
Contents

1 Introdu
tion 1

1.1 Eigenvalue Problem in Quantum Chemistry 1

1.2 General Eigenvalue Problem . 3

1.2.1 Rayleigh Quotient . 5

1.2.2 Proje
tion . 5

1.2.3 Orthogonalization Pro
esses . 6

1.2.4 Gers
hgorin's Theorems . 8

2 Dire
t Methods 9

2.1 Diagonalization of Matri
es . 9

2.1.1 Symmetri
 Matri
es of order 2 9

2.1.2 Symmetri
 Matri
es of higher order 10

3 Overview of Iterative Methods 12

3.1 Main Idea . 12

3.2 Iterative Methods . 14

3.2.1 Lan
zos Method . 14

3.2.2 Davidson Method . 14

3.2.3 Ja
obi-Davidson Method . 15

3.3 Other Notations . 15

3.3.1 Constru
ting Initial Ve
tor g1 15

3.3.2 Restart Strategies . 16

4 Loss of Orthogonality 17

4.1 An Easy Example . 17

4.2 Examples using Davidson Method . 18

ii

5 The Sweep Method 23

5.1 Ja
obi-sweep Method . 23

5.2 Main Idea . 24

5.3 Results . 24

5.4 Con
lusions . 28

A Program Codes 31

A.1 Main Program . 31

A.2 Davidson Pre
onditioner . 36

A.3 Ja
obi-Davidson Pre
onditioner . 36

A.4 Sweep Pre
onditioner . 37

B Numeri
al Results for Small Matri
es 43

C Numeri
al Results for Large Matri
es 46

List of Figures

1.1 Potential energy
urve for the H2 mole
ule. The bond
orresponds to

the minimum in the
urve. 3

4.1 Lo
ation of the largest 10 eigenvalues. 19

4.2 Residual values and Ritz values from Example 1. 19

4.3 Overlap matrix O30 from Example 1. 20

4.4 Graphi
al presentation of Â. 20

4.5 Lo
ation of all eigenvalues of Ã. 21

4.6 Residual values and Ritz values from Example 2. 21

4.7 Residual values and Ritz values from Example 3. 22

5.1 Convergen
e for the sweep method is faster than for Davidson method. 25

5.2 Ā using the sweep and Davidson methods. 26

5.3 A sample for ρ = 30% and α = 0.03. 28

Chapter 1

Introdu
tion

1.1 Eigenvalue Problem in Quantum Chemistry

For very small obje
ts like mole
ules, we
an not understand their behavior by Newton's

laws. The S
hrödinger equation is used to predi
t their properties and behavior. Let

x = (x1, x2, . . . , xp). The S
hrödinger equation has the form of

[

−
~

2

2m
(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
p

) + V (x)

]

Ψ(x) = EΨ(x), (1.1)

where V (x) is an external potential. The wave fun
tion Ψ(x)
an be interpreted as

the probability of �nding mole
ules at a given position at a given time. E denotes the

energy
hara
terizing some stable state of a mole
ule; the stru
ture of the mole
ules

(e.g., bond lengths)
an be determined by means of it.

Nevertheless, it is di�
ult to solve this di�erential equation analyti
ally, so we need

another way to a
hieve it. De�ne the operator

Â = −
~

2

2m
(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
p

) + V (x). (1.2)

Hen
e the S
hrödinger equation
an be redu
ed to

ÂΨ(x) = EΨ(x). (1.3)

Now, it has been transformed into an eigenvalue problem, where E and Ψ(x)
an be

onsidered as the eigenvalue and eigenfun
tion of Â, respe
tively. The next step is to

hange the operator Â to a matrix form.

Let Ψ ∈ F , where F is a Hilbert spa
e. We
hoose an orthonormal basis in F :

{gi(x) : i = 1, 2, . . .}, then Ψ(x) =
∑∞

i=1 cigi, where ci =
∫

f ∗
i Ψdx. In pra
ti
e,

1.1 Eigenvalue Problem in Quantum Chemistry 2

it is often possible to repla
e the
omplete basis set by some �nite set of fun
tions

: f1(x), f2(x), . . . , fn(x). After repla
ing Ψ(x) in Equation 1.3 by
∑n

i=1 cifi(x), we have

Â

(

n
∑

i=1

cifi(x)

)

= E

(

n
∑

i=1

cifi(x)

)

. (1.4)

For i = 1, 2, · · · , n, premultiply fi(x) and integrate both sides in Equation 1.4:

n
∑

j=1

cj

∫

f ∗
i Âfjdx = E

(

n
∑

j=1

cj

∫

f ∗
i fjdx

)

. (1.5)

By the fa
t
∫

fi(x)∗fj(x)dx = δi,j,

n
∑

j=1

cj

∫

f ∗
i Âfjdx = Eci. (1.6)

Let the matrix A = [ai,j], where

ai,j =

∫

f ∗
i Âfjdx, (1.7)

where fi, fj ∈ F . From Equation 1.6, we have

Ac = Ec, (1.8)

where c = [c1, c2, . . . , cn]T . In general, A is a symmetri
 matrix sin
e Â is a symmetri

operator, i.e.
∫

f ∗Âgdx =

∫

g(Âf)∗dx (1.9)

where f, g ∈ F . The form of the problem has been
hanged from a di�erential equation

to a linear system

(A − EI) c = 0. (1.10)

You
an �nd the stru
ture of mole
ules using the eigenvalues of A. In Figure 1.1, there

is no attra
tion between two hydrogen atoms when the distan
e between them is large.

On
e they get
loser, their potential energy is lowered. When the energy is in minimum,

it
orresponds to a bond
onne
ting these two atoms. The value of energy they possess

in the minimum
an be interpreted as the minimal eigenvalue of A. This is the physi
al

meaning for the minimum eigenvalue. In general,
al
ulating the eigenvalues of A,

allows for �nding the bond lengths of the mole
ule by other pro
edures. Then you will

understand the stru
ture of mole
ules.

1.2 General Eigenvalue Problem 3

Figure 1.1 Potential energy
urve for the H2 mole
ule. The bond
orresponds to the

minimum in the
urve.

1.2 General Eigenvalue Problem

The general eigenvalue problem is

Au = λu, (1.11)

where λ is
alled an eigenvalue of the matrix A of order n and u is the eigenve
tor

orresponding to λ. You
an
onsider the eigenvalue problem as a linear system sin
e

it
an be modi�ed as

(A − λI)u = 0. (1.12)

The linear equation has a nonzero solution u when (A − λI) is singular, i.e. the

determinant of (A−λI) is equal to zero, i.e., det(A−λI) = 0. We derive a
hara
teristi

polynomial

λn + cn−1λ
n−1 + · · · + c1λ + c0 = 0. (1.13)

from det(A − λI) = 0. There are n roots λ1, λ2, · · · , λn of the
hara
teristi
 equation,

and they are the eigenvalues exa
tly. Plug λ into Equation 1.12 to ea
h eigenvalue, you

an �nd all the eigenve
tors u1,u2, · · · ,un respe
t to them.

1.2 General Eigenvalue Problem 4

Let us assume that,

λ1 ≤ λ2 ≤ · · · ≤ λn.

We name the set of these eigenvalues the spe
trum of A and denote it by σ(A).

We
an generalize the eigenvalue problems into an integral form

∫ b

a

G(x, y)f(x)dx = λf(y), (1.14)

where G(x, y) is the kernel of the integral operator. Then we do not just have the

problem in a matrix form, but rather a
ontinuous
ase.

There are many s
ienti�
 �elds that extensively use eigenvalue problems like quan-

tum
hemistry. After abstra
ting these problems, they may look similar. The matri
es

involved in the eigenvalue problems
an be divided into two types, Hermitian matri
es

and non-Hermitian matri
es. In this thesis, we
onsider only Hermitian matri
es. Fur-

ther, Hermitian matri
es
an be redu
ed to symmetri
 ones sin
e we only use real-valued

arithmeti
s.

