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Numerical Simulations of the Reaction-Diffusion

Equation on the Moving Surface

Student : Chien-Ming Chen Advisor : Dr.Ming-Chih Lai

Department(Institute) of Applied Mathematics
National Chiao Tung University

ABSTRACT

The central objective of this thesis is to use the fast fourier transform to numerically
solve the reaction-diffusion systems and solve another systems whose domain moves with
time. Hope that we could produce the equations on the moving domain which approximates
the diastole and systole in human hearts. First, use the spectral method and some second-order
numerical methods to produce the fast heat solvers on the spherical and ellipsoid surface
domain in spherical coordinates and ellipsoid coordinates, respectively. Then, couple these
two fast solvers with the time splitting method to produce the fast solver of the
reaction-diffusion equation. Next, we use the surface Laplacian operator in Curvilinear
coordinates to numerically compute the heat equation. Therefore, this heat solver could
compute the heat equation on the moving surface domain. Furthermore, use it to compute the
convection-diffusion equation. In each of above numerical solvers, we give four examples
which could cover other situations to observe the changes in the mass. Finally, we summarize
the applications and results for these numerical solvers and changes in the mass.
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1 ~ Introduction

Modeling is an imperative headway in science and numerical simulations stringing along
with it. Both of them play the important roles in our modern livelihood. The reason is that the
numerical simulations always help people to discover something amazing. For examples, they
could be used to predict, test or find some rules, etc. In many applications of them, we
concentrate on predicting the motions of waves. Propagation of waves has been appeared in
many behaviors of biological and chemical experiments. Mathematical modeling can uphold
and connect with these experiences. Because the electrical activities of the human hearts can
be modeled by the nonlinear reaction-diffusion (RD) equations [15] and the FitzHugh
-Nagumo-type model on the spherical surface domain with fixed radius has been simulated in
[6], we are attracted to these related problems. In recent years, there are many kinds of
cardiovascular diseases which our world replete with. We are anxious to develop some
numerical simulations that are concerned with the electrical activities of our hearts to help
treating the cardiopathy and anticipating obtaining some things good for the medical
treatment of human beings. But these are our final expectations and goals. According to the
developments of the present techniques of modeling, we only expect to use the forthcoming
model in [6] to develop a mathematical basis for understanding the propagation of
electrochemical waves in human hearts.

Here make mention of [6] in brief. The authors administered the simulation of the
reaction-diffusion systems on a spherical surface domain with a radius r € [11,16] to
perform circular waves by beginning with some initial values and regulating some parameters
of the systems. These numerical results came into being meandering of spiral waves. Next, we
are going to simulate the reaction-diffusion equation on a spherical surface domain with a
radius r = 16 as [6] and simulate it on an ellipsoid surface domain whose size is close to a

spherical surface with r = 16 and simulate it on an ellipsoid surface domain whose size is



close to realistic cardiac in Chapter 5. Before performing our works, the numerical schemes in
Chapter 2 are essential to our simulations. In Chapter 3, we solve the heat equation implicitly
on a spherical surface domain in spherical coordinates with the schemes in Chapter 2 for
Chapter 5. In Chapter 4, we solve the heat equation implicitly on an ellipsoid surface domain
in ellipsoid coordinates with the schemes in Chapter 2 for Chapter 5. After solving the
reaction-diffusion systems in Chapter 5 to simulate the propagation of electrochemical waves
in human hearts, we expect to see how the propagation of electrochemical waves proceeds on
the moving surface. Now, reduce this problem to solve the convection-diffusion equation (We
will introduce this in Chapter 7.) on the moving domain. It is reasonable to solve the heat
equation before solving the convection-diffusion equation. We solve the heat equation in
Curvilinear coordinates in place of solving it in spherical or ellipsoid coordinates as Chapter 3
and Chapter 4 because the domain moves with time. And impose the explicit schemes on the
solver because it is easy to find that we must extra define the values on the north and south
poles head-on when using implicit schemes on it. Due to above reasons, we solve the heat
equation in Curvilinear coordinates with the explicit schemes and check out this solver in
Chapter 6. Therefore, we could solve the convection-diffusion equation in Chapter 7 with the
discretization of Chapter 6. In the end, our future works are that combine the techniques in
Chapter 7 with the reaction-diffusion systems whose domain approximates to human hearts.
Expect to produce a primary and more real-life cardiac simulation of human beings. By the
way, we are interested in observing if the total mass complies with the mass conservation law

in each of our numerical solvers.

2 ~ Numerical Scheme

2.1  Fast Fourier Transform

Before talking about the fast Fourier transform (FFT), we introduce the Fourier

Transform and the discrete Fourier transform (DFT). We will use the FFT to discrete our
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spatial terms which is periodic in our equation. The contents in this section come from [14].

2.1.1 Fourier Transform

Transform u(x) into Fourier series formula, then we get u(x) = Y-y ardy %),
where a, are constants, ¢, (x) =e*, x€ [0,2n], (fg) = fozn f(x)g(x)dx means inner
product.

Theorem:  If fe12(0,2m) = {f: (0,2m) > € | J;™If(x)]? dx < oo},

then f(x) = X7 fe™, f = [ f()e ™ dx. (1)

Here f, is called continuous Fourier coefficient, and we have the properties:

&l "
Lf(x)— 2 f eilx lf_ Z

k=—o0

i( f(x) =

'-h)l

~

=it x = £y (2)

2.1.2 Discrete Fourier Transform
Discrete (f, g) = foznf(x)@dx by trapezoid rule and cut [0,2m] into N

partitions uniformly. Then derive (f,g)y = h XL f(x)g(x;) , where h = %“ Here mesh the

grids as follows:

2
N
1 ] ] ] ] ]
| | | | | | 1
0 2 = .. -2 w-n2ZE 2n;
I I
Xo Xy Xy meee X2 Xy N

After using the same method as above on (1), we derive



. 1 .
0= ) R, Fo=g ) e

where x; = jh —] = T, is called discrete Fourier coefficient, f depends on N because f

was cut into N partitions. So, call into being the formulation:

f(‘f()) f(Y ----- f(\" 1)J
Discrete Inverse Discrete
Fourier Transform Fourier Transform
f o e S v
T+1 —-1
It is easy to know
b1
f(x) =F = Z fels j = 1,2, 4, N — 1. 3)
N
k=—=

In order to make the indices be the same with 0,1, ... ,N — 1, we show it in below contents:

Let
1 - N 1N—1 4
='F il e ik=3)x _ 9%y a—ikx;
e iﬂx-
BP= fje 27 4)
We derived

1 N-1 .
de= 5D (Fe™ for k=0,1,.. ,N-1

Substitute (3) into (4),
N L i(uaN . _ :
F, =fe'2% = z fke’(k+7)xl' =) f ne¥ = Z de™i, for j=0,1,..,N—1.
2

Get the relationship between dy and F;,



and the formulation:

Forward

Fourier Transform
() F o | ey { ]l

Backward
Fourier Transform

W d,.....d, || =——F

In the configuration of matrix, the definition says

0 0 0 e @0
[ do | 30 81 wz (DN—l Fo
dl 1 w w F1
d2 N (DO (,02 (1)4 wZ(N—l) Fz
l : J Nl 3 w® 3(N—1)[ . J
dy—1 | O e b G- JHFN-1
_i2m
where w =e” 'V ,
The N x N matrixin (5) is called the Fourier matrix,
Fw° " w? w?
wY ! w2 N1
Hy = i O R o} e p2(N=1)
Nl? o3 0® 03N=1)
-(1)0 (DN_l wZ(N—l) (J.)(N—l)z ]

Here Hy is a symmetric matrix, and the Fourier matrix has an inverse matrix:

Y WY w? e w0

" w1 w2 vee @~ (N1
O P S S i

w w w w )

(00 (D 2ON-D) e C(N-1)2

Now, we have the forward Fourier transform

Fo [ do
HiH

HNl Fz |= dz
FN—l‘| dN 1

and the backward Fourier transform

N-

(5)



HN_ll d, }= l F, ‘ ,where Hy! = Hy .
Pyt
2.1.3 Fast Fourier Transform

The discrete Fourier transform that we used in the traditional way needs O(N?)
operations. Cooley and Tukey [4] could achieve the DFT in O(NlogN) operations in an
algorithm which called the fast Fourier transform (FFT) which takes advantage of divide and

conquer algorithm. We can write the DFT (5) as

do Fo
[ d ] 1 Fy
d=| d =—=G F = —=Gy\F
| :z NN :2 N
lClN—1J Fn-1
[0 0 0 0
(.00 (1)1 w w FO
u)O wz wi wl:(;l_l) [ F, }
where Gy =|® ® W JF=| F, |
o w3 Wb H3W=-1) :
w0 N1 @21 e J(N-1)? ] Fy-1

We will show how to compute b = GyF recursively. It needs to divide by N to complete the
DFT because d = % In the beginning, we show how the n = N case works. FFT takes the

advantages of Gy and Gn. Let M = g and our indices of matrix are taken as Fortran form.
2

2T
b = GyF, wy =e '~ andsuppose N iseven here (If N is odd, then the process is similar

with that we discuss here. ). Then

N—-1
ik
k=0

N-1
jk
Z u) Fk+ Z wy Fx
kEeven kEo=dd
21'[
Substitute M = g == and wy = e '™ into above equation.



-1 M-1

_ 20 j2e+1)
bj= ) wy Fpp+ Z oy Fa
0 =0

=

o
Il

M-1 M-1

— jt j jt

= Z wy Fzp + wy Z Wy Fari1
£=0 £=0

In summary, the calculation of the DFT(N) can be performed by computing a pair of DFT(%)S
and some extra multiplications and additions. Consider n, ignore the % temporarily, DFT(n)

can be reduced to a pair of DFT(%)S plus O(n) extra operations which are multiplications

and additions. We use above idea recursively and this is the most important techniques to
make DFT solver more fast. Let n be a power of 2. Then the Fast Fourier Transform of size
n can be accomplished in n(2log, n — 1) + 1 additions and multiplications, plus a division
by n [14]. We use the FFT to help computing our numerical solutions. And it leads to less

computation by reducing O(N?) operations to O(Nlog, N) operations.
2.2  Second-Order Finite Difference Method
We will use Section 2.2.1 and Section 2.2.2 numerical methods to discrete our spatial
terms of our equations.
2.2.1 Second-Order Central Difference Method

We refer to [14] to make this section complete. As below saying:
Let y be the function which depends on x. x; is the interior mesh point, for i =1,2,... ,N.
and x;;1 —x; = h. Expanding y in a third Taylor polynomial at x; to evaluate y at x;,q

and x;_;, then we have

, h2 B h3 . h4 N
y(ie1) =y +h) =y0a) +hy () + 5y ) + 2y )+ 2y (ET)  (©)
for some & in (x;,x;1), and
, h? h? h* _
y&i) = y0i —h) =y() —hy () +—y &) ==y ) +5y0ED ()

7



for some &~ in (x;_1,X%;), and assume y € C*[x;_1,X;41] here.

If subtract (7) from (6), then the terms involve y'’(x;) and y®(x,) are eliminated.

2

’ 1 " .
y (%) = oh [y(Xi+1) — y(xi—1)] — EY (i) , for some n; in (X;_1, Xj41)-

Therefore,

. 1
y () = o [y(i41) = y(xi-)] + 0(h?) (8)

Use the same techniques, we could also have
r 1 2
v o~ 2]y (x,1) — v (x2)] + 0t ©
h i+ i—

If add (6) to (7), then the terms involve y (x;) and y~ (x;) are eliminated.

%

, 1 h + _
Y () = 5 Vi) = 2y60) +yGa-D] = o (YO @D +yPE D).

The Intermediate Value Theorem can be used in above equation :

., 1 h? )
y '(x) = 2 [y(Xi+1) — 2y(x;) + y(xi-1)] — Ey(‘” (&), for some &; in (x;_1,%;11)

Therefore,

Y6 = [y 1) = 2506+ yCp)] + O() (10)
(8) (9) both are called central difference method for y'(x;).
(8) denotes central difference method 1 in our paper here.
(9) denotes central difference method 2 in our paper here.
(10) is called central difference formula for y''(x;).

They really have second-order accuracy.

2.2.2 Second-Order Symmetric Discretization

According to second-order accuracy of Section 2.2.1, we could produce a numerical
method which was called Symmetric Discretization. This method builds up from the
second-order central difference method. The progress of the symmetric discretization is as

follows:



Step 1: We use the central difference method 2 for the whole f(x;) % as Figure 1.

é og(x)
—_— .“.‘- —_—
- (f(x) ~ )
I
| |
@ @ L
1 _ 1
i—— i i+—
2 2
Figure 1
ag(x +1> og(x, ;)
fi — fi — o
2 oy BB ® T D
X Ax
9g(x,, 1) dg(x,_1)
Step 2: We use the central difference method 2 for "2 and e 2 as Figure 2.
og(x ) og(x )
z "3
ox cx
| | |
@ | —@ @ @
i—1 I— E i +E I+
Figure 2
0 0
805D g —ge) B%P gex) — g0)
0x Ax To0x

Ax
Step 3: After substituting Step 2 into Step 1, we will get the symmetric discretization

as follows.

(Xiz1) — 8(x1) g(xi) — g(X1 1)
f(x), 15 — (0,1
2 () By . 2 2

Ax
Because of second-order accuracy in Step 1 and Step 2, we have second-order

accuracy on the symmetric discretization.



2.3  Second-Order Crank-Nicolson Method

We will use the numerical methods in this section to discrete our spatiotemporal terms
of our equations. The Crank-Nicolson method is unconditionally stable and has order of
convergence O(Ax? + At?) can be found in Isaacson and Keller [9]. According to [5], when
we integrating the o.d.e.

u () = f(t,u(t)

on the interval I, = [t,, t,41], We could have

th+1

aCtye) = U = [ fsu@)ds =1, (11)

th

Here we ignore spatial terms in u, i.e. the temporal terms dominate the accuracy. If we
approximate the interval I,,, then we can compute u(t,,;) from the old value u(t,). The

trapezoid rule
At
In = ? [f(tn' un) a7 f(tn+1J un+1)]

is used to estimate the integral (11). Here At=t,,; —t,, u" = u(t,). Consequently, we
derive the formula of the Crank-Nicolson method:

u(tngr) —ulty)  [f(ty,u") + f(ty4q, 0]
At - 2

(12)

From (9), we have

(Y ) —u()
u (tn%) ~ — +0(h?) (13)

1
Take Taylor expansion for f(t,,u") and f(t,,,;,u"™!) at f(t, .1 u"*2) and add each other
2

similar to Section 2.2.1. Lastly, after combining with (13) we could have second-order

accuracy on the Crank-Nicolson method.

