l%q’f’ 3(/‘57;-7?/2.‘&;}§ "%Bgl

Learning a Hidden Graph with Adaptive
Algorithm

(- DE AN ESEE Y 3]
Learning a Hidden Graph with Adaptive Algorithm

oy o2 W ITIR Student : Chie-Huai Shih

TR BES Advisor : Hung-Lin Fu

A Thesis
Submitted to Department.of'/Applied Mathematics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Applied Mathematics
July 2008
Hsinchu, Taiwan, Republic of China

voxE o8 R4 L = oE =

YR ZFLERE

GRS hEEEEER K

F o

A e R 3R HRI R AL (edge-detecting query) it T 2 & 4
EE o FERIRET Iy R BEE AN TS £ 2 - iEf o Grebinski 1
% kucherow[b]# - Brx T Mg Buzde & 352 5 9% o f * Bl (Hamiltonian
cycle) » # * & % O(nlogn) BA*4E 5 Beigel & A [4]4# 41 - BrEz hiFs 22
f#-pe ¥t Bl (bipartite) » & # ~@pEfT R 383 - X O(nlogn) B i3 - &
L g ok o B2 e SR T R S TR A 4] Angluin 2 2 #[2]
- BAERER Y A S IZmlognB AL BT BH Y O APRE- B
Bw i oMok SR mE i s i mE > B S Y
(2logn+9)mip #* 48 -

Learning a Hidden Graph with
Adaptive Algorithm

Student: Chie-Huai Shih Advisor: Hung-Lin Fu

Department of Applied Mathematics
National Chiao Tung University

Abstract

We consider the problem of learning a hidden graph using edge-detecting queries
in a model where the only allowed operation is to query whether a set of vertices
induces an edge of the hidden graph or not. Grebinski and Kucherov [5] give a
deterministic adaptive algorithm for learning Hamiltonian cycles using O(nlogn)
queries. Beigel et al.[4] describe an 8-round deterministic algorithm for learning
matchings using O(nlogn) queries, which “has direct application in genome
sequencing projects. Angluin and Chen 2] use.at most 12mlogn queries in their
algorithm for learning a general-graph. In this thesis we present an adaptive algorithm
that learns a general graph with n vertices-and m: edges using at most (2logn +
9)m queries.

B
ﬂ:‘

‘v
T Tro B Rie 3 £ - IR £ ehth v > 2iE
%ﬁéﬁﬁﬁ’iﬁﬁﬁim&&;’Eﬂﬁéiéﬂﬁﬁﬁﬁi°

‘:%_?fv]tLE gquz\,\mm_t ABREDNEE A E G AP

vh}\
’;»ﬁA

BALRREB Dl - MR B & oneeting & F S A
AR N RE S &akw%p ?##ﬁﬁ§4’%%u%§“
Y 3 Sryre s ouﬁ%ﬁfﬂW%rﬁW“ %ﬁamﬁ& TR YA AR
ES SRR LR S L S S R S AR - R
WAL L IR PR o

B R SRR S VB E OBl BABRHEIHA S T B4

Eh EHe L Ee B R BRIP e & s R N {RAFF DR
F O FR AT i B RR T A AR L e A FHRE
AR P TR A R B4 A @ 2 S AR

F”ﬁi@ﬁ@%ﬁﬁﬁjﬁé;gg\gg\;ggnmm\ﬁﬁ‘%ﬁ‘
RH S FF I BT R BAFIEREFIFROLAL A H
TMZRFLRR Wﬁﬂ’%%wFﬁ W L AT R B AR EE R
WAz i SHAMEAFFEEREA AFRL S RET MG
BF T A RR P WG PIAR B L DR sl gy o FUE R
I LS A S - 04}3

—
—
\

BB WA T ¢ B REAL AHA L HREARED FRES L
GEREAGREESNER L o

Fle&

o

(@0 1= o =Y g S o o Yo [ot o T o S USRS 1
0 Y/ o 1 61V | o o T o PRSP PPRP 1
1.2. Mathematical formulationccooiiiiiiiiiiii e e 2

Chapter 2. PreliminNari@scuei ettt rtee e et e e e s bae e e s sntee e e s baee e s sabaeeeennees 4
B I Lo = 1 o o PO PPPP PPN 4