The goal in eigenvalue problems is to �nd the eigenpairs of a given matrix, but re-

quirements for the eigenvalues in di�erent problems are not the same. In some problems

you have to �nd all the eigenvalues of a small matrix, and others to look for the extreme

eigenvalues of a large one. The two essential elements in
al
ulating the eigenpairs of

a large matrix are the
omputer memory requirements and a

ura
y. The e�
ien
y is

also important sin
e we use large matri
es (of order 106 or even larger). Fortunately,

usually the matri
es are diagonally dominant and sparse. On average, maybe only 10%

or fewer of the elements of a large matrix are nonzeros.

There exist ways of redu
ing the memory requirements. The main
ost of
al
ula-

tions using iterative methods is the
onstant matrix-ve
tor produ
t operations. The

a

ura
y is hard to
he
k be
ause we
an not
ompute the exa
t eigenpairs of a large

matrix dire
tly, but there is still some bounds for eigenvalues. On
e the problems

with a

ura
y are eliminated, we should
on
entrate on improving the e�
ien
y of our

algorithms.

1.2 General Eigenvalue Problem 5

A fa
t for symmetri
 matri
es is that all the eigenvalue and eigenve
tors of them

are real. Parti
ularly,

xTAx ∈ R for all x ∈ Rn.

This is a very important property sin
e it allows us for employing the Rayleigh quotient

te
hniques to study our problems.

1.2.1 Rayleigh Quotient

Let x be a nonzero ve
tor. The Rayleigh quotient is de�ned as

φ(x) =
xTAx

xTx
(1.15)

The range of φ(x) is
alled the �eld of values of A, and it is the interval [λ1, λn].

That means, the minimum value of φ(x) is obtained if and only if x is the eigenve
tor

orresponding to λ1, and the maximum value of φ(x) is obtained if and only if x is the

eigenve
tor
orresponding to λn.

Sin
e λ1 and λn are �nite numbers, and so φ(x) is bounded. The Rayleigh quotient

is important both for theoreti
al and pra
ti
al purposes. Sometimes, it is
onvenient

to restri
t the above de�nitions to a unit sphere in Rn:

φ(x) = xTAx for ‖x‖ = 1. (1.16)

These two di�erent de�nitions lead to the same properties, and therefore we
hoose the

one whi
h is easier to apply in a given situation.

1.2.2 Proje
tion

The orthogonal proje
tion operator P on a ve
tor x ∈ Rn is de�ned as

P(u) = x(xTx)−1xTu. (1.17)

In the eigenvalue problem
onsiderations, we often need to
ompute the proje
tion of

Ax on x for some x ∈ Rn, i.e.

P(Ax) = x(xTx)−1xTAx. (1.18)

1.2 General Eigenvalue Problem 6

Sin
e (xTx)−1 is a
onstant, it implies

P(Ax) =
xTAx

xTx
x = φ(x)x. (1.19)

From above, the proje
tion of Ax
an be represented as the Rayleigh quotient φ(x)

times x. There also exists another proje
tion form de�ned through matri
es. Suppose

g1,g2, . . . ,gm are linearly independent ve
tors that span a m-dimensional spa
e L ⊆

Rn. Then, a proje
tion of u ∈ Rn onto L
an be de�ned as

PG(u) = G(GTG)−1GTu. (1.20)

1.2.3 Orthogonalization Pro
esses

Suppose there are m independent normalized ve
tors g1,g2, · · · ,gm that need to be

orthogonalized. The standard algorithm of Gram-S
hmidt pro
ess is given as below [2,

pages 10�12℄:

Algorithm 1.1 : Gram-S
hmidt

1. First, de�ne x1 as g1.

2. For j = 2, · · · ,m, do

3. Cal
ulate ci,j = 〈gj,xi〉, for i = 1, 2, . . . , j − 1.

4. x̂ = gj −
∑j−1

i=1 ci,jxi.

5. normalize x̂ into xj.

6. end do

There is another algorithm
alled Modi�ed Gram-S
hmidt(MGS) that has better

numeri
al properties:

Algorithm 1.2 : Modi�ed Gram-S
hmidt

1. First, de�ne x1 as g1.

1.2 General Eigenvalue Problem 7

2. For j = 2, · · · ,m, do

3. x̂ = gj

4. For i = 1, . . . , j − 1, do

5. ci,j = 〈x̂,xi〉

6. x̂ = x̂ − ci,jxi.

7. end do

8. normalize x̂ into xj.

9. end do

You
an have better way than MGS if you
hange the inside for loop(from Step 4

to Step 7) in MGS. First of all, let Γ = {1, 2, . . . , j − 1}. Every time, �nd xp for p ∈ Γ

su
h that 〈x̂,xp〉 = maxi∈Γ〈x̂,xi〉, and then do x̂ = x̂ − 〈x̂,xp〉xp and Γ = Γ \ {p}.

After j − 1 times, all the elements in Γ have be removed, and it means that we have

proje
ted x̂ onto all the ve
tors x1,x2, . . . ,xj−1. We now show the pra
ti
al algorithm

as follows:

Algorithm 1.3 : A Change in Modi�ed Gram-S
hmidt

1. First, de�ne x1 as g1.

2. For j = 2, · · · ,m, do

3. x̂ = gj

4. Γ = {1, 2, . . . , j − 1}

5. For i = 1, . . . , j − 1, do

6. Find xp for p ∈ Γ su
h that 〈x̂,xp〉 = maxi∈Γ〈x̂,xi〉.

7. Do x̂ = x̂ − 〈x̂,xp〉xp and Γ = Γ \ {p}

1.2 General Eigenvalue Problem 8

8. end do

9. normalize x̂ into xj.

10. end do

Sin
e all the ve
tors are normalized, 〈x̂,xi〉 for i = 1, 2, . . . , j−1 are values between

−1 and 1. If you
hoose the ve
tor xi for i = 1, 2, j − 1
losest to x̂, then proje
ting x̂

onto this ve
tor will lead to smallest loss of pre
ision in
omputer
al
ulations.

1.2.4 Gers
hgorin's Theorems

Before
omputing the eigenvalues of matri
es, it is helpful to know the range of them.

There are theorems on bounds for the eigenvalues as below, and the statements are

from [3, page 71�72℄.

Theorem 1 Every eigenvalue of the matrix A lies in at least one of the
ir
ular dis
s

with
entres ai,i and radii
∑

j 6=i |ai,j|.

Theorem 2 If s of the
ir
ular dis
s of Theorem 1 form a
onne
ted domain whi
h

is isolated from the other dis
s, then there are pre
isely s eigenvalues of A within this

onne
ted domain.

From Theorem 1, if all the
ir
ular dis
s are dis
onne
ted, you will be sure that

the order of eigenvalues will be the same as the order of the diagonal elements of A.

Then you know from whi
h diagonal element ea
h of the eigenvalues is originating. The

eigenvalues are
lustered as the intera
tion of the dis
s for larger radii. Theorem 2 says

that in su
h situation, the number of eigenvalues depend on the number of diagonal

elements in the
onne
ted dis
s.

These two theorems
an let you know if the order of eigenvalues
hange when you

enlarge the radii of dis
s. It will be more
ompli
ated if there are
onne
ted dis
s. That

will be a harder problem to handle in su
h
ases.

Chapter 2

Dire
t Methods

I have written programs in FORTRAN 90, using various subroutines provided in LA-

PACK pa
kages. Using the dire
t methods to solve problems has the advantage of

produ
ing exa
t answers. The e�
ien
y of these subroutines de
reases with in
reasing

requirements for memory, so they are only useful for small matri
es. We may apply

dire
t methods for diagonalizing matri
es of small order.

2.1 Diagonalization of Matri
es

The pra
ti
al way to diagonalize a matrix is quite di�erent from theoreti
al one. We

dis
uss this for a matrix of order 2 �rst.

2.1.1 Symmetri
 Matri
es of order 2

In the
ase of matri
es of order 2, it is simple to obtain their
omplete eigenpairs. De�ne

a 2 × 2 general symmetri
 matrix A as

A =





a c

c b



 . (2.1)

First
ompute the roots θ1 and θ2 of the
hara
teristi
 equation

θ2 − (a + b)θ + (ab − c2) = 0,

and later
al
ulate the eigenve
tors by the solutions of (A − θi)x = 0 for i = 1, 2.

