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Abstract

In this paper we introduce level set method to solve heat equation on interface with
Cartesian coordinate. Then we couple level set method and VVolume-of-Fluid method
to simulate two-phase flow for interface property and conserve the volume of inner
area. Finally we add insoluble surfactant on the interface when simulating two-phase

flows and observe the impact of surfactant on interface.
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1 Introduction

In this article, we introduce two methods which are Level Set Methed and
Volume-of-Fluid Method to simulate two-phase flows. The Level set method
is developed mainly by S. Osher[1] and J. A. Sethian[2] and the application of
level set method is very wide like solving Stefan problem[9] or solving PDEs
on surface[12, 15, 16, 18, 19]. In our article we also introduce how to solve
heat equation on circle by Local Level Set Method.

To simulate two-phase flows problem, [6, 7] use level set method to sim-
ulate the interface motion under two-phase flows. If we just use level set to
simulate, then the inner area of interface will not be conserved. The reason
that inner area does not conserve is the scheme of level set method do not
have this property. Although using level set to simulate the interface under
two-phase flows is very easy and the method can be adapted to topology
changing of interface, the method also has the critical drawback which is
volume does not conserve.

To overcome the conservation of inner area, Hirt and Nichols[3] devel-
oped Volume-of-Fluid Method to handle the conservation of inner area. This
method is mainly to handle the volume conservation issue and the method
is also adapted to topology changing of interface as level set method.But
the drawback of VOF method is how to describe the interface.If we just use
VOF method, we will face on an issue which is how to reconstruct interface
only using VOF method[10, 11] which is not as easy as level set method to
describe interface.

So, [14, 17] coupled VOF and level set method to simulate two-phase flows
for axisymmetric case and two-dimensional case respectively. In our article
we mainly refer the method of [17] to simulate for the two-dimensional case.

The insoluble surfactant on the interface in two-phase flow is also an
interesting topic and [21] use IIM and local level set method to handle two-
phase flows with surfactant. We refer the local level set method of [21] and
the coupled VOF and level set method to handle the two-phase flows with
surfactant.

In this article we first introduce solving PDE on circle by level set method
which relates the reinitialization of level function by ENO or WENO schemel[4,
5, 13] and then we use coupled VOF and level set method to simulate two-
phase flows without surfactant for two-dimensional case. Finally we couple
above two topics to simulate two-phase flow with surfactant.



2 Navier-Stokes Equations

2.1 Introduction

In order to simulate two-phase flows with the interface we need the model
which simulates the motion of two-phase flows. This model is Navier-Stokes
equations

p(u + (u-V)u) = =Vp+pg — orn+ V- u[Vu+ (Vu)”] (1)
V.ou=0

where u:velocity,p:density, p:pressure, p:viscosity, g:gravity and cxn denotes
the surface tension of the interface where o:surface tension coefficient, x:curvature
on interface and n:normal on interface.

2.2 Numerical Scheme

We solve Navier-Stokes equation by two steps as follows.

Stepl Prediction:
We solve first step by Crank-Nicholson method in time

n+% 1 2 n+%
(V- (a1 Vu) = Fmu) =2Vp" 2 = o = V- (uvw)” (2)
+ (3F" —F" 1)

where

F — pluu, +vuy) — (pvg)y — (pug)e — fi
p(uvy +vvy) — (pvy)e — (g )y — fo

and f = (fi, f2) means the external force term (pg — okn)
Note that "1 and p’”% are computed by extrapolation as follows

Iun+l — 2/1” _ anl

3 1

_“n __ = n—1
LT

1
n+2

p

and Eq.(2) becomes Poisson type equation and can be solved by linear
system for u*.



Step2 Projection:
Since the new u* is not diverge free, we apply this step to correct u* to
be diverge free which means V - u = 0 and then compute new pressure
term Vp"+%.By Helmholtz-Hodge decomposition, we have

u* —= un+1 + Atvq/]n—i_l

V-u"tt =0
So we have
1 un+1 —u* "
pn+2 T — _vw +1
and then take divergence we have
Vl/Jn+1 V-u*
A ( n+i ) ¥ At
p 2

After getting V¢ we have
At

unJrl it

Vpn+% L Vpnf% VY + V- (MnJrl(unJrl . u*>>
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3 Solving PDE on Interface by Level Set Method

3.1 Introduction

In the numerical simulation of partial differential equations, we usually en-
counter the problem of handling interface, for example:two-phase flows of
Navier-Stokes equation or heat equation on the interface which is irregular
or high dimensional. To describe the interface is the main issue when solving
PDE with interface problem. We use level set function which we will have
details later. There are many advantages that level set method provides, for
example the interface can be easy presented and when normal vector on the
interface are needed, it also can be calculated easily by level set method.
Our goal in this chapter is to solve heat equation on the circle which means
that the heat quantities just diffuse on the circle and do not diffuse out of
circle.As we just use Cartesian grid computational domain, how do we handle
this problem? We will give details step by step.

3.2 Level Set Function and Signed Distance Function
3.2.1 Level Set Function

The concept of level set function is very simple. We let the symbol ¢ to
represent level set function.On the interface, ¢ is defined to be zero which is
zero level set, outside the interface we define ¢ > 0 and inside the interface
we let ¢ < 0. With the help of level set function, we can easily distinguish
points which are inside or outside the interface.(See figurel)

3.2.2 Signed Distance Function

Next we will explain what the signed distance function is. Let a point
P(z0,y0) which is arbitrary and we have level function ¢ .If the value of
®(P) is equal to the distance from P to the interface,we call that ¢ is signed
distance function. Maybe this description is not clear enough, let us take a
example

Example.1 We take a level function of circle, (See figurel)

¢(x7y) = \/m_l

with center O(0,0) and radius r = 1 and we claim that ¢ is signed dis-
tance function. Note that O is inside interface and distance from O to inter-
face is 1, then we find that ¢(0,0) = —1 where — represent inside interface
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Figure 1: (a)Definition of level function ¢ (b)Figure of example.l

and 1 denote the distance. A(1,0) is on the interface and we find that
#(1,0) = 0 and B(1.5,0) is outside interface with distance 0.5 to interface,
so ¢(1.5,0) = 0.5.Since ¢ is signed distance function, we have such pretty

property.

From the above example we can figure out the meaning of signed distance
function. So for any point plugging into ¢, we can know the point is out-
side,inside or on the interface and the distance from point to interface is also
known when ¢ is signed distance function.

3.2.3 How To Distinguish Signed Distance Function?

In few cases we can just write down the signed distance function as math-
ematical formulation exactly like example.1. Since circle have very good
properties, so the above example of circle is special case. Note that the level
function of unit circle is not only one case. Consider that ¢(z,y) = 2% +y>—1
is also a level function for unit circle, but unfortunately,it is no longer a signed
distance function. Let us take a test,plug B into ¢ we get ¢(1.5,0) = 1.25 is
not equal to 0.5, so this level function is not signed distance function.
Actually, signed distance function has a very good property which is
IV¢| = 1 and it is also a condition to check whether a level function is a
signed distance function or not. For computing normal n = %, if ¢ is
signed distance function, we can calculate n more accurately and n = V¢
where V¢ can be calculated by central difference and get second order for n.
If ¢ is not signed distance function then n = % will be first order accuracy
and may not accurate enough, this is why using signed distance function to



calculate n will be better.

Most of level set functions are not signed distance function. For example,
the level function of ellipse:¢(x,y) = \/(%)? + (¥)*—1is not a signed distance
function.It is easy to check that |[V¢| # 1. In order to let readers understand
more about signed distance function and distinguish whether level function
is signed distance function or not, we contour three level functions in the

following :
Pz, y) = Vat+y* =1 (3)

o) = (02 7)1 )
) = (o + (o -1 )

for ¢-values [—20Az : 5Az : 20Ax] as in figure2.

Note that ¢, and ¢9 are both level function of unit circle and ¢3 is level
function for ellipse. In Eq.(1),the distance between any two adjacent level
curves are the same and equal to Az, that is why we call Eq.(1) is signed
distance function. Eq.(2) and Eq.(3) do not have such nice property and
the distance between any two adjacent level curves are not the same. So
when calculating normal on interface, signed distance function will be more
accurate. Now we have introduced another method to distinguish signed
distance function which is to observe the contour of ¢.

Remark

The fifth level curve of each ¢ in figure2 is the interface, that is ¢ = 0.We
will find that the location of ¢ = 0 of Eq.(1) and Eq.(2) are at the same
location since they are both level functions for unit circle and ¢ = 0 denotes
the interface.

Since most level functions are not signed distance function and the exact
mathematical form of signed distance function is hard to find, so how do
we handle this problem? In the next section, we will introduce the Re-
initialization process which can overcome the problem.

3.3 Re-initialization

In this section, we introduce how to modify a level function which is not a
signed distance function into a signed distance function. The process is not
complicated and it involves solving a PDE to steady state as follow:

¢+ 5(¢0)([Ve] —1) =0 (6)
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where

1 inQ"
S(¢0) = —1 in Q~
0 on 0N

Let us explain the meaning of Eq.(6) first. Consider a PDE which similar
to Eq.(6) :

¢+ Vol = f(x) (7)

If we solve Eq.(7) to steady state, we will get that |V¢| = f(x). Since
signed distance function has a property |V¢| = 1, so if the level function ¢
is not signed distance function(i.e. |V¢| # 1), we use the concept of Eq.(7)
to enforce |V¢| = 1, that is to solve :

¢+ Ve =1 (8)

From Eq.(7) we know that the information is propagated in the normal di-
rection. So the information is carried from small ¢-value to large ¢-value.
So we hope the information propagated from interface(i.e. ¢ = 0). But if we
solve Eq.(8) for whole domain €2, since the level function is negative inside
interface,so the information is propagated from the 2~ and obviously it is
wrong.

