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摘要 

 

 

  本文利用新的任意高階精度內嵌介面方法計算橢圓界面方程，並且應用

至有介面的熱方程問題，我們推導出四階精度公式和測試數值結果。本方法

的優點是容易應用於其他問題並且使數值精確度有顯著的改善。 
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Abstract 

 

 

In this thesis, we introduce an arbitrary high-order immersed interface method for 

solving elliptic equations and apply it to solve heat equation with interface. We 

have derived fourth-order scheme and tested in examples. The advantage of 

method in this thesis is easy to apply to other problems, such as two-phase flow 

and leads to a significant improvement in accuracy. 
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1 Introduction

In this thesis, we propose a numerical method for solving elliptic equation
with interface in the following

∇ · (β∇u)− κ(x)u(x) = f(x).

The equation is defined in a simple region with a uniform Cartesian grid
and the coefficient β and κ can be discontinuous across interface. From this
equation, we can derive two jump conditions:

[u] and [βun].

We will use these two natural jump conditions as known in our method.
In solving problems with interface, since the derivative terms may have

jump discontinuities, we cannot use finite difference directly. One intuitional
way is that use one-sided difference formula at grid points near the interface,
but it will lead the linear system insolvable because of the singularity of
the matrix. The Immersed Interface Method (IIM) has been developed as a
sharp interface method which can accurately capture discontinuities in the
solution.

The first IIM paper was developed by Leveque and Li[3]. The original
IIM uses three points to discrete the derivative term in equation to maintain
the compact structure of matrix. In this thesis we use four points to reduce
the complex work in original IIM. Mayo used the similar idea earlier in [9]
on the fast solution of the Poisson and biharmonic equations. There are also
lots of treatments for the immersed interface problems[2, 4, 5, 6, 7, 8].

The term “immersed interface” has been used since the method is mo-
tivated by Peskin’s “immersed boundary method” (IBM). The equation is
discretized by a standard finite difference method in a fixed Cartesian grid
and the singular delta function is substituted by an approximated smooth
function spanning a few grid cells. But this method is of first-order accuracy.

First of all, We give some basic definition and useful tools in Sec. 2 and
secondly we introduce the singularity into a finite difference scheme in Sec.
3. Finally, we test some examples to show our work in Sec. 4.
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2 Basic Definition

2.1 Cartesian Grid

We usually assume that the domain Ω is a rectangle for interface problems.
For example, Ω = [a, b] in one-dimensional case, Ω = [a, b] × [c, d] in two-
dimensional case, and Ω = [a, b]× [c, d]× [r, s] in three-dimensional case. The
Cartesian grid can be represented by

xi = a + ihx, for i = 0, 1, · · · ,M , where hx =
b− a

M
;

yj = c + jhy, for j = 0, 1, · · · , N , where hy =
d− c

N
;

zk = r + khz, for k = 0, 1, · · · , L, where hz =
s− r

L
.

For simplicity, we often set hx = hy = hz = h.
We use the notation Γ to denote the interface which divides the domain

Ω into two parts , Ω− and Ω+(Fig. 1).

Ω−Ω+

Γ
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Figure 1: A rectangular domain Ω = Ω+
⋃

Ω− with an interface Γ.
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2.2 Jump Conditions

2.2.1 One Dimension

Given a piecewise smooth function u(x) that can have the finite jump across
interface. We give a notation defined as following:

u±(α) = lim
ε→0+

u(α± ε). (1)

The jump condition at x = α in x-direction is defined by

[u(α)]x = u+(α)− u−(α). (2)

For simplicity, we often omit that u±(α) = u± and use the notation [u] to
define the jump condition across interface. The subscript of [ ]x may be little
strange but it will be useful in extension to two dimensions.

2.2.2 Two Dimensions

Given a point X = (X, Y ) on the interface Γ. The limiting values of u(X)
and un(X) are defined as

u±(X) = lim
ε→0+

u(X± εn), (3)

u±n (X) =
∂u

∂n

±
(X) = ∇u±(X) · n, (4)

where n = (n1, n2) is the outward unit normal vector. Then the jump con-
ditions on interface are defined as

[u] = u+ − u− and [un] = u+
n − u−n . (5)

We should be able to figure out “+” and “−” sides without confusion. It’s
also useful to define [ ]x, the jump in x-direction and [ ]y, the jump in y-
direction as

[u]x = u(X+, Y )− u(X−, Y ) and [u]y = u(X,Y +)− u(X, Y −). (6)

From (5) and (6), we can easily obtain

[u]x = sgn(n1)[u] and [u]y = sgn(n2)[u]. (7)

where sgn is a signed function.
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2.3 Level Set Function

In this approach, an interface is represented by the zero level set of function
φ. The following is the definition of φ on whole domain:

φ(x) < 0 if x ∈ Ω−

φ(x) = 0 if x ∈ Γ

φ(x) > 0 if x ∈ Ω+

We call φ is a signed distance function if φ(x) is the distance from x to
the interface. We will use re-initialization process[10] to modified level set
function into signed distance function so that use φ to define the outward
unit normal vector n by

n =
∇φ

|∇φ| , (8)

and the curvature κ by

κ = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

. (9)

If X is on the interface but is not a grid point, we can still compute them by
the interpolation method using specific points from the four corners of the
rectangle that contains X.

