Contents

1 Introduction
1.1 Eigenvalue Problem in Quantum Chemistry
1.2 General Eigenvalue Problem
1.2.1 Rayleigh Quotient
1.2.2 Projection
1.2.3 Orthogonalization Processes

1.2.4 Gerschgorin’s Theorems

2 Direct Methods
2.1 Diagonalization of Mat#iees 0.
2.1.1 Symmetric Matrices of order'2 "=,

2.1.2 Symmetric Matrices of‘higher order

3 Overview of Iterative Methods
3.1 Mainldea
3.2 Tterative Methods o
3.2.1 Lanczos Method
3.2.2 Davidson Method o
3.2.3 Jacobi-Davidson Method 0L
3.3 Other Notations
3.3.1 Constructing Initial Vector g,
3.3.2 Restart Strategies L oL

4 Loss of Orthogonality
4.1 An Easy Example
4.2 Examples using Davidson Method

co o ot ot W

<)

10

12
12
14
14
14
15
15
15
16

ii

5 The Sweep Method

5.1 Jacobi-sweep Method
5.2 Mainldea
5.3 Results.
54 Conclusions

A Program Codes
A1 Main Program L
A.2 Davidson Preconditioner L.
A.3 Jacobi-Davidson Preconditioner

A4 Sweep Preconditioner Lo

B Numerical Results for Small Matrices

C Numerical Results for Large Matrices

23
23
24
24
28

31
31
36
36
37

43

46

List of Figures

1.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
2.3

Potential energy curve for the Hs molecule. The bond corresponds to

the minimum in the curve.o 3
Location of the largest 10 eigenvalues. 19
Residual values and Ritz values from Example 1. 19
Overlap matrix Ozg from Example 1. 20
Graphical presentation of A. 20
Location of all eigenvalues of A. 21
Residual values and Ritz values from Example 2. 21
Residual values and Ritzsvalues from:Example 3. 22
Convergence for the sweep method. is faster than for Davidson method. 25
A using the sweep and Davidson methods. 26

A sample for p=30%and & =0.03. .=,, 28

Chapter 1

Introduction

1.1 Eigenvalue Problem in Quantum Chemistry

For very small objects like molecules, we can not understand their behavior by Newton’s

laws. The Schrodinger equation is used to predict their properties and behavior. Let

x = (21, %2,...,%p). The Schrodinger equation has the form of
h? 0? 0? 0?
(L T L€) Y (x) | U(x) = BV 1.1
2m(8x% 03 N 8xf,) FV(x)| ¥(x) (), (1.1)

where V' (x) is an external potential. The wave function U(x) can be interpreted as
the probability of finding molecules at_a’given position at a given time. E denotes the
energy characterizing some stable 'state of‘a molecule; the structure of the molecules
(e.g., bond lengths) can be determined-by means of it.

Nevertheless, it is difficult to solve this differential equation analytically, so we need
another way to achieve it. Define the operator
n* 0? o? 02

%(a_l’% a—I%—F"‘—Fa—x;)—FV(X). (1.2)

A=—
Hence the Schrédinger equation can be reduced to
AU (x) = FU(x). (1.3)

Now, it has been transformed into an eigenvalue problem, where F and ¥(x) can be
considered as the eigenvalue and eigenfunction of fl, respectively. The next step is to
change the operator A to a matrix form.

Let ¥ € F, where F is a Hilbert space. We choose an orthonormal basis in F :
{g:(x) : @ = 1,2,...}, then ¥(x) = Y 00 ¢;g;, where ¢; = [ffWdx. In practice,

1.1 Eigenvalue Problem in Quantum Chemistry 2

it is often possible to replace the complete basis set by some finite set of functions

: [1(x), fo(X), ..., fu(x). After replacing ¥(x) in Equation 1.3 by ", ¢;f;(x), we have

A (Z cl-fl-(x)> =F <Z cifi(x)> : (1.4)

i=1 =1

Fori=1,2,--- ,n, premultiply f;(x) and integrate both sides in Equation 1.4:
ch/f;Afjdx —F (Z cj/fi*fjdx> : (1.5)
=1 j=1

By the fact [fi(x)*f;(x)dx = 0; ;,

ZC]‘ /fZ*Af]dX = ECZ‘. (16)
j=1

Let the matrix A = [a; |, where

= [£rAfx (1.7)

where f;, f; € F. From Equation 436, we have
Ac=Ec, (1.8)
where ¢ = [cq, ¢a, . .. ,cn]T. In-general,”Ais a symmetric matrix since Aisa symmetric

operator, i.e.

/f*Agdx L /g(Af)*dx (1.9)
where f, g € F. The form of the problem has been changed from a differential equation
to a linear system

(A—-EI)c=0. (1.10)
You can find the structure of molecules using the eigenvalues of A. In Figure 1.1, there
is no attraction between two hydrogen atoms when the distance between them is large.
Once they get closer, their potential energy is lowered. When the energy is in minimum,
it corresponds to a bond connecting these two atoms. The value of energy they possess
in the minimum can be interpreted as the minimal eigenvalue of A. This is the physical
meaning for the minimum eigenvalue. In general, calculating the eigenvalues of A,
allows for finding the bond lengths of the molecule by other procedures. Then you will

understand the structure of molecules.

1.2 General Eigenvalue Problem 3

Patential energy
(]
L

-436kJ/mol

Tdpm

Distance(picometers)

Figure 1.1 Potential energy curve for the Hy molecule. The bond corresponds to the

minimum in the curve.

1.2 General Eigenvalue Problem

The general eigenvalue problem is
Au =u, (1.11)

where)\ is called an eigenvalue of the matrix A of order n and u is the eigenvector
corresponding to A\. You can consider the eigenvalue problem as a linear system since

it can be modified as
(A —A)u=0. (1.12)
The linear equation has a nonzero solution u when (A — AI) is singular, i.e. the
determinant of (A —AI) is equal to zero, i.e., det(A—AI) = 0. We derive a characteristic
polynomial
)\n+Cn_1)\n_1+"'+Cl)\+Co =0. (113)
from det(A — AI) = 0. There are n roots A1, Ag, -+ , A, of the characteristic equation,

and they are the eigenvalues exactly. Plug A into Equation 1.12 to each eigenvalue, you

can find all the eigenvectors uj, us, - - - ,u, respect to them.

1.2 General Eigenvalue Problem 4

Let us assume that,

A< A< <A

We name the set of these eigenvalues the spectrum of A and denote it by o(A).

We can generalize the eigenvalue problems into an integral form

/ G, y) f(z)dz = Af(y), (1.14)

where G(x,y) is the kernel of the integral operator. Then we do not just have the
problem in a matrix form, but rather a continuous case.

There are many scientific fields that extensively use eigenvalue problems like quan-
tum chemistry. After abstracting these problems, they may look similar. The matrices
involved in the eigenvalue problems can be divided into two types, Hermitian matrices
and non-Hermitian matrices. In thisthesis; we consider only Hermitian matrices. Fur-
ther, Hermitian matrices can be reduced to symmetric ones since we only use real-valued
arithmetics.