So if we solve Eq.(8) in Q" U 9 then it means that the information is
propagated form interface to Q1 and it make sense. Similar concept, we want
the information propagated from interface to {27, so we solve the equation :

¢ — Vo] = -1 (9)

in the domain 2~ U 0.

Finally we couple Eq.(8) and Eq.(9) to get Eq.(6). Solving Eq.(6) to
steady state, we have |V¢| — 1 = 0(i.e. |V¢| = 1) and that is the goal of
reinitialization. Note that if ¢ = 0 denotes the interface, then after reinitial-
ization process, = 0 is static and do not change it’s value since S(¢g) = 0
on 0€). So the reinitialization process ensure that the location of interface
will not be changed.

3.4 Spatial Discretization for Reinitialization Process

In this section, we will describe how to handle |V¢| in Eq.(6). If we just use
central difference to compute |V¢| , then we will get terrible result.Before
handling this term, let us look at 1D example :

8



Example.2 (Burger’s equation)

u +uu, =0 (10)
We discretize u, in Eq.(10) by upwind difference.We denote :

Diu = —UZHA; Y and D;u= Ui~ tint _Azifl
Note that the coefficient © of u, decides the information from which direc-
tion. That is, if u > 0 we know that the characteristics come from left side
so we use D; u to compute (u;),. On the other hand, if u < 0,it means that
the information and characteristics come from right side so we use D; u to
compute (u;)g.

The above equations explain what is upwind difference for 1D case.Note
that Eq.(6) and Eq.(10) are similar for some sense,but Eq.(6) is a 2D PDE
and is not as simple as Eq.(10) when handling first derivative term.

3.4.1 Godunov’s Method

Since Eq.(6) is a 2D PDE which is not as simple as Eq.(10), we introduce
Godunov’s Method to handle |V¢| in Eq.(6). Actually, Godunov’s method
uses the same concept which is characteristic coming from which direction.
But in 2D domain you may doubt that the characteristic can come from
infinite directions and how to decide? To overcome this problem, we just
simplify and separate z-direction and y-direction to compute respectively
that is just compute ¢, and ¢, respectively. Since we know the information
propagated from interface, so when computing (¢; j)., we choose the point
of ¢;y1,; and ¢;_1; by the direction of information propagating and then
compute (¢;;),. For exampleif (i,j) is outside interface and if ¢;_;,; <
¢ij < ¢iy1; which means (¢ — 1,7) is nearest interface within these three
points and the information is propagated from ¢;_;; to ¢;y1;, so we use
D¢ = % On the other hand, if ¢;_1; > ¢;; > ¢;41,; which means
information comes from ¢; 1 ; to ¢;_1;, then we use D,L-quﬁ = W

Having the basic concept of Godunov’s mothod, we find that in some sense
this method is as upwind method. Here we describe Godunov’s method for
solving Eq.(6) in the following :

Details of Godunov’s Method

1. If ¢;; > 0 which means the point is outside interface, then

9



(a) If D¢ > 0 and D; ;¢ > 0 then it means ¢;_1 ; < ¢;; < ¢ir1,; and
(¢i,j>m = D;jgb

(b) If Df;¢ < 0 and D ;¢ < 0 then it means ¢;_1; > ¢;; > ¢iy1,; and
(¢i,j)x = D:FJ

(c) If D¢ < 0 and D; ;¢ > 0 then it means ¢;—1; < ¢;; and ¢;; >
®it1,5. In this case, the information comes form both two sides
and we treat the shock by the larger influence between D and
D, that is (¢ ;). = max(|D;l,|D}])

(d) If D;r](ﬁ Z 0 and D;](b S 0 then it means ¢i—1,j Z ¢i,j and (bi,j S
¢i+1,; and the information flow to both sides from (z, j). This does
not make sense since interface do not pass grid (,7). So in this
case we just set (¢; ), = 0.

2. If ¢; ; < 0 which means the point is inside interface.
(Note that inside interface the ¢-value is negative and if ¢ is larger, it
is much near the interface.)

(a) If D;qu > 0 and D;]gb > 0 then it means gbi—l,j < gzﬁi,j < ¢i+17j and
(¢ij)z = D0

(b) If D:J¢ < 0 and D;]¢ < 0 then it means Qbi—l,j > ¢i,j > ¢i+1,j and
(¢ij)e = D ;0

(c) If D¢ > 0-and D; ;¢ < 0 then it means ¢;_1; > ¢;; and ¢;; <
®it1,4. In this case, the information comes form both two sides

and we treat the shock by the larger influence between D and
D;“j, that is (¢; ). = max(\Di_,jL |D;LJ])

(d) If D:jgzﬁ < 0and D;;¢ > 0 then it means ¢; 1; < ¢;; and ¢;; >
¢i+1,; and the information flow to both sides from (¢, j). This does
not make sense since interface do not pass grid (4, 7). So in this

case we just set (¢;;), = 0.

After simplifying the Godunov’s method as above, the scheme is obvious
and easy to implement by numerical computing. Here we give three remarks
as follows:

Remark

1. In Godunov’s method, we discetize ¢, by one-sided difference, so the
scheme is first order accurate.

2. The cases ¢ > 0 and ¢ < 0 are opposite since the signed function S(¢y)
is 1 outside interface and —1 inside interface.

10



3. The y-direction case ¢, is as same as computing ¢,. So after solving
¢, and ¢, the spatial discretization of [V¢| in Eq.(6) is complete.

3.4.2 Second-Order Hamilton-Jacobi ENO Scheme

Since the Godunov’s method is first order, if we want the scheme more pre-
cise, we introduce second-order ENO (essential non-oscillatory) scheme to
discretize. The ENO scheme is based on Godunov’s method for first-order
term which described above when solving Eq.(6). We write the Taylor ex-
pansion of ¢:

o) =6@) + @ -5+ L@z

If we use D~ ¢;, then it means we plug x; and z;_; into Eq.(11) and get
(¢;)z. Now the ENO scheme is to add a adjacent point plug into Eq.(11).
The point is chosen to be much smooth between two sides. Let us take a
example to explain :

Example.3 If Godunov’s method tell us that we choose the point x; 4
when computing (¢;), then we need to choose another point between x;
and x;_5 to plug into Eq.(11) and get second-order result. We want choose
much smooth side point so we need some criterion for choosing point. Let
us denote:

ATP(1;) = P(wig1) — d(x3)

A7 ¢(z;) = () — ¢(zi-1)

ATATG(x;) = Pwit1) — 20(x) + ¢2i-1)
ATATG(zi 1) = d(x;) — 20(i1) + B(7;2)

Then if |A~AT¢(z;-1)] < |A~AT¢(x;)| which means left side is much smooth
and we choose the point x; 5 to plug into Eq.(11). Otherwise we choose ;1
to plug into Eq.(11). No matter what point is chosen, the scheme is always
second-order.

Now we describe the whole process for 1D case for ENO scheme based
on Godunov’s method :

1. If we use D~ ¢ for first-order discretization to compute (¢;),

11
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Figure 3: (a).left-biased (b).right-biased

(a) If [A"AT(x; 1) < |[ATATp(x;)|,then

¢(xi) — ¢(wi1) n P(xi) — 20(xi-1) + d(xi—9)
Ax 2Ax
3o(x;) — 4Pp(wizq) + o(zi—2)
2Ax

(b) If [A~A*¢(zi1)| > |A~ A ¢(x;)| then

(60, =380 196 M) 200 + oo
] d(riv1) — d(xiiq)
2Ax

(9i)e =

2. If we use DT ¢ for first-order discretization to compute (¢;),
(a) If [A"A%¢(z;)| < |ATA*@(@i41)],then

P(Tiv1) — () n P(xiy1) — 20(x;) + d(w51)
Azx 2Ax
3¢(wit1) — 49(x;) + ¢(wi1)
2Ax

(b) If [A~A*(x,)| > |AA*(xi1)] then

(0, = 20 = 9w) | Plries) = 20ain) 4 9(a)
_ P(Tiv2) — P(21)
2Az

(01)e =

(18)

(19)

To handle 2D case, it is as the same method and we split the domain
into x-direction and y-direction to handle respectively. Here we have intro-
duced the second-order ENO scheme for solving Hamilton-Jacobi equation

like Eq.(6). Next we will introduce more higher order scheme.

12



3.4.3 Third-Order ENO Scheme

The third-order ENO scheme for spatial is based on second-order ENO
scheme which is based on Godunov’s method, so we realize that the concept
of Godunov method is very important when solving Eq.(6). In second-order
ENO, we use three points to calculate ¢, and get second-order result, the
third-order is as the same concept as ENO-2. While deciding which three
points are needed, we still demand one point to reach third order ENO(ENO-
3) which is either left side or right side adjacent point. The fourth point is
also chosen in smoother side and the criterion is similar to above ENO-2.
Since the concept is similar, we do not take example again and we just give
the details of algorithm as below:

1. If we use D~ ¢ for first-order discretization to compute (¢; ),
(a) I |ATAT)(z;1)] < |ATAT@(x;)|,then
i If |A_A_A+(bi_1| ~ ‘A+A_A+¢Z'_1|
¢(z;) = @(xic1) | (@) = 2¢(zi—1) + H(wi—2)

($i)a= Az b 2Ax +
¢(x:) — 3p(wi_1) + 3¢(7i—9) — d(w;_3)
3Az

i, If ’A_A_A+¢i,1| > |A+A_A+¢i,1’
¢(xi) — ¢(wi1) | d(@i) — 20(wi1) + P(zi2)

(90): == A = N *
P(xiv1) = 3b(xi) + 3¢(wi1) — d(wi2)
3Azx

(b) If |A"A+(z;1)| > |A~A+ ()| then
i If [A-A-AYe| < |[ATATAT G

A(x;) — p(wim1)  d(w;) — 20(xi-1) + d(wi—2)

