
Chapter 1         Elliptic functions 

1.1 General theorem and properties of elliptic functions 

  In this chapter we follow reference [5], [6]. 

1.1.1 History: 

  The elliptic function is originated from the problem of finding the circumference of 

the ellipse. The ideal of inverting an elliptic integral to obtain an elliptic function is 

due to Abel, Jacobi and Gauss. It was realized that “inverse” of certain standard types 

of such integrals, rather than the integrals themselves. The first properties of the 

integral ware found by the brothers Jakob and Johann Bernoulli. The first 

mathematician to study systematically the theory of elliptic integrals was Legendre, 

he transformed the integrals in numerous types which Legendre called elliptic 

integrals of the first, second, and third kinds. 

1.1.2 Doubly periodic functions: 

A function f of a complex variable is called periodic with period 2ω  if 

f( z + 2ω ) = f(z) 

whenever z and z + 2ω  are in the domain of f. A function f is called doubly periodic 

function if it has two periods 2 1ω  and 2 2ω  whose ratio is not purely real. A 

meromorphic function f in the complex plane which has doubly periods is called an 

elliptic function. 

 
Note: (In reference [2]) 

  If 2 1ω and 2 2ω are periods whose ratio is real, then it is not double periodic for a 

nonconstant elliptic function. 

Case 1. If 
b
a

=
2

1

2
2
ω
ω , where a and b are relatively prime integers, then there exists 

integers m and n such that mb + na = 1.  
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Let 21 22 ωωω += . Then ω  is a period and we have the following  

b
namb

bb
anmnm 11

1
2

1
1 )()()( ωωω

ω
ωωω =+=+=+= , 

so ωω b=1  and ωω a=2 . Thus both 1ω  and 2ω  integer multiples of ω . 

Case 2. If λ
ω
ω

=
2

1 , λ  is an irrational number. Given 0>ε , there are always 

integers p  and q  such that  

ε
ω
ωλ <−=− qpqp )(

2

1  or 221 222 ωεωω <− qp  

But then 21 22 ωω qp −  would be a period of f of arbitrary small modulus, which is 

impossible. 

1.1.3 Period parallelograms: 

  Suppose that in the plane of the variable z we mark the points 0, 12ω , 22ω  and 

21 22 ωω + , generally, all the points whose complex coordinates are of the form 

21 22 ωω mn + , where m and n are integers. Consider the points of set 0, 12ω , 22ω and 

21 22 ωω + ,and we obtain a parallelogram as the vertices. If no point ω  inside or on 

the boundary of this parallelogram such that f( ω+z ) = f( z ) for all values of z, this 

parallelogram is called a fundamental period parallelogram for 

an elliptic function with periods 12ω , 22ω . Such a translated parallelogram, with no 

zeros or poles on its boundary, will be called a cell. 

1.1.4 Properties of the elliptic functions: 

1. If an elliptic function f has no poles in some period parallelogram, 

  then f is constant. 

2. If an elliptic function f has no zeros in some period parallelogram, then f is  

a constant function. 
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3. The contour integral of an elliptic function taking along the boundary of any cell  

is zero. 

4. The sum of the residues of an elliptic function at its poles in any period 

parallelogram is zero. 

5. (Abel’s theorem) The number of zeros of an elliptic function in any period  

parallelogram is equal to the number of poles, each counted with multiplicity. 

1.2 Weierstrass elliptic function 

1.2.1 Definition: 

  The Weierstrass elliptic function )(z℘  is one of the famous elliptic function, 

which is to define by the equation 

∑
,

2
21

2
21

' }
)22(

1
)22(

1{1)(
nm nmnmzz

z
ωωωω +−−

+=℘        (1.1) 

where 1ω , 2ω  satisfy the condition that the ratio is not purely real; the summation 

extends over all integer values (positive, negative and zero) of m and n, simultaneous  

zero values of m and n excepted. For brevity, we write nm,Ω  in place of 

21 22 ωω nm + . 

1.2.2 Properties of ℘(z): 

1. )(z℘  is an even function with single double pole at nm,Ω  for integers m, n. 

2. )(z℘  satisfies the differential equation, 

32
22' )()(4)]([ gzgzz −℘−℘=℘                  (1.2) 

where ∑ −Ω=
nm

nmg
,

,
4'

2 60 , ∑
,

,
6'

3 140
nm

nmg −Ω= (called the invariants) 
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3. (Properties of homogeneity) 

( ) ( )21
2

21 ,;,; ωωλλωλωλ zz ℘=℘ −
, 0≠λ                (1.3) 

),;(),;( 32
2

3
6

2
4 ggzggz ℘=℘ −−− λλλλ , 0≠λ             (1.4) 

where ( )21,; ωωz℘  denote the function formed with periods 12ω , 22ω  and 

),;( 32 ggz℘  denote the function formed with invariants 2g , 3g . 