2.4  Thomas Algorithm

In our numerical solvers, the most important procedure which saves our time and

moves up our efficiency of computation is the method to solve the linear systems. Because the
10



linear systems that we need to solve almost belong to tridiagonal systems, here we introduce
the tridiagonal matrix algorithm (TDMA) which is known as the Thomas algorithm. The

systems can be described as follows:

_bl C, . o |[ X, 1 T d, ]
a, b, c, : X, d,
an -1 bn -1 Cn—l Xn -1 d n-1
| O an bn L Xn _ | dn _
i.e. AX =B

There are n unknowns as X. The Thomas algorithm is a correction of the LU decomposition
idea to solve linear systems with three bands diagonal coefficient matrix. We show our

programming in our solver in MATLAB as follows;

for k=2:n
m=A (k,k-1) /A (k-1,k-1);
A(k,k)=A(k, k) m*A(k=-1,k);
B(k)=B (k) -m*B (k-1);

end
X (M) =B (M) /A (M, M) ;
k=n-1;
while k>=1
X(k)=(X(k)-A(k,k+1)*X (k+1))/A(k,k);
k=k-1;
end

It is easy to know that the solution can be obtained in 0(n) operations instead of 0(n3) by
using the Gaussian elimination. After this section, we have enough numerical methods to

proceed with our numerical solutions.

11



3 ~ Fast Heat Solver in Spherical Coordinates
3.1 Heat Solver on a Spherical Surface Domain

3.1.1 Abstract

The solution of the heat equation on a spherical surface geometry has many
applications in the areas of biology, geophysics, and engineering. We will present a simple
and efficient method which is FFT fast direct solver for Heat equation on a spherical surface
domain. These solvers on the truncated Fourier series expansion, and the Fourier coefficients
are solved by second-order finite difference methods. Let the grids of the north and south
poles shift half a grid away from the poles [12] (We will show the architecture of the grids
later.). Next, combine the symmetry constraint of the Fourier coefficients in the solver (We
need not use the symmetry constraint in the solver with the symmetric discretization.). Hence
we could deal with the coordinate singularities easily without the conditions of the south and
north poles. The process of FFT only takes O(Nlog, N) computations. After solving Fourier
coefficients M times at the beginning and the end, the total operations of our solver only
need O(MN log, N) arithmetic operations for M X N grid points. The total cost here does
not include solving the linear systems of the unknown Fourier coefficients N times. We
derive these unknowns by solving the linear systems whose matrices are M X M and

tridiagonal N times by Thomas algorithm which costs O(M) operations. If we impose (2)
on our solver, then we only need to solve the linear systems g times. Therefore, our solver

needs O(MN) arithmetic operations to solve these linear systems. All cost in our fast Heat
solver needs only O(MN log, N) operations (M and N will be introduced later.). We will
know that it is convenient to rewrite the equations in spherical and ellipsoid coordinates in

Chapter 3 and Chapter 4, respectively.

12



3.1.2 Solvers with the Central Difference Method

According to [6], we have the formula of the heat equation on a spherical surface

domain in spherical coordinates as

u; = Agu

1 (0%u 1 d%u 14
A u = Vzu = <a¢2 + Cot(q)) Slnz(d)) aez) ( )

We also can derive the surface Laplacian term of (14) by [10] and set radius r be a constant

R at the same time or by [16]

72 02 0%u ou I
LR REE 5 on (15)

2 ; . .
Here n =r : normal, x = = : mean curvature, x = Rsin¢gcos0, y = Rsin¢sinb,z = Rcos¢

in spherical coordinates, and

62u+26u d%u K t() 1 0%u
or2  ror r2\a¢? 2l c|) 51n2((|))662

comes from [10]. After replacing n =r and K=§ in (15) and substituting (16) into

Au = V?u = (16)

(15).In (14), ignore r by setting r a constant R, and denote u(R, ,06,t) = u(d, 6, t).
0 < ¢ <m represent the directions of latitude,
0 <0< 2m represent the directions of longitude.
(14) was discreted by cutting the space as the following uniform grids which shift half a grid

away from the poles.

Y10 P P S S P S Nt

T OO 0 0 0 0 0 ¢

EOSh 4 A A A 4 & B

AO 2A0 (N=2A0 (N-DAI NAE
A, 27z

N

a

1

Hz Hs 6!\«'—1

Figure 3
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Givenany N = 2M, Ap = — = A8 = =

¢ =(@1(—-05)Ap,i=1,..,M
9, =jAB,j=1,..,N.
We avoid putting the grids directly at the poles because we hope that no conditions in the
poles are needed [12].

Step 1: We deal with the equation in spatiotemporal organization by the Crank-Nicolson

method as (12)

u, = Agu
_> un+1 —u" 3 Asun+1 e Asun
L. At 2
=> Au"*t! — Eun“ = —Au" — Eu“ (17)
s At : At

Step 2: We perform fast Fourier transform to 6. Since the solution u on a spherical surface

domain is periodic in 6, we can approximate it by the truncated Fourier series as [10].

N
7-1

u@,0) = > u(d)el? (18)

k=—y

where

=i
i .
u () = 5 ) u(,0)e
i=0

Substitute (18) into Agu as (14),

N1

N . N4 . L .
(o5 u@en 037 w3 u@ e
- 2 i 2
Agu = Rz \ Py + cot(¢) o + sin? () 902 )

H—1 ——1 H—1

3 1 azu (q)) 1ke 6uk(¢))e1k9 1 azuk(d))elke
R Z oz T eot®) Z Sz () ZN 962
k———

k=—7

14



N N

N
771 27! 27!
1 *uy () . ou () o .
= —2< E —akz elk® + cot(d) EN 5 ko 4 sz( ) E u, (p)(— kz)eke>

k=—7 k=—7 =

d%u d k? .
( D+ cortn P - (¢)> el (19)

Substitute the surface Laplacian term of (14) into (17),

02 n+1 aun+1 1 aZun—f-l 2
_ 4+l
(aq)z T cotl®) 5=+ Sz 982 ) A"
3 1 o*u" + cot( ) u” 1 %™\ 2 20
- 92 TP Gt G2y 307 ) T ar (20)
Substitute (18) into (20), and from (19) we can derive
N—1 N -1
1§ (Pt @), o) K2 < 2
@ Z ( aq)z COt(d}) a(b 2(¢) n+1(¢)> ik® __ Z Atun+1(¢) elke
k=—3 k=—3
1 a%up ou! k
=R Z ( ;z,(zd))ﬂot(d)) ugf) n2() k(¢)> i Z Eu“(tb)e““’
k==g k=—3

2
1 azun+1(¢) oud +1(¢) kZ " 2 i
=> Z(@( 57 M) 5 — s i () — +1(¢)>ek9

2
LATCY A L U S
= 2 R g o) T gy D — @) e

k=—y

Here the superscript of ul*?(¢p) means the (n+ 1)-th time step, and the subscript

of ul*'(¢) means the k-th Fourier coefficient.

N
Eliminate 22 “y and e™? from both sides of the equation,

2

up ™ () o) K,
Rz( a7+ eot®) =5 — G u (9)) - (@)
1 0*ui(¢) oup(@) kK .

— gz et ® 50 —sinz(@uk(@)—A—tuk@)

After multiplying by R? to both sides of the equation and equaling the Fourier

coefficients, u,(¢p) satisfies

15



O*ug (¢) dup () k2 R?

+ cot n+1 _ n+1
’up(¢) k(cb) k? 2R2
- a(l)z t(q)) (I) smz(d)) k(d)) k(q))
The Step 2 is equal to do FFT in 6 as follows :
O
PRV S S S ——~—"- up‘m
2o O O O O @ oﬂ%‘
SA¢
e @ e e e e e oﬁ‘
A
e e 2
To0 A8 2n@ (V-2M6 (VA9 NAG
("} Hg H& Q’v—l H\ 2z
Figure 4
Step 3: We use the second-order central difference method for ¢, i.e.
dU; Uiy — Uiy d 0°U;  Upq — 2U; + Uiy
ap  2ap ¢ g2 T Ad?
For each Fourier modes k (k = —g,—§+ 1,..,0,1,.., g— 1.), we set

ultl(p) = U at T= (n+ 1)At
up (p) = U at T = nAt

and solve the following equations.

U1n++11 2an+1 + Uin—+1 t((b ) :1++11 Un+1 kZ Un+1 2R2 Un+1
Adp? 200 smz(d)l) At
My — 200 + UL U, — UL k?2 2R?
=2 = 12— cot(d) 32 -+ ——— U ———U}
Ad 2Ad sin? () At
fori=1,..,M.

Both sides of the equations were multiplied by A¢p? and rearrange them,

cot(pAd, k*Ap?  2R*AGH . ., cot(p)AD, .,
(1 - T)Uij_ll + <_2 - Sin2 ((I)l) - At )Ul * + (1 + 2 )U1++1
DA k?Adp?  2R?’Ad? ;
- - - 4 (24 s - Jur - a2

Therefore, we could set that
16



_ o, _ Ccot(d)Ad

! 2
o K2Ap?  2RZAd?
P sin?(¢;) At
cot(dp;)A
(o 14 20
ARZAd?
Di=—Bi——x

for i=1,..,M. There are M+2 unknowns, i.e. Uy, ..., Uy41, but we only have M
equations. Before solving the governing equation in spherical coordinates as (14),
we burned with curiosity over that the Fourier coefficients of a function in the
coordinates satisfy the symmetry constrain [12][13]. Consider the transformation
between Cartesian coordinate systems and spherical coordinates. Because x =
Rsin¢cosB, y = RsingsinB, z = Rcosdp, we could replace ¢ by -¢ and 6 by
0 + 1 to derive that the Cartesian coordinates of points on a spherical surface is
unchanged.
u(—=¢,0) =u($,6+m)

Using above equalities, and

[oe]

[ o= > wwe

k=—00
20+ = ) ud @ = ) (-1 u e
k=—00 k=—o0

Lead to

[oe]

D w9 = > (—DFu (e

k=—o0 k=—0o0
Therefore, the k-th Fourier coefficient satisfies
u (=) = (=D*u(d)
Use above equalities and below property which the equation (14) is inherent in

u(¢,0) =u@n+ ¢,0),vd

17



Consequently, we could get

(00} [oe]

U((I) — T, e) = z uk(q) — T[)eike — Z uk(—(T[ _ q)))eike

k=—o0 k=—0o0

= ) Dku (- pek

k=—o0

and u(p —m0) =u@mn+ (¢ —m),0) =ulm+ ¢,0)

(o]

= Z uy (10 + )el*?

k=—00

Lead to

[o0]

Z (—D)kuy (p — m)elk® = Z u (T + )elk®

k=—00 k=—o0
Thus we have the k-th Fourier coefficient of u(m + ¢, 0) satisfies
u (1 + ¢) = (=D u(m - ¢)
Take advantage of these symmetry constraints to help solving the tridiagonal linear
systems for U; in (21), i = 1,..., M, by deriving the boundary values for U, and
Um+1. We solve these unknowns by the Thomas algorithm with O(M) arithmetic

operations. Because of the symmetry constraints, U, and Uy, can be obtained by

Up = ue(do) = uy (‘ %) = (=D*uy (%) = (-D"y,
Umt1 = up(bmy1) = g (“ + %) = (—1)*uy (“ - %) = (—1)*Uy

for each k-th Fourier coefficient. Then we could produce the following matrices,

(-)*A+B, C, U
AZ BZ CZ U2n+1
AM—l BM -1 CM—l U I(]/I+—11

] Ay By+(-D*C, Uy

18



(-)"'A+D, -G, o
_Az Dz _Cz Uzn
_AIVI—l DM—l _CM—l Ul\r;l—l

-A, Dy +(-D*C, || Uy |

~and we must solve these linear systems N times.

The Step 3 is equal to solve the unknowns in each column of the linear systems as

N AR R

SZ Sz k E SZ ~ ~
_ _ = = k= -
k=0 | | k=i w22 )l sz )| njaea | k=-1

Figure 5: The order of n here we follow the FFT in MATLAB.
Step 4: We perform inverse fast Fourier transform (IFFT) in 8, After solving the matrices, we

do IFFT in each row on our grids. The Step 4 is equal to do IFFT in 6 as follows :

@ L ey

@ N

o o |0 o
o o |0 o

000
0| |0 o o
R T I s

®
Il
12
—
¢
i Jmmi Jmmi mmi 2w

, J]:'\I/ IFFT
— |

0 270 .. (-2 (VDA NAG
4 % & Oney Oy 27z

Figure 6
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According to the procedure, i.e. Step 1=>Step 2=>Step 3=>Step 4, we could complete the
numerical solution at one time step and we can derive the numerical solution at any time by

keeping performing the procedure recursively.

3.1.3 Solvers with the Symmetric Discretization

According to [6], we have the formula of the heat equation on a spherical surface

domain in spherical coordinates as

u; = Au

1/ 1 0 ou 1 0%u (22)
Asu=Vsu 2 (smc])c’)cb( cl) b smz(cb)@)

Here r is a constant R. We also can derive the surface Laplacian term of (22) and the
settings of the grids as Section 3.1.2 says.

Step 1: Similar to Section 3.1.2 Step 1.

Step 2: Similar to Section 3.1.2 Step 2 and substitute (18) into (22),

E—l 2 E—1 .
) ( Lo OE L@t PR u@) e’ke\
u= \qu)aq)(mq) )5 /

As oI} sin () 002

N, N,

1/ 10 3 du(d)eke 148 azuk(cb)e“‘e\
“"’Z 20 ) T sin2() 962 /

——1 %—1 \
k(d)) ; i
smd)acb(z e + Z si n2(¢) k(q))(_kz)eke/
k———

k———

N
71

_1 1 0 0ul(d) k? i

R ZN <sin¢% sing I )—Sinz(q))uk(cb))eke (23)
k=—7

Substitute the surface Laplacian term of (22) into (17),

1 0 out! 1 o%urtl. 2 -~
R2 (sinq)aq) (sind fol0} )

*sin2(e) 902 0 ard

20



1 1 0 du 1 94" 2 , 24
_ﬁ<ﬁa¢(m¢a¢) sinZ(d) 692>_A_t“ (24

Substitute (18) into (24), and from (23) we can derive

771 27!
1 1 8, ouptl(¢) k? e , s
Rz 2 (Sinq)%(smd) 3 ) smZ(g) ’ (¢)> o — Z U (@) e

k=—y k=—
. 31 ) RO -1 ,
- _ k _ n ik _ “~ n i
“w 2, (Sl 55y ) sin2(¢)“k(¢)>ek9 A (@) e
k=—N |

N
71
B 1(1 a8 _ .  oudtl(d) k2 &, N
~ 2 <R2 <Sln¢6¢ 50 ) TS H(‘b))_— +1(¢)>

) —BieDivl e W2 .
Z( RZ <sm¢a¢ T )‘sinZ(qa)“k(")))‘Euk(q’))eke
k———

Eliminate ZZ "y and e™? from both sides of the equation,

2

a a n+1 kZ
1 i 2O A | U ()~ U ()

R ma W5 ) s (@)
oup () k* N
(m@( né 543 )_Sinz(q))uk(q)))_ﬁuk(q))

After multiplying by R? to both sides of the equation and equaling the Fourier

coefficients, uy(¢p) satisfies
2

1 a0 auk+1(¢) k? ul
m@(smd) 2% ) — Sin? () +1(¢)__uk+1(¢)
L0 (@), K RZ

The Step 2 is equal to do FFT for 6 as Figure 4.

