in unison, or would more complex modes of organization become possible? In this
thesis, we prove that for the identical system of four convex oscillators being the

nearest neighbor coupling with periodic boundary conditions, the system always
2



ends up firing in unison. See Figl.1 for more explanation of such coupling. The
locally coupling rules mean that, for instance, if oscillator 2 reaches the threshold,
then its nearest neighbors, oscillator 3 and 1 receive the coupling strength e.

We next describe the dynamics of such system. Without loss of generality, we
let the speed % of each oscillator be one. Let ®° = (¢9, 99, #3, #}) be the initial
condition, which denote the phase position of four oscillators labeled 1,2,3,4, re-
spectively. Suppose ¢ is the first one reaching the threshold. Then the resulting

phase position of the first three oscillators are, respectively,

0 =g(f(L— i+ oY) +e)i=13

¢y =1 ¢+ ¢3.
provided that f(1 — ¢% + ¢9) + € < 1,i = 1,3 and 1 — ¢} + ¢9 < 1. Suppose, in
addition, that f(1 — ¢ + ¢{) + € > 1. That is to say that the first oscillator also
reach the threshold after receiving the coupling strength e from the fourth oscillator.
Then ¢3 = g(f(1— ¢+ ¢3) +¢) and ¢3 = g(f(1— ¢4+ #3) +¢€). Such chain reaction
might continue if the second and/or the third oscillator also reach the threshold due
to the earlier chain reaction.

Now we define the firing map thatydeseribesthe changing of the phase of oscil-

lators after one firing (i.e.#some oscillators reaching the threshold).

Definition 1.1. Let S =H{¢ = (¢p1, 02, ¢3, d4) : 0= 121214{(;51} < 1I£1a<x4{¢i} < 1}.
Then the firing map h is defined as the mapping.from S to S satisfying

h(¢) =

where Gpew 15 the new phase of oscillators from the original phase ¢ after another
shortest time that causes some oscillator to reach the threshold and right after the
time that the spike from the fired oscillator is achieved to the corresponding oscilla-

tors.

We remark that from above definition, h(S) C S and thus iterations under h is
well-defined. That is, h; (¢4 !, ¢ b, @bt @ity =: (¢4, @b, ¢4, ¢} is well-defined for
all ¢ > 0. In the following, for the reason of clarity, we denote h to be h; if firing

map h is acted on the phase (¢}~ 1, o5 1, 5 @i t).

Definition 1.2. Define function F,,(¢) = g(min[f(¢)+me, 1]) in the interval [0, 1],

where g is the inverse function of f.

Lemma 1.1. Let f” <0.

(1) If ¢1 < ¢2; then Fm(¢1) S Fm(¢2)

If 91 < @2 and Fy(¢1) < 1, then Fp(¢1) < Fn(2).
3



(2) If 0 < F,,(¢) < 1, then dF;”qg(b)
(3) If ¢1 < ¢2 and Fy(¢2) < 1, then ¢2 — ¢1 < Fyp(¢2) — Fin(d1).
(4) If 6,8 >0 and F,(¢+6) < 1, then F,(¢) + 6 < F(¢ + 6).

If § > 0 and F,,(¢) <1, then F,,(¢ — &) < Fp,(¢) — 4.

> 1.

Proof.
(1) Since Fy,(¢1) < 1, Fp (1) = g(f(¢p1) + me), then
Fin(¢1) = g(f(91) + me)
< g(min[f(¢2) + me, 1])

= Fpn(¢2).

(2) Since 0 < Fi,,(¢) < 1, F(6) = g(f(¢) + me), then

dF;,;f@ _ g’(f(¢) + mE)f/(éb)

> g'(f(#)f'(¢)
—au

(3) Since %ﬁ_d)) > (0, we can' get the result.

(4) By (3), we can get the result. ‘
O

Lemma 1.2. For the Peskin’s model;

d
d—jz—rx—k[

where I > r > 0. The evolution map [ and its inverse function g are given in the

following, respectively

ﬁ\’\«
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Definition 1.3.
Sl = {(¢1, 2, ¢3, d4): three neurons having initial state zero}.

= {(¢1, P2, d3, d4): two neurons having initial state zero}.

{(¢1, P2, P3, P4): one neuron having initial state zero}.
4



Definition 1.4.
Ny = {¢ € Sy: after iterations, the states never reach synchronization}.
Ny = {¢ € Sy: after iterations, the states never reach synchronization}.

N3 = {¢ € Ss: after iterations, the states never reach synchronization}.

2. Three Neurons Having Initial State Zero

Lemma 2.1.
(1) F(1—¢)=1dfand only if p <1 —g(1l —¢) =: ¢y.
(2) 0<2—¢p—F1(1—9¢) <1 forall p €]0,1].
(3) If F1(1 —¢) <1, then F5(2— ¢ — F1(1 — ¢)) = 1.
Proof.
(1) i(1—¢)=1ifand only if f(1—¢)+e>1ifand only if ¢ <1 —g(1 —e).
2)2-¢-FN1-¢)=01-¢)+(1-F(1-¢) =0+0=0. On the
other hand, 2 — ¢ — Fi(1 — ¢) < 1 if and only if ¢ + F1(1 — ¢) > 1. But
S+ Fi(1—¢)> o+ (2d)=1 Thus, 2—¢— Fi(1—-¢) < 1.
(3) Note that if Fy(1 —a) < 1,.theén
B2-¢-H(1-9)=1«
BR-osgfl=0)+d) =1
fR%9—g(f(1-¢)t€)) 21— 26
Let E(¢) = f(2—¢—g(f(1=9¢)+¢€)), V¢ € [¢,1]. Then E(¢) is well-
defined, and 0 < E(¢) < 1 for all ¢ € [¢;,1]. Moreover,
E'¢)=1f12-0—g(f(—9¢)+e)):
[1+g' (f(1=0)+e) f'(1-9)
>f(2-¢-g(f(1-¢)+e)-
(144 (f(A=9) f'(1-¢)] =0
It implies that E(¢) is increasing and F(¢) > E(¢;) = 1 — € for all ¢ in

the interval [¢;,1]. Thatis, f(2— ¢ —g(f(1—¢)+¢€)) >1—e>1—2¢for
all ¢ in the interval (¢, 1]. Thus, the proof is completed.

0

Lemma 2.2. There is some ¢ in (¢, 1] such that Fo(1 — F1(1—¢)) <1 if and only
: 1
if e < 3.



Proof. As ¢ € [¢1,1], Fo(1 = Fi(1 — ¢)) = g(min[f(1 — g(f(1 — ¢) +€)) + 2¢,1]).
(=) Suppose not, i.e., € > 3. Then f(1 — g(f(1 — @) +€)) + 2¢ > 1. It follows
that F5(1 — F1(1 — ¢)) = 1, a contradiction.
(<=) If e < 1. Then
B(1-F1-¢)<1
© f(l-—g(fA=9¢)+e€)) +2e <1
S 1-g(f(1-9)+e€) <g(l—2€)
fA—g(1—-2¢) <f(l—¢)+e
JA—g(1—=2¢) —e< f(1-9) (1)
©g(fl-—g(1-2)—€) <1-9¢
¢ <1—g(f(1—g(1—2¢)—¢€) =
Thus for any ¢ in the interval [¢y, ¢,.), Fo(1 — F1(1 — ¢)) < 1. O
Remark 2.1. (i) 0 < f(1 —g(1 —2¢)) —e < 1. (i) ¢y < ¢r..