The goal in eigenvalue problems is-to-find the eigenpairs of a given matrix, but re-
quirements for the eigenvalues in different preblems are not the same. In some problems
you have to find all the eigenvalues of a small matrix, and others to look for the extreme
eigenvalues of a large one. The two essential elements in calculating the eigenpairs of
a large matrix are the computer memory requirements and accuracy. The efficiency is
also important since we use large matrices (of order 10° or even larger). Fortunately,
usually the matrices are diagonally dominant and sparse. On average, maybe only 10%
or fewer of the elements of a large matrix are nonzeros.

There exist ways of reducing the memory requirements. The main cost of calcula-
tions using iterative methods is the constant matrix-vector product operations. The
accuracy is hard to check because we can not compute the exact eigenpairs of a large
matrix directly, but there is still some bounds for eigenvalues. Once the problems
with accuracy are eliminated, we should concentrate on improving the efficiency of our

algorithms.

1.2 General Eigenvalue Problem 5

A fact for symmetric matrices is that all the eigenvalue and eigenvectors of them

are real. Particularly,

x'Ax € R for all x € R".

This is a very important property since it allows us for employing the Rayleigh quotient

techniques to study our problems.

1.2.1 Rayleigh Quotient

Let x be a nonzero vector. The Rayleigh quotient is defined as

TA
Bx) = ——

The range of ¢(x) is called the field of values of A, and it is the interval [A;, \,].

(1.15)

That means, the minimum value of ¢(x) is obtained if and only if x is the eigenvector
corresponding to A, and the maxinium value of ¢(x) is obtained if and only if x is the
eigenvector corresponding to Ay.

Since A\ and)\, are finite numbers, and so ©(x) is bounded. The Rayleigh quotient
is important both for theoretical and practical purposes. Sometimes, it is convenient

to restrict the above definitions to aunit sphere in R™:
$(x) = x Ax for ||x|| = 1. (1.16)

These two different definitions lead to the same properties, and therefore we choose the

one which is easier to apply in a given situation.

1.2.2 Projection
The orthogonal projection operator P on a vector x € R" is defined as
P(u) = x(x'x) 'x"u. (1.17)

In the eigenvalue problem considerations, we often need to compute the projection of

Ax on x for some x € R”, i.e.

P(Ax) = x(x"x) 'x" Ax. (1.18)

1.2 General Eigenvalue Problem 6

Since (xTx)! is a constant, it implies

xT Ax

xTx

P(Ax) = X = ¢(X)X. (1.19)

From above, the projection of Ax can be represented as the Rayleigh quotient ¢(x)
times x. There also exists another projection form defined through matrices. Suppose
g1,82,...,Em are linearly independent vectors that span a m-dimensional space £ C

R™. Then, a projection of u € R"™ onto £ can be defined as

Pg(u) = G(G'G)'GTu (1.20)

1.2.3 Orthogonalization Processes

Suppose there are m independent normalized vectors g1, gs, - , g, that need to be
orthogonalized. The standard algerithm of Gram-Schmidt process is given as below |2,
pages 10-12]:

Algorithm 1.1 : Gram-Schmidt

1. First, define x; as g;.

2. Forj=2,--- ,m,do

3. Calculate ¢;; = (gj,x;), fori =1,2,...,5 — L
4. k=g;— Y cxi

5. normalize X into x;.

6. end do

There is another algorithm called Modified Gram-Schmidt(MGS) that has better
numerical properties:

Algorithm 1.2 : Modified Gram-Schmidt

1. First, define x; as g;.

1.2 General Eigenvalue Problem 7

2. For j=2,--- ,m, do

5 cij = (X,%;)
6 X=X —¢;X;
7 end do

8. mnormalize X into x;.
9. end do

You can have better way than MGSiif you change the inside for loop(from Step 4
to Step 7) in MGS. First of alldlet I" ={d52, . .01 j — 1}. Every time, find x, for p € T
such that (X,x,) = max;er(X; Xz), and 'then do %X = X — (X, x,)x, and I' = I' \ {p}.
After j — 1 times, all the elements in“I"have be removed, and it means that we have
projected X onto all the vectors'Xy; X, ..., x;21»"We now show the practical algorithm
as follows:

Algorithm 1.3 : A Change in Modified Gram-Schmidt
1. First, define x; as g;.
2. For j=2,--- ,m, do
3. X=g;
4. T'={1,2,...,j—1}
5 Fori=1,...,5—1,do
6. Find x, for p € I' such that (X,x,) = max;er(X, x;).

7. Dok =%— (X,x,)x, and I' =T"\ {p}

1.2 General Eigenvalue Problem 8

8. end do
9. normalize X into x;.
10. end do

Since all the vectors are normalized, (X,x;) fori =1,2,...,j—1 are values between
—1 and 1. If you choose the vector x; for i = 1,2, 5 — 1 closest to X, then projecting x

onto this vector will lead to smallest loss of precision in computer calculations.

1.2.4 Gerschgorin’s Theorems

Before computing the eigenvalues of matrices, it is helpful to know the range of them.
There are theorems on bounds for the eigenvalues as below, and the statements are

from [3, page 71-72].

Theorem 1 FEvery eigenvalueof the matriz A lies in at least one of the circular discs

with centres a;; and radii i ; [ai 5.

Theorem 2 If s of the circular.discs of Theorem 1 form a connected domain which
15 1solated from the other discs, then there are precisely s eigenvalues of A within this

connected domain.

From Theorem 1, if all the circular discs are disconnected, you will be sure that
the order of eigenvalues will be the same as the order of the diagonal elements of A.
Then you know from which diagonal element each of the eigenvalues is originating. The
eigenvalues are clustered as the interaction of the discs for larger radii. Theorem 2 says
that in such situation, the number of eigenvalues depend on the number of diagonal
elements in the connected discs.

These two theorems can let you know if the order of eigenvalues change when you
enlarge the radii of discs. It will be more complicated if there are connected discs. That

will be a harder problem to handle in such cases.

Chapter 2

Direct Methods

I have written programs in FORTRAN 90, using various subroutines provided in LA-
PACK packages. Using the direct methods to solve problems has the advantage of
producing exact answers. The efficiency of these subroutines decreases with increasing
requirements for memory, so they are only useful for small matrices. We may apply

direct methods for diagonalizing matrices of small order.

2.1 Diagonalization of Matrices

The practical way to diagonalize a,matrix is. quite different from theoretical one. We

discuss this for a matrix of order. 2:{irst.

2.1.1 Symmetric Matrices of order 2

In the case of matrices of order 2, it is simple to obtain their complete eigenpairs. Define

a 2 X 2 general symmetric matrix A as

A=) (2.1)
c b

First compute the roots 6; and 6, of the characteristic equation
0> — (a +b)0 + (ab —) = 0,

and later calculate the eigenvectors by the solutions of (A — 6;)x =0 for i = 1,2.

2.1 Diagonalization of Matrices 10

2.1.2 Symmetric Matrices of higher order

Now, we consider A of order n > 2. In fact, it is hard to solve their characteristic
equations like the way we did for matrices of order 2. LAPACK is written in FORTRAN
77 and provides subroutines for solving the most common problems in numerical linear

algebra. It provides a subroutine DSYEV, that consist of DSYTRD and DSTEQR, to

calculate the eigenpairs.