Step 3: We use the symmetric discretization for ¢, i.e.

sing, 1(Uir1 —Uj) —sing,_1(U; — Uj_)
—¢(sm(<|> Igg) ¥ YO
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For each Fourier modes k (k = —g, —g +1,..,0,1,.., g— 1.), we set
ultl(¢p) = U1 at time (n + 1)At
ug (p) = U™ at time nAt
and solve the following equations.

p sing 3 (UET — U —sing, 5 (U Uz 2

2
_ k n+l _ 2iU.n+1
sing; Ad? sin?(¢;) ' At !
; N UMy — si n_yn
_ 1 Slnq)H_%(UHl Ui ) Slnq)i_%(Ul Ul—l) N k2 U — Z_RZU_n
sind; Adp? sin?(¢p;) ' At !

fori=1,..,6 M.

Both sides of the equations were multiplied by Ad?sin(¢,) and rearrange them,
K2Ap%  2R2Ad?sin(d,)
i+ sin(y) At
K2Ap?  2RZAd?sin(d,)
sin(d;) At

sing UM + (—sinq)_ 1 — sing )Ui‘”r1 + sinc])iJrlUi“J:’l1
1—= 1—5 5
2 2 2

= —sinq)i_%Ui“_l + (sinc])i_% + sinq)H% + )Ul“ + sinc])iJr%Ui“Jrl (25)

Therefore, we could set that

A; =sing, 1
i—
: . k2Ad?  2R2Ad?sin(d;)
B, = —slnd)i_% - qu)i% ~sin(ey) 2
= sind)i_%

4R?Ad?sin(d;)
= Bi- At

fori=1,..,M.

Because the coefficient of U, is sing1 =0 and the coefficient of Uy, is
2
sing,,,1 =0, we have A; =0 and Cy = 0. Therefore, we do not need symmetric
2

constrain which is a great news for us to produce the following matrices,
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Bl Cl U1n+1_
A, B, C, Uy
AI\/I -1 BM 1 CM -1 U |C/|+—11

i An By ||Un™ |
D, -C, T ur |

- Az Dz _Cz U;

_AI\/I—l DM—l _CM—l UI?/Ifl

L i AM DM AL Ul?/l _

Because A4y =sing, 1=
2

Gy, for i=1,.. M-

1, the matrices will become

symmetric matrices and lead to less computations. It reduces above matrices to be

_Bl

C,
B,

C,
CM L7 BM =1
CM -1
_C2
_CM—Z DM—l
_CM—l

—Uln+l_

U2n+1

C:M—l LJI(]/IjL—ll
BM __Ul?/|+l_
- Uln -

U;

—Cua UIC/I—l
Dy | Uy _

And these linear systems need to be solved N times by the Thomas algorithm here.

The Step 3 is equal to solve the unknowns in the linear systems in each Fourier mode

as Figure 5.

Step 4: Similar to Section 3.1.2 Step 4.

According to the procedure, i.e. Step 1=>Step 2=>Step 3=>Step 4, we could complete the
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numerical solution at one time step and we can derive the numerical solution at any time by

keeping performing the procedure recursively.

3.2  Numerical Results

We provide the exact solution

u= e_ZRiZ(x +y+2z) = e_ZEtZ(Rsin(q)) cos(0) + Rsin(d) sin(0) + Rcos(p))  (26)
for the equations (14) and (22), and R is a constant. Given the initial condition as
follows,
uy = Rsin(¢) cos(0) + Rsin(¢) sin(0) + Rcosifip)
Because we administer semi-implicit second-order Crank-Nicolson method in
spatiotemporal term, we could choose the bigger At. It leads to spending less time to
get our numerical solution. According to CFL condition, the stability of the
Crank-Nicolson method in the equations (14) and (22) needs to satisfy the
property
At = O(Ax)

In our programming, we could pick out

At= Lax=l
TN

It leads to faster computation. In next two Section 3.2.1 and Section 3.2.2, we derive

the numerical solution at T =1 and set At = % Here provide the exact solution at

T=1 for (14) and (22) as follows,
u= e_zRiZ(Rsin(cl)) cos(0) + Rsin(¢) sin(0) + Rcosiip))

3.2.1 Results of Solvers with the Central Difference Method

We solved the heat equation (14) u, = A;u on a spherical surface domain
by the numerical methods that are FFT, second-order central difference method,

Crank-Nicolson method and Thomas algorithm. In Table 1, solve (14) numerically
24



with R=1 at T =1 and check them by the exact solution

u = e"(sin(¢) cos(0) + sin(¢p) sin(0) + cos(¢))

M X N L, nrom RATIO ORDER
8x 16 0.0058 0 0
16 x 32 0.0014 4.1429 2.0506
32 X 64 3.5098¢-004 3.9888 1.9960
64 x 128 8.7537e-005 4.0095 2.0034
128 x 256 2.1885¢-005 3.9999 2.0000

Table 1: The numerical results are second-order accuracy.

In Table 2, solve (14) numerically with. R=5 at T =1 and check them by the exact

solution
2
u = e 25(5sin(¢) cos(0) + 5sin(Pp) sin(0) + 5 cos(P)) (28)

M x N Lo, nrom RATIO ORDER

8x 16 0.0050 0 0

16 x 32 0.0011 4.5455 2.1844

32 X 64 2.7313e-004 4.0274 2.0098
64 x 128 6.8221e-005 4.0036 2.0013

128 x 256 1.7053e-005 4.0005 2.0002

Table 2: The numerical results are second-order accuracy.

3.2.2 Results of Solvers with the Symmetric Discretization

We solved the heat equation (22) u, = A;u on a spherical surface domain

by numerical methods that are FFT, symmetric discretization, Crank-Nicolson method,
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and Thomas algorithm.
In Table 3, solve (22) numerically with R=1 at T=1 and check them by the

exact solution (27).

M x N Lo, nrom RATIO ORDER

8% 16 0.0090 0 0

16 x 32 0.0022 4.0909 2.0324

32 x 64 5.4423e-004 4.0424 2.0152

64 x 128 1.3612e-004 3.9982 1.9993
128 x 256 3.4027e-005 4.0004 2.0001

Table 3: The numerical results are second-order accuracy.

solution (28).

In Table 4, solve (22) numerically with R=5 at T =1 and check them by the exact

M X N L, nrom RATIO ORDER

8x16 0.0066 0 0

16 x 32 0.0015 4.4000 2.1375

32 X 64 3.7037e-004 4.0500 2.0179

64 x 128 9.2165¢-005 4.0186 2.0067
128 x 256 2.2994e-005 4.0082 2.0030

Table 4: The numerical results are second-order accuracy.

3.3 Mass Conservation

We developed an interest in keeping a lookout for the variation of the total mass in our

numerical solvers due to

2m m
dt udaxdydaz = dt u
a0 0 0
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0Q: spherical surface
x = Rsin¢cosh, y = Rsingsinb, z = Rcosdp

X(R,,0) = (x,y,z) = (Rsindcosh , Rsindsind , Rcosd)

Xij ~ X(¢i, )
| 7 £ .
ox ox | O 0 i 7 ~
6<|> 30 |9b 0 9P| = Rco:sq)colse Rc.osc])sine —Rsing
ox 0dy 0z —Rsingsind  Rsingcos0 0
20 40 06

= (R?sin?¢cosb, R?sin? dpsind, R?sindcosd (cos?0 + sin?0))

= (R?sin?dpcosh, RZsin? psind, R?sindcosd)

oX 6X

6c|) 8l = = (R*sin*$(cos?0 + sin?0) + R4sm2c|)coszd))2

1 1
= (R*sin*$ + R*sin?pcos? )z = (R*sinp(sind + cos? ) )?

= R?|sing|
Choose specific four cases in our paper to observe the total mass of them which changes with

time. Because of immovability of our spherical surface domain, the total mass is equal to
0Xi; 0X;;
— x I ApAd = z ui,ijlsianil AdAB

2m T
J J 0X o OX‘ dpde Z
u|l— X — =
0 0 ad) 99 i=1,...M aq) 1,...M
1,...N

]:
j=1,...N j=1,..,

The total mass at n-th time step is set by

= z ufiR*|sind;| ApAO
i=1,..M
j=1,..N
The relative error at n-th time step in our numerical solver means
s» — s
SO

3.3.1 The Mass of Solvers with the Central Difference Method

Initial settings as Figure 7: M =32, N =64, R=5,At = iAx = %

27



Figure 7: The domain is a spherical surface with R = 5.

Case 1: Pizza-like initial condition as follows,

u(l:0.5*M,0.5*N:0.5*N+5)=1; others are set to be zero.

14.7321.

I
«Q
c
=
@D
-
=]
=
=
<
L
c
@D
=
—
I
i
—J
o
[
|
QO
2]
wn
I

z

Figure 9: Left, T = 0.25, mass = 14.7321, relative error = 1.8087e — 015.
Mid-left, T = 0.5, mass = 14.7321, relative error = 7.3552e — 015.
Mid-right, T = 0.75, mass = 14.7321, relative error = 9.8873e — 015.
Right, T = 0.1, mass = 14.7321, relative error = 1.2058e — 014.
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z

Figure 10: Left, T =5, mass = 14.7321, relative error = 7.8099e — 014.
Right, T = 20, mass = 14.7321, relative error = 2.8661e — 013.

Wil — T

1473211

147321 1
05

147321

total mass

1473211

04
147321

™ L T 1 T T S S S T S R S R R S R
01234567 8 9101112131415 1617 181320
t

2
theta

Figure 11: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 9, Figure 10, Figure 11, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,
Case 1 complies with the mass conservation law.

Case 2: Initial condition was set as one point as follows,

u(0.5*M,0.5*N+5)=1; others are set to be zero.

Figure 12: Initial value u; T = 0; Total mass = 0.24067.
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Figure 13: Left, T = 1/64, mass = 0.24067, relative error = 5.0167e — 007.
Mid-left, T = 1/32, mass = 0.24067, relative error = 1.0033e — 006.
Mid-right, T = 3/64, mass = 0.24067, relative error = 1.505e — 006.
Right, T = 1/16, mass = 0.24067, relative error = 2.0067e — 006.

z
z

Figure 14: Left, T =5, mass = 0.24063, relative error = 0.00014728.
Right, T = 20, mass = 0.24061, relative error = 0.00024238.

0.2407

0.2407 |

0.2406

05
0.2406 -

total mass

0.2406

0.2406 -

0.5

0.2406

" 0.2405

0123456789 10M1213141516817 181820
theta t

Figure 15: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 13, Figure 14, Figure 15, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting decreasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 2 does not comply with

the mass conservation law.
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Case 3: Chapeau-like initial condition as follows,

u(l:3,1:N)=1; others are set to be zero.

z

Figure 17: Left, T = 0.25, mass = 6.7665, relative error = 0.00017029.
Mid-left, T = 0.5, mass = 6.7686, relative error = 0.00030516.
Mid-right, T = 0.75, mass = 6.7693, relative error = 0.00040749.
Right, T =1, mass = 6.7698, relative error = 0.00040878.

z

Figure 18: Left, T =5, mass = 6.773, relative error = 0.00095451.
Right, T = 20, mass = 6.7743, relative error = 0.001145.
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Figure 19: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 17, Figure 18, Figure 19, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 3 does not comply with
the mass conservation law.

Case 4: Smooth initial condition as follows,

2T

u(m,n)=abs(sin((m-0.5) *%) ) +abs (cos ((n-1) * £ )), Vm,n.

z

Figure 21: Left, T = 0.25, mass = 446.658, relative error = 3.7503e — 006.
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Mid-left, T = 0.5, mass = 446.6566, relative error = 6.9874e — 006.
Mid-right, T = 0.75, mass = 446.6553, relative error = 9.8891e — 006.
Right, T = 1, mass = 446.6541, relative error = 1.2529e — 006.

=
=
Z

z

Figure 22: Left, T =5, mass = 446.6434, relative error = 3.6478e — 005.
Right, T = 20, mass = 446.6373, relative error = 5.0161e — 005.

MEEE————— 77T

446655 -

44665 -

total mass

445 645

A46.64

’ 445 635 L 1 1 1 L 1 1 1 L 1 1 1 1 1 1 1 1 1 L 1
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Figure 23: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 21, Figure 22, Figure 23, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting decreasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 4 does not comply with
the mass conservation law.

In above Case 1~Case 4, we derive that Case 1 can get the perfect result by mass conservation
with some machine error ; the others show up a little bit derivation that is less than one percent

in our relative error.

3.3.2 The Mass of Solvers with the Symmetric Discretization

Initial settings as Figure 7: M =32, N =64, R=5,At = iAX = %
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Case 1: Initial values are the same as Figure 8,

z

Figure 24: Left, T = 0.25, mass = 14.7321, relative error = 1.2058e — 015.
Mid-left, T = 0.5, mass = 14.7321, relative error = 4.8231e — 015.
Mid-right, T = 0.75, mass = 14.7321, relative error = 1.4469e — 015.
Right, T = 0.1, mass = 14.7321, relative error = 1.6881e — 015.

Figure 25: Left, T =5, mass = 14.7321, relative error = 5.6671e — 015.
Right, T = 20, mass = 14.7321, relative error = 1.1455e — 014.
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Figure 26: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 24, Figure 25, Figure 26, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,

Case 1 complies with the mass conservation law.

34



Case 2: Initial values are the same as Figure 12,

z

Figure 27: Left, T = 1/64, mass = 0.24067, relative error = 6.9197e — 016.
Mid-left, T = 1/32, mass = 0.24067, relative error = 8.0729e — 016..
Mid-right, T = 3/64, mass = 0.24067, relative error = 1.1533e — 016.
Right, T = 1/16, mass = 0.24067, relative error = 2.3066e — 015.

z

Figure 28: Left, T =5, mass = 0.24067, relative error = 5.6511e — 015.
Right, T = 20, mass = 0.24067, relative error = 4.9591e — 015.
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Figure 29: Left, the values of u on the equator change with time.

™2

Right, total mass of u changes with time in 0~20 seconds.