Proof. (i) 0 < f(1 — g(1 — 2¢)) =€ if andsonly if g(1 — 2¢) 4+ g(e) < 1. But,
since function ¢ is concavep, g(1 =2é)4.g(e)'< g(1 —¢€) + g(e) < 1. Thus, the
inequality 0 < f(1 — g(1 —2¢)) —e indeéd hélds. On the other hand, the inequality
F(1—g(1—2¢€)) —e <1 clearly holds.

(ii) The proof of the inequality can-be-easity checked by definitions of ¢; and ¢,
and is thus omitted. O

Corollary 2.1. Ase> &, Fo(1—Fi(1'= ¢)) =1 for all ¢ € [¢y,1].

<1 ¢€[¢lu¢’r) ]
=1 ¢¢€ [¢T’1]

Lemma 2.3. As e < %, let function Q(¢) = Fo(1 — Fi(1 — ¢)) defined in the

interval (g1, dr). Then function Q is continuous in [Py, .| and differentiable in

(¢1, &r). Moreover, Q'(¢) > 1 for all ¢ € (é1, Py ).

Proof. From the Lemma 2.2, Q(¢) = g(f(1 —g(f(1 —¢) +¢€)) + 2¢). Hence function

Q is clear continuous in [¢;, ¢,] and differentiable in (¢;, ¢,-). Moreover,
Q'(¢) =19 (f(1—g(f(1 —¢) +€) +2e)f' (1 —g(f(1 — ¢) +¢))]-
g (f(1—0)+e)f (1-9)]
>1-1=1.

for all ¢ in (¢, &.). O

Ase < %, F(1-FR(Q1 —¢)){



Proposition 2.1. (i) Ife < § and g(1—€)+g(2¢) > 1, then Q(¢) has no intersection
with the diagonal line in the interval (¢r, ¢r). Moreover, Q(¢) > ¢ and |Q(Q(¢)) —
Q&) > |Q(6) — ¢l provided Q(6) € (61,6,). (ii) If ¢ < & and g(1—€) +g(2¢) < 1,
then Q(¢) has unique one intersection point with the diagonal line, called such point
p, in the interval (¢1, ). Moreover, Q(¢) > ¢ for all ¢ € (p, d,) and Q(¢) < ¢ for
all § € (61,p), and [Q(Q(D)) — Q)| > 1Q(9) — 6] provided Q() € (1, 6,):

Proof. We would just give the proof of (ii) since the similarity of that of (i). If
g(1—¢€)+g(2¢) < 1, then it follows Q(¢;) < ¢;. By the intermediate value theorem,
there are intersection points in the interval (¢;, ¢,.) since Q(¢,) = 1. Furthermore,
since Q'(¢) > 1 for all points in the interval (¢;, ¢,.), by the inequality of the scalar
ordinary differential equation, the intersection point is unique.

Let d(¢) = Q(#)—¢. Then Q'(6¢) = Q'(¢)—1 > 0, and d(p) = Q(p)—p = 0. Thus
for any ¢ € (p, o), d(¢) > d(p) = 0, i.e., Q($) > ¢. On the other hand, for any
given ¢1, ¢2 € (p, ¢r) with ¢ > ¢1, d(d2) > d(¢1). That is Q(¢2)—¢2 > Q(¢P1)— 1.
Substituting ¢; and ¢2 with ¢ and Q(¢), respectively, then we have the conclusion
that [Q(Q(6)) — Q(6)] > 1Q(6) — o O

Theorem 2.1. Ife > %, thew synchronizationoccurs.

Proof. Case 1: ¢ € |0, ¢;]!

Time 1 2 3 4
0 0 0 0 ¢
(1-¢) "il=g)rv(1-¢) (1-9¢) 1
1=-9)" | FI(1-9) (1-¢) N(l-¢) 1
(1-9)* 1 (1 - ¢) 1 1
(1—¢)*t 1 1 1 1
Case 2: ¢ € (¢4, 1].
Time 1 2 3 4
0 0 0 0 ¢
(1-9¢) (1-9¢) (1-9¢) (1-9¢) 1
(1-9¢)* Fi(1-¢) (1-9¢) Fi(1-¢) 1
(1-Fi(1-9)) 1 2-¢—-F(1-9) 1 1-Fi(1-9)
1-F1-¢)" 1 R(2-¢—Fi(1-9)) 1 Fy(1 - Fi(1-¢))
(1-F(1-¢)* 1 1 1 1

7



Thus, synchronization occurs. 0
Theorem 2.2. If e < £ and g(1 — €) + g(2¢) > 1, then synchronization occurs.
Proof. Case 1: ¢ € [0, ¢].

Time 1 2 3 4

0 0 0 0 P

1-9¢) | A=9¢) (1-9¢) (A-9¢) 1

Q-9 | F(l-9¢) (1-9¢) R(l-9¢) 1

(1-0)" 1 Fy(1-¢) 1 1

(1-¢) 1 1 1 1

Case 2: ¢ € [¢,, 1].

Time 1 2 3 4
0 0 0 0 P

(1-9) (1-9) (L='9) (1-9) 1

(1—¢)* Fi(1-¢) (1=9) Fi(1-9¢) 1
(1-Fi(1-9)) 1 2 S — ) 1 1-Fi(1-9)

(1-Rl-¢)"| 1 “mZre=f9) 1  Bl-Fl-9)
1-F(1-¢)*" 1 1 1 1
Case 3: ¢ € (¢, dr).
Time 1 2 3 4
0 0 0 0 P

(1-9) (1-9) (1-9) (1-9) 1

(1-9¢)" Fi(1-9) (1-9) Fi(1-9) 1
(1-Fi(1-9)) 1 2—¢—F(1-9) 1 1-Fi(1-9)

(1-F(1-¢)" 1 B2-9¢-Fi(l-9) 1 B(1-FR(1-9)
(1-F(1—¢)* 1 1 1 RBO-F1-¢)

It can be observed that if ¢ lies in the Case 1 or Case 2, then synchronization

occurs. On the other hand, if ¢ lies in the Case 3, then from the Proposition 2.1

after some finite iterations, ¢ would lie in the Case 2 and then synchronization

occurs. Hence, synchronization occurs in each case, and the proof is completed. [

8



Theorem 2.3. Ife < % and g(1—€)+g(2¢) < 1, then synchronization occurs except
at ¢ = p.

Proof. The proof is similar as in the Theorem 2.2 and is thus omitted. Especially,

Time \ 1 P 3 4

0 0 0 0 P
1-p Fi(l-p) (1-p) Fi(l-p) O
1- F(1-p) 0 0 0 D

By above, we can get the following Theorem.
Theorem 2.4. The set N1 has measure zero in St.

