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Chapter 1

Introdution

1.1 Eigenvalue Problem in Quantum Chemistry

For very small objets like moleules, we an not understand their behavior by Newton's

laws. The Shrödinger equation is used to predit their properties and behavior. Let

x = (x1, x2, . . . , xp). The Shrödinger equation has the form of

[

−
~

2

2m
(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
p

) + V (x)

]

Ψ(x) = EΨ(x), (1.1)

where V (x) is an external potential. The wave funtion Ψ(x) an be interpreted as

the probability of �nding moleules at a given position at a given time. E denotes the

energy haraterizing some stable state of a moleule; the struture of the moleules

(e.g., bond lengths) an be determined by means of it.

Nevertheless, it is di�ult to solve this di�erential equation analytially, so we need

another way to ahieve it. De�ne the operator

Â = −
~

2

2m
(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
p

) + V (x). (1.2)

Hene the Shrödinger equation an be redued to

ÂΨ(x) = EΨ(x). (1.3)

Now, it has been transformed into an eigenvalue problem, where E and Ψ(x) an be

onsidered as the eigenvalue and eigenfuntion of Â, respetively. The next step is to

hange the operator Â to a matrix form.

Let Ψ ∈ F , where F is a Hilbert spae. We hoose an orthonormal basis in F :

{gi(x) : i = 1, 2, . . .}, then Ψ(x) =
∑∞

i=1 cigi, where ci =
∫

f ∗
i Ψdx. In pratie,
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it is often possible to replae the omplete basis set by some �nite set of funtions

: f1(x), f2(x), . . . , fn(x). After replaing Ψ(x) in Equation 1.3 by
∑n

i=1 cifi(x), we have

Â

(

n
∑

i=1

cifi(x)

)

= E

(

n
∑

i=1

cifi(x)

)

. (1.4)

For i = 1, 2, · · · , n, premultiply fi(x) and integrate both sides in Equation 1.4:

n
∑

j=1

cj

∫

f ∗
i Âfjdx = E

(

n
∑

j=1

cj

∫

f ∗
i fjdx

)

. (1.5)

By the fat
∫

fi(x)∗fj(x)dx = δi,j,

n
∑

j=1

cj

∫

f ∗
i Âfjdx = Eci. (1.6)

Let the matrix A = [ai,j], where

ai,j =

∫

f ∗
i Âfjdx, (1.7)

where fi, fj ∈ F . From Equation 1.6, we have

Ac = Ec, (1.8)

where c = [c1, c2, . . . , cn]T . In general, A is a symmetri matrix sine Â is a symmetri

operator, i.e.
∫

f ∗Âgdx =

∫

g(Âf)∗dx (1.9)

where f, g ∈ F . The form of the problem has been hanged from a di�erential equation

to a linear system

(A − EI) c = 0. (1.10)

You an �nd the struture of moleules using the eigenvalues of A. In Figure 1.1, there

is no attration between two hydrogen atoms when the distane between them is large.

One they get loser, their potential energy is lowered. When the energy is in minimum,

it orresponds to a bond onneting these two atoms. The value of energy they possess

in the minimum an be interpreted as the minimal eigenvalue of A. This is the physial

meaning for the minimum eigenvalue. In general, alulating the eigenvalues of A,

allows for �nding the bond lengths of the moleule by other proedures. Then you will

understand the struture of moleules.
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Figure 1.1 Potential energy urve for the H2 moleule. The bond orresponds to the

minimum in the urve.

1.2 General Eigenvalue Problem

The general eigenvalue problem is

Au = λu, (1.11)

where λ is alled an eigenvalue of the matrix A of order n and u is the eigenvetor

orresponding to λ. You an onsider the eigenvalue problem as a linear system sine

it an be modi�ed as

(A − λI)u = 0. (1.12)

The linear equation has a nonzero solution u when (A − λI) is singular, i.e. the

determinant of (A−λI) is equal to zero, i.e., det(A−λI) = 0. We derive a harateristi

polynomial

λn + cn−1λ
n−1 + · · · + c1λ + c0 = 0. (1.13)

from det(A − λI) = 0. There are n roots λ1, λ2, · · · , λn of the harateristi equation,

and they are the eigenvalues exatly. Plug λ into Equation 1.12 to eah eigenvalue, you

an �nd all the eigenvetors u1,u2, · · · ,un respet to them.
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Let us assume that,

λ1 ≤ λ2 ≤ · · · ≤ λn.

We name the set of these eigenvalues the spetrum of A and denote it by σ(A).

We an generalize the eigenvalue problems into an integral form

∫ b

a

G(x, y)f(x)dx = λf(y), (1.14)

where G(x, y) is the kernel of the integral operator. Then we do not just have the

problem in a matrix form, but rather a ontinuous ase.

There are many sienti� �elds that extensively use eigenvalue problems like quan-

tum hemistry. After abstrating these problems, they may look similar. The matries

involved in the eigenvalue problems an be divided into two types, Hermitian matries

and non-Hermitian matries. In this thesis, we onsider only Hermitian matries. Fur-

ther, Hermitian matries an be redued to symmetri ones sine we only use real-valued

arithmetis.

The goal in eigenvalue problems is to �nd the eigenpairs of a given matrix, but re-

quirements for the eigenvalues in di�erent problems are not the same. In some problems

you have to �nd all the eigenvalues of a small matrix, and others to look for the extreme

eigenvalues of a large one. The two essential elements in alulating the eigenpairs of

a large matrix are the omputer memory requirements and auray. The e�ieny is

also important sine we use large matries (of order 106 or even larger). Fortunately,

usually the matries are diagonally dominant and sparse. On average, maybe only 10%

or fewer of the elements of a large matrix are nonzeros.

There exist ways of reduing the memory requirements. The main ost of alula-

tions using iterative methods is the onstant matrix-vetor produt operations. The

auray is hard to hek beause we an not ompute the exat eigenpairs of a large

matrix diretly, but there is still some bounds for eigenvalues. One the problems

with auray are eliminated, we should onentrate on improving the e�ieny of our

algorithms.
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A fat for symmetri matries is that all the eigenvalue and eigenvetors of them

are real. Partiularly,

xTAx ∈ R for all x ∈ Rn.

This is a very important property sine it allows us for employing the Rayleigh quotient

tehniques to study our problems.

1.2.1 Rayleigh Quotient

Let x be a nonzero vetor. The Rayleigh quotient is de�ned as

φ(x) =
xTAx

xTx
(1.15)

The range of φ(x) is alled the �eld of values of A, and it is the interval [λ1, λn].

That means, the minimum value of φ(x) is obtained if and only if x is the eigenvetor

orresponding to λ1, and the maximum value of φ(x) is obtained if and only if x is the

eigenvetor orresponding to λn.