2.1 Diagonalization of Matri
es 10

2.1.2 Symmetri
 Matri
es of higher order

Now, we
onsider A of order n > 2. In fa
t, it is hard to solve their
hara
teristi

equations like the way we did for matri
es of order 2. LAPACK is written in FORTRAN

77 and provides subroutines for solving the most
ommon problems in numeri
al linear

algebra. It provides a subroutine DSYEV, that
onsist of DSYTRD and DSTEQR, to

al
ulate the eigenpairs.

The Subroutine DSYTRD

The subroutine DSYTRD is used to redu
e A to a tridiagonal form T by orthogonal

similarity transformations, using Householder's method [4, pages 74�77℄. An orthogonal

similarity transformation of A is given by the elementary symmetri
 matrix

P(r) = I − 2w(r){w(r)}T
, (2.2)

where w(r) is a unit ve
tor and de�ned below.

After doing (n−2) orthogonal similarity transformations Ar+1 = P(r)ArP
(r) for r =

1, 2, . . . , (n−2), where A1 = A, A will be redu
ed to a tridiagonal form. Simplisti
ally,

let xr be the rth
olumn of Ar that
an be represented as

xT
r = (x̂T

, xr+1,y
T) (2.3)

where x̂ is r × 1, y is {n − (r + 1)} × 1. P(r) makes sure that the (r + 2)th to nth

omponent of xr+1 will be equal to zero. Corresponding to the form of xr, there is a

way to
hoose w(r), given by

{w(r)}T = (0, αv
(r)
r+1, αyT) (2.4)

where v
r
r+1 = xr+1 ± s and α = 2−1/2{s2 ± xr+1s}

−1/2 with s = {(xr+1)
2 + yTy}1/2.

The Subroutine DSTEQR

The subroutine DSTEQR is used to �nd the eigenpairs of T by employing the impli
it

QL or QR method [4, pages 85�89℄. The LR algorithm is based on the LU de
omposi-

2.1 Diagonalization of Matri
es 11

tion. Let A1 = A, and suppose the LU de
omposition of A1 is

A1 = L1R1 (2.5)

where L1 is unit lower triangular and R1 is an upper triangular matrix. Let

A2 = R1L1 (2.6)

By this pro
ess, it will lead to

As = LsRs and As+1 = RsLs. (2.7)

As will tend to an upper triangular matrix whose diagonal elements
onverge to the

eigenvalues of A.

The QR algorithm from QR de
omposition is de�ned as

As = QsRs and As+1 = RsQs, (2.8)

where Qs is a unitary matrix and Rs is an upper triangular matrix. Similar to the LR

algorithm, you
an �nd the eigenvalues of the sequen
e A by the limit of {As}. Also,

olumns of the limit
onverged by the sequen
e {Q1 · · ·Qs} represents the eigenve
tors

of A.

You
an see the ne
essity of setting matri
es in the
omputer representation. It

is impossible to do so for large matri
es be
ause of the limit of the available memory.

You may �nd eigenpairs by these dire
t methods qui
kly but they are useless for the

matri
es of larger order. Be
ause the
omputer memory is usually limited, we introdu
e

iterative methods in next
hapter that allow for determination of extremal eigenpairs

without high memory requirements.

Chapter 3

Overview of Iterative Methods

In the previous
hapter we have dis
ussed are some ways to solve the eigenvalue problem

for matri
es of small order. Now let us turn to the matri
es of large order as 106. It is a

trouble to use this kind of matri
es in the
omputer representation sin
e there is a limit

of the available
omputer memory. Iterative methods need mu
h less memory than

dire
t methods for matri
es of large order. Lan
zos, Davidson and Ja
obi-Davidson

methods are examples of iterative methods, whi
h are designed to �nd extreme eigen-

values. In general Lan
zos, Davidson and Ja
obi-Davidson methods
an �nd a few

extreme eigenvalues at the same time, but here we just look for a single minimum

eigenvalue. In Se
tion 3.1, we present the main idea of these methods. In Se
tion 3.2,

they will be introdu
ed in more details separately.

3.1 Main Idea

We sear
h for the minimum eigenvalue of some matrix A using a sequen
e of subspa
es

Km. At the beginning, K1
ontains only a normalized ve
tor g1 as the initial ve
tor. At

iteration m, a normalized ve
tor gm+1 is produ
ed, whi
h is orthogonal to g1,g2, . . . ,gm,

and de�nes Km+1 = span(g1,g2, . . . ,gm+1).

At iteration m, de�ne the proje
tor Pm onto Km as

Pm =
m

∑

i=1

gi g
T
i . (3.1)

There exists an eigenve
tor ym
orresponding to the minimum eigenvalue λm of PT
mAPm

3.1 Main Idea 13

with restri
tion to Km. Let xm = Pmym. If

Axm
.
= λmxm, (3.2)

then we will say (λm,xm) is an approximate minimum eigenpair of A. By the way,

λm = min
w∈Km

wTAw

wTw
(3.3)

and so (λm,xm) is the best approximate eigenpair in Km.

If 3.2 fails, we will de�ne

gm+1 = Axm − λmxm. (3.4)

Here, Lan
zos method does not
hange the dire
tion of gm+1, but Davidson and Ja
obi-

Davidson methods use di�erent ways to modify it. After normalizing gm+1 and aug-

menting Km with gm+1, we pro
eed to next iteration.

It is di�
ult to exe
ute this idea dire
tly, and so the pra
ti
al Algorithm 3.1 is

the following:

1. Generate a normalized ve
tor g1 as the initial ve
tor.

2. Set m = 1.

3. Set Gm = [g1g2 . . .gm].

4. Cal
ulate a small matrix Am = GT
mAGm.

5. Cal
ulate the minimum eigenpair (λm, zm) of Am.

6. Set xm = Gmzm.

7. Cal
ulate the residual ve
tor rm = (A − λmI)xm.

• If ‖rm‖ < 10−8, exit.

• If ‖rm‖ ≥ 10−8,
ontinue.

3.2 Iterative Methods 14

8. Let gm+1 = rm and use Lan
zos, Davidson or Ja
obi-Davidson strategies to
hange

the dire
tion of gm+1.

9. Orthogonalize gm+1 with respe
t to g1,g2, . . . ,gm and then normalize it.

10. Set m = m + 1 and go to Step 3.

From Step 3 to Step 7, this algorithm is known as as the Rayleigh-Ritz pro
edure.

It
an be proved that it will
onverge to the same λm and xm like the one in the main

idea [1, pages 216�217℄, hen
e the results are still the same.

3.2 Iterative Methods

Lan
zos, Davidson and Ja
obi-Davidson methods use di�erent strategies in Step 8, and

we explain them in this se
tion. By the way, given A = [ai,j] and the diagonal matrix

D = [di,j] where

di,j =







ai,j if i = j

0 otherwise

.

3.2.1 Lan
zos Method

8. Lan
zos strategy : Do nothing to gm+1.

Davidson and Ja
obi-Davidson methods are based on Lan
zos method, whi
h is a
las-

si
al method and was published in 1950. The small matrix Am derived from Lan
zos

method has very
onvenient property - it is a tridiagonal matrix. This properly is not

shared by Davidson and Ja
obi-Davidson methods. So, it is easier to
al
ulate Am

by using Lan
zos method. Nevertheless, the
onvergen
e of Lan
zos method is mu
h

slower than the other methods in general, and so we don't tell its detail.

3.2.2 Davidson Method

8. Davidson strategy :

gm+1 = (D − λmI)−1rm. (3.5)

3.3 Other Notations 15

Davidson method
hanges the dire
tion of the residual ve
tor by dividing ea
h
ompo-

nent of gm+1 by ai,i − λm. This operation is sometimes
alled the diagonal pre
ondi-

tioning. The proof of
onvergen
e is given in [5℄.