4. (Addition-theorem) 

a. If 0=++ wvu , then  

0
1)()(
1)()(
1)()(

'

'

'

=
℘℘
℘℘
℘℘

ww
vv
uu

                     (1.5) 

   b. 

)()(}
)()(
)()({

4
1)( 2

''

yz
yz
yzyz ℘−℘−

℘−℘
℘−℘

=+℘         (1.6) 

c. 

)(2}
)(
)({

4
1)2( 2

'

''

z
z
zz ℘−

℘
℘

=℘                 (1.7) 

  unless z2  is a period. The result is called the duplication formula. 

1.2.3 The constants 1e , 2e , 3e : 

  Let )(z℘  be the Weierstrass elliptic function with periods 12ω , 22ω . The value 

)( 1ω℘ , )( 2ω℘ , )( 3ω℘ (where 0321 =++ ωωω ) are all unequal; and, if their value 

be 1e , 2e , 3e , respectively, then the roots of the cubic equation 04 32
3 =−− gtgt  

and 321 eee ≠≠ . We have 

0321 =++ eee  

4
3

321
geee =⋅⋅  

4
2

133221
geeeeee −=++  
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1.2.4 The Weierstrass-zeta function: 

  The Weierstrass-zeta )(zζ  defined by the equation  

)()( z
z

zd
−℘=

ζ , with 0}1)({lim
0

=−
→ z

z
z

ζ . 

  Since the series for 2

1)(
z

z −℘  converges uniformly throughout any domain from 

which the neighborhoods of the points nm,
'Ω  are excluded, we can term-by-term 

integrate and get  

∫ −℘−=−
z

dz
z

z
z

z
0 2 }1)({1)(ζ  

                               dz
z

z

nmnmnm
∫∑ Ω

−
Ω−

=
0 ,

'2
,,

' }1
)(

1{  

and so             }11{1)( 2
,,,,

'

nmnmnmnm

z
zz

z
Ω

+
Ω

+
Ω−

+= ∑ζ .             (1.8) 

1.2.5 Properties of Weierstrass-zeta function: 

1. )(zζ  is an odd function. It is not a doubly-periodic function, and the residue of  

)(zζ  at every pole is 1. 

2. If we integrate the equation 
)()2( 1 zz ℘=+℘ ω , and )()2( 2 zz ℘=+℘ ω , 

we get  

11 2)()2( ηζωζ +=+ zz ,  

22 2)()2( ηζωζ +=+ zz , 

33 2)()2( ηζωζ +=+ zz  

where 12η , 22η , and 32η  are the constants, putting 12ω=z , 22ω=z , and 

32ω=z , respectively, and use the face )(zζ  is an odd function, we have 

)( 11 ωζη = , )( 22 ωζη = , and )( 33 ωζη = , where 0321 =++ ωωω . We get that 

relation 0321 =++ ηηη . This is the quasi-periodicity. 

4. (Properties of homogeneity) 

( ) ( )21
1

21 ,;,; ωωζλλωλωλζ zz −= , 0≠λ  
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5. (Legendre’s relation) 

2311323321221
πιωηωηωηωηωηωη =−=−=− .           (1.9) 

1.2.6 The Weierstrass-sigma function: 

  The Weierstrass-sigma function defined by the equation 

)()(log zz
dz
d ζσ = , with 1)(lim

0
=

→ z
z

z

σ , 

  On account of the uniformity of convergence of the series of )(zζ , except near the 

poles of )(zζ , we may integrate the series term-by-term. 

we get 

)}
2

exp()1{()(
,

2

2

,,

'

, nmnmnmnm

zzzzz
Ω

+
ΩΩ

−∏=σ .           (1.10) 

1.2.7 Properties of Weierstrass-sigma function: 

1. The product for )(zσ  converges absolutely and uniformly in any bounded 

domain. 

2. The function )(zσ  is an odd function with simple zeros at all the points nm,Ω . 

3. If we integrate the equation  

11 2)()2( ηζωζ +=+ zz , 

we get 

)()2( 12
1 zcez zσωσ η=+ , 

where c is the constant, putting 1ω−=z , and then 112 ωηec −= . 