0 0 B o) - A oY E o A € =T o] o - PSPPSRt 4
2.1.2. Notations of COMPULET SCIENCE ...cccccuiiiieeiiiee ettt e e e e vre e e senaaeeeeaes 5
2.2, IMIOAEIS .. bbb s sare e 5
2.3, LOWET DOUNG ..ottt s B BB e e st e siteesreeemeeesaneesneeesneeesmreesanenesnneesnneesas 6
2.4. TWO AlgOrithmMs......uviiieeeeieeccinden e e i e e 6

Chapter 3. IMain RESUIL.....uieieeeee e e et eie e i e e aaut e e st ame e e e etteeeeeeeeesnntaneeeeessennssnnnneeeesennnns 13
R I =L g d] 13O o s e PSP 13
R I Y o -1 1Y £ - PSP 15

3.2.1. QUEIY COMPIEXITY .uvrrriiieiieeiiiiieeee et e e e et e e e e e e e nrer e e e e e e esnbraaeeeeeeeesansreaeeeas 15
3.2.3. Worst case of this algorithmcccuiiiiiiiiic e 18
3.2.3. Number of parallel non-adaptive rounds........ccceeeeeiieeiiiieee e 20
(070 ol [0 [T T=d =T 0 0 T T o & PSR 21
RETEIEINCES ...ttt ettt e b e bt e b e b e b e b e she e saeesaeesane e 22

Chapter 1.
Introduction

1.1. Motivation

This paper is motivated by an important problem in computational molecular
biology that arises in whole-genome shotgun sequencing. Shotgun sequencing is a
throughput technique resulting in the sequencing of a large number of bacterial
genomes, mouse genomes and the celebrated human genomes. In all such projects,
we are left with a collection of contigs that for special reasons cannot be assembled
with general assembly algorithms. For completeness of sequencing, the contigs must
be oriented and the gaps between themmust be sequenced using other methods.
When the number of gaps is small, the technique “polymerase chain reaction (PCR)”
initiates a set of bidirectional molecular walks alongthe gaps in the sequence; these

walks are facilitated by PCR and-primers‘are used.

Now, if we are left with n (small) contigs, then the exhaustive PCR technique
tests all possible (Zzn) pairs of 2n primers by placing two primers per tube. On the
other hand, if the number of gaps is large, instead of testing all pairs, primers are
pooled using more (than two) primers per tube; this is the so-called multiplex PCR
technique. So, our goal is to provide optimal strategies for pooling the primers to

minimize the number of biological experiments needed in the gap-closing process.

Therefore, the problem of gap-closing can be stated more generally as follows.
We are given a set of chemicals, a guarantee that each chemical react with at most
one of the others (because only primers on opposite sides of the same gap create a
reaction), and an experimental mechanism to determine whether a reaction occurs
when they are combined in a tube. Our goal is to determine which pairs of chemicals

react with each other by using a minimum number of experiments.

1.2. Mathematical formulation

Due to the nature of primers reaction, our problem can be modeled as the
problem of learning a hidden graph given vertex set and an allowed query operation.
The problem of learning a hidden graph is the following. Imagine that there is a
graph G = (V,E) whose vertices are known to us and whose edges are not. We
wish to identify all the edges of G by asking some edge-detecting queries of the

form
Q;(S):does S include at least one edge of G?

Here, S is a subset of V. Therefore, the problem is to find an algorithm to
reconstruct the hidden graph by using as few queries as possible. Distinctly, time is
also very important, so we may want to parallelize the experiments as fewer rounds

as possible.

An important aspect of an algorithm in this model is the number of parallel
rounds. An algorithm is non-adaptive if the wholeof queries makes chosen before
the answer to earlier queries, in other words, a non=adaptive algorithm is a 1-round

algorithm. An algorithm is adaptive if.ithe-queries may conduct one by one.

So far, there are several related works which have been done. In 1997, Grebinski
and Kucherov [5] considered the problem of finding a Hamilton cycle motivated by
the study of DNA physical mapping. They obtain a deterministic adaptive O(nlogn)
algorithm. (All the logarithms we use throughout this paper will be in base 2.) Later,
in 2001, Beigel et al. [4] describe an 8-round deterministic algorithm for learning
matchings using O(nlogn) queries, which has direct application in genome
sequencing projects. For randomized algorithms, a 1-round Monte Carlo algorithm
for learning matchings was given by Alon et al. [1], which succeeds with high
probability. Quite recently, a more precise estimation of the number of queries on
adaptive model of learning a general graph was obtained by Angluin and Chen [2].
They use at most 12mlogn queries in their algorithm for learning a general graph

where m is the number of edges and n is the number of vertices. Also, they prove

that the asymptotic lower bound of the number of queries is Q(nlogn) which

achieves the asymptotic lower bound in this model.