3. Two Neurons Having Initial State Zero

Without loss of generality, the initial states of the system of four neurons having
two zeroes can be assumed to have the form [0,0, 9, #}] with 0 < ¢9 < ¢ < 1, or
[0, 83,0, 8% with 0 < ¢9 < ¢J <allWeldiscuss, respectively, the two cases in the

subsections below.

Definition 3.1.

S2.1={(0,0,¢3,49) : 0 <3 <P <1} C 5.
Sa2 = {(0,99,0,4) : 0 < $3.< ¢4 <TFCIS5.
iie., So =S, USh1.

3.1. Initial data being [0,0, 3, 3] with 0 < ¢9 < @9 < 1. First, we consider
the simplest subcase, where initial data being [0, 0, z, x]. It is obvious that the first
two neurons, and the last two neurons always stay together, respectively. Thus we
can treat [0, 0, z, 2] as [0, z] with coupling weights being double. Thus we can derive

the conclusions directly below. It is well-known results [36].

Theorem 3.1. Synchronization must occur for all initial data of the form [0,0, z, x]
where x € [0,1] — {p} and p satisfies F1(1 — F1(1 —p)) = p.

Time \ 1 2 3 4
0 0 0 x x
(1—a)t F(l1-—z) Fi(1-2x) 0 0

(17F1(17£L’))+ 0 0 Fl(lfFl(lflL')) Fl(].*Fl(].*l'))



Next, we consider the case where initial data being [0, 0, ¢9, ¢3] with 0 < ¢ <

#9 < 1. we separate the case into several subcases.
Case 1: (0,0,09, %) € S2.1,03 < ¢}, and iteration form is (0,0, 43, #3) —

LF(1—¢Ll+¢d) <1, and Fi(1—¢2 + ¢2) < 1.

Time 1 2 3 4

0 0 0 9 9

(1—-oDt | F1(1—¢9) 1— ¢ Fi(1-¢9+¢5) 0

(1=t | 1— o3+ ¢1 Fi(l—¢3+¢3) 0 Fi(1—¢3)

(1-¢3)" | Fi(1-¢3+¢7) =1 0 Fi(1 - ¢3) 1— ¢35+ ¢3
—0 — Fyi(1-¢3+¢3)

Remark 3.1. F1(1— @3 + ¢3) > 1 — ¢f + ¢1.
Proof.
Fi(1 - 65 +.05) =01

= F1(2 210% = K=+ 63) — Fi(1 - ¢])
>1— (b=} + 63" by Eenimal.1(3)

=1-¢3
O

Remark 3.2. Fi(1—¢3+ ¢3) = 1.
Proof.

Fi(1— 5+ 1)

= Fi(2+ ¢1 — d5 — Fi(1 — ¢35 + ¢3))

= F1(2 = (5 — ¢3) + (61 — 63) — Fi(1 = (83 — ¢3)))

> Fi(2— (95— ¢2) — F1(1— (¢35 — 63)))

=1.
The last equality holds since Fy (1 — ¢3 + ¢3) < 1 and by Lemma 2.1.(3). O
Definition 3.2. [(69, 63,63, 60) — - — (611,631, é5~%,64~1)] — Repeat] |
denotes the iteration form is (69, ¢3, ¢9, ¢9) — -+ — (¢, P57t g‘_l, nh -
( 7117¢37¢g7¢2) o ( %nilv §n717 §n717 inil) T ( ]lmv I2m7 Ign’ ’Zn) -

10



(QhntL phntl ghntl ghkntly o Moreover, ¢"" satisfy

%

)

gt | =0 if ¢l =0
1 #£0 i ¢} #0

foralli=1,....4,7=0,...,n—1, and k € N.

Definition 3.3. Let By = {(0,0,¢9,¢%) € Sa1 : ¢% < ¢3, and iteration form is
(0707¢g7¢2) - (¢%7¢%7¢§70) - ( %791)%707(253) - (Oa0,¢§7¢i)}7 CLTLdA = {(Ovovd)gvd)g) S
S2,1: 9§ < ¢, and iteration form is (0,0, ¢§, ¢1) — (¢1, 63, ¢3,0) — (61, 63,0, 63)] —
Repeat [ 1}.

Definition 3.4. A; = {(b S Sgyl, s.t. ¢ € Bl,R(¢) € By, ,Ri_l(qb) S Bl};
where i € {0} UN and R = hzhah;.

Remark 3.3. A is the set of initial conditions that live forever in Casel, i.e.,
oo

without any absorptions in Casel. Then, A= [ A;.
i=1

Theorem 3.2. The set A has'measure zeroin Ss.

Proof. A is measurable sitce it is a countable:intersection of open sets. (In fact, A
is closed.)

Consider the return map
R = hghshy,i.e., R(0,0]3:69)-=+0,0, Fi (1 — ¢3), Fi(1 — ¢3 + ¢3)).

, map (5, 64) = (Fi(1—¢3), Fi(1— ¢3 + 7)), and A" = {(¢s,¢4) : (0,0, ¢3,64) €

A}. Then A is invariant under the map R, and A’ is invariant under the map r, i.e.,
r(A") c A

r is also one to one, and the Jacobian determinant of r has absolute value greater
than one.

Now, suppose m(A’) > 0, we have m(r(4")) = [,, |detJ|dz > [,, dz = m(A’).
Since r(A’) c A',m(r(4")) < m(4’). It is a contradiction, hence, m(A’) = 0,
therefore, m(A) = 0. O

Case 2: (0,0,09, %) € S2.1,63 < ¢}, and iteration form is (0,0, 43, ¢3) —
((b%a(b%v(bé?o) - ( %7(;5%’07(;5421) - (070’¢§70)7 with Fl(l - (bg + (bg) <
LE(1— i+ ¢d) <1,Fi(1—¢3+¢%) =1, and F>(1 — ¢2) < 1.
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Time 1 2 3 4

0 0 0 3 4

(I—oD)* | Fi(1—40) 1-¢ Fi(l—¢i+¢3) 0

(1—¢3)t | 1—g5+¢1 Fi(1—-¢3+¢3) 0 Fi(1—¢3)

(1=¢3)* |0 0 Fi(1—¢3) Fi(1-¢3+¢7) =1
— Fy(1 - ¢3) —0

Definition 3.5. Let By = {(0,0,¢9,¢%) € Sa1 : ¢S < ¢3, and iteration form is
(0,0, 65, ¢1) — (o1, 63, ¢3,0) — (1, 63,0, %) — (0,0,¢3,0)}, and By = {(0,0,¢5, 69) €
So1: @3 < ¢, and iteration form is (0,0, ¢S, 49) — (¢1, 93, ¢3,0) — (61, ¢3,0, ¢F) —
[(0,0,¢3,0) — (¢1,¢3,0,¢1)] — Repeat| ]}.

Theorem 3.3. The set B} has measure zero in Ss.