  Consequently,  

)()2( )(2
1

11 zez z σωσ ωη +−=+ ; 
)()2( )(2

2
22 zez z σωσ ωη +−=+ ; 

)()2( )(2
3

33 zez z σωσ ωη +−=+ , 
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where 0321 =++ ωωω , and 0321 =++ ηηη . This is the quasi-periodicity. The 

exponential )(2 rr ze ωη +− (where 3,2,1=r ) is called the periodicity factor of the )(zσ . 

4. (Properties of homogeneity) 

( ) ( )2121 ,;,; ωωλσλωλωλσ zz =  

1.3 The Theta-functions 

1.3.1 Theta-function: 

  Let τ  be (constant) complex number whose imaginary part is positive; and write 

πτieq = , so that 1<q . 

 Consider the function ),(4 qzϑ , defined by the series 

∑
∞

−∞=

−=
n

niznn eqqz 2
4

2

)1(),(ϑ  

  It is evident that  

               ∑
∞

=

−+=
1

4 2cos)1(1),(
2

n

nn nzqqzϑ , 

and that         ),(),( 44 qzqz ϑπϑ =+ ; 

further          ∑
∞

−∞=

−=+
n

niznnn eqqqz 22
4

2

)1(),( πτϑ  

                          ∑
∞

−∞=

+++−− −−=
n

iznnniz eqeq )1(2)1(121 2

)1( , 

and so         ),(),( 4
21

4 qzeqqz ziϑπτϑ −−−=+ . 

  In consequence of these results, ),(4 qzϑ  is called a quasi doubly-periodic function, 

and accordingly 1 and ιzeq 21 −−−  are called the periodicity factors associated with the 

periods π  and πτ . 

1.3.2 Four types of theta-functions: 

  The function ),(3 qzϑ  is defined by the equation 

∑
∞

=

+=+=
1

43 2cos21),
2

(),(
2

n

n nzqqzzqz πϑϑ  
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Next, ),(1 qzϑ  is defined in terms of ),(4 qzϑ  by the equation 

 ιϑ −=),(1 qz ),
2

(4
4
1

qze
izi πτϑ
τπ

+
+

 

                   ∑
∞

=

+
+−=

0

)
2
1(

)12sin()1(2
2

n

nn znq . 

  Lastly, ),(2 qzϑ  is defined by the equation 

            ∑
∞

=

+
+=+=

0

)
2
1(

12 )12cos(2),
2

(),(
2

n

n
znqqzqz πϑϑ . 

  Summary,  

              ∑
∞

=

+
+−=

0

)
2
1(

1 )12sin()1(2),(
2

n

nn znqqzϑ .                  (1.11) 

              ∑
∞

=

+
+=

0

)
2
1(

2 )12cos(2),(
2

n

n
znqqzϑ .                      (1.12) 

              ∑
∞

=

+=
1

3 2cos21),(
2

n

n nzqqzϑ .                          (1.13) 

              ∑
∞

=

−+=
1

4 2cos)1(1),(
2

n

nn nzqqzϑ .                       (1.14) 

  For brevity, the parameter q will usually not be specified, so that )(ziϑ  will be 

written for ),( qziϑ , for i =1,2,3,4. 

1.3.3 The theta-functions as infinite products: 

         ∏
∞

=

+−−=
1

4224
1

1 )2cos21)(1(sin2),(
n

nnn qzqqzqqzϑ .            (1.15) 

         ∏
∞

=

++−=
1

4224
1

2 )2cos21)(1(cos2),(
n

nnn qzqqzqqzϑ             (1.16) 

 ∏
∞

=

−++−=
1

2422
3 )2cos21)(1(),(

n

nnn qzqqqzϑ .                  (1.17) 

∏
∞

=

−+−−=
1

2422
4 )2cos21)(1(),(

n

nnn qzqqqzϑ .                  (1.18) 

1.3.4 Properties of the theta-functions: 

  1. )(1 zϑ  is an odd function and the other theta function are even functions, because 

of the trigonometrical series. 

  2. The zero of ),( qziϑ , for i =1,2,3,4, Znm ∈,  
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0)(1 =zϑ , where πτπ nmz ++= 0 , 

0)(2 =zϑ , where πτππ nmz ++=
2

, 

0)(3 =zϑ , where πτππτπ nmz +++=
22

, 

0)(4 =zϑ , where πτππτ nmz ++=
2

. 