In this thesis, we further improve the upper bound of the number of queries
used in this model when adaptive algorithm is utilized to learn a hidden general
graph. Mainly, we prove that our adaptive algorithm of learning a hidden graph with
m edges defined on a set of n vertices uses at most (2logn + 9)m queries. As a
consequence, using the algorithm, we can also reconstruct a Hamilton cycle or a
matching using at most (2logn + 9)m queries which achieves the asymptotic

lower bound.

Chapter 2.
Preliminaries

2.1. Notations

2.1.1. Notations of Graphs

In graph theory, a simple graph is a pair G = (V,E) where V is the set of
vertices and E is the set of edges. An subgraph H of a graph G is said to be
induced if, for any pair of vertices u and v of H, uv is an edge of H if and only
if uv is an edge of G. In other words, H is an induced subgraph of G if it has all
the edges that appear in G over the same vertex set. If the vertex set of H is the

subset S of V(G),then H can bewritten as ' G[S] and is said to be induced by S.

An undirected graph is a graph which every edge-is undirected. Aset I €V isan
independent set of G if it contains no edge of. (. A-bipartite graph is a simple graph

in which the vertex set can be decomposed into.two independent sets.

A matching in a graph is a set of edges that do not share vertices. A maximal
matching is a matching M of a graph G with the property that if any edge not in

M isaddedto M, itis nolonger a matching.

A Hamiltonian cycle (or Hamiltonian circuit) is a cycle in an undirected graph
which visits each vertex exactly once and also returns to the starting vertex. The

Hamiltonian cycle on n vertices has n vertices and n edges.

A complete graph is a simple graph in which every pair of distinct vertices is
connected by an edge. The complete graph on n vertices has n vertices and (’21)

edges, and is denoted by K,,.

A tree is a graph in which any two vertices are connected by exactly one path.

Alternatively, any connected graph with no cycles is a tree.

2.1.2. Notations of computer science

In computer science, a computation tree is a tree of nodes and edges. Each
node in the tree represents a single computational state, while each edge represents
a transition to the next possible computation. The length of the path from the root

to a given node is the depth of the node.

A binary tree is a tree data structure in which each node has at most two children.
Typically the child nodes are called left and right. The root node of a tree is the node
with no parents. There is at most one root node in a rooted tree. Nodes at the
bottommost level of the tree are called leaf nodes. Since they are at the bottommost
level, they do not have any children. An internal node or inner node is any node of a

tree that has child nodes and is thus not a leaf node.

In computational complexity theory, big O notation is often used to describe
how the size of the input data affects an algorithm's usage of computational
resources (usually running time or memory). The symbol O is used to describe an
asymptotic upper bound for the magnitude of a function in terms of another, usually
simpler, function. There are also other symbols o, (), w, and 0 for various other
upper, lower, and tight bounds, these are useful in the analysis of the complexity of
algorithms.

2.2. Models

There are four types of queries which lead to four different mathematical models

in learning a hidden graph G.

(1) Multi-vertex model. For a set of vertices {a;,a,, ..,a,}, ask whether
Kia, 4,03 N G = G[{ay,a,, ...,a,}] is non-empty, where Ky o, .3 is the

complete graph on the set of vertices {a;,a,, ..., a,}.

(2) Quantitative multi-vertex model. For a set of vertices {a;,a,, ..., a,}, ask what

the number of edgesin K, 4, a1 NG is.

(3) k-vertex model. Assume that a k is predefined. For a set of vertices
{a;,az, ...,a,}, where r < k, ask whether K, ,, 3N G isnon-empty.

5

(4) Quantitative k-vertex model. For a set of vertices {a,,a,, ...,a,}, where r <k,

what is the number of edges in Ky 4, a3 NG is.

The model used in this paper will be (1) Multi-vertex model.

2.3. Lower bound

Theorem 2.3.1. [1] For any 0 < e < 2, em(logn — 2) edge-detecting queries are
required to identify a graph G drawn from the class of all graphs with n vertices

2—-¢

and m=n edges.