Sine λ1 and λn are �nite numbers, and so φ(x) is bounded. The Rayleigh quotient

is important both for theoretial and pratial purposes. Sometimes, it is onvenient

to restrit the above de�nitions to a unit sphere in Rn:

φ(x) = xTAx for ‖x‖ = 1. (1.16)

These two di�erent de�nitions lead to the same properties, and therefore we hoose the

one whih is easier to apply in a given situation.

1.2.2 Projetion

The orthogonal projetion operator P on a vetor x ∈ Rn is de�ned as

P(u) = x(xTx)−1xTu. (1.17)

In the eigenvalue problem onsiderations, we often need to ompute the projetion of

Ax on x for some x ∈ Rn, i.e.

P(Ax) = x(xTx)−1xTAx. (1.18)
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Sine (xTx)−1 is a onstant, it implies

P(Ax) =
xTAx

xTx
x = φ(x)x. (1.19)

From above, the projetion of Ax an be represented as the Rayleigh quotient φ(x)

times x. There also exists another projetion form de�ned through matries. Suppose

g1,g2, . . . ,gm are linearly independent vetors that span a m-dimensional spae L ⊆

Rn. Then, a projetion of u ∈ Rn onto L an be de�ned as

PG(u) = G(GTG)−1GTu. (1.20)

1.2.3 Orthogonalization Proesses

Suppose there are m independent normalized vetors g1,g2, · · · ,gm that need to be

orthogonalized. The standard algorithm of Gram-Shmidt proess is given as below [2,

pages 10�12℄:

Algorithm 1.1 : Gram-Shmidt

1. First, de�ne x1 as g1.

2. For j = 2, · · · ,m, do

3. Calulate ci,j = 〈gj,xi〉, for i = 1, 2, . . . , j − 1.

4. x̂ = gj −
∑j−1

i=1 ci,jxi.

5. normalize x̂ into xj.

6. end do

There is another algorithm alled Modi�ed Gram-Shmidt(MGS) that has better

numerial properties:

Algorithm 1.2 : Modi�ed Gram-Shmidt

1. First, de�ne x1 as g1.
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2. For j = 2, · · · ,m, do

3. x̂ = gj

4. For i = 1, . . . , j − 1, do

5. ci,j = 〈x̂,xi〉

6. x̂ = x̂ − ci,jxi.

7. end do

8. normalize x̂ into xj.

9. end do

You an have better way than MGS if you hange the inside for loop(from Step 4

to Step 7) in MGS. First of all, let Γ = {1, 2, . . . , j − 1}. Every time, �nd xp for p ∈ Γ

suh that 〈x̂,xp〉 = maxi∈Γ〈x̂,xi〉, and then do x̂ = x̂ − 〈x̂,xp〉xp and Γ = Γ \ {p}.

After j − 1 times, all the elements in Γ have be removed, and it means that we have

projeted x̂ onto all the vetors x1,x2, . . . ,xj−1. We now show the pratial algorithm

as follows:

Algorithm 1.3 : A Change in Modi�ed Gram-Shmidt

1. First, de�ne x1 as g1.

2. For j = 2, · · · ,m, do

3. x̂ = gj

4. Γ = {1, 2, . . . , j − 1}

5. For i = 1, . . . , j − 1, do

6. Find xp for p ∈ Γ suh that 〈x̂,xp〉 = maxi∈Γ〈x̂,xi〉.

7. Do x̂ = x̂ − 〈x̂,xp〉xp and Γ = Γ \ {p}
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8. end do

9. normalize x̂ into xj.

10. end do

Sine all the vetors are normalized, 〈x̂,xi〉 for i = 1, 2, . . . , j−1 are values between

−1 and 1. If you hoose the vetor xi for i = 1, 2, j − 1 losest to x̂, then projeting x̂

onto this vetor will lead to smallest loss of preision in omputer alulations.

1.2.4 Gershgorin's Theorems

Before omputing the eigenvalues of matries, it is helpful to know the range of them.

There are theorems on bounds for the eigenvalues as below, and the statements are

from [3, page 71�72℄.

Theorem 1 Every eigenvalue of the matrix A lies in at least one of the irular diss

with entres ai,i and radii
∑

j 6=i |ai,j|.

Theorem 2 If s of the irular diss of Theorem 1 form a onneted domain whih

is isolated from the other diss, then there are preisely s eigenvalues of A within this

onneted domain.

From Theorem 1, if all the irular diss are disonneted, you will be sure that

the order of eigenvalues will be the same as the order of the diagonal elements of A.

Then you know from whih diagonal element eah of the eigenvalues is originating. The

eigenvalues are lustered as the interation of the diss for larger radii. Theorem 2 says

that in suh situation, the number of eigenvalues depend on the number of diagonal

elements in the onneted diss.

These two theorems an let you know if the order of eigenvalues hange when you

enlarge the radii of diss. It will be more ompliated if there are onneted diss. That

will be a harder problem to handle in suh ases.



Chapter 2

Diret Methods

I have written programs in FORTRAN 90, using various subroutines provided in LA-

PACK pakages. Using the diret methods to solve problems has the advantage of

produing exat answers. The e�ieny of these subroutines dereases with inreasing

requirements for memory, so they are only useful for small matries. We may apply

diret methods for diagonalizing matries of small order.

2.1 Diagonalization of Matries

The pratial way to diagonalize a matrix is quite di�erent from theoretial one. We

disuss this for a matrix of order 2 �rst.

2.1.1 Symmetri Matries of order 2

In the ase of matries of order 2, it is simple to obtain their omplete eigenpairs. De�ne

a 2 × 2 general symmetri matrix A as

A =





a c

c b



 . (2.1)

First ompute the roots θ1 and θ2 of the harateristi equation

θ2 − (a + b)θ + (ab − c2) = 0,

and later alulate the eigenvetors by the solutions of (A − θi)x = 0 for i = 1, 2.
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2.1.2 Symmetri Matries of higher order

Now, we onsider A of order n > 2. In fat, it is hard to solve their harateristi

equations like the way we did for matries of order 2. LAPACK is written in FORTRAN

77 and provides subroutines for solving the most ommon problems in numerial linear

algebra. It provides a subroutine DSYEV, that onsist of DSYTRD and DSTEQR, to

alulate the eigenpairs.

The Subroutine DSYTRD

The subroutine DSYTRD is used to redue A to a tridiagonal form T by orthogonal

similarity transformations, using Householder's method [4, pages 74�77℄. An orthogonal

similarity transformation of A is given by the elementary symmetri matrix

P(r) = I − 2w(r){w(r)}T
, (2.2)

where w(r) is a unit vetor and de�ned below.

After doing (n−2) orthogonal similarity transformations Ar+1 = P(r)ArP
(r) for r =

1, 2, . . . , (n−2), where A1 = A, A will be redued to a tridiagonal form. Simplistially,

let xr be the rth olumn of Ar that an be represented as

xT
r = (x̂T

, xr+1,y
T ) (2.3)

where x̂ is r × 1, y is {n − (r + 1)} × 1. P(r) makes sure that the (r + 2)th to nth

omponent of xr+1 will be equal to zero. Corresponding to the form of xr, there is a

way to hoose w(r), given by

{w(r)}T = (0, αv
(r)
r+1, αyT ) (2.4)

where v
r
r+1 = xr+1 ± s and α = 2−1/2{s2 ± xr+1s}

−1/2 with s = {(xr+1)
2 + yTy}1/2.