  3. The identity )0()0()0( 4
34

4
2

4 ϑϑϑ =+ .                             (1.17) 

  4. The identity )0()0()0()0( 432
'

1 ϑϑϑϑ = .                             (1.18) 

5. The differential equation satisfied by the theta-functions 

τ
τϑ

π
τϑ

∂

∂
=

∂

∂ ),(
4

),(
2

2 z
i

z
z jj , for j =1,2,3,4.             (1.19) 

1.4 Jacobian elliptic functions 

1.4.1 Definition of Jacobian elliptic functions: 

  The elliptic functions snu , cnu , and dnu  are defined as ratios of theta-functions 

as below: 

snu
)(
)(

)0(
)0(

4

1

2

3

z
z

ϑ
ϑ

ϑ
ϑ

=                        (1.20) 

cnu
)(
)(

)0(
)0(

4

2

2

4

z
z

ϑ
ϑ

ϑ
ϑ

=                        (1.21) 

dnu
)(
)(

)0(
)0(

4

3

3

4

z
z

ϑ
ϑ

ϑ
ϑ

=                        (1.22) 

where z
)0(2

3ϑ
u

= . 

Note: 

     If the parameter τ  is purely imaginary (q real), the elliptic 

functions are all real for real values of u . 

1.4.2 Double periodicity of the Jacobian elliptic functions: 

  We can use the following identities to find the double periods of the elliptic  
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functions snu , cnu , and dnu . Writing ziqeN 2= , then  

)()()()( 1111 πτπϑπτϑπϑϑ ++=+−=+−= zNzNzz  

  )()()()( 2222 πτπϑπτϑπϑϑ ++−=+=+−= zNzNzz  

)()()()( 3333 πτπϑπτϑπϑϑ ++=+=+= zNzNzz  

 )()()()( 4444 πτπϑπτϑπϑϑ ++=+−=+= zNzNzz  

  Thus,  

sn =+ ))0(2( 2
3πϑu snu ,  sn =+ ))0(( 2

3πτϑu snu , 

snu  has two periods )0(2 2
3πϑ  and )0(2

3πτϑ  whose ratio τ
2
1  must be the complex 

(with positive imaginary part). We shall write  

)0(
2
1 2

3πϑ=K , KiK τπτϑ == )0(
2
1 2

3
' , 

then,  

sn u( =+ )4K sn u( =+ )2 'iK snu , 
  The periods of snu  are K4 and '2iK . 
Also,  

               cn u( =+ )4K sn u( =++ )22 'iKK cnu , 

               dn u( =+ )2K dn u( =+ )4 'iK dnu , 

cnu  has periods K4  and '22 iKK + ; dnu  has periods K2 and '4iK . 

  Now, the zeros of snu , cnu , and dnu are determinable by the theta-functios and 

the definition of snu , cnu , and dnu . 

 Double periods Zeros 

snu  
K4 and '2iK  

)0)(0(2
3 πτπϑ nm ++ = '22 inKmK +  

cnu  
K4 and '22 iKK +  )

2
)(0(2

3 πτππϑ nm ++ = '2)12( inKKm ++  

dnu  
K2 and '4iK  )

22
)(0(2

3 πτππτπϑ nm +++ = ')12()12( KniKm +++

Table 1-1 (The periods and zeros of Jacobian elliptic functions) 
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1.4.3 Properties of Jacobian elliptic functions: 

1. (Differential equation) 

  Let 
)0(
)0(

2
3

2
2

ϑ
ϑκ =  be a parameter, and snu satisfy the differential 

  equation 

)-)(1 1()
d
d( 2222 yy
u
y κ−= ,                    (1.23) 

The parameter κ  is called the modulus; if 
)0(
)0(

2
3

2
4'

ϑ
ϑκ = , so  

  12'2 =+κκ , 'κ  is called the complementary modulus. In the numerical express of  

κ , and 'κ , 

                    
4

1
12

2
2
1

)
1
1(4 ∏

∞

=
−+

+
=

n
n

n

q
qqκ ,                         (1.24) 

                    
4

1
12

12
' )

1
1(∏

∞

=
−

−

+
−

=
n

n

n

q
qκ .                            (1.25) 

Note: 

      If q  is real and 10 <≤ q , then 10 <≤κ , 10 ' ≤<κ . 

On the other hand, cn u , and dn u satisfy the following differential equation, 

respectively. 