3 One-Dimensional Elliptic Interface Prob-

lems

In this section, we discuss with one-dimensional elliptic equation. Extending
to two-dimensional elliptic equations is using dimension by dimension. The
key idea of IIM is to avoid grid generation by correcting finite difference in
the neighborhood of the interface. We only show the work about discrete
form of (d2u/dx2)j. The discrete form of (du/dx)j can be easily obtained by
the same way.

Assume the interface is located at x = α(Fig. 2). Let

σ =
α− xj

h
. (10)

Clearly, we have 0 ≤ σ ≤ 1.
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Figure 2: Uniform grid with interface located at x = α

The two jump conditions involving u and ux can be obtained from the
original elliptic equation. A general jump conditions across the interface can
be written as

[γu]x = γ+u+ − γ−u− = A (11)

and
[
β

du

dx

]

x

= β+ du

dx

+

− β−
du

dx

−
= B. (12)

As mention in Sec. 2.2, the superscripts “+” and “−” represent the variables
at the right and left side of the interface, respectively.

There are two kinds of grid points. One is called a regular point if the
finite difference formula at this point only involves grid points on the same
side of the interface. Otherwise, it is an irregular point. If the gird point i is
a regular point, we use standard finite difference directly. For example:

(
d2u

dx2

)

j

=
uj−1 − 2uj + uj+1

h2
+ O(h2) (13)

or
(

d2u

dx2

)

j

=
−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2

12h2
+ O(h4). (14)

These two difference formulas can be easily obtained by the Taylor expansion.

3.1 Difference Formula for d2u/dx2 at Irregular Points

Finite difference approximations for d2u/dx2 at the irregular point j are
considered by using a stencil of n points on the left side of interface and m
points on the right(Fig. 2).
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3.1.1 Difference Formulas with Four-point Stencil (n = m = 2)

In this section, we discuss the case n = m = 2. Let
(

d2u

dx2

)

j

≈ d−1uj−1 + d0uj + d1uj+1 + d2uj+2 + dAA + hdBB

h2
. (15)

Thus, we have to determine dks and the correction term on the right hand
side of Eq. (15). By using the Taylor expansion at x = α−, we have

u(x) = u(α−) +
u′(α−)

1!
(x− α−) +

u′′(α−)

2!
(x− α−)2 + · · · . (16)

Let x = xj−1 in Eq. (16), then we have

uj−1 = u(α−) +
u′(α−)

1!
(xj−1 − α−) +

u′′(α−)

2!
(xj−1 − α−)2 + · · · . (17)

Take ε → 0, Eq. (17) becomes

uj−1 = u− −
(

du

dx

)−
(1 + σ)h +

1

2!

(
du

dx

)−
(1 + σ)2h2 + · · · . (18)

Similarly,

uj = u− −
(

du

dx

)−
σh +

1

2!

(
du

dx

)−
σ2h2 + · · · , (19)

uj+1 = u+ +

(
du

dx

)+

(1− σ)h +
1

2!

(
du

dx

)+

(1− σ)2h2 + · · · , (20)

uj+2 = u+ +

(
du

dx

)+

(2− σ)h +
1

2!

(
du

dx

)+

(2− σ)2h2 + · · · . (21)

Substituting Eqs. (11) and (12) into Eq. (20) and (21), we have

uj+1 =
A

γ+
+

(1− σ)hB

β+
+ cγu

− + cβ(1− σ)h

(
du

dx

)−
+

1

2!
(1− σ)2h2

(
d2u

dx2

)+

+ · · · ,

(22)

uj+2 =
A

γ+
+

(2− σ)hB

β+
+ cγu

− + cβ(2− σ)h

(
du

dx

)−
+

1

2!
(2− σ)2h2

(
d2u

dx2

)+

+ · · · ,

(23)

where

cγ =
γ−

γ+
and cβ =

β−

β+
.
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Substituting Eqs. (18), (19), (22), and (23) into Eq. (15) leads to

(
d2u

dx2

)

j

=
1

h2

(
a1u

− + a2

(
du

dx

)−
h + a3

(
d2u

dx2

)−
h2 + a4

(
d2u

dx2

)+

h2

+ a5A + a6Bh + O(h3)

)
. (24)

Since
(

d2u

dx2

)

j

=

(
d2u

dx2

)−
+ O(h), (25)

we take ai = 0 for i = 1, 2, 4, 5, 6 and a3 = 1. From Eqs. (24) and (25), we
can conclude that the (d2u/dx2) at irregular points is O(h). To determine
dks, it is necessary to solve the linear system equation as follows




1 1 cγ cγ 0 0

−(1 + σ) −σ (1− σ)cβ (2− σ)cβ 0 0

(1 + σ)2 σ2 0 0 0 0

0 0 (1− σ)2 (2− σ)2 0 0

0 0 1 1 γ+ 0

0 0 (1− σ) (2− σ) 0 β+







d1

d0

d1

d2

dA

dB




=




0

0

2

0

0

0




.