The Subroutine DSTEQR

The subroutine DSTEQR is used to �nd the eigenpairs of T by employing the impliit

QL or QR method [4, pages 85�89℄. The LR algorithm is based on the LU deomposi-
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tion. Let A1 = A, and suppose the LU deomposition of A1 is

A1 = L1R1 (2.5)

where L1 is unit lower triangular and R1 is an upper triangular matrix. Let

A2 = R1L1 (2.6)

By this proess, it will lead to

As = LsRs and As+1 = RsLs. (2.7)

As will tend to an upper triangular matrix whose diagonal elements onverge to the

eigenvalues of A.

The QR algorithm from QR deomposition is de�ned as

As = QsRs and As+1 = RsQs, (2.8)

where Qs is a unitary matrix and Rs is an upper triangular matrix. Similar to the LR

algorithm, you an �nd the eigenvalues of the sequene A by the limit of {As}. Also,

olumns of the limit onverged by the sequene {Q1 · · ·Qs} represents the eigenvetors

of A.

You an see the neessity of setting matries in the omputer representation. It

is impossible to do so for large matries beause of the limit of the available memory.

You may �nd eigenpairs by these diret methods quikly but they are useless for the

matries of larger order. Beause the omputer memory is usually limited, we introdue

iterative methods in next hapter that allow for determination of extremal eigenpairs

without high memory requirements.



Chapter 3

Overview of Iterative Methods

In the previous hapter we have disussed are some ways to solve the eigenvalue problem

for matries of small order. Now let us turn to the matries of large order as 106. It is a

trouble to use this kind of matries in the omputer representation sine there is a limit

of the available omputer memory. Iterative methods need muh less memory than

diret methods for matries of large order. Lanzos, Davidson and Jaobi-Davidson

methods are examples of iterative methods, whih are designed to �nd extreme eigen-

values. In general Lanzos, Davidson and Jaobi-Davidson methods an �nd a few

extreme eigenvalues at the same time, but here we just look for a single minimum

eigenvalue. In Setion 3.1, we present the main idea of these methods. In Setion 3.2,

they will be introdued in more details separately.

3.1 Main Idea

We searh for the minimum eigenvalue of some matrix A using a sequene of subspaes

Km. At the beginning, K1 ontains only a normalized vetor g1 as the initial vetor. At

iteration m, a normalized vetor gm+1 is produed, whih is orthogonal to g1,g2, . . . ,gm,

and de�nes Km+1 = span(g1,g2, . . . ,gm+1).

At iteration m, de�ne the projetor Pm onto Km as

Pm =
m

∑

i=1

gi g
T
i . (3.1)

There exists an eigenvetor ym orresponding to the minimum eigenvalue λm of PT
mAPm
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with restrition to Km. Let xm = Pmym. If

Axm
.
= λmxm, (3.2)

then we will say (λm,xm) is an approximate minimum eigenpair of A. By the way,

λm = min
w∈Km

wTAw

wTw
(3.3)

and so (λm,xm) is the best approximate eigenpair in Km.

If 3.2 fails, we will de�ne

gm+1 = Axm − λmxm. (3.4)

Here, Lanzos method does not hange the diretion of gm+1, but Davidson and Jaobi-

Davidson methods use di�erent ways to modify it. After normalizing gm+1 and aug-

menting Km with gm+1, we proeed to next iteration.

It is di�ult to exeute this idea diretly, and so the pratial Algorithm 3.1 is

the following:

1. Generate a normalized vetor g1 as the initial vetor.

2. Set m = 1.

3. Set Gm = [g1g2 . . .gm].

4. Calulate a small matrix Am = GT
mAGm.

5. Calulate the minimum eigenpair (λm, zm) of Am.

6. Set xm = Gmzm.

7. Calulate the residual vetor rm = (A − λmI)xm.

• If ‖rm‖ < 10−8, exit.

• If ‖rm‖ ≥ 10−8, ontinue.
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8. Let gm+1 = rm and use Lanzos, Davidson or Jaobi-Davidson strategies to hange

the diretion of gm+1.

9. Orthogonalize gm+1 with respet to g1,g2, . . . ,gm and then normalize it.

10. Set m = m + 1 and go to Step 3.

From Step 3 to Step 7, this algorithm is known as as the Rayleigh-Ritz proedure.

It an be proved that it will onverge to the same λm and xm like the one in the main

idea [1, pages 216�217℄, hene the results are still the same.

3.2 Iterative Methods

Lanzos, Davidson and Jaobi-Davidson methods use di�erent strategies in Step 8, and

we explain them in this setion. By the way, given A = [ai,j] and the diagonal matrix

D = [di,j] where

di,j =







ai,j if i = j

0 otherwise

.

3.2.1 Lanzos Method

8. Lanzos strategy : Do nothing to gm+1.

Davidson and Jaobi-Davidson methods are based on Lanzos method, whih is a las-

sial method and was published in 1950. The small matrix Am derived from Lanzos

method has very onvenient property - it is a tridiagonal matrix. This properly is not

shared by Davidson and Jaobi-Davidson methods. So, it is easier to alulate Am

by using Lanzos method. Nevertheless, the onvergene of Lanzos method is muh

slower than the other methods in general, and so we don't tell its detail.

3.2.2 Davidson Method

8. Davidson strategy :

gm+1 = (D − λmI)−1rm. (3.5)
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Davidson method hanges the diretion of the residual vetor by dividing eah ompo-

nent of gm+1 by ai,i − λm. This operation is sometimes alled the diagonal preondi-

tioning. The proof of onvergene is given in [5℄.

3.2.3 Jaobi-Davidson Method

8. Jaobi-Davidson strategy :

gm+1 = α(D − λmI)−1xm − (D − λmI)−1rm, (3.6)

where

α =
xT

m(D − λmI)−1rm

xT
m(D − λmI)−1xm

. (3.7)

The preonditioning in Jaobi-Davidson method is meant to �nd an approximate

omplement of the real eigenvetor orthogonal to the Ritz vetor [6℄, hene its has more

diret geometrial interpretation than Davidson's.

3.3 Other Notations

3.3.1 Construting Initial Vetor g1

In general, a good initial hoie of vetor for g1 an lead to faster onvergene. Although

there is no absolute way to generate it, we an provide a general way in Quantum

Chemistry.

First of all, given a positive integer q, let the loational set

L = {σ : aσ,σ is one of the q smallest elements in the diagonal part of A.}. (3.8)

Let K is spanned by {eσ : σ ∈ L}. De�ne the projetor P onto K as

P =
∑

σ∈L

ei e
T
i . (3.9)

There exists an eigenvetor y orresponding to the minimum eigenvalue λ of PTAP

with restrition to K. Then g1 = Py is a hoie of the initial vetor.