3.2.3 Ja
obi-Davidson Method

8. Ja
obi-Davidson strategy :

gm+1 = α(D − λmI)−1xm − (D − λmI)−1rm, (3.6)

where

α =
xT

m(D − λmI)−1rm

xT
m(D − λmI)−1xm

. (3.7)

The pre
onditioning in Ja
obi-Davidson method is meant to �nd an approximate

omplement of the real eigenve
tor orthogonal to the Ritz ve
tor [6℄, hen
e its has more

dire
t geometri
al interpretation than Davidson's.

3.3 Other Notations

3.3.1 Constru
ting Initial Ve
tor g1

In general, a good initial
hoi
e of ve
tor for g1
an lead to faster
onvergen
e. Although

there is no absolute way to generate it, we
an provide a general way in Quantum

Chemistry.

First of all, given a positive integer q, let the lo
ational set

L = {σ : aσ,σ is one of the q smallest elements in the diagonal part of A.}. (3.8)

Let K is spanned by {eσ : σ ∈ L}. De�ne the proje
tor P onto K as

P =
∑

σ∈L

ei e
T
i . (3.9)

There exists an eigenve
tor y
orresponding to the minimum eigenvalue λ of PTAP

with restri
tion to K. Then g1 = Py is a
hoi
e of the initial ve
tor.

3.3 Other Notations 16

3.3.2 Restart Strategies

The CPU time of ea
h step in
reases sin
e the subspa
e is be
oming larger and larger.

The
ost of ea
h step
omes mainly from the requirement of maintaining the orthogo-

nality. If we do not wish to spend to mu
h time for �nding the extreme eigenvalue -

restart strategies may solve this problem. For instan
e, after 20 steps, you
an remove

all the ve
tors g1,g2, . . . ,g20 and take the Ritz ve
tor x20 as the initial ve
tor g1.

Unfortunately, it may lead to redu
ing the speed of
onvergen
e or even a stagna-

tion. A better way to solve this issue is to take more than one Ritz ve
tors as the

starting spa
e [6℄. In the example above, you have the eigenve
tor y20
orresponding

to the minimum eigenvalue λ20 of PT
20AP20. Also, there are eigenve
tors y

′

20,y
′′

20 and

y
′′′

20
orresponding to the 2nd, 3rd and 4th minimum eigenvalues λ
′

20, λ
′′

20 and λ
′′′

20, re-

spe
tively. Then you have four Ritz ve
tors x20, x
′

20, x
′′

20 and x
′′′

20 obtained analogously

to x20 = P20y20. After restarting the algorithm with these four Ritz ve
tors as g1, g2,

g3 and g4, you have 4 dimensional subspa
e at the beginning.

Chapter 4

Loss of Orthogonality

In Step 9 in Algorithm 3.1 we orthogonalize the ve
tors g1,g2, . . . ,gm to make sure

they are orthogonal. Unfortunately, if gm+1 lies almost entirely in Km, then the ve
tors

will be just approximately orthogonal be
ause of �nite pre
ision of their numeri
al

representation. We explain this by an easy example again below.

4.1 An Easy Example

Let

g1 =











0.8

0.6

0.0











and g2 =











−0.6

0.8

0.0











.

Clearly, g1 is orthogonal to g2. Suppose that

g3 =











1.0

1.0

α











is the ve
tor obtained from Step 8 in Algorithm 3.1, where α is a small number. In

Step 9, g3 has to be orthogonalized with respe
t to g1 and g2. All operations are

performed in double pre
ision �nite arithmeti
s and the �nal ve
tor g3 is only approx-

imately orthogonal to the previous ve
tors. We give the �nal ve
tor g3 for some α

below.

4.2 Examples using Davidson Method 18

α = 10−4

⇓










4 · 10−12

2 · 10−12

1.0











α = 10−8

⇓










4 · 10−8

2 · 10−8

1.0











α = 10−12

⇓










4 · 10−4

2 · 10−4

1.0











α = 10−16

⇓










0.3619

0.2212

0.9056











(4.1)

The loss of orthogonality is more obvious while α is smaller. It will inevitably lead

to a wrong approximation of eigenvalues.

4.2 Examples using Davidson Method

In this se
tion, we show that for some matri
es Davidson method fails to
onverge.

D̄, D̂, and D̃ mentioned below are diagonal matri
es, and we always use the same

starting ve
tor t1 = (0, 0, ..., 0, 0.8, 0.6)T . In Example 1 and Example 2, we show

that the problems
an o

ur when the extreme eigenvalue lies within the dis
rete and

lustered part of spe
trum of A respe
tively. In Example 3, we show that in some
ases

the
onverged the extreme eigenvalue is
ompletely wrong even if the residual value is

small enough.

Example 1.

Let Ā be of order 200 de�ned by

āi,j =



















10
201−i

if i = j

0.1 if |i − j| = 1

0 if |i − j| > 1

. (4.2)

The diagonal part {āi,i}
200
i=1 of Ā in
reases monotoni
ally. By Gers
hgorin's Theorem

1 all the radii are only 0.1, hen
e the distribution of spe
trum is similar to the one of

diagonal part of Ā. So the maximum eigenvalue is in the dis
rete part of spe
trum

(Figure 4.1). The overlap matrix Om at step m is de�ned by 〈gi,gj〉, where 〈 , 〉 is the

usual inner produ
t. Normally, the overlap matrix in ea
h step should be very
lose to

the identity matrix normally. In Figure 4.2, we
an see that the residual values and

4.2 Examples using Davidson Method 19

0 2 4 6 8 10

Real line

Figure 4.1 Lo
ation of the largest 10 eigenvalues.

Ritz values blow up while �nding the maximum eigenvalue of Ā. Sin
e overlap matri
es

0 50 100 150 200
0

10

20

30

40

50

60

70

Number of iterations

Residual values
Ritz values

Figure 4.2 Residual values and Ritz values from Example 1.

are symmetri
, we just show the upper triangular part of O30 ex
luding the diagonal

elements in Figure 4.3. As you
an see, it is very di�erent from the identity matrix.

Example 2.

Sin
e Ā is symmetri
, we
an �nd an eigende
omposition: Ā = VD̄VT . Let Â =

VD̂VT where D̂ is given by d̂i,i = 10
i
− 1 for i = 1 to 200. The portrait of Â is

plotted in Figure 4.4; it is diagonally dominant. Constru
ting Â in this way implies

4.2 Examples using Davidson Method 20

0

5

10

15

0

10

20

30

10
−20

10
−15

10
−10

10
−5

10
0

IJ

th
e

in
ne

r
pr

od
cu

t o
f g

I a
nd

 g
J

Figure 4.3 Overlap matrix O30 from Example 1.

Figure 4.4 Graphi
al presentation of Â.

that the minimum eigenvalue of Â is -0.95. By applying Gers
hgorin's theorems again,

we
onsider a matrix whose minimum eigenvalue −0.95
ontained in the
lustered part

of spe
trum (Figure 4.5). A similar situation like Example 1, this
ase also diverges

when looking for the minimum eigenvalue (Figure 4.6).

4.2 Examples using Davidson Method 21

−1 −0.5 0 0.5 1 1.5

Real line

Figure 4.5 Lo
ation of all eigenvalues of Ã.

0 50 100 150 200
−6

−4

−2

0

2

4

6

8

Number of iterations

Residual values
Ritz values

Figure 4.6 Residual values and Ritz values from Example 2.

Example 3.

An interesting thing happens when we try to �nd the minimum eigenvalue of Ã =

VD̃VT . V is the one in Example 2 and D̃ is given by d̃i,i = 10
i
for i = 1 to 200. The

portrait of Ã is similar to the one of Â and so it is dominant diagonally, too. From

4.2 Examples using Davidson Method 22

0 5 10 15 20 25 30 35 40 45
10

−15

10
−10

10
−5

10
0

Number of iterations

Residual values
Ritz values

Figure 4.7 Residual values and Ritz values from Example 3.

Figure 4.7, it looks as if Davidson method has
onverged. Unfortunately, it is a "fake

onvergen
e" be
ause the minimum eigenvalue should be 0.05. We use the notation

from Chapter 3 to explain this situation. At step m, we have an approximate eigenpair

(λm,ym). λm
an be represented as

λm = yT
mλmym = yT

mPT
mÃPmym = (Pmym)T ÃPmym.