Proof. Let C; = {¢3 : (0,0,¢3,0) = hshahi(¢) for some ¢ € Bh}, then C; has
measure zero in R since the set Ny has measure zero in S;. By the fact that
function y = Fy(1 — z) is diffeemorphism, set D1 = {(a1,$3, a2) : @3 satisfies
Fy(1 — ¢3) = ¢3 for somesd3 € G450/ <y, ap+< 1} has measure zero in R?, it
follows Co = {(¢7, #3, ¢3) (43, 93,0,03) = hahi(¢) for some ¢ € Bj} has measure
zero in R3. Similarly, since hy and hi-is diffeomorphism, set C3 = {(¢1, 3, 1) :
(61, 93, ¢3,0) = h1(¢) for Some ¢ e Bi}and then Cy = {(¢5,0]) : (0,0,05,¢]) €
B}} has measure zero in R¥:and R?, respectively. Hence, Bj has measure zero in
R* or Ss. O

Case 3: (0,0,09, %) € S21,05 < ¢}, and iteration form is (0,0, 43, #3) —
(¢%7¢%7¢§70) - ( %7 %707¢421) - (0507O7O)a Wlth F1(17¢2+¢g) < 17F1(1*
o3+ d3) <1, Fi(1 — ¢34+ ¢3) =1, and Fy(1 — ¢3) =1 or Fi(1 —¢3) = 1.

Time 1 2 3 4
0 0 0 9 o
(I=¢DT | Fi(1—¢)) 169 Fi(1-¢5+43) 0
(I=¢3)T [1-¢3+¢1 Fi(l—o3+¢3) 0 Fi(1 - ¢3)
(1—=¢3)* |0 0 0 0

Thus, synchronization occurs in this case.

Case 4: (0,0,09, %) € S2.1,63 < ¢}, and iteration form is (0,0, 43, ¢3) —
(1, 03, 93,0) — (0,0,0,¢3), with F1(1—¢f+¢3) <1,Fi(1—d3+¢3) =1,
and Fy(1 — ¢3) < 1.
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Time 1 2 3 4

0 0 0 ¢4 9

(1-¢9" | Fi(1—99) 1— ¢ Fi(1-¢34+¢3) 0

(I-¢3)* | 1 -3 + 6] Fi(1-¢3+¢5) =1 0 Fi(1—¢3)
— Fi(1-¢3+¢1) =1 —0 — Fi(1-¢3)
—0 — Fy(1—¢3)

Remark 3.4. If Fi1(1 — ¢} + ¢3) =1, then F1(1 — ¢} + ¢1) = 1.
Proof. Since 1 = Fy(1 — ¢% + ¢3) < F1(1 — ¢3 + #1), we can get the result. O

Definition 3.6. Let By = {(0,0,¢%,69) € Sa1 : ¢ < ¢3, and iteration form
is (0,0,¢8,69) — (41, 3,¢3,0) — (0,0,0,¢3)}, and By = {(0,0,¢5,99) € S21 :
3 < @9, and iteration form is (0,0,99,93) — (¢1,03,03,0) — [(0,0,0,437) —
(41,83, ¢3,0)] — Repeat| 1}

Theorem 3.4. The set B)) has.measure zero in Ss.

Proof. Let Cy = {¢? : (0,0,0,63) = -hahi(o) for some ¢ € B4}, then C; has
measure zero in R since .the set N; has imeasure zero in S;. By the fact that
function y = Fy(1 — z) is diffeometphism, set' D1 = {(a1, a2, ¢3) : ¢} satisfies
Fy(1—¢}) = ¢3 for some ¢p3-€ Oy, 0 <.aigya9 < 1} has measure zero in R3, it follows
Co = {(¢1, 03, 03) : (o1, 03, #3,0). = hi(¢)for'some ¢ € B)} has measure zero in
R3. Similarly, since h is diffeomorphism, set C3 = {(¢9,¢9) : (0,0,¢3,4%) € B}}

has measure zero in R2. Hence, the set B/, has measure zero in Ss. O

Case 5: (0,0,09, %) € S2.1,03 < ¢}, and iteration form is (0,0, 43, #3) —
and Fg(l — (]%) =1or F1(1 — (]5513) =1.

Time | 1 2 3 4

0 0 0 ¢ ¢

(1—¢}* Fi(1—¢9) 1-¢5 Fi(¢§+1-¢% 0
(1-Fi(8+1—¢3)" 0 0 0 0

Thus, synchronization occurs in this case.

Case 6: (0,0,¢3,9) € S2.1,83 < #9, and the iteration form is (0,0, ¢3, $9) —
(64,61,0,0) = (0,0,03, 62), with Fy(1— 6%+ %) = 1, Fi (1 — ¢3) < 1, and
F(l1-¢f) <1

13



Time \ 1 2 3 4

0 0 0 3 o
(1—o* Fi(1—-9¢%) F(1-¢) 0 0
(1-Fi(¢8+1—99)" | 0 0 Fi(l—¢1) Fi(1-¢7)

Definition 3.7. Let Bg = {(0,0,¢9%,¢9) € Sa1 : ¢ < ¢3, and the iteration form
is (0,0,69,69) — (61,61,0,0) — (0,0,63,62)}, and By = {(0,0,4,¢3) € a1 :
#3 < @Y, and the iteration form is (0,0, 99, ¢3) — [(¢1,¢1,0,0) — (0,0, ¢2, ¢3)] —
Repeat [ ]}.

Theorem 3.5. the set By has measure zero in Ss.

Proof. Let C1 = {¢1 : (¢1,61,0,0) = hi(¢) for some ¢ € Bg}, since Theorem 3.1.
tells us that the set {(0,0,x,2)} must synchronization for all initial data, where
x € [0,1] — {p} and p satisfies F'; (1 — F1(1—p)) = p, then C; has measure zero in R.
By the fact that function y = Fy(1 — ) is diffeomorphism, set D1 = {(a, ¢3) : ¢
satisfies Fy(1 — ¢9) = ¢ for some ¢1 € C1,0 < a < 1} has measure zero in R?, it
follows Cy = {(¢%, ¢3) : (0,0, 9%, ¢3) € B} has measure zero in R?. Hence, the set

B{ has measure zero in R* or_S5: O

Case 7: (0,0, 09, 9)<€ Sa.1,#3 < 49, and the iteration form is (0,0, ¢3, ¢9) —
(¢%7¢%7070) - (070a070)7 with Fl(l il ¢2 + (bg) = 1aF1(1 - ¢2) < 17 and

Fi(l-¢f) =1
Time | 1 2 3 4
0 0 0 g B
(1—¢))* Fi(1-¢}) F(1-¢3) 0 0
(1-Fi(eg+1—-01)7" 0 0 0 0

Thus, synchronization occurs in this case.
Case 8: (0,0,9,¢3) € S2.1,0 < ¢3, and the iteration form is (0,0, ¢3, ¢9) —
(0,0,0,0), with F;(1 — ¢3) = 1.

Time \ 1 9 3 4
0 0 0 9 9
(1—¢T |0 0 0 0

Thus, synchronization occurs in this case.