(1) = Az + 2Ax B
P(Tit1) — 3¢(i) + 3¢(wi1) — P(wi2)
6Ax

ii. If [ATATAYg| > |[ATAT AT,

(0i)a =¢(xi) _Af(xll) n P(x;) — 2(25(232;) + o(zi_2) B
Oriv2) = 30(i1) +30(x1) — O(xi1)
6Ax

13



2. If we use D*¢ for first-order discretization to compute (¢;),

(a) If [ATAT@(x;)| < [ATAT@(i41)],then
L IF[A"A-AT G| < |ATA-AG|
_ (@) — o) | P(wira) — 20(x) + Pwio1)
(6i)e = Ax + 2Ax

(1) — 3p(xi) + 3d(xi1) — P75 9)
6Az

I [A"ATATG,| > [ATAATE,]
A(wip1) — o(xi)  P(rit1) — 20(25) + O(2i-1)

(1) = Az + 2Ax B
P(Tira) — 3(ziy1) + 30(x:) — P(wi1)
6Ax

(b) It |AA%(;)| > [A~AT(xi1)] then
i, If [A~ATAT G| < JAYA=A* 6]

ol SRR =1k o P(Tiva) = 20(ziy1) + ()

($i)e = Ax 2Ax +
P(Tiva) = 3(Tiy1) + 30(xi) — d(wi-1)
3Ax
i If [A~AATGi| > [ATA AT G|
~o(wig1) = @(m) | A(Tiva) — 20(wi1) + (z)
($i)a = Az + 2Ax +
O(Tir3) — 30(Tiya) + 30(wit1) — ¢(m:)
3Ax

It seems that there are eight cases for ENO-3, but actually it can be
reduced to just three cases. That is using {zx|k =i — 3,9 — 2,7 — 1,4} or
{zplk =1 —2,0— 10,0+ 1} {xp|k = i — 1,4,0 + 1,i + 2} for D™ case to
plug into Eq.(11). Similarly the right-biased stencil case for D% is {zx|k =
i,i+1,i4+2,i4+3} or {ay|lk =i—1,4,i+1,i+2} or {ay|k =i—2,i—1,4,9+1}.
Finally we get just three discretization forms.

3.4.4 Third-Order WENO

In this section we will discuss the third-order WENO (weighted essential non-
oscillatory) scheme to discretize ¢,. Again WENO-3 is based on ENO-
2.ENO-2 has two possibilities to compute ¢, under D~ (See Eq.(13) and

14



Eq.(15))and we combine this two by weights instead using only one to com-
pute ¢,. That is why we call this method Weighted ENO.

The scheme of WENO-3 is more easy than ENO-3 since we only need
to judge D~ or DT. If we need D~ for first-order then we use left-biased
points {xg|k =i —2,i—1,4,i+ 1} to compute ¢,. On the other case we use
right-biased points {zx|k =i —1,4,i 4+ 1,7+ 2} to compute ¢,. The process
of WENO is more simple since we do not need to judge which points are
needed to add.

We write down the details of WENO-3 which we refer [12]:

1. If D™ ¢ is needed then

i — b wo b — 3 +3bi1 — diy

(92): = 2Ax 2 ( Azr )
v = Lol et (i 201 + Gis)’
Tl +2r2 T e+ (G — 205 + i)’

2. If D" ¢ is needed then

Qi1 — Qi1 Wy Gige — 301 + 30 — Pia
(¢z)i = N 7( Ao )
_ % e+ (Pig2 — 2041 + ¢4)°

wy =

7T -
14202 5 e+ (a1 — 20 + hio1)?

Note that the form is more simple and is easy to implement, so we rec-
ommend the WENO-3 scheme to discretize the ¢, and ¢, of reinitialization
PDE.

Remark
Although the sign function of Eq.(6) is just simple 0,1 or —1, [12] suggested
that

B ¢
VP + Vo] (Ax)?

for a better result and reduce the time steps when solving Eq.(6) to steady
state.

S(¢) (20)
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3.5 Temperal Discretization for Reinitialization Pro-
cess

Since we prefer to use WENO-3 to discretize |V¢| for spatial, if we want the
scheme is higher order, we also need third-order method in time. Here we
use TVD Runge-Kutta method which we refer [1].

3.5.1 Second-Order TVD Runge-Kutta Method

We let current time step be n and first we move time to n + 2,then take
average as below

1 1
n+l _ ~ n — n+2
5 = 6" + 56

3.5.2 Third-Order TVD Runge-Kutta Method

For third-order TVD-RK scheme we first need gb”*é which is weighted by ¢"
and ¢"*? and so that

n—&-% - § 0 1 n+2
Sy =g
Next we move ¢"2 to ¢"3 by iteration and finally we get ¢"*! as follows:
1 2 3
n+1 n n+35
== + — 2
spi=d s

Note that if ENO-2 is used for spatial, then TVD-RK2 have better been
used for time and both ENO-3 and WENO-3 match TVD-RKS3.

3.6 Numerical Test for Reinitialization Process

In this section, we will test some examples for reinitialization. We choose
above example ¢(z,y) = /(5%)? + (55)? — 1 and a concave case which we
refer [12] with polar coordinate ¢(r,8) = (r — 0.5+ 0.1rsin(76))3.We contour
[—10Az : 2Az : 10Az] for each case. Note that we use WENO-3 and TVD-

RK3 method for these examples.

16



step 0 step 20

15 { 1s}
1 ; 1}
05 {1 os}
0 1 o}
a5 {  os}
a ] Al
A5 1 ast
% 45 4 05 0 05 1 15 2 2 45 4 45 0 05 15
step 40 step 60
15 {1 15t
1 ] ik
05} 1 osl
0 ] ol
05} 1 sl
A i
15 1 st
95 1 05 10 05 1 15 2 '2.2 95 4 05 0 05 5

Figure 4: Reinitialization of ellipse
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Figure 5: Reinitialization of plum blossom shape
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Remark

1. From the figures of two examples, we find that the level function be-
comes signed distance function from interface to QT and Q~ within a
neighborhood of interface. As the time steps increase, the width of
neighborhood also increase. The reason is that the information flows
from interface to QF and Q™.

2. After reinitialization process, the level function becomes signed distance
function in a neighborhood of interface and we can not write the level
function by mathematical formulation exactly.

3. There is no clear condition of stopping criterion for reinitialization pro-
cess. The iteration steps is determined by the width of signed distance
function neighborhood of interface. If you want the width wider, the
iteration steps needed more.

4. Eq.(6) is solved in whole domain and the above two examples are lo-
cated at center region of computation domain, so if we just want a
signed distance function of just a neighborhood of interface, we do
not need the boundary condition.But if the interface contacts with the
boundary, how do we set the boundary condition for Eq.(6)7 We will
give the idea and algorithm in next section.

3.7 Special Case and Boundary Condition

To handle Eq.(6) with interface contacts with boundary,we must be very
carefully on boundary condition. Since the ENO and WENO scheme may
need more than two points to compute, so on the boundary we have better not
use ENO or WENO scheme, instead we use first-order Godunov’s method to
handle since this method just need two points to compute the first derivative
term.Here we give the idea of how to set boundary condition for 1D case :

Concept of Boundary

If the left end point z; is in Q7 and we want compute ¢,. A ghost point
2o on the left side of x; is needed.Since z; is in Q" which means interface
is on the right side of x; and z; is on the left side of 1, so ¢(zo) > ¢(x1).
Similarly, if z; is in Q7 then ¢(zg) < (1)

Although the point xy does not exist in the domain €2, but the role of this
point is important. We will give code of algorithm as below
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step O step 100
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Figure 6: Contour of special case example

Algorithm
For z-direction and left side boundary

do j=1,n
if (phi(1,3j)>0d0) then
if (phi(1,j)>=phi(2,j)) then
DX(1,3j)=(phi(2,j)-phi(1,j))/h
else
DX(1,3)=0d0
end if
else
if (phi(1,j)<=phi(2,j)) then
DX(1,j)=(phi(2,j)-phi(1,j))/h
else
DX(1,j)=0d0
end if
end if
end do

where DX denotes ¢, and the three other boundary are as same method
to handle. We also suggest that the points adjacent boundary also use Go-
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dunov’s method, for 1D case we mean x,. Here we contour a ellipse

e = (B

for [-10Az : 2Ax : 10Az] before and after reinitialization with boundary
condition.(See figure6)

Until here, we have presented all process of reinitialization.No matter the
interface is concave or convex, the reinitialization process all works that is
if we can write down the level function of interface, we can reinitialize it
to signed distance function even in the whole domain. The reinitialization
process is very useful since it can calculate normal or curvature accurately,
so it is really a very good and valuable scheme.

3.8 Normal Extension

In this section we will discuss the normal extension process. If u is some
quantity which is defined on the interface, we can extend u in the normal
direction.That is along the normal direction, the quantity u is constant. To
achieve this purpose, we solve a Hamilton-Jacobi equation to steady state
which is :

ut—l—S(gb)E-Vu:O (21)

Vol

where S(¢) is signed function and we can discretize it by Eq.(20) which we
have mentioned before.

If the condition % - Vu = 0 which means % = 0 is satisfied, then we
ou

say that w is constant along the normal direction. Since 3 = 0, another
meaning is that v will not flow out of interface if u is heat quantity and we
solve heat equation on the interface. So the purpose of the Eq.(21) is to
achieve % - Vu = 0 by iteration.