So, λm > 0 sin
e Ã is positive de�nite. (The eigenvalues of Ã are all positive.) That's

why Â and Ã are similar, but the Ritz values here don't de
rease like the ones in

Figure 4.7.

If the orthogonalization in Step 9 of Algorithm 3.1 is done twi
e, Davidson method

will
onverge to the proper extreme eigenvalues for all these three matri
es dedu
t here.

Chapter 5

The Sweep Method

Davidson method usually
onverges within several iterations if the matrix is su�
iently

diagonally dominant. Nevertheless, sometimes the
onvergen
e is slower. When the

Ritz value is very
lose to some eigenvalue, then it may require one hundred steps

to
onverge. In this
hapter, we will dis
uss a modi�ed method named as the sweep

method to redu
e the number of steps.

5.1 Ja
obi-sweep Method

Before introdu
ing the sweep method, we dis
uss its main idea �rst - Ja
obi-sweep

method. Ja
obi-sweep method is based on Ja
obi rotations [7, pages 426�438℄. It is

used to sear
h for the extreme eigenvalues.

In the spa
e Rn, there exists an orthonormal basis B = {e1, e2, . . . , en}. Dividing

B into subsets of d elements yields a partition of B : B1,B2, . . . ,B⌈n
d
⌉. (the last subset

B⌈n
d
⌉ may
ontain less ve
tors than d.) When Ja
obi-sweep method is exe
uted, we

need a normalized starting ve
tor s with its �rst d
omponents equal to zero. We
an

brief
hara
terize this method in the following way.

For i = 1 to ⌈n
d
⌉, do

1. De�ne the proje
tor P onto the subspa
e spanned by s and Bi as

P = s sT +
∑

ej∈Bi

ej eT
j . (5.1)

2. Cal
ulate the eigenve
tor y
orresponding to the minimum eigenvalue λ of PTAP

with restri
tion to the spa
e spanned by the ve
tors in Bi, and rede�ne s = Py.

5.2 Main Idea 24

3. If

As
.
= λs, (5.2)

then (λ, s) will be the approximate minimum eigenpair of A. Otherwise, make

next d
omponents of s equal to zero, and then normalize it.

end do

We
all this pro
edure "one sweep" or "sweeping on
e". After this pro
ess is exe-

uted one time, there may be no
onvergen
e. Then, we de�ne the �nal ve
tor s as the

starting ve
tor of the next sweep. It may
onverge to the sought eigenvalue by a large

number of sweeps, and therefore it may prove to be useless for pra
ti
al reasons. In the

next se
tion, we dis
uss about how to use Ja
obi-sweep method in pra
ti
e.

5.2 Main Idea

The main stru
ture of the sweep method is similar to the methods mentioned in Chap-

ter 3. The main di�eren
e is Step 8 in Algorithm 3.1. The strategy in the sweep method

is as follows:

8. The sweep strategy : Sweep the Ritz ve
tor a �xed number of times and de�ne it

as gm+1.

In Davidson and Ja
obi-Davidson methods, the residual ve
tor is modi�ed in Step 9,

however here we
hange the dire
tion of the Ritz ve
tor by relaxing it by the sweep

method. That is a quite di�erent approa
h to
onstru
t the next Ritz ve
tor. We show

some results obtained using this approa
h in the next se
tion.

5.3 Results

We found that the sweep method has faster
onvergen
e than Davidson and Ja
obi-

Davidson methods. This phenomenon is demonstrated using the matrix Ā from Ex-

ample 1 in Chapter 4, but here we sear
h for the minimum eigenvalue.

5.3 Results 25

0 10 20 30 40 50 60 70
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of iterations

R
es

id
ua

l v
al

ue
s

Using the sweep algorithm after 30 Davidson steps

Figure 5.1 Convergen
e for the sweep method is faster than for Davidson method.

In Figure 5.1, the dashed line represents the
onvergen
e history obtained with

ombined Davidson and the sweep methods. It uses Davidson method in the �rst 30

steps, and the sweep method later. The solid line represents the
onvergen
e history

obtained when only Davidson method is used. We see the dashed line goes down faster

than the solid one, whi
h means that the sweep method has faster
onvergen
e in this

ase.

In Figure 5.2, we use the sweep and Davidson methods for the matrix Ā. You
an see

the dashed line is below the solid one, whi
h means that the sweep method needs fewer

steps to
onverge. In the present implementation, the
ost of the pre
onditioner for

the sweep method is more expensive than for Davidson and Ja
obi-Davidson methods.

Therefore these methods
ompete for time. It is possible that the sweep method is

faster than the other methods sin
e it needs mu
h fewer iterations, even though it
osts

more time for pre
onditioning.

Now we introdu
e one kind of matrix that is
alled the band matrix. For a band

matrix B, it has nonzero elements bi,j for 0 ≤ |i − j| ≤ ω, where ω is
alled the

5.3 Results 26

0 10 20 30 40 50 60 70
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of iterations

R
es

id
ua

l v
al

ue
s

Davidson method
sweep method

Figure 5.2 Ā using the sweep and Davidson methods.

bandwidth of B. Our B is also diagonally dominant. Suppose

R = {(i, j) : bi,j is in the band region and i 6= j.}. (5.3)

To de�ne bh,k for (h, k) ∈ R, we use an array with n
omponents
alled o�diag. Ea
h

omponent of o�diag is generated as a uniform random number between -0.5 and 0.5.

If |o�diag(h) × o�diag(k)| is larger than a spe
i�ed value δ, then bh,k = 0. Otherwise,

bh,k = ζ × o�diag(h) × o�diag(k), (5.4)

where ζ is a positive real number. When δ is larger, the number of nonzero elements

in the band region ex
ept the diagonal is larger. By
ontrolling δ, we
an
hange the

per
entage ρ of the nonzero elements in the band region ex
ept the diagonal. Suppose

Z = {(i, j) ∈ R : |o�diag(i) × o�diag(j)| ≤ δ}, (5.5)

then let α =
P

(i,j)∈Z
|bi,j |

|Z|
represent the average magnitude of the nonzero elements in

the band region ex
ept the diagonal. Sin
e

α =

∑

(i,j)∈Z |bi,j|

|Z|
= ζ

∑

(i,j)∈Z |o�diag(i) × o�diag(j)|

|Z|
, (5.6)

5.3 Results 27

α
an be set to some value simply by
hanging ζ. Our band matrix B is de�ned as

below:

bi,j =































β if i = j

γ for the probability ρ

0 for the probability 100% − ρ
if 1 ≤ |i − j| ≤ ω

0 if |i − j| > ω

,

where β is a uniform random number between -10 and 10, and γ is ζ × o�diag(i) ×

o�diag(j) where ζ is some positive value designated by α. We dis
uss the band matrix

B of small order 104 with ω = 500 and large order 106 with ω = 1000 respe
tively.

For small order, there are 1000 generated matri
es of the form B for ea
h ρ =

10%, 20%, . . . , 50% and ea
h α = 0.01, 0.02, . . . , 0.05. We use the sweep, Davidson,

and Ja
obi-Davidson methods to �nd the minimum eigenvalue of these matri
es and

onsider whi
h method is faster. For the sweep method, we sweep Ritz ve
tors twi
e for

the sweep method. Unfortunately, the sweep method has a serious drawba
k - the loss of

orthogonality. It needs two reorthogonalizations usually. The reason for this is be
ause

the Ritz ve
tor may
hange only a little after pre
onditioning, so the pre
onditioned

ve
tor is very
losed to the original subspa
e Km. Be
ause of this trouble, we use one

reorthogonalization for Davidson and Ja
obi-Davidson methods but two for the sweep

method. We also restart the pro
edure every 30 iterations to redu
e the
omputational

time (Se
tion 3.3.2). In Appendix B, we give results obtained with these methods. From

Table B.1 to Table B.5, the average exe
ution time for the sweep method is smaller than

for the other two methods. From Table B.6 to Table B.8, the winning times denotes

the number of being the fastest from 1000 matri
es. As α and ρ in
rease, the winning

times of these two methods de
rease on average, i.e., the sweep method is the fastest

in most
ases. The average steps of the sweep method is less than half the ones of the

other two methods. We take a sample for ρ = 30% and α = 0.03, and the result is the

following. In this
ase, they have similar
urves, but the one for the sweep method is

sharper. Be
ause of this phenomenon, the time for the sweep method is shorter, even

it needs more time for pre
onditioning.