Definition 3.8. By = B, U B} U By,
Bi1={¢ € By:R(¢) € By},
Bg,l = {(b S B]_ : R(¢) (S B]_J},

Bi1={¢ € B1: R(¢) € By,_1.1}, where R is defined in Theorem 8.2..
14



Lemma 3.1. The set By 1,Vk has measure zero in Sy.

Proof. Since By = B U B U Bg, the set By 1 has measure zero.
Now, let (0,0, #3, ¢3) € Bi,1, by Theorem 3.2., or Case 1, we have

R(Oa0a¢g7¢2) = (0’07F1(1 - d)g)vFl(l - ¢% + d)?l))

Since R : By — R(By) is diffeomorphism, and By ; has measure zero, the set By 1
has measure zero. By same way, the set (Bz1) = 0 has measure zero in Sy since
Bj,1 has measure zero and R is diffeomorphism.

By induction, for any By, we have By1 = {¢ € By : R(¢) € Br_11} has

measure zero in Ss. O

Definition 3.9. Let Noy ={¢ € So1: after iterations, the states never reach syn-
chronization.}, i.e.,

N2,1 :AUBOJ UB171U3271U"' =AU U Bk,l'
k>0

By above, we can get the following Theorem.
Theorem 3.6. The set Ny 1 has measure zero in Ss.

3.2. Initial data being [0, ¢9;0,9%] with 0 £ ¢9 < ¢ < 1. We consider the
case where initial data being{0,®$,0, ¢} vith-0 € ¢ < ¢} < 1. Similar, separate

the case into several subcases, and by same way, we get the following Theorem.

Theorem 3.7. The set Nigi={¢ € So5 after iterations, the states never reach

synchronization.} has measure* zero - in-Sq:
Theorem 3.8. The set Ny has measure zero in Ss.
Proof. Since Ny = N1 U N3 9, we can get the result. O

4. One Neuron Having Initial State Zero

Without loss of generality, the initial states of the system of four neurons having
one zero can be assumed to have the form [0, 3, ¢3, #3] with 0 < ¢3 < ¢§ < @3 <
1,0< ¢ <) <) <1,0r0<¢d<gd<¢l <1. We discuss, respectively, the

three cases below.

Remark 4.1. Consider the initial state [0, ¢9, ¢3, #9] with 0 < ¢9 < ¢ < ¢9 < 1.

(1) If ¢3 = ¢S = ¢Y, and no absorption occurs, then the iteration form is
(0,89, 9%, 6%) — (¢1,0,0,0), we can regard it as the caes ” 3 neurons hav-

ing initial state zero”.
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(2) If ¢3 = ¢ # #3, and no absorption occurs, then the iteration form is
(0,89, 9, #9) — (41, $3,0,0), we can regard it as the caes ” 2 neurons hav-

ing initial state zero”.

(3) If ¢ = ¢ # ¢, and no absorption occurs, then the iteration form is

” 2 meurons having initial state zero”.

Hence, we just consider the initial state [0, 33, #3, #Y] with 0 < ¢9 < ¢ < ¢9 <
Lo< @ <o <pl<l,or0d<el<aey<ol<l.

Definition 4.1.

Ss1={(0,09,9%,¢9) : 0 < ¢ < ¢ < ¢ < 1} C Ss.
S50 =1{(0,09,9%,¢%) : 0 < ¢ < @3 < ¢ < 1} C Ss.
S35 ={(0,¢3,¢3,99) : 0 < 9 < ¢§ < ¢] <1} C Ss.
i.e., S3=2531US832US33.

4.1. Initial data being [0, #3309, 0] with 0 < ¢3 < ¢ < ¢3 < 1. First, we
consider the case where initial data_being {0, #9;%J, #3] with 0 < ¢9 < ¢J < ¢3 < 1.
we separate the case into several subcases.
Case 1: (0,¢9, 83, #9) € S31,0< @5 < ¢ « #9 < 1, and iteration form is
(0,99, 63, 03) — (A1393.0; @) 7=(F, 93:83,0) — (1,0, 93, 63) — (0, ¢3, ¢35, 61),
with ¢} < 1,¢% < 3,03 < 1, and ¢33 ¢;.

Time 1 2 3 4

0 0 ¢ 3 ¢

(1—8)* | 1—¢f Fi(1+¢3—¢5) 0 Fi(1+¢1—¢3)
(1=oD)* | Fi(l+o1—¢1) 1+65— 6} Fi(1 - é}) 0

(1—=¢)" | Fi(1+¢T—¢3) 0 Fi(l+¢5—-¢3) 1-¢3
(1=eD)* |0 Fi(1—¢9) 1+ 65 — Fy(1+63—¢7)

Remark 4.2. ¢% < 1, and ¢3 < 1.

Definition 4.2. Let By = {(0,¢9,¢3,¢%) € S21: 0 < ¢9 < ¢ < ¢3 < 1, and it-
eration form is (0,9, 63, ¢9) — (¢1,¢3,0,61) — (41,93, ¢3,0) — (41,0, 93, ¢%) —
(0,03, 93,61}, and A = {(0,99,¢9,89) € Sa1:0 < @3 < ¢9 < ¢4 < 1, and iter-
ation form is [(0,¢9, ¢5, ¢1) — (61, 93,0, 61) — (41, ¢3,¢3,0) — (¢1,0,63, ¢3)] —
Repeat [ 1}.

Theorem 4.1. The set A has measure zero in Ss.
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Proof. The proof is similar as that in Theorem 3.2., thus the proof is omitted. [

Case 2: (0,¢9,89,¢%) € S31,0 < ¢3 < ¢ < ¢9 < 1, and iteration form is
(07 ¢g7¢g7¢2) - (¢%7¢%707 (bzll) - ( %7¢%7¢§70) - ( ?707 ¢g?¢2) - (07¢%7¢§7¢i) -
(#7,¢5,0,0), with ¢} < 1,07 < ¢3,¢7 < 1, 0 < ¢35 < ¢7 < 1, and
(145 - o) < L.

Time 1 2 3 4

0 0 9 9 o

(1—=¢9)" | 1—¢5 Fi(l+¢5—-¢3) 0 Fi(1+¢9—¢9)
(1—9)T | (1461 —01) 1465 — ¢4 Fi(1 - ¢}) 0

(1—=¢3)" | Fi(1+¢7—¢3) 0 F(1+¢35—¢3) 1-63
(L—=¢)* |0 Fi(1-4}) 1+ ¢35 — 67 Fi(1+¢3—¢7)
(1—¢D)T | Fu(1—¢1) 1+ ¢5 — 4 Fi(1+d3-¢1) =1 0

— Fi(1+d5-¢1) —0

Remark 4.3. Fi(1+ ¢3 — ¢1) = 1.

Proof.
Fi(1+ ¢35 - ¢1) = Fi(2ek 03 = 91~ B 01 — 61))
=F(2 - (Gi=d1)+ (63 = 01) — F1(1 - (67 — 6})))
> P2 (@) — 01) — Bl — (6 — 1))
=1.
The last equality holds since F;(1 — (¢3 — ¢3)) < 1 and by Lemma 2.1.(3). O

Remark 4.4. ¢3 < 1.