Therefore, we get

d−1 =
1

D
{cγ(3σ − 2σ2)− cβ(−2 + 3σ − σ2)},

d0 =
1

D
{cγ(−3− σ + 2σ2)− cβ(2− 3σ + σ2)},

d1 =
1

D
{4− 4σ + σ2}, (26)

d2 =
1

D
{−1 + 2σ − σ2},

dA =
1

γ+D
{−3 + 2σ},

dB = − 1

β+D
{2− 3σ + σ2},

where

D =
1

2
{cβ(2 + σ − 5σ2 + 2σ3)− cγ(−3σ − σ2 + 2σ3)}.

7



Figure 3: New Cartesian grid with x̃k−1 = −xj+2, x̃k = −xj+1 , x̃k+1 = −xj,
and x̃k+2 = −xj−1.

Clearly, dks are functions of σ and jump parameters: γ+, β+, cγ, and cβ.
Finally, we’ve determined all dks. Eq. (15), together with Eq. (26), is an

explicit difference formula for O(h) approximation to (d2u/dx2)j. Moreover,
it shows that the current formula at irregular points does not have singularity,
even for the special cases of Γ coinciding with σ = 0 or σ = 1.

We can obtain (du/dx)j by the same way. The general formulas for first
and second derivatives terms are

(
du

dx

)

j

=
(d−1 − 2)uj−1 + (d0 + 2)uj + d1uj+1 + d2uj+2 + dAA + hdBB

2h
+ O(h),

(27)(
d2u

dx2

)

j

=
d−1uj−1 + d0uj + d1uj+1 + d2uj+2 + dAA + hdBB

h2
+ O(h), (28)

where dks are the same in Eq. (26).

3.1.2 Irregular Point Located at Right Side of Interface

The finite difference formulas at grid point j + 1 can be obtained from Eqs.
(27) and (28). Instead of using the method in previous section, we use the
coordinate transformation (Fig. 3).

Let

v(x) = u(−x),

γ̃(x) = γ(−x),

β̃(x) = β(−x), (29)

[γ̃v]x = Ã,

[β̃v′]x = B̃,
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then the two jump conditions are

[γ̃v]x = lim
ε→0+

γ̃(−α + ε)v(−α + ε)− γ̃(−α− ε)v(−α− ε)

= lim
ε→0+

γ(α− ε)u(α− ε)− γ(α + ε)u(α + ε)

= γ−u− − γ+u+

= −[γu]

= −A

and

[β̃v′]x = lim
ε→0+

β̃(−α + ε)v′(−α + ε)− β̃(−α− ε)v′(−α− ε)

= lim
ε→0+

−β(α− ε)u′(α− ε) + β(α + ε)u′(α + ε)

= −β−u′− + β+u′+

= −[βu′]

= B.

Consider the derivative of function v defined on the Cartesian grid x̃k. By
the same thought in Sec. 3.1.1, we can easily obtain

(
d2v

dx2

)
(x̃k) =

d−1v(x̃k−1) + d0v(x̃k) + d1v(x̃k+1) + d2v(x̃k+2) + dAÃ + hdBB̃

h2
+ O(h).

(30)

Note that the dks are functions of σ′, where σ′ = 1− σ and σ is the same as
Eq. (10). Similarly, all dks are functions of parameters: γ̃+ and β̃+, where

γ̃+ = γ− and β̃+ = β−. By Eq. (29), we have v′′(x) = u′′(−x), and then Eq.
(30) becomes

(
d2u

dx2

)

j+1

=
d2uj−1 + d1uj + d0uj+1 + d−1uj+2 − dAA + hdBB

h2
+ O(h).

(31)

Similarly, we have

(
du

dx

)

j+1

= −d2uj−1 + d1uj + (d0 + 2)uj+1 + (d−1 − 2)uj+2 − dAA + hdBB

2h
+ O(h).

(32)
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3.2 Difference Formulas with a General n + m Grid
Stencil

In this section, we want to obtain arbitrary high order difference formula
scheme. The difference formulas at irregular point j for n + m points are
considered. In order to get uniform order, we often take n = m. The method
we used is matched polynomial interpolation. We only provide the discrete
form of d2u/dx2 here.