5.4 Con
lusions 28

0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

R
es

id
ua

l v
al

ue
s

sweep method
Davidson method
Jacobi−Davidson method

Figure 5.3 A sample for ρ = 30% and α = 0.03.

For large order, there are 100 generated matri
es for ea
h ρ = 10%, 12.5%, . . . , 20%

and ea
h α = 0.01, 0.0125, . . . , 0.02. The settings are almost the same with small

matri
es ex
ept restarting every 10 iterations and sweeping Ritz ve
tors 3 times. Similar

results are presented in Appendix C, and the sweep method is faster again.

5.4 Con
lusions

From the presented results, it is
lear that the sweep method is faster than Davidson

and Ja
obi-Davidson methods for most of the studied small and large matri
es. The

superiority of the sweep method is more obvious as ρ and α in
rease, i.e., as the nu-

meri
al
ost in
reases. That means the sweep method may be even better for higher ρ

and α.

From Table 5.1, there are four
ommon
ases with the same ρ and α for small and

large matri
es. We just show the ratio of the average time for the sweep method to the

average time for Davidson method sin
e the results of Davidson and Ja
obi-Davidson

are similar. From small to large matri
es, the ratio in
reases and is larger than 1, so it

5.4 Con
lusions 29

is possible that the ratio for matri
es of higher order is even larger. We
an guess that

the sweep method is faster than Davidson and Ja
obi-Davidson methods for matri
es

of higher order.

Table 5.1 The ratio between the average time for Davidson method and the average

time for the sweep method for various values of ρ and α.

The probability The average Small matri
es Large matri
es

(ρ) (α)

10% 0.01 1.094086 1.734938

10% 0.02 1.34382 1.76378

20% 0.01 1.111489 1.66922

20% 0.02 1.422389 1.990131

The sweep method indi
ates two things. First, the iterative methods mentioned in

the thesis always
hange the dire
tion of residual ve
tors, however the sweep method

hanges dire
tly the Ritz ve
tor. Although it needs to deal with the loss of orthogonality,

the sweep method still
osts less time to
onverge.

Se
ond, it
osts just little time to pre
ondition a ve
tor for general iterative meth-

ods. The sweep method tells us that we may need less steps to
onverge the extreme

eigenvalues for pre
onditioning some spe
i�ed ve
tor more time. So it is
ompetitive

for the sweep method sin
e it redu
es the number of iterations in general. The sweep

method gives us a quite di�erent way to sear
h the eigenvalue.

Bibliography

[1℄ B. Parlett. The Symmetri
 Eigenvalue Problem. Prenti
e-Hall, 1st edition, 1980.

[2℄ Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, 1st edition, 1996.

[3℄ J.H. Wilkinson. The Algebrai
 Eigenvalue Problem. Clarendon, 1st edition, 1965.

[4℄ A.R. Gourlay and G.A. Watson. Computational Methods for Matrix Eigenproblems.

John Wiley and Sons, 1st edition, 1973.

[5℄ M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson Method. SIAM J. SCI

COMPUT, 15:63�65, 1994.

[6℄ G.L.G. Sleijpen and H.A. Van Der Vorst. The Ja
obi-Davidson Method for Eigen-

value Problems and Its Relation with A

elerated Inexa
t Newton S
hemes. Com-

put. Appl. Math, 3:377�389, 1996.

[7℄ G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins, 3rd edition,

1996.

Appendix A

Program Codes

A.1 Main Program

! ORDER FOR ORDER OF A

! P FOR THE COLUMNS OF SUBA

! LIMIT FOR ROWS OF G

! TYPE=1:MAXIMUM AND TYPE=0:MINIMUM

! E_VECTPR IS THE INITIAL VECTOR FOR INPUT AND EIGENVECTOR FOR OUTPUT

! E_VALUE IS THE MIN EIGENVALUE IF TYPE=0 AND MAX ONE IF TYPE=1

! ===

subroutine general(way,diag,offdiag,order,
an,limit,type,repeat,e_ve
tor,

e_value,show,step,sweeps,population,prob1,prob2,offarray,nonzero,total,

position,blo
kA,blo
k_offarray,blo
k_nonzero,blo
k_total,blo
k_position)

impli
it none

hara
ter(1):: way

integer:: order,limit,type,
an,sweeps,step,
he
k,repeat,show,population

integer:: i, j, k, m, q, r, INFO, LWORK, total, blo
k_total

real(kind=8):: ddot,dnrm2,sum,maks,e_value,prob1,prob2

real(kind=8), dimension(:), allo
atable:: WORK

real(kind=8), dimension(order):: Ave
tor, diag, e_ve
tor, WR, offdiag, res

real(kind=8), dimension(order,
an):: blo
kA

A.1 Main Program 32

real(kind=8), dimension(limit,limit):: F, GAG

real(kind=8), dimension(limit,order):: G, GA

integer, dimension(order+1):: position, blo
k_position

integer, dimension(total):: offarray

integer, dimension(blo
k_total):: blo
k_offarray

real(kind=8), dimension(total):: nonzero

real(kind=8), dimension(blo
k_total):: blo
k_nonzero

step=1

he
k=1

! PRODUCE NORMALIZED INITIAL VECTOR

! =================================

sum=dnrm2(order,e_ve
tor,1)

all ds
al(order,1.0d0/sum,e_ve
tor,1)

all d
opy(order,e_ve
tor,1,G,limit)

do while(step<=order)

! DETERMINE AND DIAGONALIZE GAG

! =============================

do i=1,order

GA(
he
k,i)=0.0d0

do j=position(i),position(i+1)-1

GA(
he
k,i)=GA(
he
k,i)+nonzero(j)*G(
he
k,offarray(j))

end do

GA(
he
k,i)=GA(
he
k,i)+diag(i)*G(
he
k,i)

end do

A.1 Main Program 33

all dgemv('N',
he
k,order,1.0d0,GA,limit,G(
he
k,1),limit,0.0d0,

GAG(1,
he
k),1)

do i=1,
he
k

all d
opy(i,GAG(1,i),1,F(1,i),1)

end do

LWORK=-1

ALLOCATE(WORK(1))

all dsyev('V','U',
he
k,F,limit,WR,WORK,LWORK,INFO)

LWORK=INT(WORK(1))

DEALLOCATE(WORK)

ALLOCATE(WORK(LWORK))

all dsyev('V','U',
he
k,F,limit,WR,WORK,LWORK,INFO)

DEALLOCATE(WORK)

! PRODUCE RITZ VECTOR

! ===================

r=(1-type)+
he
k*type

e_value=WR(r)

all dgemv('T',
he
k,order,1.0d0,G,limit,F(1,r),1,0.0d0,e_ve
tor,1)

all dgemv('T',
he
k,order,1.0d0,GA,limit,F(1,r),1,0.0d0,Ave
tor,1)

do i=1,order

res(i)=Ave
tor(i)-e_value*e_ve
tor(i)

end do

sum=dnrm2(order,res,1)

if(show==1) write(*,'(i5,4ES25.16)')step,sum,e_value

A.1 Main Program 34

! ORTHOGONALIZATION

! =================

if(sum<1.0d-8) then

if(show==0)write(*,'(i5,2ES25.16,25X,ES25.16)')step,sum,e_value

exit

else if(
he
k<limit) then

step=step+1

he
k=
he
k+1

sele
t
ase(way)

ase('D')

all davidson(order,res,Ave
tor,diag,e_value,sum)

all ds
al(order,1.0d0/sum,Ave
tor,1)

ase('J')

all ja
obi_davidson(order,res,e_ve
tor,Ave
tor,diag,

e_value,sum)

all ds
al(order,1.0d0/sum,Ave
tor,1)

ase('S')

all jsweep(diag,offdiag,order,type,
an,e_value,e_ve
tor,

Ave
tor,sweeps,offarray,nonzero,total,position,

population,prob1,prob2,blo
kA,blo
k_offarray,

blo
k_nnzero,blo
k_total,blo
k_position)

all d
opy(order,e_ve
tor,1,Ave
tor,1)

end sele
t

do q=1,repeat

all d
opy(
he
k-1,0.0d0,0,WR,1)