Proof. There are

n m
G5 (@
m m
graphs that have m edges. For any algorithm, its computation tree is a binary tree

n\. m
and has at least ((;l—)) leaves;-so the depth at least

log ((3))"1 = mlog ((;)) = mlog (n(zi-)e) > mlog (n;) = em(logn — 2).

m m
Therefore, the lower bound implies at least em(logn — 2) queries in the worst

case. []

2.4. Two Algorithms

In order to prove our main result, we shall need two adaptive algorithms which
have been done earlier. Both of them are by Angluin and Chen [1, 2]. The first one
identifies an arbitrary edge in a non-empty hidden graph using 2logn queries
where n is the size of the vertex set V. For convenience, we will denote the
algorithm by Algorithm A (V). And the second one finds the edges between two
known independent sets S; and S,. We will be using this algorithm in a special case

either |S;| =1 or |S,| =1, we denote it by Algorithm B (v,I) where v is a
6

vertex and [is an independent set not contains v. Note here that this algorithm
uses logn + 1 rounds with 2slog|I| + 1 queries where s is the number of edges
between v and I. Moreover, if the answer of Q(I U {v}) is known, then we need

at most 2slog|l| queries to identify all the edges between v and 1.

For completeness, we include them with slight modification.

+ Algorithm A (V)
Part 1. FIND_ONE_VERTEX(V)

S<V,A<V
while |A| > 1 do
Divide A arbitrarily into Ay and A;, suchthat |4, = [|A4l/2], |44 = ||Al/2].
if Q(S\4y) =0 then
A< A

i

else
A< A,S < S\4
end if

L o N o U

end while

10. Let v be the unique elementin A.

11. Output (v,S\{v})
Part 2. FIND_ONE_EDGE(V)

1. (v,S) <FIND_ONE_VERTEX(V)

2. while |S| > 1 do

3. Divide S arbitrarily into S, and Sy, suchthat |Sy| = [[S]|/2],1S.] = LIS]/2].
4 if Q(SoU{v}) =1 then

5. S <3S

6. else

7. S<5

8. end if

9. end while
10. Let w is the unique elementin S.

11. Output (vw)

Lemma 2.4.1. FIND_ONE_VERTEX(V) finds one relevant vertex in a vertex set V

using at most logn edge-detecting queries.

Proof. Since the size of A halves at each iteration, after at most logn iterations, A
has exactly one relevant vertex. The algorithm takes at most logn edge-detecting
queries in total, as it makes one query in each iteration. []

Lemma 2.4.2. Algorithm A (V) finds one edge uses at most 2logn edge-detecting
queries where n is the size of V.

Proof. By Lemma 2.4.1., FIND_ONE_VERTEX(V) using at most logn queries.
Similarly, the size of S halves at each iteration in FIND_ONE_EDGE(V), then it only
uses logn +logn = 2logn to find.an’edgé: L]

Example 2.4.3.
PART 1.

(6)

Q({1,2,3,4,5,6,7,8}) =1

S ={1,2,3,4,5,6,7,8}
A ={1,2,3,4,5,6,7,8}
Ao = {5,6,7,8}
Ay ={1,2,3,4)

§=1{1,234,5,6,7,8}
A= {5,678}

Ay =1{7,8}

A; =1{5,6}

S ={1,2,3,4,5,6}
A = {5,6}
Ao = {6}
A, = {5}

ﬂQﬂl,,Z,?zﬂ,S}) -1 O

S ={1,2345}
A= {5}
1Al =1

v=5_5\{v}=1{1,23,4}

v=>5

PART 2.

® O L 4)
Q({5,1,2}) =0

O
Q({5,3}) =1

find an edge 53 (the edge incident to vertices 3 and 5)

* Algorithm B (v, 1)
VERTEX_INDEPENDENT_SET(v ,I)

1. while |[I| > 1 do

2 Divide I arbitrarilyinto I, and I, suchthat |Iy| = [|I]/2], 11| = Ll1]/2].
3 if Q(I,U{v}) =1 then

4. I <1

5 E « E U VERTEX_INDEPENDENT SET(v,I)

6 end if

7 if Q(I; U{v}) =1 then

10

8. I <1

9. E « E U VERTEX_INDEPENDENT_SET(v,1).
10. end if
11. end while

12.if |I| =1 do

13. Let w is the unique elementin I.
14, E « {vw}
15. end if

16. Output (F)

Lemma 2.4.4. Algorithm B (v,I) identifies edges between S; and S, using no
more than 2slogn + 1 edge-detecting queries where n is the size of I and s is
the number of edges between v and 1.