3.3 Other Notations 16

3.3.2 Restart Strategies

The CPU time of eah step inreases sine the subspae is beoming larger and larger.

The ost of eah step omes mainly from the requirement of maintaining the orthogo-

nality. If we do not wish to spend to muh time for �nding the extreme eigenvalue -

restart strategies may solve this problem. For instane, after 20 steps, you an remove

all the vetors g1,g2, . . . ,g20 and take the Ritz vetor x20 as the initial vetor g1.

Unfortunately, it may lead to reduing the speed of onvergene or even a stagna-

tion. A better way to solve this issue is to take more than one Ritz vetors as the

starting spae [6℄. In the example above, you have the eigenvetor y20 orresponding

to the minimum eigenvalue λ20 of PT
20AP20. Also, there are eigenvetors y

′

20,y
′′

20 and

y
′′′

20 orresponding to the 2nd, 3rd and 4th minimum eigenvalues λ
′

20, λ
′′

20 and λ
′′′

20, re-

spetively. Then you have four Ritz vetors x20, x
′

20, x
′′

20 and x
′′′

20 obtained analogously

to x20 = P20y20. After restarting the algorithm with these four Ritz vetors as g1, g2,

g3 and g4, you have 4 dimensional subspae at the beginning.



Chapter 4

Loss of Orthogonality

In Step 9 in Algorithm 3.1 we orthogonalize the vetors g1,g2, . . . ,gm to make sure

they are orthogonal. Unfortunately, if gm+1 lies almost entirely in Km, then the vetors

will be just approximately orthogonal beause of �nite preision of their numerial

representation. We explain this by an easy example again below.

4.1 An Easy Example

Let

g1 =











0.8

0.6

0.0











and g2 =











−0.6

0.8

0.0











.

Clearly, g1 is orthogonal to g2. Suppose that

g3 =











1.0

1.0

α











is the vetor obtained from Step 8 in Algorithm 3.1, where α is a small number. In

Step 9, g3 has to be orthogonalized with respet to g1 and g2. All operations are

performed in double preision �nite arithmetis and the �nal vetor g3 is only approx-

imately orthogonal to the previous vetors. We give the �nal vetor g3 for some α

below.
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α = 10−4

⇓










4 · 10−12

2 · 10−12

1.0











α = 10−8

⇓










4 · 10−8

2 · 10−8

1.0











α = 10−12

⇓










4 · 10−4

2 · 10−4

1.0











α = 10−16

⇓










0.3619

0.2212

0.9056











(4.1)

The loss of orthogonality is more obvious while α is smaller. It will inevitably lead

to a wrong approximation of eigenvalues.

4.2 Examples using Davidson Method

In this setion, we show that for some matries Davidson method fails to onverge.

D̄, D̂, and D̃ mentioned below are diagonal matries, and we always use the same

starting vetor t1 = (0, 0, ..., 0, 0.8, 0.6)T . In Example 1 and Example 2, we show

that the problems an our when the extreme eigenvalue lies within the disrete and

lustered part of spetrum of A respetively. In Example 3, we show that in some ases

the onverged the extreme eigenvalue is ompletely wrong even if the residual value is

small enough.

Example 1.

Let Ā be of order 200 de�ned by

āi,j =



















10
201−i

if i = j

0.1 if |i − j| = 1

0 if |i − j| > 1

. (4.2)

The diagonal part {āi,i}
200
i=1 of Ā inreases monotonially. By Gershgorin's Theorem

1 all the radii are only 0.1, hene the distribution of spetrum is similar to the one of

diagonal part of Ā. So the maximum eigenvalue is in the disrete part of spetrum

(Figure 4.1). The overlap matrix Om at step m is de�ned by 〈gi,gj〉, where 〈 , 〉 is the

usual inner produt. Normally, the overlap matrix in eah step should be very lose to

the identity matrix normally. In Figure 4.2, we an see that the residual values and
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Ritz values blow up while �nding the maximum eigenvalue of Ā. Sine overlap matries
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Figure 4.2 Residual values and Ritz values from Example 1.

are symmetri, we just show the upper triangular part of O30 exluding the diagonal

elements in Figure 4.3. As you an see, it is very di�erent from the identity matrix.

Example 2.

Sine Ā is symmetri, we an �nd an eigendeomposition: Ā = VD̄VT . Let Â =

VD̂VT where D̂ is given by d̂i,i = 10
i
− 1 for i = 1 to 200. The portrait of Â is

plotted in Figure 4.4; it is diagonally dominant. Construting Â in this way implies
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Figure 4.3 Overlap matrix O30 from Example 1.

Figure 4.4 Graphial presentation of Â.

that the minimum eigenvalue of Â is -0.95. By applying Gershgorin's theorems again,

we onsider a matrix whose minimum eigenvalue −0.95 ontained in the lustered part

of spetrum (Figure 4.5). A similar situation like Example 1, this ase also diverges

when looking for the minimum eigenvalue (Figure 4.6).
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Figure 4.6 Residual values and Ritz values from Example 2.

Example 3.

An interesting thing happens when we try to �nd the minimum eigenvalue of Ã =

VD̃VT . V is the one in Example 2 and D̃ is given by d̃i,i = 10
i
for i = 1 to 200. The

portrait of Ã is similar to the one of Â and so it is dominant diagonally, too. From
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Figure 4.7 Residual values and Ritz values from Example 3.

Figure 4.7, it looks as if Davidson method has onverged. Unfortunately, it is a "fake

onvergene" beause the minimum eigenvalue should be 0.05. We use the notation

from Chapter 3 to explain this situation. At step m, we have an approximate eigenpair

(λm,ym). λm an be represented as

λm = yT
mλmym = yT

mPT
mÃPmym = (Pmym)T ÃPmym.

So, λm > 0 sine Ã is positive de�nite. (The eigenvalues of Ã are all positive.) That's

why Â and Ã are similar, but the Ritz values here don't derease like the ones in

Figure 4.7.

If the orthogonalization in Step 9 of Algorithm 3.1 is done twie, Davidson method

will onverge to the proper extreme eigenvalues for all these three matries dedut here.
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The Sweep Method

Davidson method usually onverges within several iterations if the matrix is su�iently

diagonally dominant. Nevertheless, sometimes the onvergene is slower. When the

Ritz value is very lose to some eigenvalue, then it may require one hundred steps

to onverge. In this hapter, we will disuss a modi�ed method named as the sweep

method to redue the number of steps.

5.1 Jaobi-sweep Method

Before introduing the sweep method, we disuss its main idea �rst - Jaobi-sweep

method. Jaobi-sweep method is based on Jaobi rotations [7, pages 426�438℄. It is

used to searh for the extreme eigenvalues.