A.1 Main Program 35

do j=1,
he
k-1

maks=0.0d0

do i=1,
he
k-1

sum=0.0d0

if(WR(i)==0.0d0) then

sum=ddot(order,G(i,1),limit,Ave
tor,1)

if(abs(sum)>=abs(maks)) then

maks=sum

m=i

end if

end if

end do

WR(m)=1.0d0

all daxpy(order,-maks,G(m,1),limit,Ave
tor,1)

sum=dnrm2(order,Ave
tor,1)

all ds
al(order,1.0d0/sum,Ave
tor,1)

end do

end do

all d
opy(order,Ave
tor,1,G(
he
k,1),limit)

else

step=step+1

he
k=1

all d
opy(order,e_ve
tor,1,G,limit)

end if

end do

end subroutine

A.2 Davidson Pre
onditioner 36

A.2 Davidson Pre
onditioner

impli
it none

integer:: i, order

real(kind=8):: e_value, sum, dnrm2

real(kind=8), dimension(order):: res, Ave
tor, diag

do i=1,order

Ave
tor(i)=res(i)/(diag(i)-e_value)

end do

sum=dnrm2(order,Ave
tor,1)

end subroutine

A.3 Ja
obi-Davidson Pre
onditioner

subroutine ja
obi_davidson(order,res,e_ve
tor,Ave
tor,diag,e_value,sum)

impli
it none

integer:: i, order

real(kind=8):: e_value, sum, dnrm2, ddot

real(kind=8), dimension(order):: e_ve
tor, Ave
tor, diag, D, res

do i=1,order

D(i)=e_ve
tor(i)/(diag(i)-e_value)

Ave
tor(i)=res(i)/(diag(i)-e_value)

end do

sum=ddot(order,D,1,e_ve
tor,1)

A.4 Sweep Pre
onditioner 37

sum=ddot(order,Ave
tor,1,e_ve
tor,1)/sum

do i=1,order

Ave
tor(i)=sum*D(i)-Ave
tor(i)

end do

sum=dnrm2(order,Ave
tor,1)

end subroutine

A.4 Sweep Pre
onditioner

subroutine

jsweep(diag,offdiag,order,type,
an,e_value,e_ve
tor,Ave
tor,sweeps,offarray,

nonzero,total,position,population,prob1,prob2,blo
kA,blo
k_offarray,

blo
k_nonzero,blo
k_total,blo
k_position)

! ORDER : THE ORDER OF MATRIX

! TYPE : TYPE=0, THE MIN EIGENVALUE ; TYPE=1, THE MAX EIGENVALUE

! CAN : THE NUMBER TO DIAGONALIZE ONCE

! SWEEPS : LIMIT THE NUMBER OF SWEEPS

! ==

impli
it none

integer:: i, j, start_
an, p, var, LWORK, INFO,
ount, sweeps, row,
olumn,

population, total, blo
k_total, order, type,
an

real(kind=8):: norm,e_value,dnrm2,ddot,
oef,sum,prob1,prob2,a,b,
,d,e

real(kind=8), dimension(
an):: adv

real(kind=8), dimension(order):: WR, res, e_ve
tor, Ave
tor, diag, offdiag

real(kind=8), dimension(
an+1,
an+1):: GAG

real(kind=8), dimension(order,
an):: blo
kA

A.4 Sweep Pre
onditioner 38

real(kind=8), dimension(:), allo
atable :: WORK

integer, dimension(order+1):: position, blo
k_position

integer, dimension(total):: offarray

real(kind=8), dimension(total):: nonzero

integer, dimension(blo
k_total):: blo
k_offarray

real(kind=8), dimension(blo
k_total):: blo
k_nonzero

var=
an

start_
an=1

ount=0

oef=1.0d0

! THE MAIN PROGRAM

! ================

do while(start_
an<=order)

! CONSTRUCT GAG(1,1)

! ==================

100
all d
opy(var,0.0d0,0,adv,1)

do i=1,var

row=start_
an-1+i

do j=blo
k_position(row),blo
k_position(row+1)-1

adv(i)=adv(i)+blo
k_nonzero(j)*e_ve
tor(blo
k_offarray(j))

end do

end do

if(Ave
tor(start_
an)==adv(1).and.
an==1) then

if(start_
an<=order-1) then

start_
an=start_
an+1

A.4 Sweep Pre
onditioner 39

else

start_
an=1

ount=
ount+1

sum=dnrm2(order,e_ve
tor,1)

all ds
al(order,1.0d0/sum,e_ve
tor,1)

oef=1.0d0

end if

go to 100

end if

GAG(1,1)=ddot(var,Ave
tor(start_
an),1,e_ve
tor(start_
an),1)

GAG(1,1)=e_value-2.0d0*GAG(1,1)/(
oef*
oef)

+ddot(var,adv,1,e_ve
tor(start_
an),1)/(
oef*
oef)

! NORM OF THE STARTING VECTOR

! ===========================

norm=0.0d0

do i=0,var-1

norm=norm+e_ve
tor(start_
an+i)*e_ve
tor(start_
an+i)/(
oef*
oef)

end do

norm=sqrt(1.0d0-norm)

! CONSTRUCT GAG

! =============

GAG(1,1)=GAG(1,1)/(norm*norm)

do i=0,var-1

GAG(1,2+i)=(Ave
tor(start_
an+i)-adv(1+i))/(norm*
oef)

end do

A.4 Sweep Pre
onditioner 40

do i=0,var-1

do j=i+1,var

GAG(2+i,j+1)=blo
kA(start_
an+i,j)

end do

end do

! DIAGONALIZE

! ===========

if(
an>=1) then

LWORK=-1

ALLOCATE(WORK(1))

all dsyev('V','U',var+1,GAG,
an+1,WR,WORK,LWORK,INFO)

LWORK=INT(WORK(1))

DEALLOCATE(WORK)

ALLOCATE(WORK(LWORK))

all dsyev('V','U',var+1,GAG,
an+1,WR,WORK,LWORK,INFO)

DEALLOCATE(WORK)

else

if(type==0) then

a=GAG(2,2)-GAG(1,1)

b=GAG(1,2)*GAG(1,2)

=sqrt(a*a+4.0d0*b)

WR(1)=(GAG(1,1)+GAG(2,2)-
)/2.0d0

d=a+

e=sqrt(2.0d0*(a*d+4.0d0*b))

GAG(1,1)=d/e

GAG(2,1)=-2.0d0*GAG(1,2)/e

else

a=GAG(2,2)-GAG(1,1)

A.4 Sweep Pre
onditioner 41

b=GAG(1,2)*GAG(1,2)

=sqrt(a*a+4.0d0*b)

WR(1)=(GAG(1,1)+GAG(2,2)+
)/2.0d0

d=a-

e=sqrt(2.0d0*(a*d+4.0d0*b))

GAG(1,1)=d/e

GAG(2,1)=-2.0d0*GAG(1,2)/e

end if

end if

! RITZ VECTOR

! ===========

p=(1-type)+(var+1)*type

e_value=WR(p)

if(GAG(1,p)/=0) then

oef=
oef*norm/GAG(1,p)

else

all d
opy(order,0.0d0,0,e_ve
tor,1)

oef=1.0d0

end if

do i=0,var-1

e_ve
tor(i+start_
an)=GAG(i+2,p)*
oef

end do

if(start_
an>=order-
an+1) then

ount=
ount+1

sum=dnrm2(order,e_ve
tor,1)

all ds
al(order,1.0d0/sum,e_ve
tor,1)