Proof. If we consider the computation tree for this algorithm, the maximum depth
does not exceed [log|I|]. Each edge isicofresponding to an leaf, and at each internal
node of the path from the root ta'the leaf;.the aI"go,rithm asks at most 2 queries and
the length of path at most: MoglH]. T;her'efo‘re,r the algorithm asks at most
2slogn + 1 queries. | ; []

Example 2.4.5.
G:

® 60

11

Computation tree

Q({5)112:314})=1

Q({s,3,4})=0

12

Chapter 3.
Main Result

3.1 Algorithms

We start with presenting our algorithms.

Note here that if there are edges between two independent sets, we may find all
of the edges by using Algorithm B (v, I). The following algorithm is using a maximal
matching to partition the vertices of G into several bipartite graphs and an
independent set. In other words, we provide an algorithm to partition the vertex set
into several independent sets. Our first objective is to minimize the number of

independent sets.
Algorithm 1. MAXIMAL_MATCHING(V)

V' <V,i1,M<0©

while Q(V') =1 do
x.y; —FIND_ONE_VERTEX(V)
MeMu{xy},V <« V\{xy} iei+1

end while

S

Output (i)
Algorithm 2. PARTITION_OF_VERTEX_SET(V)

1. VeV
2. k «MAXIMAL_MATCHING(V)

3. X;={x;},Y,={y;} V1<i<k

4, for i=1,i<k,i++ do

5 for j=1,j<i,j++ do

6 if X; =0 then

7 Xiex;, Yy , Xi<0,Y, <0

13

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

break(1-loop)
else
Make querieson X; U {x;},Y; U{y;},X; U{y:},Y; U {x;}
if Q(X;U{x;})=0(Y;u{y;})=0 then
X« X;u{x;},Y, «Y,u{y}, X, < 0,Y, <0
break(1-loop)
elseif Q(X; U{y;}) = Q(Y; U{x;}) =0 then
Xi<«X;u{y}, «ul{x},Xi<0,Y, <0
break(1-loop)
end if
end if
end for
end for
Ap sit. Xp #0,Xp,1 =0
Output (p)

Remark: After implementing Algorithm-2, it'is easily seen that the vertex sets
X;,Y; and X, for i =1,2,..,p,“are independent sets in G where X, =
VU (X; uY) =V\ U {3 uy}. Now, if we can identify all the edges

between two different independent’sets, then the graph G is reconstructed.

Algorithm 3. HIDDEN_GRAPH(V)

1.

L X N O U kW N

p <PARTITION_OF_VERTEX_SET(V)
Xo =V\UL,(X; UY)
Ei=0
fori=1,i<p,i++ do
for v € X; do
Alw s.t. wwEM
E, = E; U VERTEX_INDEPENDENT_SET(v,Y;\{w})
end for

end for

14

10.E, =0
1l1.for i=2,i<p,i++ do
12. for veX;UY; do

13. for j=1,j<i,j++ do

14. if Q(X;U{v})=1 then

15. E, = E; U VERTEX_INDEPENDENT_SET(v , X;)
16. end if

17. if Q(Y;u{v}) =1 then

18. E, = E, U VERTEX_INDEPENDENT SET(v,Y;)
19. end if

20. end for

21. end for

22. end for

23.E3=0

24.for i=1,i<p,i++ do

25. forevery ve X; UY; do

26. E; = E; U VERTEX INDEPENDENT_SET(v , X,)

27. end for

28. end for

29. Output (E; UE, UE; UM)

3.2. Analysis

3.2.1. Query complexity

The following two observations are essential in determining the complexity of
our algorithms. First, (1) for every 1 <i < k there exists a unique [; such that
{x;,v;} c X;; UYy,. And (2) there exist at least two edges in E, between two vertex

sets X; UY; and X; UY; forevery i # j.

Also, for convenience of counting the number of queries, we let |M| =

my, |Ey| = my,|E;] = m, and |E3| = mg (i.e. m = my +my + m, + my).