In the spae Rn, there exists an orthonormal basis B = {e1, e2, . . . , en}. Dividing

B into subsets of d elements yields a partition of B : B1,B2, . . . ,B⌈n
d
⌉. (the last subset

B⌈n
d
⌉ may ontain less vetors than d.) When Jaobi-sweep method is exeuted, we

need a normalized starting vetor s with its �rst d omponents equal to zero. We an

brief haraterize this method in the following way.

For i = 1 to ⌈n
d
⌉, do

1. De�ne the projetor P onto the subspae spanned by s and Bi as

P = s sT +
∑

ej∈Bi

ej eT
j . (5.1)

2. Calulate the eigenvetor y orresponding to the minimum eigenvalue λ of PTAP

with restrition to the spae spanned by the vetors in Bi, and rede�ne s = Py.
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3. If

As
.
= λs, (5.2)

then (λ, s) will be the approximate minimum eigenpair of A. Otherwise, make

next d omponents of s equal to zero, and then normalize it.

end do

We all this proedure "one sweep" or "sweeping one". After this proess is exe-

uted one time, there may be no onvergene. Then, we de�ne the �nal vetor s as the

starting vetor of the next sweep. It may onverge to the sought eigenvalue by a large

number of sweeps, and therefore it may prove to be useless for pratial reasons. In the

next setion, we disuss about how to use Jaobi-sweep method in pratie.

5.2 Main Idea

The main struture of the sweep method is similar to the methods mentioned in Chap-

ter 3. The main di�erene is Step 8 in Algorithm 3.1. The strategy in the sweep method

is as follows:

8. The sweep strategy : Sweep the Ritz vetor a �xed number of times and de�ne it

as gm+1.

In Davidson and Jaobi-Davidson methods, the residual vetor is modi�ed in Step 9,

however here we hange the diretion of the Ritz vetor by relaxing it by the sweep

method. That is a quite di�erent approah to onstrut the next Ritz vetor. We show

some results obtained using this approah in the next setion.

5.3 Results

We found that the sweep method has faster onvergene than Davidson and Jaobi-

Davidson methods. This phenomenon is demonstrated using the matrix Ā from Ex-

ample 1 in Chapter 4, but here we searh for the minimum eigenvalue.
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Figure 5.1 Convergene for the sweep method is faster than for Davidson method.

In Figure 5.1, the dashed line represents the onvergene history obtained with

ombined Davidson and the sweep methods. It uses Davidson method in the �rst 30

steps, and the sweep method later. The solid line represents the onvergene history

obtained when only Davidson method is used. We see the dashed line goes down faster

than the solid one, whih means that the sweep method has faster onvergene in this

ase.

In Figure 5.2, we use the sweep and Davidson methods for the matrix Ā. You an see

the dashed line is below the solid one, whih means that the sweep method needs fewer

steps to onverge. In the present implementation, the ost of the preonditioner for

the sweep method is more expensive than for Davidson and Jaobi-Davidson methods.

Therefore these methods ompete for time. It is possible that the sweep method is

faster than the other methods sine it needs muh fewer iterations, even though it osts

more time for preonditioning.

Now we introdue one kind of matrix that is alled the band matrix. For a band

matrix B, it has nonzero elements bi,j for 0 ≤ |i − j| ≤ ω, where ω is alled the
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Figure 5.2 Ā using the sweep and Davidson methods.

bandwidth of B. Our B is also diagonally dominant. Suppose

R = {(i, j) : bi,j is in the band region and i 6= j.}. (5.3)

To de�ne bh,k for (h, k) ∈ R, we use an array with n omponents alled o�diag. Eah

omponent of o�diag is generated as a uniform random number between -0.5 and 0.5.

If |o�diag(h) × o�diag(k)| is larger than a spei�ed value δ, then bh,k = 0. Otherwise,

bh,k = ζ × o�diag(h) × o�diag(k), (5.4)

where ζ is a positive real number. When δ is larger, the number of nonzero elements

in the band region exept the diagonal is larger. By ontrolling δ, we an hange the

perentage ρ of the nonzero elements in the band region exept the diagonal. Suppose

Z = {(i, j) ∈ R : |o�diag(i) × o�diag(j)| ≤ δ}, (5.5)

then let α =
P

(i,j)∈Z
|bi,j |

|Z|
represent the average magnitude of the nonzero elements in

the band region exept the diagonal. Sine

α =

∑

(i,j)∈Z |bi,j|

|Z|
= ζ

∑

(i,j)∈Z |o�diag(i) × o�diag(j)|

|Z|
, (5.6)
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α an be set to some value simply by hanging ζ. Our band matrix B is de�ned as

below:

bi,j =































β if i = j

γ for the probability ρ

0 for the probability 100% − ρ
if 1 ≤ |i − j| ≤ ω

0 if |i − j| > ω

,

where β is a uniform random number between -10 and 10, and γ is ζ × o�diag(i) ×

o�diag(j) where ζ is some positive value designated by α. We disuss the band matrix

B of small order 104 with ω = 500 and large order 106 with ω = 1000 respetively.

For small order, there are 1000 generated matries of the form B for eah ρ =

10%, 20%, . . . , 50% and eah α = 0.01, 0.02, . . . , 0.05. We use the sweep, Davidson,

and Jaobi-Davidson methods to �nd the minimum eigenvalue of these matries and

onsider whih method is faster. For the sweep method, we sweep Ritz vetors twie for

the sweep method. Unfortunately, the sweep method has a serious drawbak - the loss of

orthogonality. It needs two reorthogonalizations usually. The reason for this is beause

the Ritz vetor may hange only a little after preonditioning, so the preonditioned

vetor is very losed to the original subspae Km. Beause of this trouble, we use one

reorthogonalization for Davidson and Jaobi-Davidson methods but two for the sweep

method. We also restart the proedure every 30 iterations to redue the omputational

time (Setion 3.3.2). In Appendix B, we give results obtained with these methods. From

Table B.1 to Table B.5, the average exeution time for the sweep method is smaller than

for the other two methods. From Table B.6 to Table B.8, the winning times denotes

the number of being the fastest from 1000 matries. As α and ρ inrease, the winning

times of these two methods derease on average, i.e., the sweep method is the fastest

in most ases. The average steps of the sweep method is less than half the ones of the

other two methods. We take a sample for ρ = 30% and α = 0.03, and the result is the

following. In this ase, they have similar urves, but the one for the sweep method is

sharper. Beause of this phenomenon, the time for the sweep method is shorter, even

it needs more time for preonditioning.
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Figure 5.3 A sample for ρ = 30% and α = 0.03.

For large order, there are 100 generated matries for eah ρ = 10%, 12.5%, . . . , 20%

and eah α = 0.01, 0.0125, . . . , 0.02. The settings are almost the same with small

matries exept restarting every 10 iterations and sweeping Ritz vetors 3 times. Similar

results are presented in Appendix C, and the sweep method is faster again.