A.4 Sweep Pre
onditioner 42

oef=1.0d0

end if

if(sweeps==
ount) then

exit

else

if(start_
an<=order-2*
an+1) then

start_
an=start_
an+
an

else if(order-2*
an+1<start_
an.and.start_
an<=order-
an) then

start_
an=start_
an+
an

var=order-start_
an+1

else

start_
an=1

var=
an

end if

! CALCULATE AVECTOR(START_CAN)~AVECTOR(START_CAN-1+VAR)

! ===

do i=1,var

row=start_
an-1+i

Ave
tor(row)=0.0d0

do j=position(row),position(row+1)-1

Ave
tor(row)=Ave
tor(row)+nonzero(j)*e_ve
tor(offarray(j))

end do

Ave
tor(row)=Ave
tor(row)+diag(row)*e_ve
tor(row)

end do

end if

end do

end subroutine

Appendix B

Numeri
al Results for Small Matri
es

Table B.1 The average time for the probability ρ = 10%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 0.062836 0.068748 0.068764

0.02 0.09231 0.124048 0.125003

0.03 0.135992 0.216126 0.219582

0.04 0.185576 0.317008 0.318536

0.05 0.224782 0.39046 0.395705

Table B.2 The average time for the probability ρ = 20%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 0.101974 0.113343 0.114015

0.02 0.197756 0.281286 0.28361

0.03 0.316548 0.499815 0.503755

0.04 0.390496 0.640088 0.64588

0.05 0.432939 0.733578 0.73815

44

Table B.3 The average time for the probability ρ = 30%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 0.189604 0.221786 0.22305

0.02 0.380996 0.542062 0.547262

0.03 0.548002 0.855689 0.864358

0.04 0.611762 1.020124 1.029784

0.05 0.641472 1.136819 1.140071

Table B.4 The average time for the probability ρ = 40%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 0.292798 0.338709 0.340813

0.02 0.589781 0.842349 0.846137

0.03 0.710656 1.112726 1.123538

0.04 0.784949 1.347352 1.352365

0.05 0.795142 1.396915 1.40682

Table B.5 The average time for the probability ρ = 50%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 0.389864 0.444352 0.445956

0.02 0.801734 1.126114 1.134751

0.03 0.93175 1.463695 1.481317

0.04 0.955312 1.66718 1.678661

0.05 0.953868 1.733344 1.748633

45

Table B.6 The pairs (the winning times, the average iterations) derived by the sweep

method.

ρ

α 10% 20% 30% 40% 50%

0.01 (573, 5.456) (682, 6.547) (693, 7.338) (696, 8.077) (653, 8.823)

0.02 (899, 7.57) (969, 9.946) (965, 12.833) (970, 14.939) (948, 16.287)

0.03 (967, 9.971) (990, 14.441) (994, 17.323) (990, 18.726) (985, 19.592)

0.04 (988, 12.592) (998, 17.238) (996, 19.161) (995, 20.045) (995, 20.593)

0.05 (995, 14.637) (998, 18.84) (998, 20.09) (1000, 20.611) (998, 21.09)

Table B.7 The pairs (the winning times, the average iterations) derived by Davidson

method.

ρ

α 10% 20% 30% 40% 50%

0.01 (217, 11.271) (198, 13.889) (142, 15.865) (149, 17.601) (156, 19.531)

0.02 (50, 16.559) (17, 22.77) (14, 30.769) (12, 38.066) (25, 43.083)

0.03 (15, 22.787) (9, 36.311) (0, 47.686) (4, 55.234) (6, 60.804)

0.04 (9, 30.524) (1, 47.136) (1, 57.878) (4, 64.992) (1, 70.821)

0.05 (4, 37.469) (0, 54.924) (1, 64.413) (0, 70.213) (0, 76.375)

Table B.8 The pairs (the winning times, the average iterations) derived by Ja
obi-

Davidson method.

ρ

α 10% 20% 30% 40% 50%

0.01 (210, 11.205) (120, 13.837) (165, 15.85) (155, 17.601) (191, 19.518)

0.02 (51, 16.558) (14, 22.797) (21, 30.802) (18, 38.097) (27, 43.186)

0.03 (18, 22.82) (1, 36.364) (6, 47.805) (6, 55.242) (9, 61.008)

0.04 (3, 30.559) (1, 47.174) (3, 57.931) (1, 64.787) (4, 70.642)

0.05 (1, 37.516) (2, 54.878) (1, 64.286) (0, 70.063) (2, 76.607)

Appendix C

Numeri
al Results for Large Matri
es

Table C.1 The average time for the probability ρ = 10%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 43.096533 74.769833 72.079305

0.0125 51.19984 87.508189 85.684355

0.015 58.467133 98.713169 103.46567

0.0175 83.272124 154.660466 154.72179

0.02 89.375946 157.640172 163.106513

Table C.2 The average time for the probability ρ = 12.5%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 61.834624 97.997804 98.646445

0.0125 82.823576 135.83201 146.78233

0.015 100.787779 161.225316 164.869424

0.0175 126.848448 263.170247 275.815357

0.02 159.84147 300.086794 306.167374

47

Table C.3 The average time for the probability ρ = 15%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 64.034402 95.04318 98.826696

0.0125 73.534956 123.3267 126.3869

0.015 141.112899 245.788761 241.473291

0.0175 169.726287 320.411985 317.161061

0.02 187.175658 338.999426 329.843054

Table C.4 The average time for the probability ρ = 17.5%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 100.431357 160.755727 167.475867

0.0125 133.102918 209.980443 218.225558

0.015 171.080092 279.142045 295.348738

0.0175 199.352339 355.561821 360.17815

0.02 198.034576 365.092777 372.140057

Table C.5 The average time for the probability ρ = 20%.

The average Sweep method Davidson Ja
obi-Davidson

(α) (se
) (se
) (se
)

0.01 109.211465 182.297913 191.092943

0.0125 158.637674 269.461160 277.743598

0.015 172.33437 331.339107 336.010559

0.0175 191.763305 341.984853 349.542765

0.02 161.006742 320.424625 321.654542

48

Table C.6 The pairs (the winning times, the average iterations) derived by the sweep

method.

ρ

α 10% 12.5% 15% 17.5% 20%

0.01 (83, 6.87) (92, 7.95) (82, 8.51) (94, 9.83) (94, 11.1)

0.0125 (95, 8.28) (96, 10.35) (87, 10.87) (91, 12.5) (93, 15.59)

0.015 (94, 9.91) (95, 12.39) (95, 15.53) (88, 17.73) (94, 19.58)

0.0175 (92, 13.3) (95, 15.74) (89, 18.49) (94, 24.11) (94, 26.52)

0.02 (93, 15.32) (96, 19.01) (94, 22.24) (93, 27.72) (97, 29.48)

Table C.7 The pairs (the winning times, the average iterations) derived by Davidson

method.

ρ

α 10% 12.5% 15% 17.5% 20%

0.01 (3, 24.68) (1, 27.96) (4, 30.3) (4, 39.1) (2, 51.3)

0.0125 (2, 30.12) (1, 40.3) (9, 44.42) (2, 50.72) (3, 69.26)

0.015 (3, 36.26) (3, 49.03) (2, 67.55) (6, 71.67) (1, 98.79)

0.0175 (5, 58.84) (3, 74.7) (5, 85.64) (5, 109.93) (3, 126.4)

0.02 (3, 60.83) (3, 85) (5, 100.3) (3, 134.69) (1, 154.17)

Table C.8 The pairs (the winning times, the average iterations) derived by Ja
obi-

Davidson method.

ρ

α 10% 12.5% 15% 17.5% 20%

0.01 (14, 24.5) (7, 27.83) (14, 30.12) (2, 39.6) (4, 51.09)

0.0125 (3, 29.85) (3, 41.05) (4, 44.27) (7, 51.61) (4, 69.23)

0.015 (3, 36.86) (2, 48.6) (3, 66.5) (6, 74.26) (5, 97.66)

0.0175 (3, 57.73) (2, 76.04) (6, 83.9) (1, 109.14) (3, 125.7)

0.02 (4, 60.24) (1, 84.83) (1, 98.4) (4, 132.63) (2, 154.37)