15

In Algorithm 1, since we need one query to check whether the vertex set V is
independent or not before using the algorithm Algorithm A (V) and we use
Algorithm A (V) to identify a maximal matching with size m,, the complexity is

equal to the sum of my + 1 and (2logn)m,.

In Algorithm 2, it suffices to consider the number of queries in the 2" and 10"
line. By observations (1) and (2) mentioned above, we know the 10™ line will be
repeated at most |m,/2| + m, times and thus in total (5+ 2logn)m,+ 1+

2m, queries.

In Algorithm 3, since we use the Algorithm B (v, I) to find the edge sets E;, E,
and E;, the 7" line was repeated m, times where m, is the size of the maximal
matching M. In other words, Algorithm B (v, I) was called m, times in this line,
the number of queries in this line is therefore mg, + (2logn)m,. In the 15" and 18"
lines, we use the Algorithm B (v, I) to find the edge set E, and we already had
some information before calling thesAlgorithm B (v, 1), the number of queries in
15" and 18" lines is (2logn)my. Finallyjlindhe 26™ lines, we identify the edge set
E; and Algorithm B (v,I) was called 2my times; so the number of queries is

2mg + (2logn)ms. The following tables'show-the above facts.

Algorithm 1.

Line Number of queries

2 my+1

3 (2logn)m,

Total (1+2logn)my, +1
Algorithm 2.

Line Number of queries

2 (1+2logn)my, +1

10 4my + 2m,

Total (5+ 2logn)my + 1 + 2m,

16

Algorithm 3.

Line Number of queries

1 (5+2logn)my+ 1+ 2m,

7 my + (2logn)m,

14+17 0 (all of queries be answered in algorithm 2., 10™ line)
15+18 (2logn)m,

26 2my + (2logn)m,

Total (my +my + my, + my)2logn+8my+ 1 <m(2logn +9)
Example 3.1.1.

G:

Algorithm 1.

(1.) FIND_ONE_VERTEX({1,2,3, 4,5, 6,7;8})= ‘find edge 13,
(2.) FIND_ONE_VERTEX({2,4,5,6,7,8}) = find edge 24
(3.) FIND_ONE_VERTEX({5,6,7,8}) = find edge 57.

M = {13,24,57}

Algorithm 2.

(1)Q({1,2) = 1,Q({3,4}) = 1,Q({1,4) = 1,Q({3,2}) = 0
(2)Q({3,7) = 0,Q({1,5}) = 0,Q({3,5}) = 1,Q({1,7) =0
Xl = {1, 5}’ Yl = {3’ 7}1 XZ = {2}1 Yl = {4}

Algorithm 3.
XO = {6! 8}1 Yl = {31 7}; Xl = {11 5}, YZ = {4}’X2 = {2}

(1.) VERTEX_INDEPENDENT _SET(3, X,)

17

(2.) VERTEX_INDEPENDENT _SET(7 , X,)

(3.) VERTEX_INDEPENDENT _SET(1,X,)
VERTEX_INDEPENDENT_SET(1,Y;\{3})

(4.) VERTEX_INDEPENDENT _SET(5 , X,,)
VERTEX_INDEPENDENT_SET(5,Y;\{7}) = find edge 53

(5.) VERTEX_INDEPENDENT _SET(4 , X,)
VERTEX_INDEPENDENT _SET(4,Y;) = find edge 41
VERTEX_INDEPENDENT_SET(4 ,X,)

(6.) VERTEX_INDEPENDENT _SET(2 ,X,)
VERTEX_INDEPENDENT _SET(2,Y,)
VERTEX_INDEPENDENT _SET(2 ,X,) = find edge 21
NOTE. Y,\{4} = @

COMPLETED......

3.2.3. Worst case of this algorithm

We prove that our adaptive-algorithm of learning a hidden graph with m edges
defined on a set of n verticesiusesat most (2 logn + 9)m queries. This algorithm
is efficient to reconstruct a graph when the number of edges is small. If the number
of edges of a hidden graph is (72‘), in'above analysis, the upper bound is (2logn +
9)(’21), but the trivial algorithm only uses (72’) queries to obtain a hidden graph. The
following will give another concept to analysis the upper bound and the lower bound

of this algorithm.