The polynomial on the left side of Γ, interpolating through n grid points
can be written as

P−(x) =
−n+1∑

k=0

lk(x)ui+k + anR(x), (33)

where an is an undetermined coefficient to be decided, and

R(x) =
−n+1∏

k=0

(x− xi+k). (34)

lk(x) is the Lagrange polynomial, i.e.

lk(x) =
−n+1∏

l=0,l 6=k

(x− xi+l)
/ −n+1∏

l=0,l 6=k

(xi+k − xi+l). (35)

Similarly, the polynomial on the right side of Γ, interpolating through m grid
points can be written as

P+(x) =
m∑

k=1

rk(x)ui+k + bmQ(x), (36)

where bm is an undetermined coefficient to be decided, and

Q(x) =
m∏

k=1

(x− xi+k). (37)

rk(x) is the Lagrange polynomial, i.e.

rk(x) =
m∏

l=1,l 6=k

(x− xi+l)
/ m∏

l=1,l 6=k

(xi+k − xi+l). (38)

Our thought is that use the relation
(

d2u

dx2

)

j

≈
(

d2P−(x)

dx2

)

x=xj

.
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Thus, we only have to determine the unknown an. Once we find an, we can
obtain the difference formula (d2u/dx2)j, and then we get (d2u/dx2)j+1 by
the method in Sec. 3.1.2.

Substituting Eqs. (33) and (36) into Eq. (11) leads to

γ+

{
m∑

k=1

rk(α)ui+k + bmQ(α)

}
− γ−

{−n+1∑

k=0

lk(α)ui+k + anR(α)

}
= A.

Rearrange the equation above we get

c11an + c12bm = β1, (39)

where

c11 = −γ−R(α),

c12 = γ+Q(α), (40)

β1 = A− γ+

m∑

k=1

rk(α)ui+k + γ−
−n+1∑

k=0

lk(α)ui+k.

Again, Substituting Eqs. (33) and (36) into Eq. (12) leads to

β+

{
m∑

k=1

r′k(α)ui+k + bmQ′(α)

}
− β−

{−n+1∑

k=0

l′k(α)ui+k + anR
′(α)

}
= B.

Rearrange the equation above we get

c21an + c22bm = β2, (41)

where

c21 = −β−R′(α),

c22 = β+Q′(α), (42)

β2 = B − β+

m∑

k=1

r′k(α)ui+k + β−
−n+1∑

k=0

l′k(α)ui+k.

Solving Eqs. (39) and (41), we have

an =
m∑

k=−n+1

µkui+k + ξ−AA + ξ−BB, (43)

11



where

µk =

{ 1
J
{γ−β+Q′(α)lk(α)− γ+β−Q(α)l′k(α)} for k = −n + 1, · · · , 0

γ+β+

J
{−Q′(α)rk(α) + Q(α)r′k(α)} for k = 1, · · · ,m,

ξ−A =
1

J
{β+Q′(α)}, (44)

ξ−B = − 1

J
{γ+Q(α)},

J = γ+β−R′(α)Q(α)− γ−β+Q′(α)R(α).

In fact, if we take n = m = 2, we will have the same result as present in the
previous section.

3.3 Numerical Results

We use four versions of current IIM tested in this thesis. In method C and D,
grid points j − 1 and j + 2 are irregular points, but we can treat only j and
j +1 as irregular points and use fourth-order one-sided difference formula for
j − 1 and j + 2.

Methods Order at regular Order at irregular Expected global order

grid points grid points

Method A O(h2) O(h) O(h2)

Method B O(h2) O(h2) O(h2)

Method C O(h4) O(h) O(h2)

Method D O(h4) O(h2) O(h3)

Table 1: Four immersed interface method

Example 3.1 In this example, we use the IIM to solve the following prob-
lem:

d2u

dx2
+ κu = βδ(x− α) , x ∈ (−0.5, 0.5), (45)

where κ is discontinuous across the interface located at x = α:

κ(x) =

{
(α1)

2 if − 0.5 < x ≤ α,
(α2)

2 if α < x < 0.5.
(46)
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The boundary condition is

u(−0.5) = u(0.5) = 0. (47)

An alternative way to state Eq. (45) requires that u(x) satisfies the equation

d2u

dx2
+ κu = 0 , x ∈ (−0.5, α) ∪ (α, 0.5), (48)

excluding the interface located at x = α, together with boundary conditions
(47) and two natural jump conditions:

[u]x = 0, (49)[
du

dx

]

x

= β. (50)

The exact solution is

uex(x) =





β cos(α2α) cos(α1x)
α1 cos(α2α) sin(α1α)− α2 sin(α2α) cos(α1α)

if − 0.5 < x ≤ α,

β cos(α1α) cos(α2x)
α1 cos(α2α) sin(α1α)− α2 sin(α2α) cos(α1α)

if α < x < 0.5.