Definition 4.3. Let By = {(0,¢9,33,9%) € S21: 0 < ¢3 < ¢ < ¢% < 1, and it-
eration form is (0,43, ¢3, ¢9) — (¢1,¢3,0,01) — (41, 63, ¢3,0) — (41,0,¢3, 1) —
(0,63, 63, 01) — (¢7,¢5,0,0)} , and By = {(0,¢9,¢5,99) € S21: 0 < ¢§ < ¢ <
¢ < 1, and iteration form is (0,99, 63, ¢9) — (#1,¢3,0,61) — (¢7,¢3,¢3,0) —
(69, 0,03, 63) — (0,93, 93, ¢1) — (43, $3,0,0) — (47,0, 98, 6%) — (0,93, ¢3, ¢1)] —

Repeat [ 1}.

Theorem 4.2. The set By has measure zero in Ss.

Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. [
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Case 3: (0,¢9,89, %) € S31,0 < ¢3 < ¢ < ¢§ < 1, and iteration form is

(0,65, 03, ¢1) — (61,63,0,61) — (61, 83, ¢3,0) — (61,0, 5, ¢3) — (0

65,65, 61) —

1, and Fy(1 — ¢3) < 1.

Time 1 2 3
0 0 9 3
(1-¢8)* 1—¢§ Fi(1+ 63 — ¢8) 0 Fi(1+¢1 - 9)
(I—oD)T | (1 4+ —¢1) 1465 —¢i Fi(1—¢1)
(1—=¢3)" | Fi(1+4 67 —¢3) 0 Fi(14 63 — ¢3)
(1—¢H)t 0 Fi(1-4}) L+¢3—9¢f  Fi(1+6]— 1)
(1—9D)" F>(1 - ¢7) 0 0

Remark 4.5. ¢2 < 1.

Definition 4.4. Let By = {(0,3, ¢3,¢%) € Sa1: 0 < ¢3 < ¢} < ¢9 < 1, and it-
eration form is (0,9, ¢3, ¢4) — (¢1,¢3,0,01) — (41, 03, ¢3,0) — (61,0,¢3,¢%) —
(0,93, 65, 04), — (¢9,0,0,0)}, and BE={(0, 65, 93, 64) € S21 : 0 < ¢ < ¢ <
¢3 < 1, and iteration formais (0, 93508 04) = (61, 63,0, 65) — (7,93, 3,0) —

(61,0, 63, ¢1) — (0,03, 65,91) +{(61:0:0,0) 5 (0, ¢S, 65, ¢5)] —Repeat [ ]}.

Theorem 4.3. The set B has measure zero in S5.

Proof. The proof is similar ag'that in Theorem.3.3., thus the proof is omitted. [

Case 4: (0,¢9,09, %) € S31,0 <99 < ¢ < ¢§ < 1, and iteration form is

(03 ga¢g7¢2) - (¢%7¢%707¢}1) - ( %7¢%7¢§70) - ( %70a¢§7¢2) - (Oa

3,05, 04) —

(0307070)7With d)zll < 17¢% <¢%a¢i’ < 1a0<¢% <¢)2Ll < 17F1(1+¢%_¢3) =

1,and Fo(1—¢d) =1or Fi(1—¢d)=1.

Time 1 2 3
0 0 ¢ 3
(1—¢9)" 1—¢3 Fi(14 69— ¢8) 0 Fi(14 69— ¢5)
(I—oD)T | P14+ —¢1) 1463 — ¢} Fi(1-¢})
(1—¢3)t | Fi(1+ ¢7 — ¢3) 0 Fi(1+¢3 - ¢3)
(1—o)" 0 Fi(1-4}) 1+¢3 -t Fi(1+¢} - ¢f)
(1—o¢H)t 0 0 0

Remark 4.6. ¢3 < 1.

Thus, synchronization occurs in this case.
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Case 5: (0,¢9,89, %) € S31,0 < ¢3 < ¢ < ¢§ < 1, and iteration form is
(07 g’¢g7¢2) i (¢%7¢%707 ¢}l) i ( %’¢%7¢§70) i ( :13’0’ ¢g’¢l3l) - (07 %’ 070)7

Time 1 2 3 4
0 0 9 3 4
(1-¢8)" | 1—¢5 Fi(1+¢5—-¢3) 0 Fi(1+ ¢ — ¢5)
(1=0)* | Fi(l+oi—0)) 1+¢3—¢)  Fi(1-¢5) 0
(1-¢3)" | Fi(1+¢1—¢3) 0 Fi(1+ 3 — ¢3) 1—¢3
(1—¢9)* |0 Fi(1-¢})  1+¢5-6} Fi(1+¢5—61) =
—F(l-¢}) — F(l+¢i-¢f)=1 —0
— Fy(1-¢%) —0

Remark 4.7. If Fi(1 + ¢3 — ¢3) =1, then Fi(1+ ¢3 — ¢3) =
Proof. Since ¢3 < ¢3, we can get the result. O
Remark 4.8. ¢3 < 1.

Definition 4.5. Let Bs = {(0,¢9, 8%, ¢%) € 52,1‘ 10 < 99 <9 <@ <1, and it-
eration form is (0, ¢9, ¢3,83) = (41, 95:0,04) — (7, 63, 63,0) — (41,0, 63, 63) —
(0,04,0,0)}, and By = {(0469,¢%09) € 8o, : 05< ¢ < ¢9 < ¢ < 1, and iter-
ation form is (0,63, 63, ¢5).= (6}, 08,0,6%) S:(62,03,63,0) — (63,0,63,63) —
[(0, $3,0,0) — (¢7,0, 3, 63)] — Repeat.[ 1}

Theorem 4.4. The set Bf has measure zero in Ss.

Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. O

Case 6: (0,¢9,89, %) € S31,0 < ¢3 < ¢ < ¢§ < 1, and iteration form is
(07 g’¢g7¢2) - (¢%7¢%70a¢}1) - (¢%a¢%7¢§70) - ( :%aoa(bga(bi) - (0707070)a
Fg(l — (j)‘%) =1or Fl(]. — gbif) =1.

Time 1 2 3 4

0 0 3 3 o
(1—e9)" 1—¢§ Fi(1+ 65 — ¢5) 0 Fi(1+ 64 — ¢5)
(1—¢)" | (1 +¢1—d)) 1+ — ¢} Fi(1-¢3) 0
(1=3)" | Fi(1+¢7 — ¢3) 0 Fi(1 4¢3 — ¢3) 1-¢3
(1—¢3)* 0 0 0 0
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Remark 4.9. ¢3 < 1.

Thus, synchronization occurs in this case.
Case 7: (0,¢9,09,¢%) € S31,0 < ¢ < ¢ < ¢% < 1, and iteration form
iS (07 ¢g7¢g,¢2) i (¢%7¢%707 ¢i) - ( %7¢%’¢§?0) - (07 07 ¢§7¢§1)7 With

Time 1 2 3 4
0 0 9 9 9
(1—¢9)* 1— 63 Fi(1+¢5 — ¢%) 0 Fi(1+ ¢ — ¢8)
(1—oD)t | Fi(1+ ¢} —o1) 1+ ¢5— ¢} Fi(1 - ¢y) 0
(1=3)" | (1407 —¢3) =1 0 Fi(1+ ¢35 — ¢3) 1—¢3
-0 — F1(1 - ¢3)

Remark 4.10. ¢3 < 1.