To extend u off the interface, first we need to give quantity u on the
interface or a small band of interface which says Ny, since we want u extended
to a larger neighborhood N, so first we need to take reinitialization process

in Ny and then |V¢| =1 in Ny which reduces Eq.(21) to

u + S(@)Ve - Vu=0 (22)

The concept of solving Eq.(22) is the same as solving Eq.(6). Upwind’s
concept is again used. For z-direction, if S(¢)¢p, > 0,then u, = D~ u and ¢,

21



step 0 step 200

2 2
181 1.5
25
- 1
2
05 0.4
0 or 1 1.5
0s 0.aF 1
1
1 1 1
1.8 15 045
2 2
2 15 1 05 o 05 1 15 2 2 1.5 1 05 0 0.5 1 1.8 2

Figure 7: Normal extension of u for convex case

in this equation is discretized by central difference. Otherwise if S(¢)¢p, < 0
then u, = D%tu. The ENO or WENO higher order schemes which have
mentioned above can again be used and once we used higher order scheme,
the neighborhood N; should be more wide since these methods need more
points to calculate. Note that we use forward Euler method in time. Eq.(22)
take the information off the interface to outside and inside with speed 1.
We take some simple examples which we use WENO-3 and forward Euler in
time.

Example.4 We let the level function be ¢(z,y) = /22 + y?> — 1 which
is signed distance function so we do not need reinitialization process. We
define u = sin() + 2 on the grid node (7, 5) which satisfied |¢(7,j)| < 4Az
and u = 0 on the others. Note that u is constant along normal direction in
|p(, 7)] < 4Az and we want to extend u to |¢(i, j)| < 8Ax. After 200 steps of
iterations we will find that the value u have been extended to |¢(i, j)| < 8Ax
and also constant along normal direction. (See figure7)

Example.5 We test another concave case ¢(r,0) = (r—0.5+0.1rsin(76))3
which need reinitialization process at first. We give initial value of u is as

Example.4 and extend it to the same neighborhood.(See figure(8))

Remark
Note that if we want to extend the value off the interface to whole domain

22



step O step 200
1 T A T
05 1 -0.8F
25
0Bk 1 -0Bf
0.4¢ 1 04
2
02k 1 -0.2F
ok g ot E 15
02r 1 02 g
04r 1 0.4F 1 1
06f 1 oE6} ]
05
08t 1 08F
1 L L L 1 L L L
-1 05 0 0.4 1 -1 05 0 0s 1

(a) (&)

Figure 8: Normal extension of u for concave case

or more thick band, it is fine for convex case, but the concave case will not
be allowed since the point far from interface will cause shock, that is there
will be two normal lines intersect and cause terrible result. So the normal
extension is meaningless for concave case if the extension band is too thick.

3.9 Solving Heat Equation on Interface
3.9.1 Surface Gradient and Surface Laplace

Recently, solving PDE on interface becomes more and more popular, such as
solving heat equation on circle. Although circle has polar coordinate, if the
interface is other shape which is irregular, then there will be no coordinate
system to handle. So we use level set method to handle which is just Carte-
sian coordinate. To solve heat equation on interface, we introduce surface
gradient V and surface laplace A,. So the heat equation on interface is as
below:

u = Agu = V- Vu (23)

where V is defined as a operate V; = P -V [15]. Note that P is a projection
matrix which is defined as :

n®n

P=1——o
[[nf?

(24)
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Again, if ¢ is signed distance function, we reduce Eq.(24) to

P:=I-n®n (25)

and we refer [18] to simplify the surface laplace form as :

0%*u ou
Asu:Vs-Vsu:Au—@—ﬁa—n (26)

where k is curvature of interface.

The explanation of Eq.(26) is very easy.We know that A is diffusion term
of whole domain, A; denote diffusion on interface and (8‘9—; + k%) denotes
the diffusion on normal direction of interface.So

0? 0
A=As+—= —
13 on? 7 " on
and then we get the operate :
0? 9]
Ay=A—— —Kk—
i oz~ “on

3.9.2 Outline of The Method

Since we solve heat equation on interface as Eq.(23) which means the heat
just diffuse on interface and we have the condition that the derivative of u

along normal direction is 0 which is g—z = 0. Since we just define values
on grid node, so we need to extend the u off interface within a band and

solve Eq.(23) in this band. Since we know 2% = 0 which coincide with

V¢-Vu = 0,50 we solve Eq.(22) to extend u. The outline of whole procedure
in one step is as follow :

Stepl. Reinitialization the level function ¢ to signed distance function within
a band by solving Eq.(6)

Step2. Give values on interface or in a small band of interface and then solve
Eq.(22) to extend u to a thicker band which is thick enough to solve
five-point laplace.

Step3. Solve Eq.(23) in the band which u have been extended and return to
Step2.

Note that the new value we get will not be constant along normal direction
any more, so we need to return to Step.2 to modify u to be constant along
normal direction of interface.
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3.9.3 Algorithm of Solving Heat Equation

The algorithm of Stepl and Step2 have introduced above, we will introduce
the algorithm of Step3 which is how to solve Eq.(23). To solve Eq.(23), [18]
used semi-implicit Crank-Nicholson method which is second-order in time
and is stable when O(At) = O(Ax). Note that we refer the scheme of [18]
and use the symbol of [18]. We write the form of disretization of Eq.(23) as
follow :

u™tt —u" Aut At 3[ du Qzu]n
At 2 2" "on  om?
1, Oou  u,, 4
————— —|"" 27
2 m ~ on?) (27)
Note that the central difference is applied to Au,n, s, g“ =n - Vu and

62

S =1 D?u -n where D? is the Hessian operator which is

DQ’LL — |: Uz u:cy :|

thom = thyy
Since this semi-implicit method is two-step method, we need u' by u" at
first which can be discretize as below :

ut — u° ou  Du,
By Sl

and then we can solve Eq.(27). Since we just solve Eq.(27) on a band, so we
call this method as Local Level Set Method and we will have details as below

(28)

Local Level Set Method

The method which solving Eq.(27) on whole domain is called Global Level Set
Method which need spending more time and computation and does not make
sense when solving PDE on the interface. So we use Local Level Set Method
which restricts the computational domain to be just a band(neighborhood)
of interface and solve Eq.(27) on this band. Let us take three bands as above

= {(&i, ;) « 10w, y;)| <1}
{(zi,95)  |o (i, ys)| < a2}
{(
8]

T, Y5) + |o(ws, y5)| < 73}

where 0 < r; < 1y < 13. [ chooses r = 3Ax,ro = 6Ax and r3 = 9Ax.
Then we reinitialize ¢ within N3 and take normal extension within N, and
finally solve Eq.(27) in Nj.
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Remark

1. Note that when solving Eq.(27) within the band N; by Crank-Nicholson
method, we will encounter the data structure problem since we use
five-point central difference to handle laplace term of Eq.(27) and the
domain is just a band which is irregular. So we will need points which
are not in /Ny but near N;.

2. The linear system for u of Eq.(27) is symmetric positive definite. We
have test some cases like concave case or irregular case and find that
the linear systems for them are all symmetric positive definite and we
solve the linear system by the package DLSLSF of IMSL in FORTRAN
90

3. To solve Eq.(27), we use the points not only in N; but also in Ny — N,
which near band N;.So the points in Ny — N; and near N; are the
boundary points for solving Eq.(27) and we need boundary conditions
for these points. [18] suggested the Dirichlet boundary conditions as
extrapolation which is

uft =20l — s, V(zgy) €T — Ty (29)

i, (2
and then these points are known and imposed to right hand side when
solving the linear system for Eq.(27).

3.10 Numerical Results

Here we just test one example which the interface is static and the case of
solving PDE on moving interface will be introduced in later chapter. We use
the example in [18] and try to reproduce the result.

Example.6 Now we want to solve heat equation on a unit circle which
means solving Eq.(23) on unit circle. On the circle, the surface laplace can
be simplified to A, = %88—;2 where rq is radius and 6 is central angle of z-axis.
The reason we turn Eq.(23) to polar coordinate is to find the exact solution
of Eq.(23) on the circle and we use Cartesian coordinate when handling

numerical process.So we know that as ro = 1 then

ou(f,t)  0*u(0,t)
o 002
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and the exact solution of Eq.(30) is

u(f,t) = e "sinf +c (31)

During our numerical process, we let ¢(x,y) = /22 + y> — 1 denotes the
level function of unit circle and solve

ou(x,y,t)
— =Agu(z,y,t)
O*u(x,y,t) ou(z,y,t)

=Au@ ) = S ) anty)

numerically and the computational domain is [-2,2] x [-2,2]. The initial
we give is that uy(0) = sin @ + 2 which is constant along the normal direction
of interface and the exact solution is

u(r,y,t) = e 'sinf + 2 = e " sin (arcsin L) + 2.
N
Note that we set total time T' = 2 and At = %Ax and the boundary
condition is as Eq.(29). We compare the error using L*°-norm within the
band N;. Reinitialization process does not need and normal extension is
needed every time step. The result is in Tablel.

N L Ratio Order

40 x 40 4.63E-2 - -
80 x 80 9.42E-3 4.919 2.298
160 x 160 2.99E-3 3.150 1.655
320 x 320 1.22E-3 2.439 1.286

Table 1: Error in maximum norm

Remark

1. Since we use the normal extension in each time step and we just take
few iterations(we take five iterations) of Eq.(22) to avoid spending too
much time, so u may not be constant along the normal direction and
this is one of error contribution.
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N L> Ratio

40 x 40 2.51E-2 -
80 x 80 1.96E-2 1.277
160 x 160 2.06E-2 0.953
320 x 320 1.99E-2 1.037

Table 2: Error in maximum norm

2. Since Agu = Au — % - /-ig—z and when solving heat equation on unit
circle, we set % = 0 which means Agu = Awu in mathematical for-
mulation. If we just let A,u = Awu in our numerical process, we will
get terrible result as in Table.2 and the reason is as the same as above

2 . .
remark. So we can not drop % and l{g—z in our numerical process.
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4 A Coupled Volume of Fluid and Level Set
Method

4.1 Introduction

To simulate two-phase flows, we need interface to separate two fluids, say
fluid1 and fluid2 are inside and outside interface respectively. It is convenient
to describe the interface by level set function but if we only use level set
method to handle the motion of interface, we will encounter a significant
problem which is the inner area of fluid1 will not be conserved.