5.4 Conlusions

From the presented results, it is lear that the sweep method is faster than Davidson

and Jaobi-Davidson methods for most of the studied small and large matries. The

superiority of the sweep method is more obvious as ρ and α inrease, i.e., as the nu-

merial ost inreases. That means the sweep method may be even better for higher ρ

and α.

From Table 5.1, there are four ommon ases with the same ρ and α for small and

large matries. We just show the ratio of the average time for the sweep method to the

average time for Davidson method sine the results of Davidson and Jaobi-Davidson

are similar. From small to large matries, the ratio inreases and is larger than 1, so it
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is possible that the ratio for matries of higher order is even larger. We an guess that

the sweep method is faster than Davidson and Jaobi-Davidson methods for matries

of higher order.

Table 5.1 The ratio between the average time for Davidson method and the average

time for the sweep method for various values of ρ and α.

The probability The average Small matries Large matries

(ρ) (α)

10% 0.01 1.094086 1.734938

10% 0.02 1.34382 1.76378

20% 0.01 1.111489 1.66922

20% 0.02 1.422389 1.990131

The sweep method indiates two things. First, the iterative methods mentioned in

the thesis always hange the diretion of residual vetors, however the sweep method

hanges diretly the Ritz vetor. Although it needs to deal with the loss of orthogonality,

the sweep method still osts less time to onverge.

Seond, it osts just little time to preondition a vetor for general iterative meth-

ods. The sweep method tells us that we may need less steps to onverge the extreme

eigenvalues for preonditioning some spei�ed vetor more time. So it is ompetitive

for the sweep method sine it redues the number of iterations in general. The sweep

method gives us a quite di�erent way to searh the eigenvalue.
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Appendix A

Program Codes

A.1 Main Program

! ORDER FOR ORDER OF A

! P FOR THE COLUMNS OF SUBA

! LIMIT FOR ROWS OF G

! TYPE=1:MAXIMUM AND TYPE=0:MINIMUM

! E_VECTPR IS THE INITIAL VECTOR FOR INPUT AND EIGENVECTOR FOR OUTPUT

! E_VALUE IS THE MIN EIGENVALUE IF TYPE=0 AND MAX ONE IF TYPE=1

! ===================================================================

subroutine general(way,diag,offdiag,order,an,limit,type,repeat,e_vetor,

e_value,show,step,sweeps,population,prob1,prob2,offarray,nonzero,total,

position,blokA,blok_offarray,blok_nonzero,blok_total,blok_position)

impliit none

harater(1):: way

integer:: order,limit,type,an,sweeps,step,hek,repeat,show,population

integer:: i, j, k, m, q, r, INFO, LWORK, total, blok_total

real(kind=8):: ddot,dnrm2,sum,maks,e_value,prob1,prob2

real(kind=8), dimension(:), alloatable:: WORK

real(kind=8), dimension(order):: Avetor, diag, e_vetor, WR, offdiag, res

real(kind=8), dimension(order,an):: blokA
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real(kind=8), dimension(limit,limit):: F, GAG

real(kind=8), dimension(limit,order):: G, GA

integer, dimension(order+1):: position, blok_position

integer, dimension(total):: offarray

integer, dimension(blok_total):: blok_offarray

real(kind=8), dimension(total):: nonzero

real(kind=8), dimension(blok_total):: blok_nonzero

step=1

hek=1

! PRODUCE NORMALIZED INITIAL VECTOR

! =================================

sum=dnrm2(order,e_vetor,1)

all dsal(order,1.0d0/sum,e_vetor,1)

all dopy(order,e_vetor,1,G,limit)

do while(step<=order)

! DETERMINE AND DIAGONALIZE GAG

! =============================

do i=1,order

GA(hek,i)=0.0d0

do j=position(i),position(i+1)-1

GA(hek,i)=GA(hek,i)+nonzero(j)*G(hek,offarray(j))

end do

GA(hek,i)=GA(hek,i)+diag(i)*G(hek,i)

end do
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all dgemv('N',hek,order,1.0d0,GA,limit,G(hek,1),limit,0.0d0,

GAG(1,hek),1)

do i=1,hek

all dopy(i,GAG(1,i),1,F(1,i),1)

end do

LWORK=-1

ALLOCATE(WORK(1))

all dsyev('V','U',hek,F,limit,WR,WORK,LWORK,INFO)

LWORK=INT(WORK(1))

DEALLOCATE(WORK)

ALLOCATE(WORK(LWORK))

all dsyev('V','U',hek,F,limit,WR,WORK,LWORK,INFO)

DEALLOCATE(WORK)

! PRODUCE RITZ VECTOR

! ===================

r=(1-type)+hek*type

e_value=WR(r)

all dgemv('T',hek,order,1.0d0,G,limit,F(1,r),1,0.0d0,e_vetor,1)

all dgemv('T',hek,order,1.0d0,GA,limit,F(1,r),1,0.0d0,Avetor,1)

do i=1,order

res(i)=Avetor(i)-e_value*e_vetor(i)

end do

sum=dnrm2(order,res,1)

if(show==1) write(*,'(i5,4ES25.16)')step,sum,e_value
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! ORTHOGONALIZATION

! =================

if(sum<1.0d-8) then

if(show==0)write(*,'(i5,2ES25.16,25X,ES25.16)')step,sum,e_value

exit

else if(hek<limit) then

step=step+1

hek=hek+1

selet ase(way)

ase('D')

all davidson(order,res,Avetor,diag,e_value,sum)

all dsal(order,1.0d0/sum,Avetor,1)

ase('J')

all jaobi_davidson(order,res,e_vetor,Avetor,diag,

e_value,sum)

all dsal(order,1.0d0/sum,Avetor,1)

ase('S')

all jsweep(diag,offdiag,order,type,an,e_value,e_vetor,

Avetor,sweeps,offarray,nonzero,total,position,

population,prob1,prob2,blokA,blok_offarray,

blok_nnzero,blok_total,blok_position)

all dopy(order,e_vetor,1,Avetor,1)

end selet

do q=1,repeat

all dopy(hek-1,0.0d0,0,WR,1)
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do j=1,hek-1

maks=0.0d0

do i=1,hek-1

sum=0.0d0

if(WR(i)==0.0d0) then

sum=ddot(order,G(i,1),limit,Avetor,1)

if(abs(sum)>=abs(maks)) then

maks=sum

m=i

end if

end if

end do

WR(m)=1.0d0

all daxpy(order,-maks,G(m,1),limit,Avetor,1)

sum=dnrm2(order,Avetor,1)

all dsal(order,1.0d0/sum,Avetor,1)

end do

end do

all dopy(order,Avetor,1,G(hek,1),limit)

else

step=step+1

hek=1

all dopy(order,e_vetor,1,G,limit)

end if

end do

end subroutine
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A.2 Davidson Preonditioner

impliit none

integer:: i, order

real(kind=8):: e_value, sum, dnrm2

real(kind=8), dimension(order):: res, Avetor, diag

do i=1,order

Avetor(i)=res(i)/(diag(i)-e_value)

end do

sum=dnrm2(order,Avetor,1)

end subroutine

A.3 Jaobi-Davidson Preonditioner

subroutine jaobi_davidson(order,res,e_vetor,Avetor,diag,e_value,sum)

impliit none

integer:: i, order

real(kind=8):: e_value, sum, dnrm2, ddot

real(kind=8), dimension(order):: e_vetor, Avetor, diag, D, res

do i=1,order

D(i)=e_vetor(i)/(diag(i)-e_value)