According to Figure 27, Figure 28, Figure 29, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,

Case 2 complies with the mass conservation law.
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Case 3: Initial values are the same as Figure 16,

z

Figure 30: Left, T = 0.25, mass = 6.7665, relative error = 1.3126e — 016.
Mid-left, T = 0.5, mass = 6.7665, relative error = 3.019e — 016..
Mid-right, T = 0.75, mass = 6.7665, relative error = 0.
Right, T =1, mass = 6.7665, relative error = 4.8567e — 016.

z

Figure 31: Left, T =5, mass = 6.7665, relative error = 1.3126e — 015.
Right, T = 20, mass = 6.7665, relative error = 6.563e — 016.
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Figure 32: Left, the values of u on the equator change with time.

Right, total mass of u changes with time in 0~20 seconds.

According to Figure 30, Figure 31, Figure 32, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,

Case 3 complies with the mass conservation law.
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Case 4: Initial values are the same as Figure 20,

z

Figure 33: Left, T = 0.25, mass = 446.6597, relative error = 6.1086e — 015.
Mid-left, T = 0.5, mass = 446.6597, relative error = 3.8179e — 016.
Mid-right, T = 0.75, mass = 446.6597, relative error = 3.4361e — 015
Right, T = 1, mass = 446.6597, relative error = 3.0543e — 015.

Figure 34: Left, T =5, mass = 446.6597, relative error = 4.1997e — 015.
Right, T = 20, mass = 446.6597, relative error = 3.3088e — 015.
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Figure 35: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 33, Figure 34, Figure 35, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,
Case 4 complies with the mass conservation law.

In above Case 1~Case 4, we derive that all these cases can comply with the mass conservation
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law and leave some machine error here.

3.3.3 Comparison between the Central Difference Method and the

Symmetric Discretization in Spherical Coordinates

According to the results in Section 3.3.1 and Section 3.3.2, we could summarize the

following table:

3.3.1 3.3.2
Casel 2.8661e-013 1.1455¢-014
Case2 0.00024238 4.9591e-015
Case3 0.001145 6.563e-016
Case4 5.0161e-005 3.3088¢e-015

Table 5: The relative error in four cases with different numerical methods at T = 20.

We are satisfied with the results in the four cases of the solvers in Section 3.3.2 because they

comply with the mass conservation law and they only leave indelible and negligible machine

error with us. Before discussing farther, introduce that why these four cases are handpicked as
follows:

Case 1: The initial values are given from the pole to the equator, and they cross through the
dense grids near the poles and the dissipative grids near the equator. This case
contains all situations which could average the diversity of geometry.

Case 2: The initial value is given one point. The case could extend to all cases which are
composed of some discrete points.

Case 3: The initial value capped the poles which are the densest position in our grids. We
could understand how the values in the poles which are usually the singularities in.

Case 4: We give the smooth initial values which are different from preceding three cases.

Due to the results of above illustrations, we believe that the solvers in Section 3.3.2 will make

any initial condition keep the mass conservation law. Table 5 brings us that the symmetric
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discretization is better than central difference method in the mass. By the way that Case 1

complies with the mass conservation law both in Section 3.3.1 and Section 3.3.2.

4 ~ Fast Heat Solver in Ellipsoid Coordinates
4.1  Heat Solver on an Ellipsoid Surface Domain

4.1.1 Solvers with the Central Difference Method

According to [11], we have the formula of the heat equation on an ellipsoid surface
domain in ellipsoid coordinates as
u, = Agu

B _ 1 (d*u 1 1 d%u (30)
Au=Viu=i7 <a¢2+C°t(¢) 7% (sinhz(B)+sin2(c|)))692>

Here

h? = o?(sinh?(B) + sin?(¢))
x = asinhfBsin¢gcosO , x = asinhfsin¢sind, z = acoshBcosdp
In (30), ignore a and [ by setting they be constants, and denote
u(o, B, ¢,6,t) = u(, 6,1)
The setting of grids is the same as Section 3.1.2.

Step 1: Similar to Section 3.1.2 Step 1.

Step 2: Similar to Section 3.1.2 Step 2 and substitute (18) into (30),

E—l . E—1 . E—1 .
[#57  u@en o3 w@e PR @)
_ 2 2 2
AU=in k 997 T cot(9) 9P * G @) sty 367 )
! 2 k6 ! iko ! 2 iko
1 $ Pu@e (e L Pu@)e
=W ZN a2 T Z o) —5,—+ ZN(sth(B) LIETOTESURP Y
k= k=— k=2
E—l ——1 H—1

1 azuk(d)) ol k(d)) el i
| 2. o7 &t Z oM gt Z (sth(B) sin 2(¢))“k(¢)( k5 et
k___

k=—y
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71

1N (Fu@ 1,6 L 1
=iz Z ( e T O 2(¢))““(¢’)> " G1)

Substitute the surface Laplacian term of (30) into (17),

62 n+1 aun+1 1 1 aZun+1 2 .
- = n+
h? < log + COt(q)) + (sinhz (B + sin? (cl))) 062 > At
1 oA 1 1 9% 2 3
2z gz  cot(@) c|) (sinh2(8)+sin2(c|))) 3670 " " (32)

Substitute (18) into (32), and from (31) we can derive

, & W) | dut(g) 1 1 g
k n ko _ 4 o i
FZN< gz T 58 ‘kz(sinhZ(B)+sin2(¢))“k+1(¢)>eke ZNAt“k“(d’)eke
k=—y k=—3
N H
2
1N 2R ol (¢) 1 1 |
= 2 G +eot@ TP e 4 @) € - ZA—tu OL
k=—y k=—3

-—1

1 02 +1(¢) n+1(¢) i 1

=> Z <h2< aq)z t(¢) d) kz(sth(B) sz(q))) k+1(¢))__uk+1(¢)> ik6
k———

~ 1 (9%up(¢) Jui () L L 2 i
- ZN <_ h_z( a2 cot($) T kz(sinhZ(B) L Sin2(¢))uk (¢)) T Atk (q>)> e’

2

Eliminate 22 _y and e™? from both sides of the equation,
B 5

1{0 uﬂ“(q)) n+1(¢) 1 . -

F( aq)z cot(d) b — k2 (smhz(ﬁ) L ((l))) K 1((1))) - —uk 1(¢)
OZuﬂ (q)) k(q)) 2 1 1 N 2 )

h2 < aq) +co (q)) ( ll’th(B) + Sil‘lz (d)))uk (¢) - Euk(q))

After multiplying by h? to both sides of the equation and equaling the Fourier

coefficients, u,(¢p) satisfies

O*upt! (9) up () 1 et h* s
T + cot(d) T —k? (smhz ® sz ((b)) L) - Uy (¢)
?ui(9) dug ($) 1 1 h2
et COt ) I (s + s R @) — ()

The Step 2 is equal to do FFT for 6 as Figure 4.

Step 3: We use the central difference method for ¢, i.e.
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Ui Ui — Uiy 0%U; Uiy —2Ui + Uiy

~ d ~
o 200 N9 g2 A2
For each Fourier modes k (k = —g, —g +1,..,0,1,.., g— 1.), we set

ultl(p) = U at T = (n + 1)At
up(p) =U™ at T = nAt

and solve the following equations.

U1n++11 2Uin+1 + Uin_-i-l t(q) ) ln_{_+11 Un+1 _ kz( 1 ) n+1 2h2 Un+1
Ad? 2A¢ sinh?(B) sm2 (b)) At
My — 200 + UL U, — UL 1 1 2h?
— it 3 L — cot(dy) i+ L K2 (= +— )UP —=—Up
A 2A¢ sinh?(B) = sin?(¢;) At

fori=1,..,6 M.

Both sides of the equations were multiplied by Ad¢? and rearrange them,

cot(dp)Ad, . 1 1 2h*Ad?\ (d>) (N,
1- > ————unl +< 2 _kZAd)Z(sinhz(B) + sinz(d)i)) S )Ui 4 4 < ———ur#!
B cot(p)Ad I " 2h%Ad?\ cot(¢;)A d>
=-(1-—=UiL + (2 + kZAd)Z(sinhZ(B) + Sinz(d)i)) == )Ui -+ ——)Ul (33)
Therefore, we could set that
e cot(p)A¢
2
1 2h%Ap?
Pl —_ 2 2 S
Bi Ty (sinhZ(B) + sin? (‘1)1)) At
t !
Ly cot(¢;)Ad
2
4h% A2
Di=-Bi——x

fori=1,..,M.

Before solving the governing equation in ellipsoid coordinates as (30), we burned
with curiosity over that the Fourier coefficients of a function in the coordinates
satisfy the symmetry constrain [13]. Here we ignore the discussion by applying the

similar arguments in Section 3.1.2 and derive,

U~ u,(00) = u (- 5) = ~DFu (5 = (DU,
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Ad
Umt1 = U(Py1) = uy (T[ + -

2

) = =Dk (- @) ~ (—1)*Uy

for each k-th Fourier coefficient. Then we could produce the following matrices,

_(_1)k A1 + Bl Cl _Uanrl ]
Az Bz Cz U2n+1
AIVI—l BM -1 CM -1 U |(]/|+—11

I A, By +(=DC, U]
_(_1)k+1A1 + D1 _Cl 1 Uln |

—A, D, -G, Uzn
_AIVI—l DM -1 _CM—l UIC/I—l

A, D, +(=D)“*C, || Uy

and must solve these linear systems N times.
The Step 3 is equal to solve the unknowns in the linear systems in each Fourier mode
as Figure 5.
Step 4: Similar to Section 3.1.2 Step 4.
According to the procedure, i.e. Step 1=>Step 2=>Step 3=>Step 4, we could complete the
numerical solution at one time step and we can derive the numerical solution at any time by

keeping performing the procedure recursively.

4.1.2 Solvers with the Symmetric Discretization

According to [11], we have the formula for the heat equation on an ellipsoid surface

domain in ellipsoid coordinates as

u, = Au

1 . _0Ou
(sini) 5 + (

5 0
Agu =Viu=— —

1
sin(¢)

The initial settings are the same as Section 4.1.1.

(34)

4 1 0%u
h? sinh?(B) = sin? (cl))) 002
Step 1: Similar to Section 3.1.2 Step 1.

Step 2: Similar to Section 3.1.2 Step 2 and substitute (18) into (34),
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1 1 k=—>

E_l . ﬁ—1 :
o ( 957 u () e 237 u (@) e
=2 2

sing ad sing 0P +(sinh2(B)+sin2(¢)) 002

N ﬂ_l

2 . .
1 9 ouy (p)ek® 1 02y (p)el*®
h? <sin¢a¢(sm¢ ZN IR OM sm2(¢) 202
](:—7 k__7

N N_l

_ 1 1 0 . auk(q)) i 1 i
" h? ﬁ%(Zqu’ L0} eke)-I-(sinhz(B) smz(cl))) Z i () (ke

2
_ 1 1 0  ° duld) 1 1 i
" h2 Z (sin(l)% & o) )~k (sinhz(B) N sin? (¢))uk(¢)) e’ (35)

Substitute the surface Laplacian term of (34) into (17),
1 < 1 Juntt L 1 azu““) 2

n+1

bz \ sin ¢a¢(m¢ 3ot Gz T sin2e)) 002 ) T "

1@ a( au“>+( 1 1 >az 2 26
~  h2\sinddd sin¢ 0P sinh?(B)  sin?(¢)/ 962 At (36)
Substitute (18) into (36), and from (34) we can derive

__1 N

6uk+1(<|>) 1 A i n i
h? Z (mﬂ( 0P i k2(sinhZ(B) smz(q))) U (@))el? ~ Z At @t

k———

N N
1 auk(q)) 1 1 . : 2
=i Z(ma( 00 G Sy KO~ 2, Uk @

k———

N
k=—7

N
7—1

_ 1 1 a4 . oultl(e) 1 N i
= ZN(F(Mﬁ(qu) op )~ kz(sinhz(ﬁ) smz(d))) U (90) = kT (9))e"?

k=—7

N
-1

dug (¢) 1 1 1
Z 2 h? (smd) E)d) ing ad )~ K (sinhZ(B) T in? (<|>)) Ui (6)) = uk k(e

k———
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N

Eliminate 2‘,2 “y and e™? from both sides of the equation,
2

1 9 dug " (¢) 1 1., 2 .
G K 6<I> ind =55 ~ K Gz + sy @) gk (@)
_ a . ou(d) 1

F (m@ (sing IS ) — k? (sinhz ® t 7 (d))) ug () — uk k(P)

After multiplying by h? to both sides of the equation and equaling the Fourier
coefficients, uy(¢p) satisfies

1 0 dupt1 1 2h?
—<' ¢ U (¢)> k?( )) ““(cb)——u““(cb)

sing 0 St 0P sinh?(pB) 51n2(c|)
19 dup(d) ’
T sind)%(smq) W) i (sth(B) sin 2((1))) k(@) = uic ()

The Step 2 is equal to do FFT for 6 as Figure 4.
Step 3: We use the symmetric discretization for ¢, i.e.

6U- Sln¢i+1(Ui+1 e Sind)i_%(Ui —Ui_1)
2

For each Fourier modes k (k = —g, —§+ 1,..,0,1,.., g— 1.), we set
ul*l(¢p) = Ul at T = (n+1)At
up(d) =U"atT = nAt

and solve the following equations .

| sing, 1(U1"++11 Uty —sing 1 (UM — Ut 1 2
i+ 2 il kZ( YU gntt _ 2 gn+t
sind, Adp? sinh2([3) mnzﬁb) At
_ 1 sinq)i%(U{‘H -UP) - sinq)i_%(Ui" —-Uly) 2 1 N 1 ur 2h2 ur
~ sind; Adp? (sinhZ(B) sinz(q)i)) PooAr !
fori=1,..,M

Both sides of the equations were multiplied by A¢*sing, and rearrange them,

1 1 2h?Ad?sin(d;)
n+1 e e _ 1.2 24 ) - l pH
sing,_1Up +( sing, 1 = sind, 1 —k*Ad sin(d:) (sinh%ﬁ)*sinzwi)) At >Ul
+sm¢ 1U1n++11
1 1 2h?Ad?sin(d;)
— —qj n i i sz Zgj i - 1 ]
sm¢i_%Ul_1+<sm¢i_%+smd>i+;+ ¢7sin(1) (sinhz(B)+Sin2(¢i)> At >U‘
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: n
—sing, 1074y

(37)
Therefore, we could set that
A; = sind. 1
=7
1 1 2h?Ad?sin(¢;)
B. = —si Qi _kZAZ' ( )_ i
; smc])i_% smc])H_% dsin(;) SInh2(P) + SnZ() m
C, =sind. 1
1 ¢1+7
4h?Ad?sin(ob;
b, = _p, _ HhfAd’sin(¢)
At

fori=1,..,M
Because the coefficient of U, is sind:1 =0 and the coefficient of Uy,; IS
2

Sind)M% =0, we have A; =0 and Cy = 0. Therefore, we do not need symmetric

constrain which is the great news for us to produce the following matrices,

Bl Cl _U1n+1_
A B, G, Uz
AM 4l BM -1 CM 1 ||V I{1/I+j-1
B An By JJUu™
i Dl _Cl i Uln T
- Az D2 _Cz Uzn
_AM—l DM—l _CM—l Ul\r;l—l
L - AM DM AL Ul\n/l J

Because Ay =sing, 1 =C;, for i=1,..,M—1, the matrices will become
2

symmetric matrices and lead to less computations. It reduces above matrices to be
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Bl Cl _Uln+l
c, B, C, U

Cu> Bua Cua U,?/r_ll
Cmoa Bu _U:/rl

D, -C U
-C, D, -C, u’

_CM—Z DM—l _CM—l U||\1/|_1
_CM—l DM _U:A_

And these linear systems need to be solved N times by Thomas algorithm here.
The Step 3 is equal to solve the unknowns in the linear systems in each Fourier mode
as Figure 5.
Step 4: Similar to Section 3.1.2 Step 4.
According to the procedure, i.e. Step 1=>Step 2=>Step 3=>Step 4, we could complete the
numerical solution at one time step and we can derive the numerical solution at any time by

keeping performing the procedure recursively.
4.2 Numerical Results

We could not find the exact solution of the equation (30), but yearn to make sure that
our numerical solutions for the equation (30) are all right. It is a great challenge for us.
There is one way to check if the solutions are right is comparing the solvers in Chapter 4 with

Chapter 3 because we have the exact solution in Chapter 4.