So we add Volume-of-Fluid method to achieve mass conservation of inner
area volume. Our concept is very simple, level set method is easy to compute
the properties about interface(e.g. curvature or normal). On the other hand,
VOF method is applied to inner area volume conservation.

Note that since both level set method and Volume-of-Fluid method are
adapted to topology changing of interface, so the coupled VOF and level set
method is also adapted to topology changing of interface which is a nature
phenomenon of our real life. We will test the coupled method in topology
changing case.

Here we briefly introduce the concept of Volume of Fluid. We define

fraction function F' on the cell center as follows:(See figure.9)
If the cell is whole in the fluid1 that is the cell is inside interface and the
interface do not pass this cell, then we define the fraction function of this
cell is F' =1 and if the cell is whole in fluid2, in the same way we define the
fraction of this cell to be F' = 0. The final case is that interface pass the cell
and separate two fluids in the cell and in this case, we define fraction of this
cell by weight of fluidl, that is if weight of fluidl in this cell is 30%, then
the fraction of this cell is defined to be F' = 0.3. Note that if the cell which
interface passes, then the fraction F' must between 0 and 1.

In this chapter we mainly refer [17] which have introduced the coupled
VOF and level set method very clearly. The symbols and figures we used
in this article are referred from [17] and we give more details of the coupled
method in our article since this coupled method is complicate. We need not
only the concept of VOF but also concept of level set method which we have
introduced in the above chapter and we will give the outline of the coupled
in our article.
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Figure 9: Concept of Volume of Fluid

4.2 The Governing Equation

In this section we will write down the governing equation which is Navier-
Stokes equation. The interface properties is handled by level function ¢ which
is negative inside interface and is positive outside interface. The Navier-
Stokes equation is:

9
p(a—I:—F(u-V)u) = Vptpg+VpVut (Vo)) - okVH  (32)
V-u=0
Vo
k=V - —=—
Vo
1 if ¢ < —1.5(Ax)
g-10 if 15Az < ¢

& sin[m] .
p=piF +pa(l = F)

p=puF 4 pp(1 = F)
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where H is a heaviside function smoothed over three grids and p;, u; are
density and viscosity for fluid1 and ps, ps are density and viscosity for fluid2.
k is interface curvature which is evaluated by smooth level set function.

Note that u is defined at cell faces and ¢, F', p, u, p and g are all defined
at cell center. (See figurel0 and we especially thank [20] who provides this
figure.)

4.3 The Advection Equations for Both Level Function
and VOF

Since the interface will move by the velocity field u so we need to solve
interface advection equations. Here we present two advection equations for
both methods

9¢

o sV =0 (33)
OF
=y T VE=0 (34)

where F' is fraction function and ¢ is level set function
Note that here we also solve the level set advection equation in order to
compute normal of interface by smooth level function.

4.3.1 Algorithm of VOF Advection Equation

To solve advection equation of VOF, we rewrite Eq.(34) in a conservation
form,

OF
— +V-uF=FV-u (35)
ot

To solve Eq.(35) by VOF advection algorithm, we simply use split method

like ADI method. So Eq(35) can be decomposed into two steps,

F*—F"  OuF" Lou
N (36)
Frtl _ Fx QuF* ov
B i
At * dy dy (37)

Before discretizing the two equations, we first note that the fraction func-
tion and level set function are defined at the cell center and the velocity field
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Figure 10: The computational domain using staggered grid

u is defined at cell faces. And now we begin to discretize the above two
differential equations by finite volume method as below :

Az Ay; =F Axi Ay + (WALF"Ay)i1ja; — (WALF" Ay)it1p;  (38)
— B [(uAtAY)i /25 — (WALAY)i1/2,4]

— F7[(uAtAY)i j-1/2 — (uALAY); j11/2]

where Fjiq; and Fj ;41 are unknowns.

Since I is defined on cell center, so Fj+1/2; and Fj ;119 are define on the
cell faces and we need to handle Fji,/5; and F; j1,/» when solving the VOF
advection equation. If we just take average (eg.(Fij1,; + Fij)/2 = Fiv1)2,5),
then the excessive computer error will be significant. The reason is that the
fraction function F' is not continuous, so we can not just take average to solve
Fii1/; and Fj 119 for convenience.
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Figure 11: The evolution of volume flux for (a) u > 0 and (b) u < 0

Now, we realize that in the VOF advection process, the main problem
is to calculate Fiii/o; and Fjji1/2, so we apply geometry process to calcu-
late.Suppose the cell say F;;, if we want to find F;_;/,;, we first need to
know the velocity u;_1/2; is negative or positive.If u;_; /5 ; is positive which
means that something flow into F; ; from F;_; ;. On the other hand,if u;_1/s
is negative, we know that something flow out of F; ; and then flow into Fj_; ;.
Similary, Fj /2 and Fj i1/ are in the same way to calculate.

The above is a very important concept, as we figure out the concept
then [20] define (AVp);—1/2,; and (AV);_1/2,; as the fluidl volume and whole
volume of the subregion |u|AtAy.(See figure.11)

(AVr)itajpj = / Fd(ui_1/2;AtAy;) (40)

(AV)i_l/gJ = /d(ui_l/QyjAtij) (41)

Then we get

(AVF)i—l/Q,j

(AV)i1/2,5 “2)

Fiip; =

Similarly, Fi1/2; and Fj i1/ are as the same concept.

Actually, we still do not seriously mention how to evaluate (AVg);_1 /2
since it need to decide the interface shape which we will have details in the
later section.

4.3.2 Algorithm of Level Set Advection Equation

When constructing the linear piecewise interface from fraction function, we
need two elements, one is the fraction and another is the interface normal.
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The interface normal can be evaluated by VOF fraction or level set function
and we will compare these two cases to compute the interfacial normal in
later section and find that on the same conditions the normal computed by
the level set method will be better than the other.(See 4.10.3)
The reason is very clear, since the level set function is smooth and the
fraction function is discontinuous, so level set function is better choice.
In order to calculate normal by level set function, we also need to move
the level set function by this equation:
09
E +u- ng =0
To solve above equation, we apply third-order WENO(weight essentially
nonoscillatory) scheme to handle spatial and a third-order TVD Runge-Kutta
scheme for the time evolution. Both schemes are mentioned in the above
chapter. Here we briefly describe the scheme for the spatial:
For z-direction, if v > 0 then

1 Git1j — Gij W, Pi1j — 3¢i; +3Pi_1; — Pi—a;
e = = () B ; : i ’ 43
where
_ et (G — 2015+ dizy)”
W- = R 2
142r2 €+ (Pir15 — 2055 + di1,5)

and if v < 0 then

1 Giv1j— Gij, Wi Gitaj — 3Pit1,; +30i; — di_1j
.. . R e _ 2 . ) . 44
e = S ERI ity st ) @

where

1 €+ (ivaj — 20i115 + ¢ij)?

w — 7T -
T2t T et (G — 2005 + dio1y)?

And for y-direction, if if v > 0 then

L Giji1 — @iy w— Gijt1 —30i; + 3¢i-1 — Pijj—2
iy — = P e s U > > > 5, 45
where
_ 1 e+ (dig — 2051 + diy—2)®
W- = 2"- = 2
1+ 2r2 €+ (ijr1 — 2055 + Gij—1)
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and if v < 0 then

L, gijr1— Gijy, Wi Gijra— 3041+ 3055 — Pij-1
iy = — (I TR i ’ : 46
b = 5 (P00 2 N ) o)
where
1 €+ (Pijr2 — 20 j11 + ¢ij)?

w — 7T -
Tt 2r% T et (Gija1 — 205 + dij1)?

Note that after solving Eq.(33), the interface move to new position and
the level set function is no more signed distance function, so we need to
reinitialize the new level set function to be signed distance function.We do
not apply the level set reinitialization(i.e. solving Eq.6), instead we use
another reinitialization process which related to the Volume-of-Fluid and we
will have details in the later section.

4.4 Truncating Volume Fraction

After solving advection equation of VOF, there are some fraction F;; which
are less than 0 or more than 1. So we need to truncate these F; ; to be 0 or
1, that is

F=0 "ifF<0or¢o>Ax
F=1 ifF>1or ¢<(—Ax)

where ¢ is after reinitialized.

Another important adjustment must be careful which [3] has emphasized.
In the Bookkeeping Adjustments of [3],it says that if F}; is far from interface
and F"; = 0 then after one time step F{Lfl still must be zero but it may
not be zero in the numerical process. So we need to do some adjustment as
follow:

F=0 ifF<€F
F=1 itF>1—¢p

where e = 107%. If we do not do this process of adjustment, we will get very
terrible result which will lead to the false of simulation of two-phase flows.
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4.5 Outline of Coupled VOF and Level Set Method

Since the coupled VOF and level set method is complicate and have many
steps to achieve which have priorities, so we give the outline of one time step
of this coupled method :

Stepl Solve the Navier-Stokes equation which we have introduced in above
chapter and then we can get velocity field u which can move interface
and both fraction and level function.

Step2 Solve Eq.(34) to move fraction by u and get new fraction function.

Step3 Solve Eq.(33) to move interface and level function to new position by
u.

Step4 Reconstruct interface by PLIC which using F' and n to decide the
position of interface segment.

Stepb Calculate the advected volume in the interface cell that is to calculate
Fii1/2; and Fj j11/ which needed in Step2. Note that this step must
after interface reconstruction.

Step6 Determine two end points of each interface segment in each interface
cell.

Step7 Reinitialize level set function within a band of interface by calculating
the exact distance form cell center of neighborhood cell to interface
segment. Finally, we return to Stepl

We will give details of Step4 to Step7 in later sections.