The Subroutine DSYTRD

The subroutine DSYTRD is used to reduce A to a tridiagonal form T by orthogonal
similarity transformations, using Householder’s method [4, pages 74-77]. An orthogonal

similarity transformation of A is given by the elementary symmetric matrix
P") =Mz 2w {w}T, (2.2)

where w() is a unit vector and defined-beloyw:
After doing (n—2) orthogenal similarity transformations A, ,; = PMA, P for r =
1,2,...,(n—2), where A; = A, A will be’reduced to a tridiagonal form. Simplistically,

let x, be the rth column of A, that can berepresented as
x, = (&, 2,11,5") (2.3)

where X is 7 x 1, y is {n — (r + 1)} x 1. P(™ makes sure that the (r + 2)th to nth
component of x,,; will be equal to zero. Corresponding to the form of x,, there is a

way to choose w(), given by
{w}" = (0,00, ay") (2.4)

where v =z, £ s and o = 27V2{s? £ 2,15} 7V? with s = {(z,41)? + yTy /2

The Subroutine DSTEQR

The subroutine DSTEQR is used to find the eigenpairs of T by employing the implicit
QL or QR method [4, pages 85-89]. The LR algorithm is based on the LU decomposi-

2.1 Diagonalization of Matrices 11

tion. Let A; = A, and suppose the LU decomposition of Ay is
A, =LR, (2.5)
where L; is unit lower triangular and R, is an upper triangular matrix. Let
A, =Ri1,4 (2.6)
By this process, it will lead to
A, =L,R, and A,,; = R,L,. (2.7)

A, will tend to an upper triangular matrix whose diagonal elements converge to the
eigenvalues of A.

The QR algorithm from QR decomposition is defined as
As n QsRs and As+1 = Rsta (28)

where Q; is a unitary matrix:and Ry is-an upper triangular matrix. Similar to the LR
algorithm, you can find the eigenvalues.of the sequence A by the limit of {A,}. Also,
columns of the limit converged by the sequence {Q; - - - Q,} represents the eigenvectors
of A.

You can see the necessity of setting matrices in the computer representation. It
is impossible to do so for large matrices because of the limit of the available memory.
You may find eigenpairs by these direct methods quickly but they are useless for the
matrices of larger order. Because the computer memory is usually limited, we introduce
iterative methods in next chapter that allow for determination of extremal eigenpairs

without high memory requirements.

Chapter 3

Overview of Iterative Methods

In the previous chapter we have discussed are some ways to solve the eigenvalue problem
for matrices of small order. Now let us turn to the matrices of large order as 10°. It is a
trouble to use this kind of matrices in the computer representation since there is a limit
of the available computer memory. Iterative methods need much less memory than
direct methods for matrices of large order. Lanczos, Davidson and Jacobi-Davidson
methods are examples of iterative methods, which are designed to find extreme eigen-
values. In general Lanczos, Davidson.and.Jacebi-Davidson methods can find a few
extreme eigenvalues at the same time, 'but here-we just look for a single minimum
eigenvalue. In Section 3.1, we-present-the main idea of these methods. In Section 3.2,

they will be introduced in more details separately.

3.1 Main Idea

We search for the minimum eigenvalue of some matrix A using a sequence of subspaces
Ko At the beginning, KC; contains only a normalized vector g; as the initial vector. At
iteration m, a normalized vector g, ; is produced, which is orthogonal to g, g,, ..., &,,,
and defines ;11 = span(g, 8y, - - - mg1)-

At iteration m, define the projector P,, onto K,, as
P,=> ggl. (3.1)
i=1

There exists an eigenvector y,, corresponding to the minimum eigenvalue \,, of P2 AP,,

3.1 Main Idea 13

with restriction to K,,. Let x,,, = P,,,y,,,. If
Ax,, = \oX, (3.2)

then we will say (A, X;,) is an approximate minimum eigenpair of A. By the way,

wlAw
A = mi .
wnelllclin wliw (3:3)
and so (A, X,,) is the best approximate eigenpair in /C,,.
If 3.2 fails, we will define
gm+1 = AXm -)\mxm- (34)

Here, Lanczos method does not change the direction of g, ;, but Davidson and Jacobi-
Davidson methods use different ways_to modify it. After normalizing g,,,, and aug-
menting /C,, with g,,.1, we proceed to next itetation.

It is difficult to execute this idea directly, and so the practical Algorithm 3.1 is
the following:

—_

. Generate a normalized vector:g, as thetinitial vector.
2. Set m = 1.

3. Set G,y = (8189 - - - &)

4. Calculate a small matrix A,,, = G%AGm.

5. Calculate the minimum eigenpair (A, z,,) of A,,.

6. Set x,,, = G,,Z,.

7. Calculate the residual vector r,,, = (A — A\, I)x,,.

o If ||ry, || < 1078, exit.

e If ||r,,]| > 1078, continue.

3.2 Iterative Methods 14

8. Let g, = ry and use Lanczos, Davidson or Jacobi-Davidson strategies to change

the direction of g, ;.
9. Orthogonalize g, ; with respect to g,8,,...,8,, and then normalize it.

10. Set m = m + 1 and go to Step 3.

From Step 3 to Step 7, this algorithm is known as as the Rayleigh-Ritz procedure.
It can be proved that it will converge to the same \,, and x,, like the one in the main

idea [1, pages 216-217|, hence the results are still the same.

3.2 TIterative Methods

Lanczos, Davidson and Jacobi-Davidson methods use different strategies in Step 8, and
we explain them in this section. By, theiway, given A = [a; ;] and the diagonal matrix
D= [di,j] where
s NI = g
di,j = , j
0 otherwise

3.2.1 Lanczos Method

8. Lanczos strategy : Do nothing to g,,.1.

Davidson and Jacobi-Davidson methods are based on Lanczos method, which is a clas-
sical method and was published in 1950. The small matrix A,, derived from Lanczos
method has very convenient property - it is a tridiagonal matrix. This properly is not
shared by Davidson and Jacobi-Davidson methods. So, it is easier to calculate A,,
by using Lanczos method. Nevertheless, the convergence of Lanczos method is much

slower than the other methods in general, and so we don’t tell its detail.

3.2.2 Davidson Method

8. Davidson strategy :
gni1 = (D= D) 'rp (3.5)

3.3 Other Notations 15

Davidson method changes the direction of the residual vector by dividing each compo-
nent of g,, ., by a;; — Ap,. This operation is sometimes called the diagonal precondi-

tioning. The proof of convergence is given in [5].

3.2.3 Jacobi-Davidson Method
8. Jacobi-Davidson strategy :
81 = (D — AnD) % — (D = A\ D) ey, (3.6)
where

xED = X0y,
T XD - M) X

(3.7)

The preconditioning in Jacobi-Davidson method is meant to find an approximate
complement of the real eigenvector orthogonal to the Ritz vector [6], hence its has more

direct geometrical interpretation: than Davidson’s.

3.3 Other Notations

3.3.1 Constructing Initial " Vector g,

In general, a good initial choice of vector for g; can lead to faster convergence. Although
there is no absolute way to generate it, we can provide a general way in Quantum
Chemistry.

First of all, given a positive integer ¢, let the locational set
L ={o: a,, is one of the ¢ smallest elements in the diagonal part of A.}. (3.8)

Let K is spanned by {e, : ¢ € L}. Define the projector P onto K as
P = Zei el (3.9)
el
There exists an eigenvector y corresponding to the minimum eigenvalue A of PTAP

with restriction to K. Then g; = Py is a choice of the initial vector.