Definition 4.6. Let By = {(0,¢9,¢3,¢%) € Sa1 : 0 < ¢3 < ¢§ < ¢% < 1, and
iteration form is (0,99, 93, ¢3) — (¢1,03,0,¢1) — (61,63, 63,0) — (0,0,¢3, 1)},
and By = {(0,03,¢%,03) € Sa1: 0 < 8% <0 < ¢% < 1, and iteration form is
(0,99, ¢3, ¢9) — (41, 63,0, $4) 7 ($3. 83,83, 0) = [(0,0,¢3, ¢3) — (41, 63,0,61) —
(43, 93, ¢3,0)] — Repeat [=]}.

Theorem 4.5. The set Bh has,medstre zero in'Ss.
Proof. The proof is similar &s that in Theorem:3.3., thus the proof is omitted. O

Case 8: (0,¢9,89, %) € S31,0 <95 < ¢ < ¢§ < 1, and iteration form is
(0’ g’¢g7¢2) - ((b%’(b%’()’ (blll) - ( %’¢%’¢§70) - (07070’ (b?l)’ With ¢411 <
1a¢% < (b%vFl(l +¢§ - (ZS%) = 17 and F2(1 _QS%) <L

Time 1 2 3 4
0 0 ¢ 3 4
(1-¢5)* 1-¢3 Fi(1+ 5 — ¢3) 0 Fi(1+¢1 — )
Q=D | Fil+¢1—0i) 14+63-¢5  Fi(1-¢)) 0
(1-¢3)" 0 0 0 (1 - ¢3)

Remark 4.11. ¢3 < 1.

Definition 4.7. Let Bs = {(0,¢9,¢3,¢%) € Sa1 : 0 < ¢3 < ¢§ < ¢% < 1, and
iteration form is (0,49, 63, 69) — (61, 3,0,¢1) — (1,63, ¢3,0) — (0,0,0,¢%)} ,
and By = {(0,¢9,¢3,9%) € Sa1 : 0 < ¢9 < ¢} < ¢% < 1, and iteration form is
(0,09, 3, ¢3) — (01, 05,0,01) — (7, ¢3,93,0) — [(0,0,0,6%) — (o1, 93, $3,0)] —
Repeat | ]}
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Theorem 4.6. The set B} has measure zero in Ss.
Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. [

Case 9: (0,¢9,09,¢3) € S31,0 < ¢3 < ¢ < ¢§ < 1, and iteration form is
1,2 < g2 Fi(1+¢3 —¢2)=1,and Fap(1 —¢3) =1or Fy(1—¢3)=1.

Time 1 2 3 4

0 0 2 ¢S ¢
(1—¢9)* 1—¢3 Fi(1+4 69— ¢8) 0 Fi(1+4 69— ¢8)

(I=oD)" | A+t —0)) 1+dy—0)  Fi(l-¢}) 0

(1—¢3)* 0 0 0 0

Remark 4.12. ¢3 < 1.

Thus, synchronization occurs in this case.
Case 10: (0,3,99,03) € S31,0 < ¢ < ¢ < ¢3 < 1, and iteration form

is(0, 9, 3, 09) — (61, 3,0,94). — (41,03, ¢3,0) — (0,0, ¢3, ¢}), with ¢} <
1,1 > ¢? > ¢2, and FylaF 62 — )il .

Time 1 2 3 4

0 0 ¢ 5 g

(I—¢* | 1-¢5 Filsos=8) [0 Fi(1+¢% —¢9)

(1—oD" | Fi(1+01—¢1) W1+ 05 — 6} Fi(1—¢) 0

(1=oD)" |0 FOF@=o1) =1 1+¢3— 0] Fi(1—¢7)
—0 — Fi(14+¢3-¢7)

Remark 4.13. Fi(1+ ¢% —¢3) = 1.

Proof.
Fi(1+¢3 —¢7) = Fi(2+ ¢ — by — Fi(1+ 61 — ¢1))
= F1(2 = (¢1 — ¢1) + (93 — ¢1) — Fi(1 — (61 — ¢1)))
> Fi(2— (61— 61) — Fi(1 — (61— 61)))
=1.
The last equality holds since Fy(1 — (¢} — ¢!)) < 1 and by Lemma 2.1.(3). O

Definition 4.8. Let Big = {(0,¢3,¢3,¢%) € S21: 0 < ¢3 < ¢ < ¢ < 1, and
iteration form is (0,9, 89, 69) — (¢1,¢3,0,01) — (¢7,93,¢3,0) — (0,0,63, 63)},

and By = {(0,¢9,83,93) € S21: 0 < ¢3 < ¢ < ¢3 < 1, and iteration form is
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(0,6, 63, 69) — (61, 63,0, 61) — (6%, 63,63,0) — [(0,0, 3, ¢3) — (&1, 4,0,0%) —
( ?7¢ga¢ga0)] —>R€p€at[ ]}

Theorem 4.7. The set B, has measure zero in Ss.

Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. [

Case 11: (0,093,909, ¢%) € Sz with0 < ¢9 < ¢ < ¢ < 1, and iteration
form iS(O’ 87¢(3)7¢2) - ((ZS%,Q/)%,O, d)i) - ( %?d)%?gb%?o) - (010707 ¢2)7 With
5 <1,1> ¢ > @3, F1(1+ ¢ — ¢?7) =1, and Fr(1 — ¢3) < 1.

Time 1 2 3 4
0 0 ¢ 3 ¢4
(1—e5)* 1—¢f Fi(1+ ¢ — ) 0 Fi(1+ ¢ — )
Q—o)" | Fi(l+¢1—¢1) 1+d3—¢5  Fi(l—oy) 0
(1—-¢h)* 0 0 0 B(1-41)

Definition 4.9. Let Bi1 = {(0,¢3,93,9%) € S21: 0 < ¢3 < ¢ < ¢3 < 1, and
iteration form is (0, ¢3, ¢3, PNEs (o1, 93,0504) — (1,3, ¢3,0) — (0,0,0,67)},
and By, = {(0, 83, ¢3, %) € a1 00K #9:< ¢% < ¢ < 1, and iteration form is
(0,99, 93, ¢9) — (01, ¢3, 0s00).— (97,93, 93, 0).2-(0,0,0, ¢3) — (¢1, 93, 63,0)] —
Repeat] |}

Theorem 4.8. The set Biy has measure zero'in Ss.

Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. [

Case 12: (0,3, 99, ¢9) € S31 with 0 < ¢3 < ¢} < ¢3 < 1, and iteration form
is(0, 93, 93, ¢) — (61, ¢3,0,01) — (7,63, $3,0) — (0,0,0,0), with ¢§ <
L,1>¢2 > ¢3, Fi(1+¢2 —¢?) =1, and Fy(1 —¢3) =1 or F1(1 —¢?) = 1.