4.2.1 Results of Solvers with the Central Difference Method

Compare Section 3.1.2 with Section 4.1.1, there are some changes in the components

of their matrices that were made up by the Fourier modes of the linear systems in Section
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3.1.2 as follows,

Mutating :
Spherical surface -2 Ellipsoid surface
R? > h?
k*A¢p? 27 b2 1
sin2¢; K K*Ad (smhz(m sm2(¢i))
o Kap® 2R%A¢? _ 1 | 2hAg?
Bi=-2 sinz(d)i) At K Bi=—2- k q) (smhz(B) smz(cbi)) At
2 2 2 2
Di:_Bi_4R Adp > Di:_Bi_4h Ad
At At

A; and C; are the same as before, for i = 1,2, ..., M. Modify our programming by above
terms and then get the intuitional numerical solvers.
4.2.2 Results of Solvers with the Symmetric Discretization

Compare Section 3.1.3 with Section 4.1.2, there are some changes in the components
of their matrices that were made up by the Fourier modes of the linear systems in Section

3.1.3 as follows,

Mutating :
Spherical surface > Ellipsoid surface
R? > h?
i > (—— )AP?Kk?sind;
sin (¢;) sinh 2[3 sin 2¢ !
2R2A¢2sin ¢; 1 2h2Ad?sin ¢;
B =—A —C — Sm¢l AP*k? === > By =—A—C~ Garpt 5m2¢ APk sing; — =—
4R%Ad%sin 4h?Ad?sin ¢;
D, = —B, — > D, = —B, — 2Adsind;
At At

A; and C; are the same as before, for i = 1,2, ..., M. Modify our programming a little bit

as above terms and then get the intuitional numerical solvers.
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4.3 Mass Conservation

We developed an interest in keeping a lookout for the variation of the total mass in our
numerical solvers due to (29),
here 0Q: ellipsoid surface
x = asinhfsin¢dcosO ,y = asinhfsingdsinbd , z = acoshPcosd

X(o, B, d,0) = (x,¥,z) = (asinhBsindcosb , asinhBsindsind, acoshBcosd)

Xij ~ X(41,6))

i i &
0X OX _ 0x O W
% 90 =0¢ 0 o
dx dy 0z
00 06 00

i 7 3

= | asinhcos¢dpcos® asinhfBcospsin® —acoshfBsing
—asinhfsingsin® asinhfsindcosO 0

= (a®sinhBcoshPBsin?Ppcos6, a?sinhBcoshPsin’ Ppsind, a?sinh?Bsindcosd(cos?6 + sin?8))

= (a?sinhBcoshBsin®pcos, a?sinhBcoshPsin? psind, a?sinh?Bsindcosd)

0X X
FrSalFT)

= (a*sinh?Bcosh?Bsin*¢p(cos?0 + sin?0) + « smh4851n2q)coszc|))2
1
= (a*sinh?Bcosh?Bsin*¢ + a*sinh*Bsin® pcos?Pp)2
1
= (a*sinh?B(1 + sinh?B)sin*¢p + a*sinh*Bsin®pcos? )2
1
= (a*sinh?Bsin*$ + a*sinh*Bsin?Pp(sin?P + cos?d))?
1
= (a*sinh?Bsin*$ + a*sinh*Bsin? )2
1
= (a*sinh?Bsin?$(sin?¢ + sinh?p))?
1
= (a®sinh?Bsin?¢ h?)2
= h asinhf|sind|

Choose specific four cases in our paper to observe the total mass of them which changes with
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time. Because of immovability of our ellipsoid surface domain, the total mass is equal to

2
fﬂf 6XX6X‘d do Z aXi’j X(?Xi’]- AbAO
Ul5p < 909940~ 2, Uij|Ge X5 |4

00 i=T,..M

j=1,...N

= Z u;; h asinhf|sind;| ApAB
i=T,..M
j=1,...N

The total mass at n-th time step is set by

Sn

Z uj; h asinhf|sind;| ApAS
i=T,..M
j=1,..N

The relative error at n-th time step in our numerical solver means

|s” — SO
SO

4.3.1 The Mass of Solvers with the Central Difference Method
We solved the heat equation (30) u, = A,u on an ellipsoid surface domain

by numerical methods that are FFT, second-order central difference method 1,

Crank-Nicolson method and Thomas algorithm.

Initial settings as Figure 36: M = 32,N = 64, a =5, B = 0.5, At = %Ax = %

(The ellipse rotating about z-axis has length 2acoshff = 11.2762 and the minor axis

2asinhf3 = 5.221.)

z
& IS o = =) -

Figure 36: The domain is a ellipsoid surface with a« =5, = 0.5.
Case 1: Pizza-like initial condition as follows,
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u(l:0.5*M,0.5*N:0.5*N+5)=1; others are set to be zero.

z

Figure 38: Left, T = 0.25, mass = 7.3208, relative error = 7.2793e — 016.
Mid-left, T = 0.5, mass = 7.3208, relative error = 2.0625e — 015.
Mid-right, T = 0.75, mass = 7.3208, relative error = 9.7057e — 016.
Right, T = 0.1, mass = 7.3208, relative error = 2.4264e — 016.

z

Figure 39: Left, T =5, mass = 7.3208, relative error = 8.3712e — 015.
Right, T = 20, mass = 7.3208, relative error = 2.4022e — 014.
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Figure 40: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 38, Figure 39, Figure 40, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,
Case 1 complies with the mass conservation law.

Case 2: Initial condition was set as one point as follows,

u(0.5*M,0.5*N+5)=1; others are set to be zero.

z

Figure 42: Left, T = 1/64, mass = 0.14134, relative error = 0.00038824.
Mid-left, T = 1/32, mass = 0.14139, relative error = 0.000777.
Mid-right, T = 3/64, mass = 0.14145, relative error = 0.0011663.
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Right, T = 1/16, mass = 0.1415, relative error = 0.001556.

z

Figure 43: Left, T =5, mass = 0.15675, relative error = 0.10947.
Right, T = 20, mass = 0.16177, relative error = 0.14502.
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Figure 44: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 42, Figure 43, Figure 44, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing, but it will turn to stable that
means mass will not change any more in a long time. Case 2 does not comply with the mass
conservation law.

Case 3: Chapeau-like initial condition as follows,

u(l:3,1:N)=1; others are set to be zero.
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Figure 45: Initial value u; T = 0; Totalmass = 1.9674.

z

Figure 46: Left, T = 0.25, mass = 1.7526, relative error = 0.10917.
Mid-left, T = 0.5, mass = 1.632, relative error = 0.17049.
Mid-right, T = 0.75, mass = 1.5505, relative error = 0.21191.
Right, T = 1, mass = 1.4902, relative error = 0.24256.

z

Figure 47: Left, T =5, mass = 1.192, relative error = 0.39413.
Right, T = 20, mass = 1.1192, relative error = 0.4311.
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Figure 48: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 46, Figure 47, Figure 48, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting decreasing, but it will turn to stable that
means mass will not change any more in a long time. Case 3 does not comply with the mass

conservation law.

Case 4: Smooth initial condition as follows,

u(m,n)=abs(sin((m-0.5) *%) ) +tabs (cos ((n-1) * ENE) ), Vm,n.

Figure 49: Initial value u; T = 0; Totalmass = 228.1165.
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Figure 50: Left, T = 0.25, mass = 228.6505, relative error = 0.0023412.
Mid-left, T = 0.5, mass = 229.088, relative error = 0.0042588.
Mid-right, T = 0.75, mass = 229.4607, relative error = 0.0058928.
Right, T = 1, mass = 229.7849, relative error = 0.0073137.

z

Figure 51: Left, T =5, mass = 232.1409, relative error = 0.017642.
Right, T = 20, mass = 232.8774, relative error = 0.02087.
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Figure 52: Left, the values of u on the equator change with time.

Right, total mass of u changes with time in 0~20 seconds.

According to Figure 50, Figure 51, Figure 52, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing, but it will turn to stable that
means mass will not change any more in a long time. Case 4 does not comply with the mass
conservation law.

In above Case 1~Case 4, we derive that Case 1 can get the perfect result by mass conservation
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with some machine error ; the others show up big derivation in our relative error.

4.3.2 The Mass of solvers with the Symmetric Discretization

We solved the heat equation (34) u, = A;u on a ellipsoid surface domain
by numerical methods that are FFT, symmetric discretization, Crank-Nicolson method

and Thomas algorithm.

1

Initial settings as Figure 37: M =32, N =64, a =5, 3 =0.5 At= %AX =

Case 1: Initial values are the same as Figure 36,

z

Figure 53: Left, T = 0.25, mass = 7.3208, relative error = 2.4264e — 016.
Mid-left, T = 0.5, mass = 7.3208, relative error = 5.2168e — 015.
Mid-right, T = 0.75, mass = 7.3208, relative error = 2.0625e — 015.
Right, T = 0.1, mass = 7.3208, relative error = 1.9411e — 015.

z
z

Figure 54: Left, T =5, mass = 7.3208, relative error = 1.189e — 014.
Right, T = 20, mass = 7.3208, relative error = 3.9187e — 014.
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Figure 55: Left, the values of u on the equator change with time.

Right, total mass of u changes with time in 0~20 seconds.

According to Figure 53, Figure 54, Figure 55, u was diffused as time goes by to be like the
look of the original domain. Consider that total mass has little machine error. Therefore,
Case 1 complies with the mass conservation law.

Case 2: Initial values are the same as Figure 41,

z

Figure 56: Left, T = 1/64, mass = 0.14134, relative error = 0.00038817.
Mid-left, T = 1/32, mass = 0.14139, relative error = 0.00077686.
Mid-right, T = 3/64, mass = 0.14145, relative error = 0.001166.
Right, T = 1/16, mass = 0.1415, relative error = 0.0015557.

z

Figure 57: Left, T =5, mass = 0.15676, relative error = 0.10953.
Right, T = 20, mass = 0.16179, relative error = 0.14519.
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Figure 58: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 56, Figure 57, Figure 58, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing, but it will turn to stable that
means mass will not change any more in a long time. Case 2 does not comply with the mass
conservation law.

Case 3: Initial values are the same as Figure 45,

L L
z

Figure 59: Left, T = 0.25, mass = 1.752, relative error = 0.10944.
Mid-left, T = 0.5, mass = 1.6312, relative error = 0.17087.

Mid-right, T = 0.75, mass = 1.5496, relative error = 0.21235.
Right, T =1, mass = 1.4892, relative error = 0.24304.

z
z

Figure 60: Left, T =5, mass = 1.1908, relative error = 0.39475.
Right, T = 20, mass = 1.1179, relative error = 0.43179.
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Figure 61: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 59, Figure 60, Figure 61, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting decreasing, but it will turn to stable that
means mass will not change any more in a long time. Case 3 does not comply with the mass
conservation law.

Case 4: Initial values are the same as Figure 49,

z

Figure 62: Left, T = 0.25, mass = 228.651, relative error = 0.0023432.
Mid-left, T = 0.5, mass = 229.0887, relative error = 0.0042622.
Mid-right, T = 0.75, mass = 229.4618, relative error = 0.0058973.
Right, T =1, mass = 229.7861, relative error = 0.0073193.

Figure 63: Left, T =5, mass = 232.1449, relative error = 0.017659.
59



Right, T = 20, mass = 232.8834, relative error = 0.020897.
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Figure 64: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~20 seconds.

According to Figure 62, Figure 63, Figure 64, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 4 does not comply with
the mass conservation law.

In above Case 1~Case 4, we derive that Case 1 can get the perfect result by mass conservation

with some machine error ; the others show up big derivation in our relative error.
4.3.3 Comparison between the Central Difference Method and the

Symmetric Discretization in Ellipsoid Coordinates

According to the results in Section 4.3.1 and Section 4.3.2, we could summarize the

following table.

4.3.1 4.3.2
Casel 2.4022¢-014 3.9187e-014
Case2 0.14528 0.14519
Case3 0.4311 0.43179
Case4 0.02087 0.020897

Table 6: The relative error in different cases with different methods at T = 20.
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Table 6 brings us that the solvers on the ellipsoid surface domain which use the second-order
symmetric discretization or the solvers which use the second-order central difference method

are coming to the same thing here.

4.3.4 Comparison between Chapter 3 and Chapter 4

After combining the results of Chapter 3 and the results of Chapter 4, we derive that
the symmetry discretization which is based on the spherical surface domain will get perfect
outcomes. Another result which we are interested in is that Case 1 complies with the mass
conservation law both in Chapter 3 and Chapter 4. Because Chapter 4 have no exact solution,

we plan to show the results of the case which is that take the ellipsoid surface domain to
approximate to the spherical surface domain with the radius equals 5 as follows, set a = %,

B =6, 1.e. acoshf = 5.0429, asinhf3 = 5.0428,

Spherical solver Ellipsoid solver
Casel 2.8661e-013 1.3395e-014
Case2 0.00024238 0.00023811
Case3 0.001145 0.001137
Case4 5.0161e-005 4.9565e-005

Table 7: The relative error in different cases with the central difference method at T = 20.