3.3 Other Notations 16

3.3.2 Restart Strategies

The CPU time of each step increases since the subspace is becoming larger and larger.
The cost of each step comes mainly from the requirement of maintaining the orthogo-
nality. If we do not wish to spend to much time for finding the extreme eigenvalue -
restart strategies may solve this problem. For instance, after 20 steps, you can remove
all the vectors g1, g, ..., g9 and take the Ritz vector x9g as the initial vector g;.
Unfortunately, it may lead to reducing the speed of convergence or even a stagna-
tion. A better way to solve this issue is to take more than one Ritz vectors as the
starting space [6]. In the example above, you have the eigenvector ys corresponding
to the minimum eigenvalue \yy of P2, APyy. Also, there are eigenvectors yo,,y and
Yao corresponding to the 2nd, 3rd and 4th minimum eigenvalues Ay, Ay and Ny, Te-
spectively. Then you have four Ritz vectors Xaq, X/QO, XIQ/O and X/QIE) obtained analogously
to X0 = Pogyy. After restartingthe algorithin with these four Ritz vectors as g, go,

g3 and g4, you have 4 dimensional subspace at the beginning.

Chapter 4

Loss of Orthogonality

In Step 9 in Algorithm 3.1 we orthogonalize the vectors g,,g,,...,8,, to make sure
they are orthogonal. Unfortunately, if g, lies almost entirely in /C,,,, then the vectors
will be just approximately orthogonal because of finite precision of their numerical

representation. We explain this by an easy example again below.

4.1 An Easy Example

Let
0.8 —0.6
g=106 and g, =1 08
0.0 0.0

Clearly, g, is orthogonal to g,. Suppose that

1.0
gs= 1| 1.0

(0%

is the vector obtained from Step 8 in Algorithm 3.1, where « is a small number. In
Step 9, g5 has to be orthogonalized with respect to g, and g,. All operations are
performed in double precision finite arithmetics and the final vector g3 is only approx-
imately orthogonal to the previous vectors. We give the final vector gs for some «

below.

4.2 Examples using Davidson Method 18

a=10"* a=10"°8 a=10"12 oa=10"16

|} N[} I N[}
4.10712 4.10°8 4.107* 0.3619 (4.1)
2.10712 2.10°8 2.1074 0.2212

1.0 1.0 1.0 0.9056

The loss of orthogonality is more obvious while « is smaller. It will inevitably lead

to a wrong approximation of eigenvalues.

4.2 Examples using Davidson Method

In this section, we show that for some matrices Davidson method fails to converge.
D, D, and D mentioned below are diagonal matrices, and we always use the same
starting vector t; = (0,0,...,0:0.8,0.6)T. In“Example 1 and Example 2, we show
that the problems can occur when the extreme eigenvalue lies within the discrete and
clustered part of spectrum of A respectively. In Example 3, we show that in some cases
the converged the extreme eigenvalue'is completely wrong even if the residual value is
small enough.

Ezxample 1.

Let A be of order 200 defined by

10
201—1

a;; = 01 ifli—jl=1". (4.2)
0 fli—j|>1

ifi=j

The diagonal part {a;;}?% of A increases monotonically. By Gerschgorin’s Theorem

1 all the radii are only 0.1, hence the distribution of spectrum is similar to the one of
diagonal part of A. So the maximum eigenvalue is in the discrete part of spectrum
(Figure 4.1). The overlap matrix O,, at step m is defined by (g;, g;), where (,) is the
usual inner product. Normally, the overlap matrix in each step should be very close to

the identity matrix normally. In Figure 4.2, we can see that the residual values and

4.2 Examples using Davidson Method 19

®

Real line RIS <&

Figure 4.1 Location of the largest 10 eigenvalues.

Ritz values blow up while finding the maximum eigenvalue of A. Since overlap matrices

70

T
Residual values

— — — Ritz values

0 50 100 150 200
Number of iterations

Figure 4.2 Residual values and Ritz values from Example 1.

are symmetric, we just show the upper triangular part of O3y excluding the diagonal
elements in Figure 4.3. As you can see, it is very different from the identity matrix.
Example 2.

Since A is symmetric, we can find an eigendecomposition: A = VDV7T. Let A =
VDVT where D is given by (Ai” = % —1 for i = 1 to 200. The portrait of A is

plotted in Figure 4.4; it is diagonally dominant. Constructing A in this way implies

4.2 Examples using Davidson Method 20

the inner prodcut of g, and 9,

Figure 4.3 Overlap matrix Ogg from Example 1.

A(LJ)

50
200
row | of the matrix A column J of the matrix A

150

Figure 4.4 Graphical presentation of A,

that the minimum eigenvalue of A is -0.95. By applying Gerschgorin’s theorems again,
we consider a matrix whose minimum eigenvalue —0.95 contained in the clustered part

of spectrum (Figure 4.5). A similar situation like Example 1, this case also diverges

when looking for the minimum eigenvalue (Figure 4.6).

4.2 Examples using Davidson Method 21

Real line

Figure 4.5 Location of all eigenvalues of A.

Residual values
— — — Ritz values

0 50 100 150 200
Number of iterations

Figure 4.6 Residual values and Ritz values from Example 2.

Example 3.

An interesting thing happens when we try to find the minimum eigenvalue of A =
VDVZ. V is the one in Example 2 and D is given by (~i” = 11—.0 for i = 1 to 200. The

portrait of A is similar to the one of A and so it is dominant diagonally, too. From

4.2 Examples using Davidson Method 22

Residual values
— — — Ritz values

10—10 B \ L

15 ~
T T T

0 5 10 15 20 25 30 35 40 45
Number of iterations

10

Figure 4.7 Residual values and Ritz values from Example 3.

Figure 4.7, it looks as if Davidsort method has.converged. Unfortunately, it is a "fake
convergence" because the mimimum eigenvalue should be 0.05. We use the notation
from Chapter 3 to explain this situation. At step m, we have an approximate eigenpair

(AmsYm). Am can be represented as
Am = YZ;L)\mym = YZ;LP%;APmYm = (Pmym)TAPmYm-

So, A, > 0 since A s positive definite. (The eigenvalues of A are all positive.) That’s
why A and A are similar, but the Ritz values here don’t decrease like the ones in
Figure 4.7.

If the orthogonalization in Step 9 of Algorithm 3.1 is done twice, Davidson method

will converge to the proper extreme eigenvalues for all these three matrices deduct here.

Chapter 5

The Sweep Method

Davidson method usually converges within several iterations if the matrix is sufficiently
diagonally dominant. Nevertheless, sometimes the convergence is slower. When the
Ritz value is very close to some eigenvalue, then it may require one hundred steps
to converge. In this chapter, we will discuss a modified method named as the sweep

method to reduce the number of steps.

5.1 Jacobi-sweep Methed

Before introducing the sweep method, we discuss its main idea first - Jacobi-sweep
method. Jacobi-sweep method is based-ou-Jacobi rotations |7, pages 426-438|. It is
used to search for the extreme eigenvalues:

In the space R", there exists an orthonormal basis B = {e;,es,...,e,}. Dividing
B into subsets of d elements yields a partition of B : By, B, ..., Bz;. (the last subset
B[%] may contain less vectors than d.) When Jacobi-sweep method is executed, we
need a normalized starting vector s with its first d components equal to zero. We can
brief characterize this method in the following way.