Lemma 3.2.1. /n Multi-vertex model, (’21) edge-detecting queries are required to
identify a graph G drawn from the class of all graphs with n vertices and m = (’21)
edges.

Proof. It is clearly, every edge e in G must be identified by an edge-detecting

queries Q(V*) where V* €V and (Ky-\{e}) N E(G) = ¢. []

Lemma 3.2.2. Algorithm B (v, I) identifies edges between v and I using no more

than 2|I| — 1 edge-detecting queries.

18

Proof. For convenience, we may assume the size of I is 2 to the power. We consider
the computation tree for this algorithm. This computation tree is a full binary tree,
the number of leaves in this tree is equal the size of I and the number of nodes is
2|I| — 1. In general, we may delete some pair of leaves from a full binary tree to
obtain its computation tree. []

Theorem 3.2.3. Our adaptive algorithm to learn a general graph G = (V,E) does

not exceed 1 + % +nlogn + 3(72‘) where n is the size of V.

Proof. In Algorithm 1, since the size of maximal matching does not exceed n/2, the

worst case is the sum of n/2 + 1 and nlogn.

In Algorithm 2, the 10" line does not repeat more than (“Z') times where

M is the maximal matching of G. So the worst case in this line does not exceed (’21)

queries.

After Algorithm 1 and Algorithm 2, the vertex set V will be partition into
several vertex sets X,,X;,Y; -where 1-<i < p. Assign indices 1,2,...,n to the
vertices of V according to some restriction as -following. First, (1) for every
1<i<p,if veY; and w € Xj, thentheiindex of v be smaller than the index of
w. And (2) if v € X; and w € X), then theindex of v be smaller than the index of

w when 0<i<j<p.

In Algorithm 3, we use the Algorithm B (v,I) to find all the edges and
Lemma 3.2.2. gives a bound for Algorithm B (v, I). The number of queries does not
exceed double of the sum of each size I when calling the Algorithm B (v,).
Consider the vertex v and the independent set [in Algorithm B (v,I), in above
paragraph, we know that the index of v greater the index of every vertex in I, then

the number of queries of Algorithm 3 is at most 2(721) Therefore, we can

reconstruct a hidden graph using no more than 1 + g +nlogn + 3(721) queries. [|

19

3.2.3. Number of parallel non-adaptive rounds
Because calling the Algorithm B (v, I) in Algorithm 3 can be parallelized to find all
edges in (2logn + 1) rounds, this saves the rounds used in reconstructing the

hidden graph sharply. But we don’t have a good idea to reduce the rounds of

Algorithm 1 and Algorithm 2.

20

Concluding remarks

In this paper, we have presented a new adaptive algorithm to find a hidden
graph. It is not difficult to see that the number of queries used in our algorithm is
around the lower bound which we expect to achieve especially when the size of the
graph is far less than the order of the hidden graph. Here are a couple of works

which we would like to accomplish in the near future:

1. Reduce the rounds of Algorithm 1 (i.e., obtain an efficient algorithm to find a
maximal matching).

2. Learning a hidden graph in Quantitative k-multi-vertex model.

21

References

[1] N. Alon, R. Beigel, S. Kasif, S. Rudich,and B. Sudakov, Learning a
hidden matching, The 43rd Annual IEEE Symposium on Foundations
of Computer Science, 197-206, 2002.

[2] D. Angluin and J. Chen. Learning a hidden graph using O(log n)
gueries per edge. Manuscript, 2006.

[3] D. Angluin and J. Chen. Learning a hidden hypergraph, J. of Machine
Learning Research 7, 2215-2236,;2007.

[4] R. Beigel, N. Alon, S. Kasif, M. S- Apaydin-and L. Fortnow., An optimal
procedure for gap closing in whaole genome shotgun sequencing, In
RECOMB, 22-30, 2001.

[5] V. Grebinski and G. Kucherov, Optimal query bounds for
reconstructing a Hamiltonian cycle in complete graphs, In fifth Israel
symposium on the Theory of Computing Systems, 166-173, 1997.

[6] V. Grebinski and G. Kucherov.,Reconstructing a Hamiltonian cycle by
querying the graph: Application to DNA physical mapping. Discrete
Applied Math., 88(1-3): 147-165, 1998.

22

	封面
	內頁
	中文摘要
	英文摘要
	誌謝
	Learning a Hidden Graph with Adaptive Algorithm_碩士_