(51)

Take α = 4/15, β = −40π, α1 = 7π, and α2 = 5π. The jump parameters
are: γ+ = β+ = cγ = cβ = 1, A = 0, and B = β.

−0.5 0 0.5
−8

−6

−4

−2

0

2

4

X

Y

 

 

(a) (b)

u
ex

u

−0.5 0 0.5
−3

−2

−1

0

1

2
x 10

−5

Figure 4: (a)Comparison of the exact solution uex and the numerical solution
u(Method D with N = 80). (b) Numerical error(Method D with N = 640).
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Table 2 shows the maximum-norm errors of four methods, the correspond-
ing ratios and orders. Note that in order to compare the grid refinement
results with the same conditions, all results are compared between grids N
and N/4 because they have the same σ. So the ratio and order are defined
as following:

Ratio =
‖EN/4‖∞
‖EN‖∞ ,

Order = log4

(‖EN/4‖∞
‖EN‖∞

)
.

N σ Method A Method B

‖En‖∞ Ratio Order ‖En‖∞ Ratio Order

20 1/3 9.795371 9.884993

40 2/3 9.537e-1 9.369e-1

80 1/3 2.135e-1 45.875 2.76 2.135e-1 46.79 2.77

160 2/3 5.277e-2 18.073 2.09 5.189e-2 18.05 2.08

320 1/3 1.297e-2 16.466 2.02 1.288e-2 16.39 2.01

640 2/3 3.275e-3 16.112 2.00 3.222e-3 16.10 2.00

N σ Method C Method D

‖En‖∞ Ratio Order ‖En‖∞ Ratio Order

40 2/3 3.673e-1 3.762e-1

80 1/3 1.269e-2 8.797e-3

160 2/3 2.709e-3 135.5 3.54 1.016e-3 369.9 4.27

320 1/3 2.198e-4 57.72 2.92 2.521e-5 348.9 4.22

640 2/3 1.255e-4 21.57 2.21 1.112e-5 91.44 3.26

Table 2: Comparison of numerical errors

4 Two-Dimensional Elliptic Interface Prob-

lems

We use a dimension by dimension approach to solve the two-dimensional
problems. To compute two-dimensional problems, the grid points are classi-
fied into four categories in x-direction:
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1. Regular point;

2. Irregular point located on left side of interface;

3. Irregular point located on right side of interface;

4. Irregular point near two interface.

The definition in y-direction is similar to x-direction.
For regular point away from the interface, the derivatives with respect to

x and y are approximated by standard central difference:

(
d2u

dx2

)

i,j

=





ui−1,j − 2ui,j + ui+1,j

h2 + O(h2)

−ui−2,j + 16ui−1,j − 30ui,j + 16ui+1,j − ui+2,j

12h2 + O(h4)

(52)

(
d2u

dy2

)

i,j

=





ui,j−1 − 2ui,j + ui,j+1

h2 + O(h2)

−ui,j−2 + 16ui,j−1 − 30ui,j + 16ui,j+1 − ui,j+2

12h2 + O(h4)

(53)

Remember that in 1D problems, we need two jump conditions: [γu]x and
[βux]x. But we can’t get these two necessary jump conditions from original
equation directly, so we still have to make some effort to get these two jump
conditions.

4.1 Poisson Equation with Interface

There are two natural jump conditions we can get from original poisson
equation:

[u] = w(s), (54)[
∂u

∂n

]
= v(s), (55)

where s is a parameter of the interface. From Eq. (54), we obtain

[
∂u

∂s

]
= w′(s). (56)
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Assume that n = (n1, n2) is the unit normal vector on Γ. Thus s = (−n2, n1)
is the unit tangential vector on Γ. Hence, Eqs. (55) and (56) lead to:

[−n2ux + n1uy] = w′(s), (57)

[n1ux + n2uy] = v(s). (58)

By the definition, we have

−n2 [ux] + n1 [uy] = w′(s), (59)

n1 [ux] + n2 [uy] = v(s). (60)

Rearrange Eqs. (59) and (60) we have:

[ux] = n1v(s)− n2w
′(s), (61)

[uy] = n2v(s) + n1w
′(s). (62)

Since v(s) and w′(s) are known, we only have to calculate two unknowns, n1

and n2, by level set method.
Note that all jump conditions for partial derivative of u are NOT in x or

y-direction. So we have to use Eq. (7) to derive jump conditions for partial
derivative in x or y-directions.