Time 1 2 3 4
0 0 9 9 4

(1—¢9)* 1—¢3 Fi(14 69— ¢9) 0 Fi(1+4 69— ¢8)
(L= | Fi(1+061—01) 1+¢3—05  Fi(1—¢j) 0
(1—o)* 0 0 0 0

Thus, synchronization occurs in this case.

Case 13: (0,03,99,03) € S31,0 < ¢ < ¢ < ¢ < 1, and iteration form
is(0, 69, 93, 0%) — (¢1,¢3,0,01) — (0,0,¢3,0), with ¢j < 1,1 = Fi(1 +

¢1 = ¢1) > 1+ ¢3 — ¢y, and Fa(1 - ¢}) < L.
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Time 1 2 3 4
0 0 3 3 i
(1=¢5)* | 1— 93 Fi(1+¢5 — ¢) 0 Fi(1+¢1—¢3)
(1=oi)" | Fi(l+oi—01) =1 1+¢5 -6} Fi(1 - ¢1) 0
— 0 — F(l+¢y—¢1) =1 — Fi(1 - ¢})
—0 — Fy(1— ¢3)

Remark 4.14. If F1(1+ ¢1 — ¢}) =1, then Fi(1 + ¢3 — o)) = 1.
Proof. Since ¢1 < ¢}, we can get the result. O

Definition 4.10. Let Bz = {(0,¢9,¢3,¢%) € S21 : 0 < ¢ < ¢} < ¢ < 1,
and iteration form is (0,49, #3,93) — (¢1,#3,0,01) — (0,0,¢3,0)}, and Bj; =
{(0,99,¢%,89) € Sa1:0 < @3 < ¢4 < ¢4 < 1, and iteration form is (0, 93, ¢, #9) —
(61, 83,0, 61) — [(0,0,3,0) — (4, 63,0,63)] — Repeat| [}

Theorem 4.9. The set B{; has measure zero in Ss.

Proof. The proof is similar as,that in Theorem 3.3., thus the proof is omitted. [

Case 14: (0,093,939, ¢9) € S31,0 < ¢3. < ¢2 < ¢3 < 1, and iteration form
is(0, 93, ¢85, ¢) —A(é1: 93,0, 05) (0,0, 0,0), with ¢} < 1,1 = Fi(1 + o] —
¢3) > 1+ ¢ — pivand Fe(l=g}) =1 ot (1 — ¢}) = 1.

Time | 1 2 3 4

0 0 5 &9 9
(1—g* [1-¢§ F(I+0—9)) 0 F(1+e—¢)

1-oh)*| 0 0 0 0

Thus, synchronization occurs in this case.
Case 15: (0,3,99,09) € S3.1,0 < ¢9 < ¢} < ¢ < 1, and iteration form is

1.
Time \ 1 9 3 4
0 0 9 o 04
(1—¢3)* 1— ¢} Fil+¢3—¢3) 0 Fi(1+¢8—¢9) =1

Definition 4.11. Let Bis = {(0,¢3,$3,¢%) € S31: 0 < ¢J < ¢9 < ¢% < 1, and
iteration form is (0,39, ¢3, ¢3) — (¢1,83,0,0)}, and Blis = {(0, ¢, ¢, #%) € Ss1 :
0 < ¢ < ¢ < ¢ < 1, and iteration form is (0,49, 9%,¢3) — [(41,95,0,0) —

(61,0,¢3,¢%) — (0,63, 63, ¢1)] — Repeat [ ]}
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Theorem 4.10. The set By has measure zero in Ss.
Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. [

Case 16: (0,093,909, 09) € S3.1,0 < ¢9 < ¢} < ¢ < 1, and iteration form is
(0,909,993, 0%) — (41,0,0,0), with Fy(1+¢J —¢9) =1, and Fo(1—¢§) < 1.

Time \ 1 9 3 4
0 0 3 o 3
(1—=¢T | Fo(1-9¢%) 0 0 0

Definition 4.12. Let Big = {(0,¢9,¢3,93) € S31:0 < ¢9 < ¢ < ¢3 < 1, and
iteration form is (0,43, 99, ¢3) — (¢1,0,0,0)}, and Bis = {(0, 3,99, ¢3) € S31 :
0 < 99 < ¢ < ¢S < 1, and iteration form is (0,¢9,¢3,¢3) — [(¢1,0,0,0) —
(0,93, 93, ¢3)] — Repeat [ ]}.

Theorem 4.11. The set B has measure zero in Ss.
Proof. The proof is similar as that in Theorem 3.3., thus the proof is omitted. [

Case 17: (0,603,939, ¢%) € Saun0 =z ¢S < ¢} < ¢ < 1, and iteration form is
(0, g,gbg,qﬁg) — (0,0,0,0), with F1{1% ¢9 — g) =1, and Fy(1 — g) =1
or Fi(1—-¢3) =1

Time l 1 2 3 4
0 0 9 @9 )
(1-— ¢g)+ 0 0 0 0

Thus, synchronization occuts'in this case:

Definition 4.13. By, = B} U B, U B, U B, U B, U By U B}, U Bl U Bl U Bl
Bi1={¢€Bi:R(¢) € By},
By ={¢ € Bi:R(¢) € B},

Bi1={¢ € B1:R(¢) € B_1.1},
where R is return map defined in Casel, i.e., R = hyhshoh;.

Lemma 4.1. The set By 1,Vk has measure zero Ss.
Proof. The proof is similar as that in Lemma 3.1., thus the proof is omitted. O

Definition 4.14. Let N31 ={¢ € Ss1: after iterations, the states never reach
synchronization}, i.e.,

N3,1 = AUB(]J UBl’l UBQJ Uu---=A4U U Bk,l'
k>0

By above, we can get the following Theorem.
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Theorem 4.12. The set N3 1 has measure zero in Ss.
By same way, we get the following Theorem.

Theorem 4.13. The set N3 o = {¢ € Ss2: after iterations, the states never reach
synchronization.} has measure zreo in Ss , and the set N33 = {¢ € Ss3: after

iterations, the states never reach synchronization.} has measure zreo in Ss.
Theorem 4.14. The set N3 has measure zero in Ss.
Proof. Since N3 = N3 1 U N3 9 U N3, we can get the result. O

5. Concluding Remarks

Theorem 5.1. The system of four convex oscillators (i.e., fI' < 0) that have
nearest-neighbor coupling with periodic boundary conditions is firing in unison for

almost all initial conditions.

Proof. From Theorem 4.14., we can get the result. O

For globally coupled oscillators:6r-the case under study in this thesis, if the firing
order of the oscillators ¢ and. is reversed, then*the firing oscillator would bring the
other oscillator to the threshold thatis infinitesimal apart. And these two oscillators
will stay firing in unison in the future, which in tiin makes the absorption process
easier to deal with. However, forn.>4 with samelocally coupling rule as discussed
here, such nice property no_.lenger holds“true.’ It is certainly interesting to give a

complete analysis for such case.
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