For i =1 to [4], do
1. Define the projector P onto the subspace spanned by s and B; as

P=ss" + Z eje;. (5.1)

€; €B;

2. Calculate the eigenvector y corresponding to the minimum eigenvalue A of PTAP

with restriction to the space spanned by the vectors in B;, and redefine s = Py.

5.2 Main Idea 24

As =)s, (5.2)

then (A,s) will be the approximate minimum eigenpair of A. Otherwise, make

next d components of s equal to zero, and then normalize it.

end do

We call this procedure "one sweep" or "sweeping once". After this process is exe-
cuted one time, there may be no convergence. Then, we define the final vector s as the
starting vector of the next sweep. It may converge to the sought eigenvalue by a large
number of sweeps, and therefore it may prove to be useless for practical reasons. In the

next section, we discuss about how to use Jacobi-sweep method in practice.

5.2 Main Idea

The main structure of the sweép method is similat to the methods mentioned in Chap-
ter 3. The main difference is Step 8'in Algorithm 3.1. The strategy in the sweep method

is as follows:

8. The sweep strategy : Sweep the Ritz vector a fixed number of times and define it

as ngrl .

In Davidson and Jacobi-Davidson methods, the residual vector is modified in Step 9,
however here we change the direction of the Ritz vector by relaxing it by the sweep
method. That is a quite different approach to construct the next Ritz vector. We show

some results obtained using this approach in the next section.

5.3 Results

We found that the sweep method has faster convergence than Davidson and Jacobi-
Davidson methods. This phenomenon is demonstrated using the matrix A from Ex-

ample 1 in Chapter 4, but here we search for the minimum eigenvalue.

5.3 Results 25

Using the sweep algorithm after 30 Davidson steps

Residual values
=
o

0 10 20 30 40 50 60 70
Number of iterations

Figure 5.1 Convergence for the sweep method is faster than for Davidson method.

In Figure 5.1, the dashed-line represents. the convergence history obtained with
combined Davidson and the sweep methods. Tt uses Davidson method in the first 30
steps, and the sweep method later, The 8o6lid line represents the convergence history
obtained when only Davidson method. is used."We see the dashed line goes down faster
than the solid one, which means that the sweep method has faster convergence in this

case.

In Figure 5.2, we use the sweep and Davidson methods for the matrix A. You can see
the dashed line is below the solid one, which means that the sweep method needs fewer
steps to converge. In the present implementation, the cost of the preconditioner for
the sweep method is more expensive than for Davidson and Jacobi-Davidson methods.
Therefore these methods compete for time. It is possible that the sweep method is
faster than the other methods since it needs much fewer iterations, even though it costs

more time for preconditioning.

Now we introduce one kind of matrix that is called the band matrix. For a band

matrix B, it has nonzero elements b, ; for 0 < |i — j| < w, where w is called the

5.3 Results 26

Davidson method
10724 — — —sweep method | L

Residual values
=
o

0 10 20 30 40 50 60 70
Number of iterations

Figure 5.2 A using the sweep and Davidson methods.

bandwidth of B. Our B is also diagonally deminant. Suppose
R = {(¢,7) = bz is in the’band region and i # j.}. (5.3)

To define by, for (h, k) € R, we use.an'array with n components called offdiag. Each
component of offdiag is generated asa-uniform random number between -0.5 and 0.5.

If |offdiag(h) x offdiag(k)| is larger than a specified value d, then by, = 0. Otherwise,

bnx = ¢ X offdiag(h) x offdiag(k), (5.4)

where (is a positive real number. When ¢ is larger, the number of nonzero elements
in the band region except the diagonal is larger. By controlling 4, we can change the

percentage p of the nonzero elements in the band region except the diagonal. Suppose

Z ={(i,j) € R : |offdiag(i) x offdiag(j)| < 6}, (5.5)
then let a = W represent the average magnitude of the nonzero elements in
the band region except the diagonal. Since
Z(i,j)ez |bi;l _ Z(i,j)EZ |offdiag(i) x offdiag(j)|

|1Z] 2]

a= : (5.6)

5.3 Results 27

a can be set to some value simply by changing (. Our band matrix B is defined as

below:
I} ifi=j
~ for the probability p

- if1<]i—j|<w ,
0 for the probability 100% — p

1:7-].

\ 0 if i — j| > w
where (3 is a uniform random number between -10 and 10, and ~ is { X offdiag(i) x
offdiag(j) where (is some positive value designated by a. We discuss the band matrix
B of small order 10* with w = 500 and large order 10® with w = 1000 respectively.

For small order, there are 1000 generated matrices of the form B for each p =
10%, 20%, . ..,50% and each o = 0.01,0.02,...,0.05. We use the sweep, Davidson,
and Jacobi-Davidson methods to find the minimum eigenvalue of these matrices and
consider which method is faster. Eor the sweep method, we sweep Ritz vectors twice for
the sweep method. Unfortunatély, the sweep method has a serious drawback - the loss of
orthogonality. It needs two reorthogonalizations usually. The reason for this is because
the Ritz vector may change only alittle-after preconditioning, so the preconditioned
vector is very closed to the original subspace K,,,. Because of this trouble, we use one
reorthogonalization for Davidson and Jacobi-Davidson methods but two for the sweep
method. We also restart the procedure every 30 iterations to reduce the computational
time (Section 3.3.2). In Appendix B, we give results obtained with these methods. From
Table B.1 to Table B.5, the average execution time for the sweep method is smaller than
for the other two methods. From Table B.6 to Table B.8, the winning times denotes
the number of being the fastest from 1000 matrices. As a and p increase, the winning
times of these two methods decrease on average, i.e., the sweep method is the fastest
in most cases. The average steps of the sweep method is less than half the ones of the
other two methods. We take a sample for p = 30% and « = 0.03, and the result is the
following. In this case, they have similar curves, but the one for the sweep method is
sharper. Because of this phenomenon, the time for the sweep method is shorter, even

it needs more time for preconditioning.

5.4 Conclusions 28

Residual values

sweep method
— — — Davidson method
— - — Jacobi-Davidson method

0 10 20 30 40 50 60
Number of iterations

Figure 5.3 A sample for p = 30% and a = 0.03.

For large order, there are 100'generated matrices for each p = 10%, 12.5%, ..., 20%
and each a = 0.01,0.0125,. ».,0.02. “The settings are almost the same with small
matrices except restarting every 10 iterations and sweeping Ritz vectors 3 times. Similar

results are presented in Appendix C;and ‘the sweep method is faster again.

5.4 Conclusions

From the presented results, it is clear that the sweep method is faster than Davidson
and Jacobi-Davidson methods for most of the studied small and large matrices. The
superiority of the sweep method is more obvious as p and « increase, i.e., as the nu-
merical cost increases. That means the sweep method may be even better for higher p
and «.

From Table 5.1, there are four common cases with the same p and « for small and
large matrices. We just show the ratio of the average time for the sweep method to the
average time for Davidson method since the results of Davidson and Jacobi-Davidson

are similar. From small to large matrices, the ratio increases and is larger than 1, so it

5.4 Conclusions 29

is possible that the ratio for matrices of higher order is even larger. We can guess that
the sweep method is faster than Davidson and Jacobi-Davidson methods for matrices

of higher order.