Spherical solver Ellipsoid solver
Casel 1.1455¢-014 1.8136e-014
Case2 4.9591e-015 4.0326e-006
Case3 6.563e-016 7.6251e-006
Case4 3.3088¢-015 5.6232¢-007

Table 8: The relative error in different cases with symmetric discretization at T = 20.
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In Table 8, symmetric discretization makes perfect results in spherical coordinates, and central
difference makes good results in ellipsoid coordinates. When we ignore the efficiency of the
symmetric discretization and observe Table 7, they seem very close. According to above two
tables, we declare that our solvers of Chapter 4 are correct, and the total mass is concerned
with the geometry of the domain or the configuration of our grids because the sphere and

ellipsoid have dense grids near the poles and dissipative grids near the equator.

5 ~ The Primary Cardiac Simulation of Human Beings

5.1 The Reaction-Diffusion Equation

The equation that we want to solve comes from [15], and we will really solve the
system which is in [6]. Because some action potentials of several kinds of cells in the healthy
heart can now be calculated from the following equations of ion flow and voltage change as

Figure 65 [15].

Figure 65: V: membrane voltage; f: ionic current; K: physical factor; g: openness of ion
channel or channel conductivities; h: a mathematical function of present
openness and local potential[15].

V is the local electric potential which changes with time at a rate composed of two functions.

One function have relations with the geometric arrangement of neighboring potentials; it
equals the electronic currents that couple membranes across space. K is the same as a

chemical diffusion coefficient. f is a local ionic current. g is the local openness of each ion
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channel. H: a mathematical function of present openness and local potential[15]. Through the
strict interpretations of [15], we got the meanings of all variables. Here we get the meanings
of the variables of the reaction-diffusion systems in [6]. The reaction-diffusion systems in [6]
come from [2] as following discussion. We start with a two-variable system of reaction

-diffusion equations modeling the dynamics of an excitable medium:

0
a—ltl = f(u,v) + Au
av

a = g(u' V)

(38)

where the functions f(u,v) and g(u,v) represent the local kinetics of the two variables u
and v. Choose the diffusion coefficient for Au be unity and model the local kinetics with the

equations

f(u,v) = -El-u(l —wWu—uy (], glu,v) =u—-v

(v+Db)

ug, (v) =
and a, b, € are parameters. Set ¢ to be small, so as to make u be very fast. The variables
u and v are known as the excitation and recovery variables, respectively. After combining
the equations in [2] with the equations in [15], we derive the meaning of each variable and
function:
u: Local electric potential.
v: Local openness of each ion channel.
f: Local ionic current.
g: The rates of change of openness of each ion channel concern with present openness and local

potential.
5.2  Numerical Methods and Techniques

5.2.1 Gilbert Strang Splitting Method

Solve directly the equation that has both linear terms and nonlinear terms is very
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difficult for us. It is a good news for us that the equation could be separated into two parts
directly as follows:

u =f+g (39)
here u, f, g are functions, and f is a nonlinear term and g is a linear term. The Gilbert

Strang Splitting method is good for these kinds of problem.

Step 1: Solve u, = g at %At time step.

Step 2: Solve u, = f at At time step.

Step 3: Solve u, = g at %At time step.

The procedure of Step 1 => Step 2 => Step 3 is equal to solve equation (39) at At time step.

If we could find the exact solution for u, = g ( Because it is more possible to make it in

linear term for us. ), then the solution will be more accurate.

5.2.2 Numerical Techniques

We introduce the numerical techniques in [6] to solve the governing equation (38).
Beacause the system spends most of the time within the small boundary layer &, the way to
solve is that let u # 0 where outside the boundary layer part of the wave; otherwise u = 0.

We add the process by means of the following algorithm [2]:

If u" < &, then
uttl = 0, vl = (1 — Av"
Otherwise,
e = vl +Db
th — a

vitl =y + At(u" — v?)
u™ = u" + (A% )u" (1 — uM) (" - ug)
where u" and v" are the values of the u and v at the n-th time step. By above idea, the

reaction term can be more efficient with this little effort in time steps, because most of the
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spatial points are within a small boundary layer & at any instant of the time.
5.3  Numerical Solvers

We want to solve the reaction-diffusion equation as follows,

( du
Frie f(u,v) + Au
av
O = g(u, V)
. .0 (40)
f(u,v) = Eu(l —wWu—uy ], glu,v) =u—v
\ i () = D)

where u = u(¢,6,t) and v =v(¢,0,t), where 0 <d <=, 0 <6 < 2m.
The periodic conditions
u(d,0,t) = u(d,2mt), Vt.

that we will use are inherent in the problem.

5.3.1 Numerical Solver of the Reaction-Diffusion Equation on a Spherical

Surface Domain

The surface Laplacian on a spherical surface domain can describe as (22)

Ausv2ge L( L 0.  du 1 0%u ”
U = g m@(“n‘i’%)*—smz(@w (41)

Perform a numerical solver of the systems with (41) here. We use the Section 5.2.1

Gilbert Strang Splitting method to deal with the systems and combine time splitting and

spectrum method (FFT) with finite difference methods as Section 3.1.3.

Step 1: Solve % time step

9] 1 +b

a—ltlzgu(l—u) u—(Va )

o (42)
ot Y

with explicit Forward-Euler method and impose Section 5.2.2 on it.

After (42) was discretized,
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wtl —yr 1 vl +b
(= pwa-w o - g]
/2 € a 43)
Vn+1 Vn
=u —y"
At/2

Impose Section 5.2.2 to (43),

If u® < §, then

un+1 =0 Vn+1 (1 _ ?) n

Otherwise,

At v®+b
't =yt + —u?(1 —u®) (u“ — )
2¢€ a

At
yitl — yn + ?(un B Vn)

Step 2: Take u"*™! and v™*! of Step 1 be u™ and v" in this step and solve At time step

du 1 0%u
at Asu 12 (smcl) 6(])( e ¢) sinZ(¢) W)
av

a =0

to derive new u"*! and v**l. It is easy to know that we only need to solve

du T
ot r? (smcl) 0(])( in d)) smz(cl))ﬁ)

Above equation had been solved by Section 3.1.3.
Step 3: Take u™*! and v"*! of Step 2 be u™ and v" in this step and solve % time step

as Step 1.
According to the procedure, i.e. Step 1=>Step 2=>Step 3, we could complete the numerical
solver of the governing equation (40) on a spherical surface at one time step and we can

derive the numerical solution at any time by keeping performing the procedure recursively.

5.3.2 Numerical Solver of the Reaction-Diffusion Equation on an
Ellipsoid Surface Domain
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The surface Laplacian on an ellipsoid surface domain can describe as (34)

1 _d%u
sinh?(p) + sin? (cl))) 692)

1
Au = Viu = 2( (mq> kS (44)

ing 09 0
Perform a numerical solver of the systems with (44) here. We use the Section 5.2.1
Gilbert Strang Splitting method to deal with this systems and combine time splitting and
spectrum method (FFT) with finite difference methods as Section 4.1.3.

Step 1: Be the same as Section 5.3.1 Step 1.

Step 2: Take u"*™! and v™*! of Step 1 be u™ and v" in this step and solve At time step

ou 1 1 _d%u
at Asu Y (smq) 6(1)( Ré cl)) (sinhz B) + sin? ((]))) 662)
N _o
dt

to derive new u"*! and v™*l. Itis easy to know that we only need to solve

ou 1 1
Era (smcl) o (S (I)) (sinhZ(B) 5 sin? (cl))) 092)

Above equation had been solved by Section 4.1.3.
Step 3: Be the same as Section 5.3.1 Step 3.
According to the procedure, i.e. Step 1=>Step 2=>Step 3, we could complete the numerical
solver of the governing equation (40) on a ellipsoid surface at one time step and we can

derive the numerical solution at any time by keeping performing the procedure recursively.

5.4  Results and Analysis

In this section, we simulate the reaction-diffusion equation (40) on a spherical
surface domain by setting R = 16 in Section 5.4.1. By comparing our numerical solver with
the results in [6] to make sure that our solver is far and away right. Furthermore, we simulate
the reaction-diffusion equation (40) on a ellipsoid surface domain which approximate the
spherical surface domain with R = 16 in Section 5.4.2. After comparing Section 5.4.1 and
Section 5.4.2 with [6], we know that they all have the same spiral wave. We could make sure

that our solvers are correct. Therefore, solve (40) on the ellipsoid surface domain with
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cardiac size which we approximate in Section 5.4.3.

5.4.1 Numerical Results of the Reaction-Diffusion Equation on a

Spherical Surface Domain with R=16

From [6], set M x N = 60 x 120, R =16, At = >-Ax =+, a = 0.35, b = 0.0008,

€= 0.02, 6 =0.00001 [3]. We only show and care about the values of u but ignore v,

because the motions of v are not important for us. In our MATLAB, given initial values

u(l:M/2,M:M+8)=0.9; others are set to be zero.
v(1:M/2,M+8:M+16)=0.6; others are set to be zero.
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Figure 68: Left, T =9.5. Mid-left, T = 10. Mid-right, T = 10.5. Right, T = 12.
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Compare these results with [6], we could say that our numerical solution is correct.

5.4.2 Numerical Results of the Reaction-Diffusion Equation on an

Ellipsoid Surface Domain which Approximates to R=16

Replace R =16 by o = 1.6, B =3 in Section 5.4.1, and it leads to acosh(p) =

16.1083, asinh(B) = 16.0286.

-10

Figure 69: The initial values of u on a ellipsoid surface with acosh(p) = 16.1083 and
asinh(B) = 16.0286.
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Figure 71: Left, T = 9.5. Mid-left, T = 10. Mid-right, T = 10.5. Right, T = 12.
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Compare these results with Section 5.4.1, we could say that our numerical solution on an

ellipsoid domain is correct and the solver in Chapter 4 is right.

5.4.3 Numerical results of the Reaction-Diffusion Equation on an

Ellipsoid Surface Domain which Approximates to Cardiac Size

Replace a=1.6, =3, e=0.02 by a=0.35, p=0.0008, ¢=0.025 in
Section 5.4.2, and it leads to acosh(p) = 6.9935, asinh(p) = 5.0094. In our perennial tests,
finally we take € = 0.025 to let the results be periodic. Cardiac size is like a fist about

14cm X 10cm in our settings.

Figure 72: The initial values of u on a ellipsoid surface with acosh(p) = 6.9935 and
asinh(p) = 5.0094.

Figure 73: Left, T = 1. Right, T = 2.
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Figure 74: Left, T = 9.5. Mid-left, T = 10. Mid-right, T = 10.5. Right, T = 12.

Further, observe the values in the future and they are periodic by the frequency

analysis.

Figure 75:

Figure 76:

Figure 77: Left, T = 520. Mid-left, T = 521. Mid-right, T = 522. Right, T = 523.
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Figure 78: Left, T = 524. Mid-left, T = 525. Mid-right, T = 526. Right, T = 527.

From Figure 75 to Figure 76 and from Figure 77 to Figure 78, it is easy to see that the wave is

periodic about 7~8 seconds. Pick representative fourteen points to observe the periodicity.

14 points

Zz
-]
:

il 11
FH

Figure 79: Pick these fourteen points which are symmetric and they are u(1,1), u(M/4,1),
u(M/4,N/4), u(M/4, N/2), u(M/4, 3N/4), u(M/2,1), u(M/2, N/4), u(M/2, N/2),
u(M/2, 3N/4), u(3M/4,1), u(3M/4, N/4), u(3M/4, N/2), u(3M/4, 3N/4), u(M,1).

Now, we are going to show the frequency analysis of the values in above fourteen points in

t = 1500~1600 to implement that the spiral wave is periodic.
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Frequency content of u(1 1) at t=1500~1600 Frequency content of u(M/4,1) at t=1500~1600 Frequency content of u(M/4,Nid) at t=1500~1600 Frequency content of u(M/4,N12) at t=1500~1600
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Figure 80: The frequency analysis of u at u(1,1), u(M/4,1),u(M/4,N/4), u(M/4, N/2).

o Frequency content of u(M/43"N/4) at t=1500~1600 Frequency content of u(Mi2,1) at t=1500~1600 Frequency content of u(M2,N/4) at t=1500~1600 Frequency content of u(Mi2,N2) at t=1500~1600
09 016 14
07 08 014 12
07
06 012 4
06
05 01
05 08
04 008
04 06

03 03 006 o
02 02 004

W, Al Al
0 ,JIJ\,AA J A L

0 R 0 T zuu 250 W0 B0 40 &0 0 o w10 i zun 20 3DD 30 400 450 G0 O 50 100 180 znn 25D ann 0 40 0 sx o B 0 180 zun 250 300 30 400 450 500
fequency (M2 fequency(hz) . fequency(2) freuency (H2)

Figure 81: The frequency analysis of u at u(M/4, 3N/4), u(M/2,1), u(M/2, N/4), u(M/2, N/2).

Frequency content of u(M/2.3"Ni4) at t=1500~1600 Frequency content of u@"™M/4,1) at t=1500~1600 Frequency content of u(3M/4,Nid) at t=1500~1600 Frequency content of u(EM/4,Ni2) at t=1500~1800
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Figure 82: The frequency analysis of u at u(M/2, 3N/4), u(3M/4,1), u(3M/4, N/4),
u(3M/4, N/2).

Frequency content of u(3"M/4 3°Nid) at t=1500~1500 Frequency content of u(M.1) at t=1500~1600
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Figure 83: The frequency analysis of u at u(3M/4, 3N/4), u(M,1).

According to above Figure 80~ Figure 83, we could make sure that the spiral wave of the
reaction-diffusion equation in our solver is periodic because they have the obvious property of
periodicity. By the way, we find that the wave is getting more stable in a long time and the
characteristic of periodicity is getting more obvious when we take smaller time step. In this
section, we complete the numerical simulation of the reaction-diffusion equation with

heart-like domain. The periodic results make us believe that the reaction-diffusion equation
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(40) makes sense in physiology.
6 ~ Explicit Numerical Solver of the Heat Equation

After solving the reaction-diffusion equation (40) in Chapter 5, we are interested in the
motions of the convection-diffusion which domain keeps moving. Before we solve the
convection-diffusion equation ( We will introduce this in Chapter 7. ), the first thing which we

must do is to solve the heat equation in Curvilinear coordinates in this section.