))( 1()
d
d( 222'22 yy
u
y κκ +−=

, 

 

)-)( 1()
d
d( '2222 κyy
u
y

−=
. 
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2. The identities 

1cnsn 22 =+ uu ,                        (1.26) 

1sndn 222 =+ uu κ ,                      (1.27) 

2'222 cndn κκ =− uu .                    (1.28) 

3. The derivative of Jacobian elliptic functions. 

                      uuu
u

dn cnsn
d
d

= ,                           (1.29) 

                      uuu
u

dn sncn
d
d

−= ,                          (1.30) 

uuu
u

cn sndn
d
d 2κ−= .                       (1.31) 

  4. The power series expansions of snu , cnu , and dnu . 

    we can use the face that 00sn = , 10cn = , 1dn0 = , and 3. in section1.4.3 to  

find the Maclaurin series as following, 

          
⋅⋅⋅−++++−= 54232 )141(

!5
1)1(

!3
1sn uuuu κκκ

,              (1.32) 

          
⋅⋅⋅−++−= 422 )41(

!4
1

!2
11cn uuu κ

,                         (1.33) 

          
⋅⋅⋅−++−= 44222 )4(

!4
1

!2
11dn uuu κκκ

.                     (1.34) 

1.4.4 Elliptic integral of the first kind: 

  The function snu satisfies the differential equation 

)-)(1 1()
d
d( 2222 yy
u
y κ−= , 

we have the integral representation of snu is 

dt
tt

u
uy

∫
−−

=
)(

0 222 )1)(1(

1

κ
,  thus ),(sn κuy = .        (1.35) 
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A special case of the integral representation is  

dt
tt

K ∫
−−

=
1

0 222 )1)(1(
1

κ
,                  (1.36) 

this is the complete elliptic integral of the first kind, if we let φsin=t , and we have 

at once  

φ
φκ

π

dK ∫
−

= 2
0 22 )sin1(

1 .                   (1.37) 

1.4.5 The graph of Jacobian sn )u,( κ : 

  a. sn )
2
1,(u : 

-15 -10 -5 5 10 15

-1

-0.5

0.5

1

 

Fig 1-1 (The graph of sn )
2
1,(u ) 

b. sn )
2

1,(u : 

-15 -10 -5 5 10 15

-1

-0.5

0.5

1

 

  Fig 1-2 (The graph of sn )
2

1,(u ) 
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c. sn )1 ,(u : 

-15 -10 -5 5 10 15

-1

-0.5

0.5

1

 
 

Fig 1-3 (The graph of sn )1 ,(u ) 
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Chapter 2         The simple pendulum 

2.1 Introduction: 

  Let l be the length of the suspension, g the gravitational acceleration, and m the 

mass of the bob. Then, if θ  is the angle made by the string with the downward 

vertical and v is the velocity of the bob at any time t, its energy is conserved provided 

constant)cos(
2
1 2 =−+ θmglmv ,              (2.1) 

Kinetic energy + Potential energy = constant. 

where the kinetic energy is 2

2
1 mv , and the potential energy is )cos( θmgl− . Since 

.
θlv = , putting 

l
g

=2ω , consequently, the equation (2.1) can be written in the form 

                       constantcos
2
1 2

. 2
=− θωθ                      (2.2) 

2.2 Analysis: 
  First, let’s consider the differential equation of the following 

0)(sin)(
..

=+ tUtU , 0)0( =U .               (2.3) 

by the energy method,  

                   0)(sin)()()(
...

=×+× tUtUtUtU .                    (2.4) 

integration the both side of (2) we obtation that 

   EtUtU =− )(cos2)](
.

[
2
1 ,       where 1−≥E , 

         *)](cos1[2)](
.

[
2
1 EtUtU =−+ ,   where 01* ≥+= EE .           (2.5) 

the kinetic energy is 2)](
.

[
2
1 tU  and the potential energy is )(cos1 tU− , we call the 

*E  to be the total energy. 
 
  Before solving the equation (2.5), we analyze the relation between the kinetic 
energy, the potential energy and the phase portrait. Given the energy 

,5.1* =E ,2* =E and 3* =E . 
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  The relation of potential energy(P.E) and the angle(U) as following,  

p- p 2p- 2p 3p- 3p 4p- 4p
U

0.5

1

1.5

2

P.E

 

Fig 2-1 (The graph of U-P.E) 

The phase portrait ),(
.

Ut  

 

Fig 2-2 (Phase Portrait ),(
.