Remark

Note that in Step4 we need n which we use level function to evaluate. Since
Step3 just moves interface and ¢ have not reinitialized yet, so ¢ will not be
signed distance function. Since we reinitialize ¢ within a band in each time
step previous and we just move level function a little in one time step forward,
so we still evaluate n in each interface cell in Step4 since the level function
within a band of interface is not far from signed distance function(i.e. Similar
to signed distance function). In this case n is evaluated by n = % and this
time |V¢| must be computed.
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4.6 Interface Reconstruction

VOF method can be decomposed into two steps, one is fraction advection
which we have mentioned in the above section and the other is interface
reconstruction. To reconstruct the interface, we suppose that in each frac-
tion cell which satisfying 0 < F' < 1, the interface is a segment which can
be described as a linear equation ax + by = ¢, so after we connecting all
interface segments, the interface will be piecewise linear. Thus we call this
reconstruction method as PLIC (piecewise linear interface construction).

To reconstruct segments in each fraction cell which satisfies 0 < F' < 1, we
need normal n = (n,, n,) which is equal to the pair (a, b) of ax+by = c and it
is easy to compute by level set function,n = % which we have mentioned in
outline of the method.Once we have n, the normal vector of segment can be
determined, but the exact location of segment have not decided yet. For this
reason,[17] introduced s, which means the distance from interface segment
to the corner of an interface cell(i.e. s means the intercept ¢ of ax + by = ¢).
For generality, we choose the corner that is inside the interface and to be
the farthest from the segment. As we get s and n, we finally can have the
exact location of the interface segment of an interface cell. So the interface
reconstruction is to find s by F' and n. Finding the relation of F' and s, we
need to consider many cases of interface configurations, so we need to reduce
the geometrical cases.

[17] suggested to use |n| instead of n and we can reduce the interface
configurations and we can just consider only four cases as figurel2. Since F'
is known, we can have the relation which we refer [17]:

d d
2Fdxdy = dxodyy — d_zo<dx0 —dz)* — d_j/:()<dy0 — dy)® (47)
0 0

where (z) = max(z,0) and dz, and dy, means the intercept of z-direction
and y-direction of interface segment as shown in figurel2. Note that dxg
and dyo of Eq.(47) are not trivial and do not easy to compute, so we need
substitute them by some simple forms.

From geometrical concept, we can easily find that s = |n,|dze = |n,|dyo
and then we can simplify Eq.(47) into a more simple form as:

2Fdx dy; = s* — (s — dx)? — (s — dy, )? (48)
where dz, = |n,|dz and dy; = |n,|dy .The vapor volume is
2(1 — F)dzydy; = (sm — 5)° — (sm — s — dw1)? — (s, — s —dy1)*  (49)

where s,, = dxi + dy; .
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dyo

dy ;
¥
dyo
Sm -8
8 8
dxe dx dxo dx
casel case2
dy dy
dyo
3 3
dx dxg
case3 dx dro cased

Figure 12: Four cases for interface configurations and fluid1 is inside thick
line

Note that Eq.(48) and Eq.(49) are easy to compute and we want to com-
bine two equations into one equation. [17] defined F, = min(F,1 — F),s. =
min(s, s, — $),dr. = max(dzy,dy;) and dy. = min(dz,dy;). Now we can
combine two equations into one as follow:

2F.dv.dy. = 52 — (s, — dy.)* (50)

From Eq.(50), we can clearly find the relation between s and F', after sim-
plification we can get:

d
se = \/2F.dz.dy, if F, < 3 dyc (51)
T

dy.
= F.dx. + 0.5dy, if £, > 52
Tet Y ! 2dx,. (52)
and then we have
S =S if £ <0.5 (53)
= Sm — Se it F>0.5 (54)
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After getting s finally, we have done all the interface reconstruction al-
gorithm. In the next section, we will accomplish the fraction advection part
with how to evaluate Fjiy/p; and Fj ji1/2 accurately.

4.7 Evaluate Advecting Volume

In the previous section, we have introduced VOF advection algorithm and
have mentioned (AVr);_1/2; and (AV);_1 5 ; already. But we did not handle
these because as handling (AVp);_1/2; and (AV);_1/2; we need s which we
have just got, so we did not calculate these two in the above section. Since we
have s now, we can evaluate Fi1;/2 ; and Fj j1+1/2. A donor cell concept needed
here and what is donor cell? Let us take a example here:For a cell F; ;, and
the left-side z-direction on the cell face is w;_y/2 5, then if u;_; /5 ; is positive
then the donor cell of F;_;/; is Fj_; ;, otherwise if u;_1 /2 ; is negative, then
the donor cell of F;_15; is F{i,7). For the simple case first, if the donor cell
is 0 or 1, then (AVF)Z‘_l/Q,j M (AV)i_l/QJ‘ and E—I/Q,j = 0 or 1. The other
three cases are similar. Next [17] introduced (6Vg)o to denote the volume in
the subregion dx x dy where 0 < dz < dx and 0 < dy < dy. Note that the
subregion contains the origin point of s.

Now we want to calculate the advected volume which equals to calculate
(0Vp)o = Féxdy. We need the fraction of the subregion dx x dy say F, and it
can be calculated from the s.(Here s. will be recalculated) of the subregion
since we know that s. and F have a relationship.So first we compute s. and
then compute F, and finally determine whether vapor or not. Note that
n, and n, do not need recompute and just as the same. The procedure of
finding F. is same as Eq.(51)-(54). So from above equations of (51)-(54), we
can regain F, as the follows:

0.552
F. = £ if
© = St if s, < . (55)
— fe ook if 5, > by, (56)
and
(0Vg)o = dxoyF, if s <0.5s,, (57)
= oxdy(l — F.) if s > 0.5s,, (58)

where dx. = max(|n,|dz, |ny|dy), dy. = min(|n,|dx, |n,|0y), Sm = dx. + Jy.
and s. = min(s, (s,, — s)). There are too many symbols to represent and for
convenience we write (6Vr)o = (6Vp)o(ns, ny, 0z, 0y, s) which means that we
calculate (0Vr)y by these five elements.
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Since the interface configurations are not all the same so we need to split
cases to discuss. Let us take a example as follows:For z-direction and left
face of cell (i,7), if ny,u > 0,the subregion must take |u|At x dy and the
subregion include the origin of s, then

(AVF)zel/Q,j = (5VF)O(n$7nya |U|Atady73)
(AV)Z‘_l/QJ‘ = |U|AtAy
(AVF)i—l/Q,j

Frapsy =
VT AV ey

Note that n,, n, and s are given by donor cell which we have mentioned.

On the other hand, if n,u < 0, it means that the subregion of advected
|u|At x dy do not include the origin of s, but the vapor subregion (dx —
|u|At) x dy contains the origin of s.So in this case, if we want to calculate
(AVEp)i—1/2,;, we need calculate vapor volume (0Vp)o(ng, ny, de — |u|At, dy, s)
first and then use total volume of donor cell Fdxdy to minus the vapor volume
which is:

(AVE)i—1/2,; = Fdxdy — (0VE)o(ng, ny, de — |u|At, dy, s)
(AV)i_l/QJ' = |U,|AtAy
(AVF)ic1/2

Fi 1), =
123 (AV)i_1/2;

Similarly, for the y-direction:

(AVE)ij-172 = (6Vr)o(na, ny, dz, |v]At, s) if n,v >0
= Fdzdy — (6Vp)o(ng, ny, dzx,dy — |v|At,s) if nyo <0

(AV)rL"j_l/Q = ’U|AtA.T

oo (AVp)ijoie

WAV

4.8 Determining the End Points of Interface Segment

Since the interface of each interface cell is segment, so we need to decide
the two end points of the interface segment. We use dxg = (dxs1,dys1)
and dxg = (dxs, dysz) as in [17] to represent two end points relative to the
left-down corner of a interface cell.For convenience, we let dr; > dy; where
dzy = |ng|dx and dy; = |n,|dy as above. If dzy < dy; then we rotate the cell
to achieve dxy > dy; and let s, = min(s, dzr; + dy; — s) as in above section.
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Now we only look casel and case2 of figure.12 and we have:

s
dXsl = (—C,O)
|72
dxg = (0, i) if s. < dy
|ny|
c—d
= (L ay) if s, > dy,
|72 |
drs1 o = dr — dxg o if ng(s —0.5s,,) <0
dysi2 = dy — dys1 2 if ny(s —0.5s,,) <0

Since some cells have been rotated before, so we need to rotate back these
cells which have been rotated. That is if |n,|dx < |n,|dy, the components
for dxg; interchange(i.e. dxs and dys interchange for dx,;) and similar to
dx,,. Finally, we can determine the end points exactly,

Xo1,0 = dXg1 0 + Xi_1/2-1/2
7]

After determining end points of each interface cell, we connect each inter-
face segment as piecewise linear and this is the reason why the interface
reconstruct algorithm is called PLIC.