6.1 Discretization of the Heat Equation

Heat equation can be described as
I, =AT =V, V.l (45)
ar _or ox
ap X dd ¢
ar' |0X ar' | X

| bz% a—e— +b1%|%
= |Q§ X

ad

According to [7] and rearrange it by =Vr- Z—X we derive

o> 98
a(V.T)

bz’ aq)

X
|a_x X
0

(VD) |9X
a0 |9

V. -V.I'=
$ 90
where

b1=n><‘tl bzszxn

b

X ax X X
dd _ 00 _dp " 00
X o X a X X
I 90 ¢ < 90
X means the spatial grids of the domain and X;; = X(R, ¢;,6;,t) ~ X(¢;, 6;.t) by setting r

T =

be a constant R and set

X(R, ¢y, Gj,t) = (Rsin(¢;) cos(ej) , Rsin(¢;) sin(ej) ,Reos(¢;),t)
I' means the concentration on the grids of the domain and I';; = T'(R, ¢, 6;,t) = I'(;, 0;,t)
by setting r be a constant R and the grids we mesh here are as Figure 3. Solve equation (45)

in Curvilinear coordinates and use explicit first-order Forward-Euler method,
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™+ =T" + AT At

Use the second-order central difference method for spatial and concentration variables:

0Xi; N Xiv1j —Xizgy 00X N Xij+1 — Xjj—1
0 2A¢ " 06 2A0
ali; N Liyr; =Ty 0T N Lije1 = Tij—1
o0 2A¢ " 06 2A0

The diagram of solving equation (45) is as follows.

|&

%
o 1 =
X | — -
5 - T, >~ — ov. I’
ax ax b =Vl = " = Al
— i —==q - oV T
dp 06 5
od
a
dp
g _./'I
e

Figure 84: We must solve these values on each grid at each time step.

We want to construct A" at initial time step in our right hand side of (45) as above

procedures. Given a clear notations and computational process as follows:

aXiJ - Xi+1,j - Xi_1,j _

a(]) - ZA(I) - (pli,j’ pzi,j’ p3j_j)

0Xi;  Xijr1—Xij—1

00 ~ 2A0 = (qli,j’ Az q3i.i)

0X; ; 1

| = 2 2 2)2 _

| d ‘ B (pli‘i T P2;" + Psy, ) = 8i,j
1
2
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(bzi,jl' bzi,jz' bzi.ig) F¢i,jhi’j + (bli,jl' bli.iz' bli.ig) o ;81

VSFi,j = d
ij
OVsliy  Vsligq) = Vsliog _ (~ i )
P 2Ad NS P PHAR 2P PP N
OVsliy Vsl — Vslj—1 _ (f i T )
00 2A0 I L PP O

(bzi,jl. bzi'jz’ bzi.j3) . <F¢'i,j1' F¢'i,j2' F¢i,j3) hi,j + (bli,jl' bli.jz'bli,j3) . (Fei,jl' Fei,jz’ Fei,j3) gi,j

di;

AsFi,j =
Eventually, explicit numerical heat solver will arise from above discretization. But we still
need the symmetric properties of the spherical surface domain. In other words, these are the

. 0Xi;
excellences in geometry. We need to know X,; and Xy to compute aT)" as follows ( '

use the same properties ),

$, ©_O_ O O o o o o]
0

N
4=" @ — @ @ o—0 @ o—©

~

WO OO 9 0 0 0 O

Q] @q @1 ..... 6.\;1 H\: 2
$,,.,O0_0O0 O O O _ O 0 _0O)

Figure 85: The points we circled are unknowns.

Solve them by symmetric property on the spherical surface domain as follows,
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here N=8 6,

HA«'—l / &
SyRametric
o 4
4
Figure 86: Symmetric properties.
X=X ifj < 3
0j = 1J+% » 1 ]—E
Xo; =X ifj 2
I8 § i by -
Xyt = XMJ"‘% , ifj < >
=X if j n
Xm+1j = M=y ity >~
X .
We need to know X;, and X;y4; to compute % as follows (I" use the same properties.),

p— ()
Ol ® 0 @ o0 @ o0 —

Y 2z

4 O

Figure 87: The points we circled are unknowns.
78



Solve them by below simple properties on our spherical domain,
X(R,;,0,t) = X(R, ¢, 2, 1)

So

X(R, d;, 04, 1) = X(R, §;, 0541, 0)
After imposing above two kinds of properties on the spherical surface domain, it is easy to get
the values at next time step of I™*! by the old values I'™ and A,JI™. The results will be
shown in Section 6.2.1. According to the result of Chapter 3, symmetric discretization for
spatial terms will perform good outcome of mass conservation. But solve equation (45) by
the form of discretization as Section 6.1, we have no way of using this method. Seek what is
less attractive than our original objective. We use the discretization as (9) which is like the
spirit of symmetric discretization for ¢ and 0, and we hope to see something good in total
mass. We will show two solvers with below the methods in Section 6.2.1 and Section 6.2.2,
respectively and do nothing change in T.
Method 1:

Use the second-order central difference method 1 below for spatial variables as Section 6.1:

aXi,j ! Xi+1,j _ Xi—l,j aXi,j 5 Xi,j+1 - Xi,j—l
od 20 " 90 200

The results will be shown in Section 6.3.1.

Method 2:

Use the second-order central difference method 2 below for spatial variables cover for that in

Section 6.1:
X —-X X —-X
0X; _ i+%,j i—%,j 0Xi, _ i,j+% i,j—% Vi fori = 1 N
b Ad 80 A0 PPOT) = 2ree s
Impose below techniques on (45),
_ Xt X
itgi 2
X Xi_1; + X
1—7,]' h 2
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Xij t Xij1
1=

i,j+7 2
x =2t t R
1']_? 2

The differences of our schemes will exist only in spatial discretization with method 2. The

results will be shown in Section 6.3.2.

6.2  Results of the Explicit Numerical Solvers for the Heat Equation

6.2.1 Test Accuracy of the Solvers

After producing the solvers by Section 6.1, the most important thing for us is to make

sure that our solvers are correct. Here impose the exact solution as

= e_ZEtZ(x +y+2z)= e_zitZ(Rsin(cl)) cos(0) + Rsin(¢) sin(6) + Rcosi{ip))
And R is a constant. Because we administer explicit Forward-Euler method in temporal term,
we must choose the smaller At and it leads to spend more time to get the numerical solutions.
According to CFL condition, the stability of the numerical method in equation (45) with this
numerical method ( Forward-Euler ) needs to satisfy the property
At = 0(Ax?)

In our programming, we could pick out
1 e 11
202mz

At = = %
2N?

Here provide the exact solutionat T = 1 for (45) as follows,
1
u = e “RZ(Rsin(¢) cos(8) + Rsin(¢) sin(8) + Reos{ip))
We explicitly solved the heat equation (45) I', = A,I" on the spherical surface domain by

Section 6.1 with central difference method 1. In table 9, solve (45) numerically with R =5

at T =1 and check it by the exact solution

u= e_%(Ssin(cl)) cos(0) + 5sin(¢p) sin(0) + 5cosi{ip))
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M XN L, nrom RATIO ORDER
8x16 0.0083 0 0
16 x 32 0.0021 3.9524 1.9827
32 X 64 5.3821e-004 3.9018 1.9641
64 x 128 1.3924e-004 3.8653 1.9506

Table 9: The results of the numerical accuracy test.

We explicitly solved the heat equation (45) I'. = A,I" on the spherical surface domain by

Section 6.1 but replaced central difference method 1 by central difference method 2 in table 2.

M XN L, nrom RATIO ORDER
8x16 0.0127 0 0
16 x 32 0.0033 3.8485 1.9443
32 X 64 8.3253e-004 3.9638 1.9869
64 x 128 2.1200e-004 3.9270 1.9734

Table 10: The results of the numerical accuracy test.

The results show that we got correct solvers.
6.3 Mass Conservation

We developed an interest in doing justice to the variation of total mass in our
numerical solver due to

ar )
Sc=Ar=ver

Integrate both sides,

or
U—dv= H Virdv (46)
ot
Q Q
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From [16],

Q
We impose our assumption
or
on
It will lead to
o’r 0
on?

So, (46) becomes
or
ﬂ—deffVZFdV
ot
Q Q

= ﬂ. V- (VD)dVv

According to the Divergence Theorem as follows,

fV-FdX= jF-ndA
Q a0

So, (46) becomes

or
ffadvzﬂvr-ndsszn-vrds
Q E1e) 20
—ﬂards
B on
0

=0

Here, we have the result

[[Zar=c
ot
Q

Transform coordinate in integrationand V=S, Q = dQ in our domain
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[[ a3 s = 3 [ s 25
ot =5c)) Taxdydz=50) | Tl * 501 9¢
aQ aQ

Total mass is

."2”."“1_|6X 6X|d¢c10
o Jo o a0

After discretizing, it turns to be

Zu

1,.
1,.

XAAG
090 ¢

We computed the total mass as above. But only show the last total mass at T = 5 that is not

like Section 3 and Section 4 which compute till T = 5. Because it will cost us too much time.

6.3.1 The Mass of the Solvers with Section 6.1 and Central Difference

Method 1

Use the solver of the heat equation (45) I'. = A,I" on the spherical surface domain

by Section 6.1 with central difference method 1. Initial settings: M =32, N =64, R=75,

1 1

At = =—— Ax* = =—_ Domain is the same as Figure 7.
2 (21) 2N

Case 1: Initial setting is the same as Figure 8,

L
z

Figure 88: Left, T = 0.25, mass = 14.7325, relative error = 2.4338e — 005.
Mid-left, T = 0.5, mass = 14.7325, relative error = 2.4076e — 005.
Mid-right, T = 0.75, mass = 14.7325, relative error = 2.3819e — 005.
Right, T = 0.1, mass = 14.7325, relative error = 2.3562e — 005.
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Figure 89: T =5, mass = 14.7324, relative error = 1.8856e — 005.
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Figure 90: Left, the values of u on the equator change with time.

™2

Right, total mass of u changes with time in 0~5 seconds.

According to Figure 88, Figure 89, Figure 90, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting decreasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 1 does not comply with
the mass conservation law.

Case 2: Initial setting is the same as Figure 12,

z

Figure 91: Left, T = 1/64, mass = 0.24067, relative error = 4.2098e — 006.
Mid-left, T = 1/32, mass = 0.24067, relative error = 7.2202e — 006.
Mid-right, T = 3/64, mass = 0.24067, relative error = 1.0231e — 005.
Right, T = 1/16, mass = 0.24067, relative error = 1.3241e — 005.
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Figure 92: T =5, mass = 0.24097, relative error = 0.0012786.
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Figure 93: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~5 seconds.

1 2

According to Figure 91, Figure 92, Figure 93, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 2 does not comply with
the mass conservation law.

Case 3: Initial setting is the same as Figure 16,

z
z

Figure 94: Left, T = 0.25, mass = 6.7316, relative error = 0.0051562.
Mid-left, T = 0.5, mass = 6.6839, relative error = 0.012208.
Mid-right, T = 0.75, mass = 6.6464, relative error = 0.017755.
Right, T = 1, mass = 6.6195, relative error = 0.021727.
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BS T

Figure 95: T =5, mass = 6.526, relative error = 0.035539.

total mass

- ™ 1 1 1 1 L
2 i 1 2 3 1 5
thata 1

Figure 96: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~5 seconds.

t 0o

According to Figure 94, Figure 95, Figure 96, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting decreasing, but it will turn to stable that
means mass will not change any more in a long time. Case 3 does not comply with the mass
conservation law.

Case 4: Initial setting is the same as Figure 20,

LI R L L
z
z

Figure 97: Left, T = 0.25, mass = 446.7228, relative error = 0.00014121.
Mid-left, T = 0.5, mass = 446.7606, relative error = 0.0002258.
Mid-right, T = 0.75, mass = 446.7887, relative error = 0.00028867.
Right, T =1, mass = 446.8119, relative error = 0.00034063.
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447

Figure 98: T =5, mass = 446.9892, relative error = 0.00073756.
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Figure 99: Left, the values of u on the equator change with time.

Right, total mass of u changes with time in 0~5 seconds.

According to Figure 97, Figure 98, Figure 99, u was diffused as time goes by to be like the
look of the original domain. Total mass is getting increasing, but it will turn to stable that
means mass will not change any more in a long time. Case 4 does not comply with the mass
conservation law.

In above Case 1~Case 4, we derive that Case 1 can get the better result by mass conservation

with some machine error ; the others show up a little bit derivation in our relative error.

6.3.2 The Mass of the Solver with Section 6.1 and Central Difference

Method 2

Use the solver of the heat equation (45) I', = A,I" on the spherical surface domain

by Section 6.1 with central difference method 2. Initial settings : M = 32, N = 64, R=15,

1 1 11
=i L ax?=12
2 (2m)

At =

Domain is the same as Figure 7.

Case 1: Initial setting is the same as Figure 8,
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z

Figure 100: Left, T = 0.25, mass = 14.7325, relative error = 2.428e — 005.
Mid-left, T = 0.5, mass = 14.7325, relative error = 2.4019e — 005.
Mid-right, T = 0.75, mass = 14.7325, relative error = 2.3764e — 005.
Right, T = 0.1, mass = 14.7325, relative error = 2.3508e — 005.

Figure 101: T =5, mass = 14.7324, relative error = 1.8826e — 005.
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Figure 102: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~5 seconds.

According to Figure 100, Figure 101, Figure 102, u was diffused as time goes by to be like
the look of the original domain. Total mass is getting decreasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 1 does not comply with

the mass conservation law.
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Case 2: Initial setting is the same as Figure 12,

z

Figure 103: Left, T = 1/64, mass = 0.24067, relative error = 4.1997e — 006.
Mid-left, T = 1/32, mass = 0.24067, relative error = 7.2028e — 006.
Mid-right, T = 3/64, mass = 0.24067, relative error = 1.0206e — 005.
Right, T =1/16, mass = 0.24067, relative error = 1.3209e — 005.

Figure 104: T =5, mass = 0.24097, relative error = 0.001275.
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Figure 105: Left, the values of u on the equator change with time.

2

Right, total mass of u changes with time in 0~5 seconds.

According to Figure 103, Figure 104, Figure 105, u was diffused as time goes by to be like
the look of the original domain. Total mass is getting increasing a little bit, but it will turn to
stable that means mass will not change any more in a long time. Case 2 does not comply with

the mass conservation law.
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Case 3: Initial setting is the same as Figure 16,

z

Figure 106: Left, T = 0.25, mass = 6.7317, relative error = 0.005139.
Mid-left, T = 0.5, mass = 6.6841, relative error = 0.012178.
Mid-right, T = 0.75, mass = 6.6466, relative error = 0.017721.
Right, T =1, mass = 6.6197, relative error = 0.021695.

Figure 107: T =5, mass = 6.5261, relative error = 0.035528.

6.5

total mass

- T
- ESD L L I I I

theta t

Figure 108: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~5 seconds.

According to Figure 106, Figure 107, Figure 108, u was diffused as time goes by to be like
the look of the original domain. Total mass is getting decreasing, but it will turn to stable that
means mass will not change any more in a long time. Case 3 does not comply with the mass

conservation law.