Ut ) 

2.3 Apply the Jacobian elliptic function to solve the pendulum 

motion: 

  Second, we want to use the Jacobian elliptic function and the elliptic  

integral of first kind to solve (2.3). The integral representation of )(tU  is 

ξ
ξ

d
E

t
tU

∫
−−

=
)(

0 * ]cos1[22
1 , 

   ⇒             ξ
ξ

d
E

t
tU

∫ +
=

)(

0 cos22
1 , since 1* += EE , 
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  (a) When 20 * << E , i.e. 11 <<− E , there is a α  in ( )π,0 , such that 
E=− αcos , since xcos  in ( )π,0  is an one-to-one mapping, the E  can be chosen. 

  And  

                      ξ
ξ

d
E

t
tU

∫ +
=

)(

0 cos22
1 , 

ξ
ξα

d
tU

∫ +−
=

)(

0 cos2cos2
1 , 

ξ
ξα

d
tU

∫
−+−−

=
)(

0
22 )

2
sin21(2)

2
sin21(2

1 , 

                       ξ
ξα

d
tU

∫
−

=
)(

0
22

2
sin

2
sin

1
2
1 .                  (2.6) 

Let 1
2

sin0 <=<
ακ , and 

κ

ξ
2

sin
=z , then 

dz
zz

t ∫
−−

= κ
κ

1

0 222 11

1 .                 (2.7) 

  According to the Jacobian elliptic function sn(t), we have that  

2
)(sin1)(sn tUt

κ
= . 

that is ))(sn(sin2)( 1 ttU ⋅= − κ . 

  The motion is periodic and the period is equal to K4 . Since the pendulum 

occupies the highest position )( α=u  after a quarter-period. 

Because of the following, 

      αα =⇒+−=+==
⋅

UUUEU            cos2cos2cos220
2

. 

  And the period T  is 

Kdz
zz

T 4
11

14
1

0 222
=

−−
= ∫ κ

,              (2.8) 

where K  is the complete elliptic integral of the first kind. 
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(b) When 2* =E , ie 1=E , 

                      ξ
ξ

dt
tU

∫ +
=

)(

0 cos22
1 , 

                       ξ
ξ

d
tU

∫ +
=

)(

0 cos1
1

2
1 , 

ξ
ξ

d
tU

∫
−

=
)(

0
2

2
sin22

1
2

1 , 

                       ξ
ξ

d
tU

∫
+

=
)(

0
2

2
sin1

1
2
1 .                       (2.9) 

  Let x=
2

sin ξ , then 

                    dx
x

t
tU

∫ −
= 2

)(sin

0 21
1 . 

  Integration gives us that 

                    

2
)(sin1

2
)(sin1

ln
2
1

tU

tU

t
−

+
= ,                            (2.10) 

which implies that  

                )tanh(
2

)(sin ttU
= , ie )tanh(sin2)( 1 ttU −= .            (2.11) 

  This formula shows that as t  increasing from 0  to ∞ the angle )(tU  

increasing from 0  to π , ie, the pendulum always moves in one direction, and the 

uppermost position, which it never attains, is its limit position. 

(c) When 2* >E , ie 1>E ,  

                     ξ
ξ

d
E

t
tU

∫ +
=

)(

0 cos22
1  

                      ξ
ξ

d
E

tU

∫
−+

=
)(

0
2

2
sin4)22(

1  
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  Let 
2
ξ

=x , and 1
22

2
≤

+
=

E
κ , then it become that 

 dx
x

t
tU

∫ −
= 2

)(

0 22 sin1
1

κ
κ . 

  Let yx =sin , then  

                        dy
yy

t
tU

∫ −−
= 2

)(sin

0 222 11
1

κ
κ .              (2.11) 

  Therefore, 

2
)(sin)(sn tUt

=
κ

.        .             (2.12) 

When 2* >E , the Fundamental Theorem of Calculus tells us 

0
)(cos22

1
>

+
=

tUEdU
dt .                 (2.13) 

   From the integral form ∫ +
=

)(
0 cos22

1tU
d

E
t ξ

ξ
 we know that when ∞→t , 

the angle ∞→)(tU , the pendulum is never stopping. 

2.4 About the period with different total energy: 

(a) The total energy 20 * << E . 

  We can show that the period is always greater than π2  when the total energy in 

20 * << E . 

  Since by (2.8) the period is Kdz
zz

T 4
11

14
1

0 222
=

−−
= ∫ κ

, given an energy 

*E  in )2,0( , there is a correspondence 
2

*E
=κ  in )1,0( . Because of that for 

)1,0(∈z , 
2222 11

1

1

10
zzz κ−−

<
−

< , and we have that  
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dz
zz

dz
z

∫∫
−−

<
−

1
0 222

1
0 2 11

1

1

1

κ
, 

then         Tdz
zz

dz
z

=
−−

<
−

= ∫∫
1
0 222

1
0 2 11

14
1

142
κ

π . 

and if 21 κκ < , then 
22

2
222

1
2 11

1

11

1

zzzz κκ −−
<

−−
 for )1,0(∈z , 

thus )()( 21 κκ TT <  (the )(κT  denotes the period with parameter κ ). 