Avetor(i)=res(i)/(diag(i)-e_value)

end do

sum=ddot(order,D,1,e_vetor,1)
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sum=ddot(order,Avetor,1,e_vetor,1)/sum

do i=1,order

Avetor(i)=sum*D(i)-Avetor(i)

end do

sum=dnrm2(order,Avetor,1)

end subroutine

A.4 Sweep Preonditioner

subroutine

jsweep(diag,offdiag,order,type,an,e_value,e_vetor,Avetor,sweeps,offarray,

nonzero,total,position,population,prob1,prob2,blokA,blok_offarray,

blok_nonzero,blok_total,blok_position)

! ORDER : THE ORDER OF MATRIX

! TYPE : TYPE=0, THE MIN EIGENVALUE ; TYPE=1, THE MAX EIGENVALUE

! CAN : THE NUMBER TO DIAGONALIZE ONCE

! SWEEPS : LIMIT THE NUMBER OF SWEEPS

! ==============================================================

impliit none

integer:: i, j, start_an, p, var, LWORK, INFO, ount, sweeps, row, olumn,

population, total, blok_total, order, type, an

real(kind=8):: norm,e_value,dnrm2,ddot,oef,sum,prob1,prob2,a,b,,d,e

real(kind=8), dimension(an):: adv

real(kind=8), dimension(order):: WR, res, e_vetor, Avetor, diag, offdiag

real(kind=8), dimension(an+1,an+1):: GAG

real(kind=8), dimension(order,an):: blokA
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real(kind=8), dimension(:), alloatable :: WORK

integer, dimension(order+1):: position, blok_position

integer, dimension(total):: offarray

real(kind=8), dimension(total):: nonzero

integer, dimension(blok_total):: blok_offarray

real(kind=8), dimension(blok_total):: blok_nonzero

var=an

start_an=1

ount=0

oef=1.0d0

! THE MAIN PROGRAM

! ================

do while(start_an<=order)

! CONSTRUCT GAG(1,1)

! ==================

100 all dopy(var,0.0d0,0,adv,1)

do i=1,var

row=start_an-1+i

do j=blok_position(row),blok_position(row+1)-1

adv(i)=adv(i)+blok_nonzero(j)*e_vetor(blok_offarray(j))

end do

end do

if(Avetor(start_an)==adv(1).and.an==1) then

if(start_an<=order-1) then

start_an=start_an+1
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else

start_an=1

ount=ount+1

sum=dnrm2(order,e_vetor,1)

all dsal(order,1.0d0/sum,e_vetor,1)

oef=1.0d0

end if

go to 100

end if

GAG(1,1)=ddot(var,Avetor(start_an),1,e_vetor(start_an),1)

GAG(1,1)=e_value-2.0d0*GAG(1,1)/(oef*oef)

+ddot(var,adv,1,e_vetor(start_an),1)/(oef*oef)

! NORM OF THE STARTING VECTOR

! ===========================

norm=0.0d0

do i=0,var-1

norm=norm+e_vetor(start_an+i)*e_vetor(start_an+i)/(oef*oef)

end do

norm=sqrt(1.0d0-norm)

! CONSTRUCT GAG

! =============

GAG(1,1)=GAG(1,1)/(norm*norm)

do i=0,var-1

GAG(1,2+i)=(Avetor(start_an+i)-adv(1+i))/(norm*oef)

end do
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do i=0,var-1

do j=i+1,var

GAG(2+i,j+1)=blokA(start_an+i,j)

end do

end do

! DIAGONALIZE

! ===========

if(an>=1) then

LWORK=-1

ALLOCATE(WORK(1))

all dsyev('V','U',var+1,GAG,an+1,WR,WORK,LWORK,INFO)

LWORK=INT(WORK(1))

DEALLOCATE(WORK)

ALLOCATE(WORK(LWORK))

all dsyev('V','U',var+1,GAG,an+1,WR,WORK,LWORK,INFO)

DEALLOCATE(WORK)

else

if(type==0) then

a=GAG(2,2)-GAG(1,1)

b=GAG(1,2)*GAG(1,2)

=sqrt(a*a+4.0d0*b)

WR(1)=(GAG(1,1)+GAG(2,2)-)/2.0d0

d=a+

e=sqrt(2.0d0*(a*d+4.0d0*b))

GAG(1,1)=d/e

GAG(2,1)=-2.0d0*GAG(1,2)/e

else

a=GAG(2,2)-GAG(1,1)
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b=GAG(1,2)*GAG(1,2)

=sqrt(a*a+4.0d0*b)

WR(1)=(GAG(1,1)+GAG(2,2)+)/2.0d0

d=a-

e=sqrt(2.0d0*(a*d+4.0d0*b))

GAG(1,1)=d/e

GAG(2,1)=-2.0d0*GAG(1,2)/e

end if

end if

! RITZ VECTOR

! ===========

p=(1-type)+(var+1)*type

e_value=WR(p)

if(GAG(1,p)/=0) then

oef=oef*norm/GAG(1,p)

else

all dopy(order,0.0d0,0,e_vetor,1)

oef=1.0d0

end if

do i=0,var-1

e_vetor(i+start_an)=GAG(i+2,p)*oef

end do

if(start_an>=order-an+1) then

ount=ount+1

sum=dnrm2(order,e_vetor,1)

all dsal(order,1.0d0/sum,e_vetor,1)
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oef=1.0d0

end if

if(sweeps==ount) then

exit

else

if(start_an<=order-2*an+1) then

start_an=start_an+an

else if(order-2*an+1<start_an.and.start_an<=order-an) then

start_an=start_an+an

var=order-start_an+1

else

start_an=1

var=an

end if

! CALCULATE AVECTOR(START_CAN)~AVECTOR(START_CAN-1+VAR)

! =====================================================

do i=1,var

row=start_an-1+i

Avetor(row)=0.0d0

do j=position(row),position(row+1)-1

Avetor(row)=Avetor(row)+nonzero(j)*e_vetor(offarray(j))

end do

Avetor(row)=Avetor(row)+diag(row)*e_vetor(row)

end do

end if

end do

end subroutine
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Numerial Results for Small Matries

Table B.1 The average time for the probability ρ = 10%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 0.062836 0.068748 0.068764

0.02 0.09231 0.124048 0.125003

0.03 0.135992 0.216126 0.219582

0.04 0.185576 0.317008 0.318536

0.05 0.224782 0.39046 0.395705

Table B.2 The average time for the probability ρ = 20%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 0.101974 0.113343 0.114015