4.2 Elliptic Equation with Interface

The natural jump conditions for elliptic equation are

[u] = w(s), (63)[
β

∂u

∂n

]
= v(s). (64)

Again, form Eq. (63) we have
[
β

∂u

∂s

]
= w′(s). (65)

By the same thought in Sec. 4.1, we have
[
(βn2

1 + n2
2)ux

]
= n1v(s)− n2w

′(s)− [(β − 1)n1n2uy], (66)[
(n2

1 + βn2
2)uy

]
= n1w

′(s)− n2v(s)− [(β − 1)n1n2ux]. (67)

For finite difference approximation of x derivatives at an irregular point, the
jump condition (66) is used. So we have to decide the y derivative term
on the right hand side of Eq.(66). We evaluate [uy] by one-sided difference
at an order of accuracy which is consistent with the order of the overall
calculations.
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4.3 Numerical Results

4.3.1 Poisson Equation

Example 4.1 We use the example, which was used by Leveque and Li[3]
to test IIM in this thesis.

uxx + uyy =

∫

Γ

2δ(x−X(s))(y − Y (s))ds − 1 < x, y < 1, (68)

where the interface Γ is a circle defined by x2+y2 = 1/4. We can easily obtain
unit normal vector n = (2x, 2y) where (x, y) ∈ Γ. The Dirichlet boundary
condition is specified by using the exact solution:

uex(x, y) =

{
1 if

√
x2 + y2 ≤ 1/2,

1 + log(2
√

x2 + y2) if
√

x2 + y2 > 1/2.
(69)

The jump conditions at all points on Γ are

[u] = 0, (70)[
∂u

∂n

]
= 2. (71)

By Sec. 4.1, we have

[ux] = 4x, (72)

[uy] = 4y, (73)

where (x, y) is on the interface Γ. We also test delta function method in this
example. Assume f has a delta function singularity along the interface Γ by
discrete delta function. For example:

f(x, y) =

∫

Γ

C(s)δ(x−X(s))δ(y − Y (s))ds, (74)

where (X(s), Y (s)) is the arc-length parameterization of Γ. We use the dis-
crete delta function

dh(x) =

{
1
4h

(
1 + cos

(
πx
2h

))
if |x| < 2h,

0 if |x| ≥ 2h,
(75)

to calculate fi,j, and the form of which is

fi,j =
m∑

k=1

C(sk)dh(xi −Xk)dh(yj − Yj)∆sk. (76)

Fig. 5 shows that the main error in the computations are originated from the
interface. This demonstrates the importance of using higher-order method
for interface.

17



Figure 5: Contour of numerical error

Methods DFM Method A Method B

‖En‖∞ Order ‖En‖∞ Order ‖En‖∞ Order

30× 30 0.031 2.204e-3 6.867e-4

60× 60 0.015 0.99 2.873e-4 2.94 1.072e-4 2.68

120× 120 0.008 0.96 5.312e-5 2.43 3.286e-5 1.70

240× 240 0.004 0.93 1.225e-5 2.16 8.134e-6 2.01

Table 3: Comparison of numerical errors

Example 4.2 In this example, we consider the discontinuous Poisson prob-
lem with the elliptic interface:

Γ :
x2

a2
+

y2

b2
= 1,

and we use the notations

4u± = f± in Ω±,

[u] = w(s) on Γ, (77)

[un] = v(s) on Γ,

u = u0 on ∂Ω.

We derive the jump conditions [u] and [βun] from the exact solution. Four
different examples as shown in Table 4 are tested. Unlike in Example 4.1,
the solution in this example is discontinuous.

Remember that in order to calculate the jump conditions (61) and (62),
we need the unit normal vector n = (n1, n2). In this example, we use re-
initialization process mentioned in Sec. 2.
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Case 1 Case 2 Case 3 Case 4

u− 1 x2 − y2 ex cos(y) sin(x) cos(y)

u+ 1 + log(2
√

x2 + y2) 0 0 0

f− 0 0 0 −2 sin(x) cos(y)

f+ 0 0 0 0

Table 4: Four test cases for Eq. (77).

In Case 2, since the exact solution is a polynomial, the maximum errors
are machine errors. Note that for Case 4, we use the different grids since the
Cartesian grid cannot fetch the interface behavior if we use the same grid for
other cases.

N ×N ‖En‖∞ Order N ×N ‖En‖L2 Order

Case 1 30× 30 5.355e-4 30× 30 5.004e-4
60× 60 1.758e-4 1.61 60× 60 1.153e-4 2.12
120× 120 3.692e-5 2.25 120× 120 3.036e-5 1.98
240× 240 1.239e-5 1.58 240× 240 6.709e-6 2.18

Case 2 30× 30 3.608e-16 30× 30 2.368e-16
60× 60 4.441e-16 60× 60 4.400e-16
120× 120 1.443e-15 120× 120 6.002e-16
240× 240 1.221e-15 240× 240 4.368e-16

Case 3 30× 30 1.123e-4 30× 30 9.544e-5
60× 60 5.723e-5 0.97 60× 60 4.102e-5 1.22
120× 120 7.524e-6 2.93 120× 120 6.330e-6 2.70
240× 240 2.637e-6 1.51 240× 240 2.170e-6 1.54