4.9 Reinitialization for Level Function

After Eq.(33) to move the interface to the new position say ¢!, the level
function is no more signed distance function, so we need to reinitialize it to
be signed distance function. Note that here the procedure of reinitialization
is not to solve the equation ¢; + S(¢)(|V¢| — 1) = 0 to steady state, instead
we apply VOF properties to calculate the distance between center of neigh-
borhood cell to the interface segment.First step we need to record which cells
are inside interface and which are outside and we use

59 = sign(F — 0.5)

Then we compute ¢ within a band of interface:

1. Let |¢| to be large number
2. For each interface cell 0 < F < 1

(a) We first compute the distance from the cell center to interface by
d(x) = n - (x — x4 ) where x denotes cell center and x4 is a end
point which we have computed.
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(b) Then for each neighborhood cell Fj; of F; ; where
|k —i| <4 and |l —j| <4,

|¢r.| is the shortest distance of two choices:One is cell center xy
to interface segment of F'(i, j) and the other is Xy t0 Xi i 2,j1n/2
where

m = max(—1, min(1,k — 7)) and n = max(—1, min(1,] — 7))

There are three cases in the procedure:

i If SZ,’J #sign[d(X;4m/2,j+n/2)] (As point A of figurel3(a)),
it means that the projection of x;; to interface segment is not
in the cell (i, j), so the shortest distance is evaluated between
xy, to cell face of (i, j) and we have

|Gral = min(|dril, [Xea — Xigmy2,4n/2])

ii. Else if x;; have been projected to interface cell (i,75), that
is the point xx; — nd(xy;) is in the cell (i,7), then we just
calculate the distance from xj; to interface segment of cell
(,7), (As point B in figure.13(a))

[Pkt = min(|dn,l, |d(xx,0)])

iii. Else just take smaller distance from xj;; to two end points,
(As point C in figurel3(a))

| O] = min(|oral, Xk — Xs1]s [Xes — Xs2|)

3. In few cases the interface segment may lay on the cell face and the
fraction is 1 or 0. The process is as follow:(See figure.13(b))
If the cell is 1 or 0 and has a neighborhood cell (¥, j') where |[i' —i| < 1
and |j" — j| < 1 satisfying Sfj =+ Sf’j,, then we tag neighborhood cell
(k,1) satisfying |k —i] < 4 and |l — j| < 4.Then |¢y,| is the shortest
distance between x3; and X /2, j4n/2,

|Pra| = min(|dral, [xXx1 — Xi+m/2,j+n/2’)
where m = max(—1, min(1, k£ —¢)) and n = max(—1, min(1,[ — j))

4. Finally,we determine the ¢-value to be positive or negative by S¢
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Figure 13: Reinitialization of level set

Remark

Note that every time we calculate ¢ of neighborhood cell must compare with
the calculated value of itself and take the smaller value. For example:Suppose
(7,7) and (i + 1, j) are both interface cell and (k,[) is a neighborhood cell of
both interface cells.At first we let ¢; = 10 and tag cell (4, j) and then we
can get distance between two cells (k,1) and (4, 7) by above procedure which
must smaller than 10. So we take the smaller and get value of ¢;;. Next we
tag cell (7 4+ 1,7) and again compute the distance between two cells of (k,1)
and (i+1, j) and then compare with above computed value and take smaller.
After handling each interface cell’s reinitialization process, we get level set
function ¢ which is signed distance function within a band of neighborhood.

4.10 Some Simple Test

Here we test our above schemes for a simple example. We set the interface
to be an ellipse with level function:

o(z,y) = \/(;—6)2 + (%)2 — 1 with domain:[—2,2] x [-2,2] (59)

Since the level function of the ellipse is not a signed distance function, we
apply Eq.(6) to ¢ at first and then ¢ becomes a signed distance function.Note
that ¢ is defined at cell center.

Next we need to calculate the original fraction F' of interface cell. Since
F and s have relation so we can first find s and then get F' using the relation
between s and F'. Note that s is the distance from farthest corner in fluid1l
to interface segment of a interface cell, so we define another ¢ say ¢’ :
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+

$a) = [+ (-1 (60)

This time ¢’ is defined at grid node. Tag interface cell (i, j) and we will have
four values(See figurel4) of ¢’ in each corner and they mean the distance
from corner to interface of this cell. If the value of ¢’ is positive, then it
is outside interface. Otherwise it is inside interface. Now we focus on the
smallest value of negative corner and take it’s absolute value to be s of this
interface cell. Finally we apply Eq.(48) and then we have F' in each interface
cell. So we get the initial fraction function by above manner.

¢ ¢’

Figure 14: Locations of ¢ and ¢’
Now we let the velocity field fixed with u = (—0.5x, 0.5y) which satisfying

V -u = 0 and apply coupled VOF and level set method with At = }lA:E as
below:
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4.10.1 Test of VOF Advection

We test our VOF advection equation by above simple example and we have
the result as above:

timestep=0 and volime=1.00435391287708 timestep=100 and volime=1.00435862362311

-2 -15 -1 0.5 0 0s 1 15 2 -2 -5 -1 Rk} a 0.5 1 15 2
timestep=200 and volirme=1.00436391148665 timestep=300 and volime=1.00436812385923

Figure 15: Test of fraction advection

Note that the inner volume is almost conserved and the volume variation
is less than 0.1%. The ellipse rotated since the velocity field u.
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4.10.2 Test of Reinitialization

This time we test the reinitialization of level set which uses VOF method to
handle and we have the above result

timstep=0 timstep=100

2 . . 2 . :

1.5¢ i 15F

1t 1

osf {1 osf

05t 1 -05r

RS 1

-15F 1 -15r

% 45 4 95 0 08 1 15 2 % 45 4 @05 0 05 1 15 2
timstep=200 timstep=300

2 , : . 2 . : .

15 14

1 1

o5k { osf

] 0

0af { 05

1 1

15 14

% 485 4 05 0 08 1 15 2 % 45 4 05 0 05 1 15 2

Figure 16: Test of Reinitialization

Here we contour five ¢-values of [—0.08, —0.04,0,0.04,0.08] after reini-
tialization process in time steps 0, 100,200 and 300.

Remark
The above reinitialization process just need to do I time. If we use

¢ +5(9) (Vo] =1) =0
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to reinitialize ¢, then we need some iterations to reach steady state in each
time step which will spend much time than the VOF reinitialization which
just do I time in one time step.

4.10.3 Test of Interface Reconstruction

Interface reconstruction is a important step of VOF method.Since we use
segments to approximate interface, so the interface will be piecewise linear.
Here we decide end points of each interface cell and then connect two end
points of each interface cell to finish the piecewise linear interface. We have
the result in figurel?7.

timstep=0 timstep=100
2 T T T T T T T 2 T T T T T T T
1581 1 15¢ E
1+ {1 1t 8
05t S {1 osp //,«——my .
a ™ g
of < ) oo S |
e e I /./
05t T {1 ast N |
Rl R Rls 4
1.5F 1 -15F B
2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
-2 -1.4 -1 04 0 04a 1 1.5 2 -2 -1.4 -1 045 0 04a 1 1.5 2
timstep=200 timstep=300
2 T T T T T T T 2 T T T T T T T
1.56F 1 15F 1
1+ 1 r 1
o Y
05t e A {1 05 7 4 1
rd | / !
/ / { !
OF / / 1 oF i
o/ }
ast 1 ast 1
»
1+ g R= J
150 1 -1AF 4
2 15 1 0.4 0 04 1 15 2 -2 -1.8 1 0.5 0 oA 1 15 2

Figure 17: Test of Interface Reconstruction using coupled method
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Remark

The above interface reconstruction is that we use coupled VOF and level set
method. If we just use pure VOF method, will it be better or worse? The
difference of pure VOF method and coupled method is how to calculate n. If
we use pure VOF method to calculate n that is using fractions to calculate
normal, then we first calculate the normal of grid node which we refer [10],for
example: normal of (i +1/2,j + 1/2)

Fiviy — Fij + Fivrgn — Fijn

Ny it1/2,5+1/2 = OAL
 Fjn—Fj+Faagn— Fiag
Ny i+1/2,5+1/2 = oAz

then take average to get cell center normal:

N11/2,5—-1/2 T Di—1/2,5-1/2 + Wit 1/2541/2 T i—1/2,j41/2
4

Nij =

We present the interface construction of just using VOF method in fig-
urel8. We find that using coupled method is better than using VOF only
since when calculating normal, level set is smooth and fraction is discontin-
uous, so using level set to calculate normal is better.
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Figure 18: Test of Interface Reconstruction using pure VOF method
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4.11 Numerical Results

In this section we will show our numerical results of simulating two-phase
flows. Here we thank [22] who provided fluid code of solving Navier-Stokes
equation with different densities p; and p, and viscosities py and ps.

Example.1

Our first example is to test single bubble simulation. Here we give our setting.
Inside interface:p; = 1,7 = 0.02 and outside interface:py = 40, us = 0.005
and let ¢ = 0.01. We let initial interface to be a circle which center at
(0, —0.2) with radius r = 0.15. We take At = TAz.

=0 inner area=0.070724 t=0.8,inner area variation=0.0036%

0s 05
0.4 1 04
03 1 0.3
0z 1 02
01 1 01

1} 1}
0.1 1 01
02 1 02
03 1 03
0.4 1 04
5s o 0s 9 [ 05

1=1.6,inner area variation=0.019% 1=2.4,inner area variation=0.038%

05 T 05
o4F 1 0.4
03F B 03
02k 1 0z
o1f 1 01

1} 0
RIRNS 1 01
02k 4 02
03k 1 a3
04t 1 04
45 0 s "8z [ 05

t=3.2,inner area variation=0.053% t=4 inner area variation=0.057 %

o0& 0s
0.4 04
03 03
0z 0z
01 0.1

a 1)
-01 -01
02 02
03 03
04 -04
35 0 05 35 [i] 05

Figure 19: Simulation of example.1
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Note that the inner area variation is less than 0.1% and if area variation
is positive then it means area increases. On the other hand, if area variation
is negative then area decreases. We contour ¢ = 0 in this and later examples.

Example.2

In this example, we simulate the motion of two bubbles in two phases. We
use two circles to represent interface of two bubbles. If the initial distance
between two bubbles is far enough, then the two bubbles will not merge each
other. Note that [8] had details about how far that two bubbles will not
merge.