0.02 0.197756 0.281286 0.28361

0.03 0.316548 0.499815 0.503755

0.04 0.390496 0.640088 0.64588

0.05 0.432939 0.733578 0.73815
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Table B.3 The average time for the probability ρ = 30%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 0.189604 0.221786 0.22305

0.02 0.380996 0.542062 0.547262

0.03 0.548002 0.855689 0.864358

0.04 0.611762 1.020124 1.029784

0.05 0.641472 1.136819 1.140071

Table B.4 The average time for the probability ρ = 40%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 0.292798 0.338709 0.340813

0.02 0.589781 0.842349 0.846137

0.03 0.710656 1.112726 1.123538

0.04 0.784949 1.347352 1.352365

0.05 0.795142 1.396915 1.40682

Table B.5 The average time for the probability ρ = 50%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 0.389864 0.444352 0.445956

0.02 0.801734 1.126114 1.134751

0.03 0.93175 1.463695 1.481317

0.04 0.955312 1.66718 1.678661

0.05 0.953868 1.733344 1.748633
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Table B.6 The pairs (the winning times, the average iterations) derived by the sweep

method.

ρ

α 10% 20% 30% 40% 50%

0.01 (573, 5.456) (682, 6.547) (693, 7.338) (696, 8.077) (653, 8.823)

0.02 (899, 7.57) (969, 9.946) (965, 12.833) (970, 14.939) (948, 16.287)

0.03 (967, 9.971) (990, 14.441) (994, 17.323) (990, 18.726) (985, 19.592)

0.04 (988, 12.592) (998, 17.238) (996, 19.161) (995, 20.045) (995, 20.593)

0.05 (995, 14.637) (998, 18.84) (998, 20.09) (1000, 20.611) (998, 21.09)

Table B.7 The pairs (the winning times, the average iterations) derived by Davidson

method.

ρ

α 10% 20% 30% 40% 50%

0.01 (217, 11.271) (198, 13.889) (142, 15.865) (149, 17.601) (156, 19.531)

0.02 (50, 16.559) (17, 22.77) (14, 30.769) (12, 38.066) (25, 43.083)

0.03 (15, 22.787) (9, 36.311) (0, 47.686) (4, 55.234) (6, 60.804)

0.04 (9, 30.524) (1, 47.136) (1, 57.878) (4, 64.992) (1, 70.821)

0.05 (4, 37.469) (0, 54.924) (1, 64.413) (0, 70.213) (0, 76.375)

Table B.8 The pairs (the winning times, the average iterations) derived by Jaobi-

Davidson method.

ρ

α 10% 20% 30% 40% 50%

0.01 (210, 11.205) (120, 13.837) (165, 15.85) (155, 17.601) (191, 19.518)

0.02 (51, 16.558) (14, 22.797) (21, 30.802) (18, 38.097) (27, 43.186)

0.03 (18, 22.82) (1, 36.364) (6, 47.805) (6, 55.242) (9, 61.008)

0.04 (3, 30.559) (1, 47.174) (3, 57.931) (1, 64.787) (4, 70.642)

0.05 (1, 37.516) (2, 54.878) (1, 64.286) (0, 70.063) (2, 76.607)



Appendix C

Numerial Results for Large Matries

Table C.1 The average time for the probability ρ = 10%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 43.096533 74.769833 72.079305

0.0125 51.19984 87.508189 85.684355

0.015 58.467133 98.713169 103.46567

0.0175 83.272124 154.660466 154.72179

0.02 89.375946 157.640172 163.106513

Table C.2 The average time for the probability ρ = 12.5%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 61.834624 97.997804 98.646445

0.0125 82.823576 135.83201 146.78233

0.015 100.787779 161.225316 164.869424

0.0175 126.848448 263.170247 275.815357

0.02 159.84147 300.086794 306.167374
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Table C.3 The average time for the probability ρ = 15%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 64.034402 95.04318 98.826696

0.0125 73.534956 123.3267 126.3869

0.015 141.112899 245.788761 241.473291

0.0175 169.726287 320.411985 317.161061

0.02 187.175658 338.999426 329.843054

Table C.4 The average time for the probability ρ = 17.5%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 100.431357 160.755727 167.475867

0.0125 133.102918 209.980443 218.225558

0.015 171.080092 279.142045 295.348738

0.0175 199.352339 355.561821 360.17815

0.02 198.034576 365.092777 372.140057

Table C.5 The average time for the probability ρ = 20%.

The average Sweep method Davidson Jaobi-Davidson

(α) (se) (se) (se)

0.01 109.211465 182.297913 191.092943

0.0125 158.637674 269.461160 277.743598

0.015 172.33437 331.339107 336.010559

0.0175 191.763305 341.984853 349.542765

0.02 161.006742 320.424625 321.654542
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Table C.6 The pairs (the winning times, the average iterations) derived by the sweep

method.

ρ

α 10% 12.5% 15% 17.5% 20%

0.01 (83, 6.87) (92, 7.95) (82, 8.51) (94, 9.83) (94, 11.1)

0.0125 (95, 8.28) (96, 10.35) (87, 10.87) (91, 12.5) (93, 15.59)

0.015 (94, 9.91) (95, 12.39) (95, 15.53) (88, 17.73) (94, 19.58)

0.0175 (92, 13.3) (95, 15.74) (89, 18.49) (94, 24.11) (94, 26.52)

0.02 (93, 15.32) (96, 19.01) (94, 22.24) (93, 27.72) (97, 29.48)

Table C.7 The pairs (the winning times, the average iterations) derived by Davidson

method.

ρ

α 10% 12.5% 15% 17.5% 20%

0.01 (3, 24.68) (1, 27.96) (4, 30.3) (4, 39.1) (2, 51.3)

0.0125 (2, 30.12) (1, 40.3) (9, 44.42) (2, 50.72) (3, 69.26)

0.015 (3, 36.26) (3, 49.03) (2, 67.55) (6, 71.67) (1, 98.79)

0.0175 (5, 58.84) (3, 74.7) (5, 85.64) (5, 109.93) (3, 126.4)

0.02 (3, 60.83) (3, 85) (5, 100.3) (3, 134.69) (1, 154.17)

Table C.8 The pairs (the winning times, the average iterations) derived by Jaobi-

Davidson method.

ρ

α 10% 12.5% 15% 17.5% 20%

0.01 (14, 24.5) (7, 27.83) (14, 30.12) (2, 39.6) (4, 51.09)

0.0125 (3, 29.85) (3, 41.05) (4, 44.27) (7, 51.61) (4, 69.23)

0.015 (3, 36.86) (2, 48.6) (3, 66.5) (6, 74.26) (5, 97.66)

0.0175 (3, 57.73) (2, 76.04) (6, 83.9) (1, 109.14) (3, 125.7)

0.02 (4, 60.24) (1, 84.83) (1, 98.4) (4, 132.63) (2, 154.37)