The periodic T  is always greater than π2 , and increasing as the total energy 

increasing from 0  to 2 . And the period will tend to ∞  as the total energy *E  

tend to 2. 

(b) The total energy 2* =E . 

In the section 2.3 (b) we know that the π→)(tU  as ∞→t , we say the periodic 

is ∞ . It will spend for infinite time returning to the original situation.  

(c) The total energy 2* >E . 

In the section 2.3 (c) we know that the ∞→)(tU  as ∞→t , and the phase 

portrait ),(
.

Ut  in the section 2.2. It is no periodicity. 

2.4 Summary: 

  The problem of the simple pendulum is a nonlinear second order PDE, if we give a 

initial energy *E , then there is a κ  to correspond the initial energy *E , thus there 

is a Jacobian elliptic function ),sn( κu  to correspond the initial energy *E . We list 

two table which is the relation with difference initial energy *E  and some numerical 

result in the following, and the K  is denoted the complete elliptic integral, κ  is the 

modular, and T  is denoted the period. The main ideal in section 2.3 can be found in 

[5] and [7]. 
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20 * << E  2* =E  2* >E  

κ  
2

*E  1 *
2

E
 

Solution ))(sn(sin2)( 1 ttU ⋅= − κ  )tanh(sin2)( 1 ttU −=  )(snsin2)( 1

κ
ttU −=  

Period K4  ∞  No periodicity 

Table 2-1 (The relation of *E , κ , )(tU , and period ) 

 

*E  0  
2
1  1 

2
3  2  

2
5  3  

κ  0  
2
1  

2
1  

2
3  1 

5
2  

6
2  

T  0 7.4136 8.3439 9.7654 ∞  No periodicity No periodicity

Table 2-2 ( *E , κ , T  in numerical value) 
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Chapter 3           Riemann Surface 

  In the last chapter, the solution dz
zz

t
tU

∫
−−

= 2
)(sin1

0 222 11

1κ

κ
 is as an inverse 

question. But the function 
222 11

1
zz κ−−

 is not an analytic function. We need the 

Riemann surface to structure an analytic function of 
222 11

1
zz κ−−

. The construct 

of the Riemann surface from reference [8] 

3.1 Introduction: 

Let’s consider the function zzf =)(  to define a single-value and analytic 

function on the Riemann surface. 

  Assume Cz∈ , and we can use the polar form for z,  

(3.2)                                               .     
(3.1)                                                    ,   

)2( πθ

θ

+=

=
i

i

re
rez

 

To find the z  , the (3.1) becomes  

22
1 θi

erz = , 

and the (3.1) becomes 

22
1)

2
(

2
1)

2
2(

2
1 θπθπθ iii

erererz −===
+

+

. 

  Since 22
1

22
1 θθ ii

erer −≠ , we have that zzf =)(  is a multi-valued function at 

each Cz∈ , and which is not analytic on C . How can we make the function 

zzf =)(  to become a single-valued function and analytic on C ? 

  Consider the two cuts from 0 to ∞−  and let 

{ )},[arg|]0,(\ 11
−+−∈=−∞= ππθ zCP  

and 

{ )}3,[arg|]0,(\ 22
−+∈=−∞= ππθ zCP  as Fig.3-1 shows. 
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Fig. 3-1  (P1, P2 plane) 

 

We can define two functions )(1 zf  and )(2 zf  on P1 and P2, respectively, by  

 

zzf =)(1 , 1Pz∈ . 

zzf =)(2 , 2Pz∈ . 

 

Then 22
1

1

1

)(
θ

i
ezzzf ==  is a single-valued function defined at each 1Pz∈  and 

analytic on 1P . 

 

And )()( 1
22

1
22

1
2
2

2
1

22
1

2

1112

zfezeezezezzzf
iiiii

−=−=====
+ θ

π
θπθθ

 is also a 

single-valued function defined at each 2Pz∈  and analytic on 2P . 