Case 4 40× 40 1.789e-5 40× 40 8.451e-6
80× 80 2.918e-6 2.62 80× 80 1.191e-6 2.82
160× 160 6.865e-7 2.09 160× 160 2.667e-7 2.16
320× 320 1.028e-7 2.74 320× 320 2.830e-8 3.24

Table 5: Comparison of numerical errors by method A with result for a =
0.6, b = 0.4.
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4.3.2 Elliptic Equation

Example 4.3 We use the example, which was used by Leveque and Li[3]
to test IIM in this thesis. An elliptic equation with a delta function source
term and with a discontinuous coefficient β as follows:

∇ · (β∇u) = f(x, y) + C

∫

Γ

δ(x−X(s))δ(y − Y (s))ds, (78)

where

f(x, y) = 8(x2 + y2) + 4, and β =

{
x2 + y2 + 1 if

√
x2 + y2 ≤ 1/2,

b if
√

x2 + y2 > 1/2,

and the interface Γ : x2 + y2 = 1/4. The exact solution is

uex =





x2 + y2 if
√

x2 + y2 ≤ 1/2,

1− 1
8b
− 1

b
4 +

(x2+y2)2

2
+ x2 + y2

b
+

C log(2
√

x2 + y2)
b

if
√

x2 + y2 > 1/2.

For the current case, the jump conditions on Γ are

[u] = 0, (79)[
β

∂u

∂n

]
= C. (80)

Here we derive the necessary two jump conditions for partial derivative by
the method in Sec. 4.2.

C = 0.1 40× 40 80× 80 160× 160 320× 320

b ‖En‖∞ ‖En‖∞ Order ‖En‖∞ Order ‖En‖∞ Order

10.0 8.15e-5 2.53e-5 1.69 5.76e-6 2.14 1.38e-6 2.06

5.0 1.58e-4 4.97e-5 1.67 1.12e-5 2.15 2.71e-6 2.06

1.0 6.99e-4 2.31e-4 1.59 5.04e-5 2.20 1.24e-5 2.02

0.01 0.05985 0.02128 1.49 0.00431 2.30 0.00112 1.94

0.005 0.11961 0.04255 1.49 0.00861 2.30 0.00225 1.94

Table 6: Comparison of numerical errors

According to the exact solution, as b decreases, the maximum magnitude
of |u(x, y)| increases. Therefore, the computational errors will increase when
the value of b decreases.
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Example 4.4 In this example, we consider the discontinuous elliptic equa-
tion with elliptic interface:

Γ :
x2

a2
+

y2

b2
= 1

Case 1 Case 2 Case 3

u− x2 + y2 x2 + y2 x2 − y2

u+
1− 1

80
− 1

10

4
+

(x2+y2)2

2
+x2+y2

10
+

0.1 log(2
√

x2+y2)

10
0 sin(x) cos(y)

β− x2 + y2 + 1 ex − y 1

β+ 10 0.5 2

f− 8(x2 + y2) + 4 2ex(x + 2)− 6y 0

f+ 8(x2 + y2) + 4 0 −2 sin(x) cos(y)

Table 7: Three test cases.

N ×N ‖En‖∞ Order N ×N ‖En‖L2 Order

Case 1 30× 30 2.169e-4 30× 30 2.552e-4

60× 60 5.600e-5 1.95 60× 60 6.527e-5 1.97

120× 120 1.508e-5 1.89 120× 120 1.736e-5 1.91

240× 240 3.135e-6 2.27 240× 240 3.706e-6 2.23

Case 2 30× 30 2.776e-16 30× 30 1.086e-16

60× 60 6.661e-16 60× 60 1.833e-16

120× 120 6.661e-16 120× 120 1.535e-16

240× 240 1.332e-15 240× 240 4.247e-16

Case 3 30× 30 2.093e-5 30× 30 2.214e-5

60× 60 8.626e-6 1.23 60× 60 8.084e-6 1.45

120× 120 1.449e-6 2.57 120× 120 1.572e-6 2.36

240× 240 5.628e-7 1.36 240× 240 6.195e-7 1.34

Table 8: Comparison of numerical errors by method A with result for a =
0.8, b = 0.2.