6 t=0,inner area=0.14170056 s t=1.2 area van‘athD.UBS%
04 1 04
03F 1 03
0.2F 1 02
orr 1 01
or 1 1]
O1r 1 01
02k 1 02
0.3r 1 03
04 1 04
3z 0 ns P8 0 05
1=2 area variation=0.156% 1=2.4 area variation=0.203%
05 T 045 T
0.4 0.4 4
03 03 —
02 02 1
01 0.1 b
i i —
01 01 b
0.2 02 4
03 03 4
0.4 04
35 n 0s "85 0 05
t=2 8 area varation=0231% 1=3.2 area variation=0.236%
05 T 04 T
04r 4 0.4F 4
03F 4 03f b
02r 4 02F q
01 4 01 b
or { of g
a1t 1 0at —
02F 4 -02F 4
0.3 4 -03F 4
0A4r 4 -D4f
85 [ a5 "85 [l 05

Figure 20: Simulation of example.2
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We use level function to represent the interface of two circles and we first
choose the case which do not merge

= (V224 (y — 0.1)2 = 0.15) x (/22 + (y + 0.3)2 — 0.15)

Note that ¢; is not signed distance function and we need apply reinitialization
process at the beginning.

Here we give our setting. Inside interface:p; = 1, pu; = 0.02 and outside
interface:py = 40, ps = 0.00025, o = 0.005 and At = %Aw. Note that since
the deformation of bubble shape is much heavier and so the area variation
increase more. But the area variation still less than 1% which is also a good
result.

Example.3
In this example, our setting is just as example.1 except the level function and
we let the distance between two bubbles to be smaller. So the level function

is
do(x,y) = (Va2 +y2 —0.15) x (y/a2 + (y + 0.3)2 — 0.14)

We find that two bubbles merge with each other and then break up into
two parts. This example tells us a very important information which is that
this coupled VOF and level set method also can be applied to the changing of
interface topology like merging and breaking and the inner volume variation
is still less than 1%.

Example.4

In this example we apply steady shear flow to simulation one bubble in
two-phase flow. The circle is centered at (0,0) with radius 0.1 in the compu-
tational domain [—0.5,0.5] x [—0.5,0.5] and we set the boundary condition of
velocity field as u, = (2y,0). We set the gravity g =0, 0 = 0.1, py = ps =1
and g1, = 0.1, us = 1.Note that the area variation is less than 1072% since
we let the time step At = S=Aw.
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Figure 21: Simulation of example.3
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5 Insoluble Surfactant on Interface

5.1 Introduction

Since we have introduced the VOF method and Local Level Set Method in
above chapter, we now couple these two methods to solve insoluble surfactant
on interface. Note that we have introduced how to solve heat equation on
circle which is static(i.e. interface do not move) and in this chapter interface
will be moved by velocity field. So the surfactant problem is more complicate
than heat equation on circle since the interface is no more static.

We refer to [21] which uses level set method to handle the interface proper-
ties and solves surfactant equation by local level set method. We also couple
VOF into level set method to conserve inner area of bubble. Since we use
local level set method as [21], so we can expect that the mass of surfactant
will not be conserved in our numerical scheme and this is the drawback of
local level set method. However the local level set is still powerful since it
just defined on Cartesian grid and the computational domain is just a band
of interface.

5.2 Governing Equations with Insoluble Surfactant

We want to solve Navier-Stokes equation with two-phase flow and surfactant
on the interface, so the Navier-Stokes equation becomes

9,
p(—u +u-Vu) = -Vp+pg—V-uVu+ (Vu)']|+oskn - Ve  (61)

ot
V-u=0

where (cxkn — Vo) is called Laplace-Young equation and since the effect of
surface tension is just on the interface, we approximate cxkn by cxkV H where
H is a heaviside function which is defined as above chapter. Note that oxn is
the capillary force and Vo is Marangoni force where V is surface gradient
which is Vs = (I —n ® n)V that we have mentioned above.

Since the surfactant will depress the surface tension coefficient o, so the
surfactant and ¢ have a relation.We refer [21] to write down the relation :

o(l') =09 — RIT (62)

where I is surfactant concentration, o is surface tension coefficient for clean
interface which means without surfactant, R is the ideal gas constant and T’
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is absolute temperature. Then we refer [22] to non-dimensionalize Eq.(62)
as the form :

o(I') = o9(1 — AT') (63)

where [ satisfies 0 < 8 < 1.We can know that from Eq.(63), if surfactant
concentration I' is lager, then the surface tension coefficient ¢ is smaller.

Since the surfactant will diffuse and convect along the interface, so we
can have the diffusion-convection equation of surfactant as follow:

Iy +u- VI —n- (Vun)l = PiAsr (64)
e

where Pe is Peclet number.

Next we describe how to calculate the mass of surfactant. Since the
surfactant is just defined on interface which we use ¢ to describe. The surface
integral of I' on the interface OS2 is

/3 (s = / D(x)8(¢)| Vldx (65)

where ¢ is a 1Dd-function which we refer [18] as
0, if |z| > w,
) — 6w
(z) 2L (14 cos(222)), if 2] < 0.5w
— (1 +cos(™)). if 0.5w < |z| <w

[18] chooses w = 1.5Ax and it is easy to check that

/ 5(a
So the total mass of surfactant M is

M = ['(x)ds = /F(X)5(¢)]V¢|dx

o0

5.3 Outline of Method

When solving Eq.(64) on moving interface relative to two-phase flow, the
process is complicate since there are many equations needed to solve and we
couple VOF and level set to handle the properties of interface, so we describe
the outline of whole method for one time step as below :
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Stepl Solve the Navier-Stokes equation to get the velocity u and note that
our velocity u is defined on the cell face.(e.g.solve Eq.(61))

Step2 Solve the advection equation of VOF by finite volume method and
reconstruct the interface by PLIC method.

Step3 Move the interface of level function by the velocity u.

Step4 Reinitialize ¢ to be signed distance function within a band by the VOF
method.

Stepb Extend the surfactant I' off interface by normal extension method.

Step6 Evaluate surfactant equation within the band of interface,that is to
solve Eq.(64) using local level set method.

Step7 Evolve Eq.(63) and solve Vi o. Note that we also define ¢ in a band of
interface and solve Vo by Cartesian coordinate. Finally we return to
Stepl.

The process of whole method is as above and there are seven steps to
handle, so the priority of solving which equation must be decided.

5.4 Algorithm of The Method

We have given the details from Stepl to Step6 in above chapters and we just
write the algorithm of Step7 since the surfactant equation is a little different
as comparing with heat equation.

The surfactant equation can be rewritten as

1 o0*T or
Ft—|—u-VF—n-(Vun)F:P—(AF———H—) (66)
e
and again we use semi-implicit Crank-Nicholson method to solve Eq.(64)
which we have mentioned above. Note that Crank-Nicholson is just used in
diffusion part which is A,I" and we treat the convection part with explicit
discretization, then the discretization form is :

[t — 1 AT 4+ AT 3 1, oI o°T

A P 2 Tl metan Tame) T w VI (Van)T]
1 1 8F 82F n—1
_5[_P_€(,€a_n+@)—u-VF+n- (Vun)T'] (67)
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We refer [21] to write the form of Eq.(66) and [21] suggested that in
the discretization for spatial of Eq.(66), central difference is used in all term
except this term u-VI' which is discretized by upwind-WENO-3 scheme which
we have introduced. Note that we encounter the data structure problem again
as in above chapter.

Next we handle Vo, which we can rewrite as

Vo =(I —n®n)Vo

r 2
B ny, — Tz Ny Oy
L 2
| —ngny n; oy

i 2
| Oany — oynany ]

2
| Oyng — OaNaNy

Note that o, and o, are discretized by central difference.

5.5 Numerical Results

The effect of surfactant is to decrease the surface tension coefficient and so
the interface will deform much heavier than clean interface.

In this section we refer the example of [22] and we apply the steady shear
flow with boundary condition u, = (2y,0) in the computational domain
[—0.5,0.5] x [—0.5,0.5].The initial bubble is centered at (0,0) with radius
r =0.15.

Example.1
We give our setting as follows.Initial surface tension coefficient oy = 0.5,
gravity g = 0, py = p2 = 1, p1 = 0.1, gy = 1 and Peclet number Pe = 1.
Note that our time step is as the example of above chapter, At = %Ax and
we consider three cases that are § = O(clean), § = 0.25 and = 0.5(See
figure23).

As our expectation, if 3 is larger then the interface will deforms heavier
since we know that

o(I") = oo (1 — AT

which means that concentration affects the surface tension coefficient.

Note that our inner area is conserved within 0.01% but the surfactant
concentration which computed by Eq.(64) will not be conserved as we predict
before.(See figure24)
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=0 t=0.3

Figure 23: Time evolution of a bubble in shear flow with 5 = 0(black),
B = 0.25(blue) and § = 0.5(red)

6 Conclusion and Future Work

In this article we introduce some methods to simulate two-phase flow with
or without surfactant. We also introduce level set method to solve heat
equation on a circle and we can extend the level set method to 3D directly;
that is to solve heat equation on sphere ¢(z,y,2) = /22 + 3% + 22 — 1. We
can also couple level set method and IIM(immerse interface method) to solve
heat equation on the 2D domain with jump condition on the interface. The
application of level set is very widely and it is really a valuable method.

The VOF method used in this article is to conserve the inner area and we
get nice result in our numerical simulation. By coupling VOF and level set
method, we are not only able to reconstruct the interface accurately but also
to conserve the volume of inner area. Moreover, the method is also adapted
to changing of interface topology such as two bubbles merging or one bubble
braking into two parts.
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Figure 24: (a) Total surfactant in each time step for § = 0.25. (b) Total area
of drop in each time step for § = 0.25. (c) Total surfactant in each time step
for 3 =0.5. (d) Total area of drop in each time step for § = 0.5.

In our simulation of two-phase flow with surfactant on interfaces, the
inner area is still conserved as we expect but the mass of surfactant is not
conserved which does not make sense in our real life. So our future work is to
develop another method to let the mass of surfactant to be conserved, that
is we use other method to handle Eq.(64) and get feasible result in mass of
surfactant.
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