90



Case 4: Initial setting is the same as Figure 20,

LI R L L
z

Figure 109: Left, T = 0.25, mass = 446.7227, relative error = 0.00014096.
Mid-left, T = 0.5, mass = 446.7604, relative error = 0.00022546.
Mid-right, T = 0.75, mass = 446.7885, relative error = 0.00028826.
Right, T =1, mass = 446.8117, relative error = 0.00034017.

Figure 110: T =5, mass = 446.9889, relative error = 0.00073693.
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Figure 111: Left, the values of u on the equator change with time.

Right, total mass of u changes with time in 0~5 seconds.

According to Figure 109, Figure 110, Figure 111, u was diffused as time goes by to be like
the look of the original domain. Total mass is getting increasing, but it will turn to stable that
means mass will not change any more in a long time. Case 4 does not comply with the mass
conservation law.

In above Case 1~Case 4, we derive that Case 1 can get the better result by mass conservation
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with some machine error ; the others show up a little bit derivation that is less than one percent

in our relative error.

6.4 Comparison

According to the results in Section 6.3.1 and Section 6.3.2, we could summarize the

following table.

6.3.1 6.3.2
Casel 1.8856¢-005 1.8826e-005
Case2 0.0012786 0.001275
Case3 0.035539 0.035528
Case4 0.00073756 0.00073693

Table 11: The relative error in different cases with different methodsat T = 5.
Table 11 brings us that the solvers on the spherical surface domain which of Section 6.3.1 or
the solvers which of Section 6.3.2 are coming to the same thing here. Thus, our solver in the

next section will use Section 6.3.1 and it will save our time in writing the programming.
7 ~ Numerical Solver of the Convection-Diffusion Equation

Here we solve the convection-diffusion equation on the moving domain by the discretization

in Chapter 6 and observe how the total mass changes as time goes by in these solvers.

7.1  Discretization of the Convection-Diffusion Equation

The convection-diffusion equation can be described as

o V. wr=—ar 47
at S u _Pes S ( )

Pe; means the Peclet number on the surface domain, and we set it be constant. T" could be
thought as the concentration or some things which have density. Moving surface domain that

we given can be described as
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OX(r, b, 0, t
$=u(r,¢,0,,t)

X(r, §,0,0) = (rsindcosh, rsingsing, rcosd)
means that the domain is moving with the velocity u, and the original domain is spherical
surface domain with R = 5. Given u as follows,
u = (zcos(2nt),0,0)

where u satisfies

[8] gives us

A543
_at\|ag = 30

(Vs » ll) - |a_X » a_X
ap ~ 06
Substitute into (47),
A%
or ot\|og ~ 38 F—LAF
ot |@£ o 9X “JPe,-f
dp ~ 00

Product |Z—I X Z—ﬂ to both sides on the above equation,

6F|6XX6X+0(|6XX6X> i 1AF6XX6X 48
atlap = a0l  ot\lap =~ a6l/" ~ Pe, ° [adp " a0 (48)
Use the Crank-Nicolson method to the left hand side of (48),
6F|6XX6X N ad (|6XX6X>
otlop a6l ot\lap 06
axn+1 axn—H oxn oxn

(T -\ T3¢ X a0 | T [ap a0
B At 2

axn+1 axn+1 aXn axn
At 2
" gxntl  gxntll M gxn 9xn
At [ op a0 | aclaw o0

Use the explicit method to the right hand side of (48), and it becomes
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1
Pe,

L |oX" 6X“

Hence, in this section it equals to solve

[T oxnt oxnth Thaxn oxMy | 1, (9X" 9X”
At | dd 20 Atladp = 90| Pe; ° 30
i.e.
1, o |0XP axn X" _ oX"
(Pes“ 7 <5 * & |79 % 7))
r axn+1 axn+1 At (49)
56> a0

Our grids, discretization and techniques are the same with Section 6.1 and central difference

method 1 in Section 6.1.
axi,j T, Xi+1,j - Xi—l,j axi,j . Xi,j+1 - Xi,j—l

ap  2Ad © 09 208
ofij Tiyy—Tiqy 06 Ljq—Tjg
od 20p ' 00 20

7.2 Results of the Convection-Diffusion Equation on the Moving Surface

Because we have no exact solution of (48) in Section 7.1, we observe how the
concentration goes in our numerical solver as time goes by to check if it makes sense. And
consider that the total mass change with time passing here. Set I' > 0 everywhere. We

computed the total mass as Section 6.3

ax
6<I>

X
‘A¢A6

i=1,...M

j=1,...N

and our initial total mass is like Section 3.3,

S0 = ZZ u® R2|sind; | ApAS
i=1,...M
j=1,...N
Use the solver of (45) in (47), T, = A,I" on the spherical surface domain by Section 6.1

with central difference method 1. Then, we could solve (49) easily and the results are as

1

.. . . . _ . _1
follows. Initial settings : M =32, N =64, R=5, At= 2 R

11 i ..
Ax? = SN Initial domain is
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the same as Figure 7.

Case 1: Initial setting is the same as Figure 8,

z
z
z

Figure 112: Left, T = 0.125, mass = 14.6845, relative error = 0.0032324.
Mid-left, T = 0.25, mass = 14.6845, relative error = 0.0032323.
Mid-right, T = 0.375, mass = 14.6846, relative error = 0.0032264.
Right, T = 0.5, mass = 14.6846, relative error = 0.0032238.

z
z
z

Figure 113: Left, T = 0.625, mass = 14.6847, relative error = 0.00322.
Mid-left, T = 0.75, mass = 14.6849, relative error = 0.0032077.
Mid-right, T = 0.875, mass = 14.685, relative error = 0.003197.
Right, T = 1, mass = 14.685, relative error = 0.0031976.

z

Figure 114: T =5, mass = 14.6851, relative error = 0.0031911.
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Figure 115: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~5 seconds.

According to Figure 112, Figure 113, Figure 114, Figure 115, u was diffused as time goes by
to be like the look of the original domain. Total mass is getting increasing a little bit, but it
will turn to stable that means mass will not change any more in a long time. Case 1 does not
comply with the mass conservation law.

Case 2: Initial setting is the same as Figure 12,

z
z
z
z

Figure 116: Left, T = 0.125, mass = 0.2399, relative error = 0.0031928.
Mid-left, T = 0.25, mass = 0.23991, relative error = 0.0031652.
Mid-right, T = 0.375, mass = 0.23991, relative error = 0.0031418.
Right, T = 0.5, mass = 0.23991, relative error = 0.0031313.

z
z
z

Figure 117: Left, T = 0.625, mass = 0.23992, relative error = 0.0031201.
Mid-left, T = 0.75, mass = 0.23992, relative error = 0.0030963.
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According to Figure 116, Figure 117, Figure 118, Figure 119, u was diffused as time goes by
to be like the look of the original domain. Total mass is getting increasing a little bit, but it

will turn to stable that means mass will not change any more in a long time. Case 2 does not

Mid-right, T = 0.875, mass = 0.23993, relative error = 0.0030691.
Right, T = 1, mass = 0.23993, relative error = 0.0030483.

z

Figure 118: T =5, mass = 0.24019, relative error = 0.0019839.
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0.2407
N 0.2408 |
084 ' 02405}
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. . . . .
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theta t

Figure 119: Left, the values of u on the equator change with time.
Right, total mass of u changes with time in 0~5 seconds.

comply with the mass conservation law.

Case 3: Initial setting is the same as Figure 16,

z

Figure 120: Left, T = 0.125, mass = 6.7328, relative error = 0.0049763.
Mid-left, T = 0.25, mass = 6.71, relative error = 0.008356.
Mid-right, T = 0.375, mass = 6.6853, relative error = 0.012002.
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Right, T = 0.5, mass = 6.6623, relative error = 0.015401.

z
z
z

Figure 121: Left, T = 0.625, mass = 6.6421, relative error = 0.018383.
Mid-left, T = 0.75, mass = 6.6249, relative error = 0.020933.
Mid-right, T = 0.875, mass = 6.6103, relative error = 0.02309.
Right, T = 1, mass = 6.598, relative error = 0.024904.

z

65

Figure 122: Left, T =5, mass = 6.5046 relative error = 0.0387.

total mass

m . . . .
2 0 1 2 3 4 5
theta 1

Figure 123: Left, the values of u on the equator change with time.

Right, total mass of u changes with time in 0~5 seconds.

According to Figure 120, Figure 121, Figure 122, Figure 123, u was diffused as time goes by
to be like the look of the original domain. Total mass is getting decreasing, but it will turn to
stable that means mass will not change any more in a long time. Case 3 does not comply with

the mass conservation law.
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Case 4: Initial setting is the same as Figure 20,

z
z
z
z

Figure 124: Left, T = 0.125, mass = 445.262, relative error = 0.0031292.
Mid-left, T = 0.25, mass = 445.2899, relative error = 0.0030667.
Mid-right, T = 0.375, mass = 445.3121, relative error = 0.0030172.
Right, T = 0.5, mass = 445.3128, relative error = 0.0029813.

z
z
z

Figure 125: Left, T = 0.625, mass = 445.3418, relative error = 0.0029505.
Mid-left, T = 0.75, mass = 445.3565, relative error = 0.0029178.
Mid-right, T = 0.875, mass = 445.3699, relative error = 0.0028876.
Right, T =1, mass = 445.38, relative error = 0.0028651.

z

Figure 126: T =5, mass = 446.56, relative error = 0.002462.
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Figure 127: Left, the values of u on the equator change with time.

1 L]

Right, total mass of u changes with time in 0~5 seconds.

According to Figure 124, Figure 125, Figure 126, Figure 127, u was diffused as time goes by
to be like the look of the original domain. Total mass is getting increasing, but it will turn to
stable that means mass will not change any more in a long time. Case 4 does not comply with
the mass conservation law. In above Case 1~Case 4, all cases show up a little bit derivation

that is less than three percent in our relative error.
8 ~ Applications

In our thesis, we have constructed many kinds of numerical solvers. We could apply them in
physics, engineering and aerobiology, etc. The earth is considered a spherical surface. If we
ignore the geography and wind direction, then we can predict the diffusion of noxious gas or
pollutants, radiations, etc, on the earth. And the dissolution of glaciers affects the nearby
environment on the earth is also an important application in our solver in Section 3.3.2 which
complied with the mass conservation law. The applications in Chapter 4 are the same as
Chapter 3 if the earth is considered an ellipsoid surface. The difference between Chapter 3 and
Chapter 4 is only in the mass. We apply the solvers in Chapter 3 and Chapter 4 in Chapter 5.
They could help solving the parabolic type equation which is like u; = Au+ m on the
spherical or ellipsoid surface domain. Apply Chapter 5 in the electrochemical waves of
cardiac simulation in human heart. The solver in Chapter 6 could help solving the parabolic

type equation which is like T, = AI' + m on the moving surface if we modify the initial
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condition on the concentration I' and domain X. We apply the solvers in Chapter 7.
Furthermore, we could solve the parabolic type equations on the moving domain with the
initial domain which is ellipsoid, torus surface domain or something else. It will be very

useful in the future in many applications.
9 ~ Conclusion and Future Works

After discussing our paper in detail, Chapter 3 shows us that symmetric discretizaion is the
better numerical method in the heat equation on the spherical surface domain in spherical
coordinates about the mass conservation. Chapter 4 performs a fast heat solver on the
ellipsoid surface domain in ellipsoid coordinates and we use it to help solving the
reaction-diffusion equation, i.e. simulating the motions of the electrochemical waves in our
heart with faster computations in Chapter 5. But the results in Chapter 5 are still far away
from the realistic human hearts because the domain in human hearts is moving all the time. In
Chapter 6 and Chapter 7, discuss the numerical solvers of the equations on the moving
domain. Total mass of them will not change too much. In our future works, we hope to
develop a scheme which combines forthcoming cardiac simulation as Chapter 5 and couples
them with moving domain. There is still a big problem need to settle is constructing a moving
equation which satisfies the realistic heart. After setting them all, we could impose our
methods as Chapter 7 which solve the equations on the moving domain on simulation of
hearts and get more authentic simulations. In summary, the results we have done in Chapter 5
are the propagation of electrochemical waves in human heart is an especially important
example. But it is known that factors such as topology, thickness, and differences of cardiac
tissue can strongly influence wave propagation [1]. This is another difficulty that must be

conquered.

Reference

[1] Amdjadi F., Gomatam J., Spiral waves on static and moving spherical domain, Journal

101



of Computional and Applied Mathematics. Vol. 182 , 472~486, (2005).
[2] Barkley, D., A model for fast computer simulation of waves in excitable media, Phys
D49, 61-70, 1991.
[3] Barkley, D., Kness, M. and Tuckerman, L. S., Spiral-wave dynamics in a simple model
of excitable media : The transition from simple to compound rotation. Physical Review A
, Vol.42, Nos.4, 2489-2492, 1990.
[4] Cooley,J.W. and Tukey,J.W.,“An Algorithm for the Machine Calculation of Complex
Fourier Series.”Math. Comp. 19, 297-301 (1965).
[5] Danaila,l., Joly, P., Kaber, S.M., Postel, M., An Introduction to Scientific Computing.
Springer.
[6] Gomatam, J.and Amdjadi, F., Reaction-diffusion equations on a sphere : Meandering of
spiral waves. Physical Review E, Vol.56, Nos.4, 3913-3919, 1997.
[7] Huang, H. and Lai, M.C., A note on decoupled jump conditions for Navier-Stokes flows
with discontinuous viscosity across an incompressible membrane.
[8] Huang, H., Lai, M.C. and Tseng Y.H:, An immersed boundary method for interfacial
flows with insoluble surfactant.
[9] Isaacson, E. and Keller, H.B., Analysis of numerical methods. 1966.
[10] Lai, M.C., A fast spectral/difference method without pole conditions for Poisson-type
equations in cylindrical and spherical geometries. IMA J. of Numerical Analysis, vol 22,
No 4, 537-548, (2002).
[11] Lai, M.C., Fast Poisson Solver in a Three-dimensional Ellipsoid. Contemporary
Mathematics, AMS, Vol.329, 203-208, 2003.
[12] Lai, M.C. and Wang, W.C.,Fast direct solvers for Poisson equation on 2D polar and
spherical geometries. Numerical Methods for Partial Differential Equations, vol 18,
56-68, (2002).

[13] Ralph Lewis, H., Bellan, P.M., Physical constraints on the coefficients of Fourier
102



expansions in cylindrical coordinates.J Math Phys. Vol.31, Nos.11, 2592-2596, 1990.
[14] SAUER,T., Numerical analysis.Pearson Education.
[15] Winfree A.T., When Time Breaks Down, Princeton University Press,Princeton, NJ, 1987.
[16] Xu, J.J. and Zhao H.K., An Eulerian Formulation for Solving Partial Differential
Equations along a Moving Interface. Journal of Scientific Computing, Vol.19, Nos.1-3,

573-594, 2003.

103



	1
	2
	3