In Case 2, because the exact solution is a polynomial, the maximum errors
are machine errors.
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4.3.3 Application of Heat Equation

Example 4.5 We use the example used by Shen and Li[6], the heat equa-
tion with an interface as follows

ut = ∇ · (β∇u), Ω = [−1, 1]× [−1, 1], t ∈ [0,∞] (81)

where

β(x, y) =

{
β− if (x, y) ∈ Ω−,

β+ if (x, y) ∈ Ω+.
(82)

We give the initial condition

u(x, y, 1) = exp

(
−x2 + y2

4β

)

and the Dirichlet boundary condition when (x, y) ∈ ∂Ω and two natural jump
conditions [u] and [βun] by the exact solution:

u(x, y, t) =
1

t
exp

(
−x2 + y2

4βt

)
. (83)

We use the Crank-Nicolson method in this example. The steps of our algo-
rithm can be outlined as follows:

Step 1. Reinitialize φ to be an exact signed distance function by solving the
equation, φt = sgn(φ0)(1− |∇φ|) to steady state.

Step 2. Compute outward normal vector n by Eq. (8). We compute this value
at grid points neighboring the interface, then we interpolate its value
on the interface whenever it is needed. Eq. (8) is numerically solved
using center difference approximations to the partial derivatives of φ.

Step 3. Use φ to determine a flag matrix F . For example, let

F (i, j) = 0 if (xi, yj) is regular point;

F (i, j) = 1 if (xi, yj) is irregular point.

Then we can use F to determine what kind the grid points are. Also,
we compute the distance form irregular (xi, yj) to the interface in either
the vertical or horizontal direction.
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Step 4. Use the Crank-Nicolson method as following:

un+1
i,j − un

i,j

4t
=

1

2
(βi,j4un+1

i,j + βi,j4un
i,j).

Rearrange the equation above, we have

4t(βi,j4un+1
i,j )− 2un+1

i,j = −4t(βi,j4un
i,j)− 2un

i,j (84)

Use F to distinguish grid points. For regular point, we use five-point
Laplacian to discretize 4un+1

i,j on the left hand side of Eq. (84). For

irregular point, we discretize 4un+1
i,j term by IIM in this thesis. This

scheme is always numerically stable and convergent but usually more
numerically intensive as it requires solving a linear system AU = b of
numerical equations on each time step.

Step 5. Since our interface is fixed, the matrix A is fixed. We repeat Step 4 to
get the solution u at next time step.

Case 1.

N ×N β+ β− ‖En‖∞ Order ‖En‖L2 Order

30× 30 1000 1 3.928e-5 4.413e-5

60× 60 1000 1 1.029e-5 1.93 1.166e-5 1.92

120× 120 1000 1 2.669e-6 1.95 3.038e-6 1.94

240× 240 1000 1 6.996e-7 1.93 7.974e-7 1.93

30× 30 1 1000 3.532e-5 4.253e-5

60× 60 1 1000 9.832e-6 1.85 1.189e-5 1.84

120× 120 1 1000 2.522e-6 1.96 3.015e-6 1.98

240× 240 1 1000 6.304e-7 2.00 7.540e-7 2.00

30× 30 5 1 4.500e-5 5.076e-5

60× 60 5 1 1.192e-5 1.92 1.352e-5 1.91

120× 120 5 1 3.084e-6 1.95 3.510e-6 1.95

240× 240 5 1 8.012e-7 1.94 9.131e-7 1.94

Table 9: Numerical results with Γ : x2 + y2 = 1/4, ∆t = h, T = 2.
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Case 2.

N ×N β+ β− ‖En‖∞ Order ‖En‖L2 Order

30× 30 1000 1 5.220e-5 4.855e-5

60× 60 1000 1 1.352e-5 1.95 1.287e-5 1.92

120× 120 1000 1 3.478e-6 1.96 3.336e-6 1.95

240× 240 1000 1 8.674e-7 2.00 8.280e-7 2.01

30× 30 1 1000 5.023e-5 5.092e-5

60× 60 1 1000 1.363e-5 1.88 1.363e-5 1.90

120× 120 1 1000 3.492e-6 1.88 3.439e-6 1.99

240× 240 1 1000 8.963e-7 1.96 8.834e-7 1.96

30× 30 5 1 5.884e-5 5.544e-5

60× 60 5 1 1.537e-5 1.94 1.475e-5 1.91

120× 120 5 1 3.947e-6 1.96 3.806e-6 1.95

240× 240 5 1 9.903e-7 1.99 9.528e-7 2.00

Table 10: Numerical results with Γ :
(

x
0.8

)2
+

(
y

0.2

)2
= 1, ∆t = h, T = 2.

5 Conclusion

The advantage of the IIM in this thesis is that the finite difference formulas
at irregular points are expressed in an explicit form, so they can be applied
to difference problems without modifications. But there are still hard work
when we use the natural jump condition [βun], so our method will fail if the
problem with concave interface.

Our future work is to calculate [un] by the relation

[un] =
[βun]− [β]u−n

β+
.

Thus, we have to solve the unknown term u−n . Li[4] offered the method by a
similar method introduced in original IIM.

There are two challenges. First one is modify our IIM by the method
introduced above. Second one is use the modified IIM to solve the Stefan
problems[11, 12, 13].
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