Table 5.1 The ratio between the average time for Davidson method and the average

time for the sweep method for various values of p and «a.

The probability The average Small matrices Large matrices
(p) (@)
10% 0.01 1.094086 1.734938
10% 0.02 1.34382 1.76378
20% 0.01 1.111489 1.66922
20% 0.02 1.422389 1.990131

The sweep method indicates two things. First, the iterative methods mentioned in
the thesis always change the direction of.residual vectors, however the sweep method
changes directly the Ritz vector. Although'it needsto deal with the loss of orthogonality,
the sweep method still costs léss time to-converge.

Second, it costs just little timeto precondition a vector for general iterative meth-
ods. The sweep method tells us that we may need less steps to converge the extreme
eigenvalues for preconditioning some specified vector more time. So it is competitive
for the sweep method since it reduces the number of iterations in general. The sweep

method gives us a quite different way to search the eigenvalue.

Bibliography

[1] B. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1st edition, 1980.
[2] Y. Saad. [lterative Methods for Sparse Linear Systems. PWS, 1st edition, 1996.
[3] J.H. Wilkinson. The Algebraic Figenvalue Problem. Clarendon, 1st edition, 1965.

[4] A.R. Gourlay and G.A. Watson. Computational Methods for Matriz Figenproblems.
John Wiley and Sons, 1st edition, 1973.

[5] M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson Method. SIAM J. SCI
COMPUT, 15:63-65, 1994.

[6] G.L.G. Sleijpen and H.A. Van Der Vorst. The Jacobi-Davidson Method for Eigen-
value Problems and Its Relation with:Accelerated Inexact Newton Schemes. Com-

put. Appl. Math, 3:377-389, 1996.

[7] G.H. Golub and C.F. Van Loan.: Matriz Gomputations. Johns Hopkins, 3rd edition,
1996.

Appendix A

Program Codes

A.1 Main Program

ORDER FOR ORDER OF A

P FOR THE COLUMNS OF SUBA

LIMIT FOR ROWS OF G

TYPE=1:MAXIMUM AND TYPE=0:MINIMUM

E_VECTPR IS THE INITIAL.VECTOR FOR INPUT AND EIGENVECTOR FOR OUTPUT
E_VALUE IS THE MIN EIGENVALUE IF<TYPE=0 AND MAX ONE IF TYPE=1

subroutine general(way,diag;offdiag,order,can,limit,type,repeat,e_vector,
e_value,show,step,sweeps,population,probl,prob2,offarray,nonzero,total,

position,blockA,block_offarray,block_nonzero,block_total,block_position)

implicit none

character(1):: way

integer:: order,limit,type,can,sweeps,step,check,repeat,show,population
integer:: i, j, k, m, q, r, INFO, LWORK, total, block_total

real (kind=8):: ddot,dnrm2,sum,maks,e_value,probl,prob2

real (kind=8), dimension(:), allocatable:: WORK

real (kind=8), dimension(order):: Avector, diag, e_vector, WR, offdiag, res

real(kind=8), dimension(order,can):: blockA

A.1 Main Program

32

real (kind=8), dimension(limit,limit):: F, GAG

real (kind=8), dimension(limit,order):: G, GA

integer, dimension(order+1l):: position, block_position
integer, dimension(total):: offarray

integer, dimension(block_total):: block_offarray

real (kind=8), dimension(total):: nonzero

real(kind=8), dimension(block_total):: block_nonzero

step=1

check=1

! PRODUCE NORMALIZED INITIAL VECTOR

sum=dnrm2 (order,e_vector,1)
call dscal(order,1.0d0/sum,e_vector,1)
call dcopy(order,e_vector, 1;,G,limit)

do while(step<=order)

! DETERMINE AND DIAGONALIZE GAG

do i=1,order
GA (check,i)=0.0d0
do j=position(i),position(i+1)-1
GA(check,i)=GA(check,i)+nonzero(j)*G(check,offarray(j))
end do
GA(check,i)=GA(check,i)+diag(i)*G(check,1i)
end do

A.1 Main Program 33

call dgemv(’N’,check,order,1.0d0,GA,1limit,G(check,1),1limit,0.0d0,
GAG(1,check),1)

do i=1,check
call dcopy(i,GAG(1,i),1,F(1,1),1)

end do

LWORK=-1

ALLOCATE (WORK (1))

call dsyev(’V’,’U’,check,F,limit,WR,WORK,LWORK, INFO)
LWORK=INT (WORK (1))

DEALLOCATE (WORK)

ALLOCATE (WORK (LWORK)y)

call dsyev(’V’,2U? ,check,F,1limit,WR,WORK,LWORK, INFO)
DEALLOCATE (WORK)

! PRODUCE RITZ VECTOR

r=(1-type) +check*type

e_value=WR(r)

call dgemv(’T’,check,order,1.0d0,G,limit,F(1,r),1,0.0d0,e_vector,1)

call dgemv(’T’,check,order,1.0d0,GA,1limit,F(1,r),1,0.0d0,Avector,1)

do i=1,order
res(i)=Avector(i)-e_value*e_vector(i)

end do

sum=dnrm2 (order,res,1)

if (show==1) write(*,’(i5,4ES25.16)’)step,sum,e_value

A.1 Main Program 34

! ORTHOGONALIZATION

if (sum<1.0d4-8) then
if (show==0)write(*,’(i5,2ES25.16,25X,ES25.16)’)step,sum,e_value

exit

else if(check<limit) then
step=step+1

check=check+1

select case(way)
case(’D’)
call davidson(order,res,Avector,diag,e_value,sum)
call dscdl(order,1:0d0/sum,Avector,1)
case(’J?)
call jacobi.davidson(order,res,e_vector,Avector,diag,
e_value,sum)
call dscal(order,1.0d0/sum,Avector,1)
case(’S?)
call jsweep(diag,offdiag,order,type,can,e_value,e_vector,
Avector,sweeps,offarray,nonzero,total,position,
population,probl,prob2,blockA,block_offarray,
block_nnzero,block_total,block_position)
call dcopy(order,e_vector,l,Avector,1)

end select

do g=1,repeat
call dcopy(check-1,0.0d0,0,WR,1)

A.1 Main Program

35

do j=1,check-1
maks=0.0d0
do i=1,check-1
sum=0.0d0
if (WR(1)==0.0d0) then
sum=ddot (order,G(i,1),limit,Avector,1)
if (abs (sum)>=abs(maks)) then
maks=sum
m=i
end if
end if
end do
WR(m)=1.0d0
call daxpy(order,-maks,G(m,1),limit,Avector,1)
sum=dnrm2 (ordexr;,Avector, 1)
call dscal(order,1.0d0/sum,Avector,1)
end do
end do

call dcopy(order,Avector,1,G(check,1),limit)

else

step=step+1

check=1

call dcopy(order,e_vector,1,G,limit)
end if

end do

end subroutine

A.2 Davidson Preconditioner 36

A.2 Davidson Preconditioner

implicit none
integer:: 1, order
real (kind=8):: e_value, sum, dnrm2

real (kind=8), dimension(order):: res, Avector, diag

do i=1,order
Avector (i)=res(i)/(diag(i)-e_value)

end do

sum=dnrm2 (order,Avector, 1)

end subroutine

A.3 Jacobi-Davidson Preconditioner

subroutine jacobi_davidson(order,res,e_vector,Avector,diag,e_value,sum)
implicit none

integer:: i, order

real(kind=8):: e_value, sum, dnrm2, ddot

real (kind=8), dimension(order):: e_vector, Avector, diag, D, res

do i=1,order
D(i)=e_vector(i)/(diag(i)-e_value)
Avector(i)=res(i)/(diag(i)-e_value)
end do

sum=ddot (order,D,1,e_vector,1)

A.4 Sweep Preconditioner 37

sum=ddot (order,Avector,1,e_vector,1)/sum
do i=1,order
Avector (i)=sum*D(i)-Avector (i)
end do
sum=dnrm2 (order,Avector, 1)

end subroutine

A.4 Sweep Preconditioner

subroutine
jsweep(diag,offdiag,order,type,can,e_value,e_vector,Avector,sweeps,offarray,
nonzero,total,position,population,probi,prob2,blockA,block_offarray,

block_nonzero,block_total,blockLposition)

! ORDER : THE ORDER OF MATRIX

! TYPE : TYPE=0, THE MIN EIGENVALUE ; TYPE=1, THE MAX EIGENVALUE
! CAN : THE NUMBER TO DIAGONALIZE ONCE

! SWEEPS : LIMIT THE NUMBER OF SWEEPS

implicit none

integer:: i, j, start_can, p, var, LWORK, INFO, count, sweeps, row, column,
population, total, block_total, order, type, can

real (kind=8):: norm,e_value,dnrm2,ddot,coef,sum,probl,prob2,a,b,c,d,e

real (kind=8), dimension(can):: adv

real (kind=8), dimension(order):: WR, res, e_vector, Avector, diag, offdiag

real (kind=8), dimension(can+1,can+1):: GAG

real(kind=8), dimension(order,can):: blockA

A.4 Sweep Preconditioner 38

real (kind=8), dimension(:), allocatable :: WORK
integer, dimension(order+1):: position, block_position
integer, dimension(total):: offarray

real (kind=8), dimension(total):: nonzero

integer, dimension(block_total):: block_offarray

real(kind=8), dimension(block_total):: block_nonzero

var=can
start_can=1
count=0

coef=1.0d0

! THE MAIN PROGRAM

do while(start_can<=order)

! CONSTRUCT GAG(1,1)

100 call dcopy(var,0.0d0,0,adv,1)
do i=1,var
row=start_can-1+i
do j=block_position(row),block_position(row+1)-1
adv(i)=adv(i)+block_nonzero(j)*e_vector(block_offarray(j))
end do
end do

if (Avector(start_can)==adv(1l) .and.can==1) then
if (start_can<=order-1) then

start_can=start_can+l

Sweep Preconditioner 39

else
start_can=1
count=count+1
sum=dnrm2 (order,e_vector,1)
call dscal(order,1.0d0/sum,e_vector,1)
coef=1.0d0
end if
go to 100

end if

GAG(1,1)=ddot (var,Avector(start_can),1,e_vector(start_can),1)
GAG(1,1)=e_value-2.0d0*GAG(1,1)/(coef*coef)

+ddot (var,adv,1 e vector(start_can),1)/(coef*coef)

! NORM OF THE STARTING ~VECTOR

norm=0.0d0
do i=0,var-1

norm=norm+e_vector (start_can+i)*e_vector(start_can+i)/(coef*coef)
end do

norm=sqrt(1.0d0-norm)

I CONSTRUCT GAG

GAG(1,1)=GAG(1,1)/(norm*norm)
do i=0,var-1
GAG(1,2+i)=(Avector(start_can+i)-adv(1+i))/(norm*coef)

end do

A.4 Sweep Preconditioner

40

do i=0,var-1
do j=i+1l,var
GAG(2+i, j+1)=blockA(start_can+i,j)
end do
end do

! DIAGONALIZE

if (can>=1) then
LWORK=-1
ALLOCATE (WORK (1))
call dsyev(’V’,’U’,var+1,GAG,can+1,WR,WORK,LWORK, INFO)
LWORK=INT (WORK (1))
DEALLOCATE (WORK)
ALLOCATE (WORK (LWORK))
call dsyev(’V’,’U’ ,var+l,GAG,can+1,WR,WORK,LWORK, INFO)
DEALLOCATE (WORK)
else
if (type==0) then
a=GAG(2,2)-GAG(1,1)
b=GAG(1,2)*GAG(1,2)
c=sqrt (a*xa+4.0d0*b)
WR(1)=(GAG(1,1)+GAG(2,2)-c)/2.0d0
d=atc
e=sqrt (2.0d0* (a*d+4.0d0*b))
GAG(1,1)=d/e
GAG(2,1)=-2.0d0*GAG(1,2)/e
else

a=GAG(2,2)-GAG(1,1)

A.4 Sweep Preconditioner

41

b=GAG(1,2)*GAG(1,2)
c=sqrt (a*xa+4.0d0*b)
WR(1)=(GAG(1,1)+GAG(2,2)+c)/2.0d0
d=a-c
e=sqrt (2.0d0* (axd+4.0d0*b))
GAG(1,1)=d/e
GAG(2,1)=-2.0d0*GAG(1,2) /e

end if

end if

! RITZ VECTOR

p=(1-type)+(var+1)*type

e_value=WR(p)

if (GAG(1,p)/=0) then
coef=coef*norm/GAG(1,p)

else
call dcopy(order,0.0d0,0,e_vector,1)
coef=1.0d0

end if

do i=0,var-1
e_vector(i+start_can)=GAG(i+2,p)*coef

end do

if (start_can>=order-can+1) then
count=count+1
sum=dnrm2 (order,e_vector, 1)

call dscal(order,1.0d0/sum,e_vector,1)

A.4 Sweep Preconditioner

42

coef=1.0d0

end if

if (sweeps==count) then
exit
else
if (start_can<=order-2*can+1) then
start_can=start_cant+can
else if (order-2*can+i<start_can.and.start_can<=order-can) then
start_can=start_cantcan
var=order-start_can+l
else
start_can=1
var=can

end if

! CALCULATE AVECTOR(START.CAN) ~“AVECTOR (START_CAN-1+VAR)

do i=1,var
row=start_can-1+i
Avector (row)=0.0d0
do j=position(row),position(row+1)-1

Avector (row)=Avector (row)+nonzero(j)*e_vector (offarray(j))

end do
Avector (row)=Avector (row)+diag(row) *e_vector (row)

end do

end if
end do

end subroutine

Appendix B

Numerical Results for Small Matrices

Table B.1 The average time for the probability p = 10%.

The average Sweep method Davidson Jacobi-Davidson
(o) (sec) (sec) (sec)
0.01 0.062836 0.068748 0.068764
0.02 0.09231 0.124048 0.125003
0.03 0.135992 0.216126 0.219582
0.04 0.185576 0.317008 0.318536
0.05 0.224782 0.39046 0.395705

Table B.2 The average time for the probability p = 20%.

The average Sweep method Davidson Jacobi-Davidson
() (sec) (sec) (sec)
0.01 0.101974 0.113343 0.114015
0.02 0.197756 0.281286 0.28361
0.03 0.316548 0.499815 0.503755
0.04 0.390496 0.640088 0.64588

0.05 0.432939 0.733578 0.73815

44

Table B.3 The average time for the probability p = 30%.

The average Sweep method Davidson Jacobi-Davidson
(o) (sec) (sec) (sec)
0.01 0.189604 0.221786 0.22305
0.02 0.380996 0.542062 0.547262
0.03 0.548002 0.855689 0.864358
0.04 0.611762 1.020124 1.029784
0.05 0.641472 1.136819 1.140071

Table B.4 The average time for the probability p = 40%.

The average Sweep method Davidson Jacobi-Davidson
() (sec) (sec) (sec)
0.01 0.292798 0.338709 0.340813
0.02 0:589781 0.842349 0.846137
0.03 0.710656 1.112726 1.123538
0.04 0.784949 1.347352 1.352365
0.05 0.795142 1.396915 1.40682

Table B.5 The average time for the probability p = 50%.

The average Sweep method Davidson Jacobi-Davidson
() (sec) (sec) (sec)
0.01 0.389864 0.444352 0.445956
0.02 0.801734 1.126114 1.134751
0.03 0.93175 1.463695 1.481317
0.04 0.955312 1.66718 1.678661
0.05 0.953868 1.733344 1.748633

45

Table B.6 The pairs (the winning times, the average iterations) derived by the sweep

method.
p
o 10% 20% 30% 40% 50%
0.01 (573, 5.456) (682, 6.547) (693, 7.338) (696, 8.077) (653, 8.823)
0.02 (899, 7.57) (969, 9.946) (965, 12.833) (970, 14.939) (948, 16.287)
0.03 (967, 9.971) (990, 14.441) (994, 17.323) (990, 18.726) (985, 19.592)

0.04 (988, 12.592) (998, 17.238) (996, 19.161) (995, 20.045) (995, 20.593)
0.05 (995, 14.637) (998, 18.84) (998, 20.09) (1000, 20.611) (998, 21.09)

Table B.7 The pairs (the winning times, the average iterations) derived by Davidson

method.
p
! 10% 20% 30% 40% 50%
0.01 (217, 11.271) €198, 13.889) (142, 15.865) (149, 17.601) (156, 19.531)
0.02 (50, 16.559) +(17,122:77)——(14,/30.769) (12, 38.066) (25, 43.083)
0.03 (15, 22.787) (9,86.311) . (0;47.686) (4, 55.234) (6, 60.804)
0.04 (9,30.524) (1, 47.136) (1,57.878) (4,64.992) (1, 70.821)
0.05 (4, 37.469) (0, 54.924) (1, 64.413) (0, 70.213) (0, 76.375)

Table B.8 The pairs (the winning times, the average iterations) derived by Jacobi-

Davidson method.

p

a 10% 20% 30% 40% 50%
0.01 (210, 11.205) (120, 13.837) (165, 15.85) (155, 17.601) (191, 19.518)
0.02 (51, 16.558) (14, 22.797) (21, 30.802) (18, 38.097) (27, 43.186)
0.03 (18,22.82) (1,36.364) (6, 47.805) (6, 55.242) (9, 61.008)
0.04 (3,30.559) (1,47.174) (3,57.931) (1, 64.787) (4, 70.642)

0.05 (1,37.516) (2, 54.878) (1,64.286) (0, 70.063) (2, 76.607)

Appendix C

Numerical Results for Large Matrices

Table C.1 The average time for the probability p = 10%.

The average Sweep method Davidson Jacobi-Davidson

(o) (sec) (sec) (sec)

0.01 43.096533 74.769833 72.079305
0.0125 51.19984 87.508189 85.684355
0.015 58.467133 98.713169 103.46567
0.0175 83.272124 154.660466 154.72179

0.02 89.375946 157.640172 163.106513

Table C.2 The average time for the probability p = 12.5%.

The average Sweep method Davidson Jacobi-Davidson
() (sec) (sec) (sec)
0.01 61.834624 97.997804 98.646445
0.0125 82.823576 135.83201 146.78233
0.015 100.787779 161.225316 164.869424
0.0175 126.848448 263.170247 275.815357
0.02 159.84147 300.086794 306.167374

47

Table C.3 The average time for the probability p = 15%.

The average Sweep method Davidson Jacobi-Davidson
(o) (sec) (sec) (sec)
0.01 64.034402 95.04318 98.826696
0.0125 73.534956 123.3267 126.3869
0.015 141.112899 245.788761 241.473291
0.0175 169.726287 320.411985 317.161061
0.02 187.175658 338.999426 329.843054

Table C.4 The average time for the probability p = 17.5%.

The average Sweep method Davidson Jacobi-Davidson
() (sec) (sec) (sec)
0.01 100:431357 160.755727 167.475867
0.0125 133.102918 209.980443 218.225558
0.015 171:080092 279.142045 295.348738
0.0175 199.352339 355.561821 360.17815
0.02 198.034576 365.092777 372.140057

Table C.5 The average time for the probability p = 20%.

The average Sweep method Davidson Jacobi-Davidson
() (sec) (sec) (sec)
0.01 109.211465 182.297913 191.092943
0.0125 158.637674 269.461160 277.743598
0.015 172.33437 331.339107 336.010559
0.0175 191.763305 341.984853 349.542765
0.02 161.006742 320.424625 321.654542

48

Table C.6 The pairs (the winning times, the average iterations) derived by the sweep

method.
p
o 10% 12.5% 15% 17.5% 20%
0.01 (83, 6.87) (92, 7.95) (82, 8.51) (94, 9.83) (94, 11.1)
0.0125 (95, 8.28) (96, 10.35) (87, 10.87) (91, 12.5) (93, 15.59)
0.015 (94, 9.91) (95,12.39) (95, 15.53) (88, 17.73) (94, 19.58)
0.0175 (92, 13.3) (95, 15.74) (89, 18.49) (94, 24.11) (94, 26.52)
0.02 (93, 15.32) (96, 19.01) (94, 22.24) (93, 27.72) (97, 29.48)

Table C.7 The pairs (the winning times, the average iterations) derived by Davidson

method.
p
! 10% 12.5% 15% 17.5% 20%

0.01 (3, 24.68) (1, 27.96) (4,30.3) (4, 39.1) (2, 51.3)
0.0125 (2, 30.12) (1,/40:3) (9,44.42) (2, 50.72) (3, 69.26)
0.015 (3, 36.26) (3,49.03) (2, 67.55) (6, 71.67) (1, 98.79)
0.0175 (5, 58.84) (3, 74.7) (5, 85.64) (5, 109.93) (3, 126.4)
0.02 (3, 60.83) (3, 85) (5, 100.3) (3, 134.69) (1, 154.17)

Table C.8 The pairs (the winning times, the average iterations) derived by Jacobi-

Davidson method.

p
o 10% 12.5% 15% 17.5% 20%

0.01 (14,24.5) (7,27.83) (14,30.12) (2, 39.6) (4, 51.09)
0.0125 (3,29.85) (3,41.05) (4,44.27) (7,51.61) (4, 69.23)
0.015 (3, 36.86) (2, 48.6) (3, 66.5) (6, 74.26) (5, 97.66)
(3,) (3,)
(4,)

0.0175 3, 57.73 (2,76.04) (6,83.9) (1,109.14) (3, 125.7
0.02 4, 60.24 (1,84.83) (1,984) (4,132.63) (2, 154.37)