 

 Let }arg|]0,{(1 π=−∞= zD , the figure show as the following. 
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-π +  π +

π −  3π −  

P1 
P2 

(b) (a) 



 

 

 

 

 

 

Fig. 3-2 ( }arg|]0,{(1 π=−∞= zD ) 

If 1Pz∈  and zarg  tends to −π ，then 2
1

22
1

2
arg

2
1

ziezezz
izi
=→=

π

 , 

if 2Pz∈  and zarg  tends to +π ，then 2
1

22
1

2
arg

2
1

ziezezz
izi
=→=

π

 , 

so z  is continuous cross the cut ]0,(−∞  for 1Dz∈ . 

  Therefore, we can define that  

zzf =)(3 ， 1Dz∈ , 

then 2
1

3 )( zizzf ==  and which is analytic on 1D . 

On the other hand, let }3arg|]0,{(2 π=−∞= zD , the figure show as the following. 

 

 

 

 

 

 

Fig. 3-3 ( }3arg|]0,{(2 π=−∞= zD ) 
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D1 
π

π

π=zarg

 

D2 
3π −

-π +

π3arg =z  



If 2Pz∈  and zarg  tends to −π3 , then 2
1

2
3

2
1

2
arg

2
1

ziezezz
izi

−=→=
π

 , 

if 1Pz∈  and zarg  tends to +−π , then 2
1)

2
(

2
1

2
arg

2
1

ziezezz
izi

−=→=
−
π

 , 

so z  is continuous cross the cut ]0,(−∞  for 2Dz∈ . 

Similarly, we can define that 

zzf =)(4 , 2Dz∈ , 

then )()( 3
2
1

4 zfzizf −=−=  and which is analytic on 2D . 

  According to the above discussion, we can construct a single-valued function for  

z , the conclusion as the following: 

 

Let ]0,(21 −∞∪∪= PPD  and the function CDF →:  defined as  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
∈
∈
∈

=

24

13

22

11

,)(
,)(
,)(
,)(

)(

Dzzf
Dzzf
Pzzf
Pzzf

zF  

the function )(zF  is really single-valued and analytic on D , satisfying 

)()( 21 zfzf −=  and )()( 43 zfzf −= . 

3.2 The Riemann surface of ∏
=

−=
n

i
izzzf

1

)()(  with Rz j ∈ : 

  Let ∏
=

−=
n

i
izzzf

1

)()( , Rz j ∈  with n distinct real numbers and satisfy that  

nzzz >⋅⋅⋅⋅⋅⋅>> 21 . For example, we can consider that 2=n  and the branch point 

are 11 =z , and 22 =z . 

  If the cut show as in Fig. 3-4 

25 



 

 

 

 

Fig. 3-4 (The cut in two branch point) 

(a) If )1,(−∞∈z , then  

⎩
⎨
⎧−

=−
π
π

)1arg(z , 

⎩
⎨
⎧−

=−
π
π

)2arg(z . 

Taking π− : 2
1

2
1)

2
2(

2
1

2
1

212121 −−−=−−=−⋅−
−

zzezzzz
i π

,          (3.3) 

Taking π : 2
1

2
1)

2
2(

2
1

2
1

212121 −−−=−−=−⋅− zzezzzz
i π

             (3.4) 

 Since (3.3) = (3.4), there is no cut in )1,(−∞ . 

(b) If )2,1(∈z , then  

0)1arg( =−z , 

⎩
⎨
⎧−

=−
π
π

)2arg(z . 

Taking π−  : 2
1

2
1)

2
(

2
1

2
1

212121 −−−=−−=−⋅−
−

zziezzzz
i π

,         (3.5) 

Taking π  : 2
1

2
1)

2
(

2
1

2
1

212121 −−=−−=−⋅− zziezzzz
i π

             (3.6) 

Since (3.5) ≠  (3.6), there is a cut in )2,1(  

(c) If ),2( ∞∈z , then  

0)1arg( =−z  

0)2arg( =−z  

  It is clearly, there is no cut in ),2( ∞ . 

Thus, we have a branch cut in (1,2) as Fig 3-5. 
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- 

+ 
- 



 

 

Fig 3-5 Branch cut in (1,2) 

The second example considers that 3=n , and the branch points are 

11 =z , 22 =z , 33 =z . 

(a) If )1,(−∞∈z , then  

⎩
⎨
⎧−

=−
π
π

)1arg(z , 

⎩
⎨
⎧−

=−
π
π

)2arg(z , 

⎩
⎨
⎧−

=−
π
π

)3arg(z . 

 

 

Taking π− : 2
1

2
1

2
1

321321 −−−−=−−⋅− zzzizzz ,               (3.7) 

Taking π : 2
1

2
1

2
1

321321 −−−=−−⋅− zzzizzz .         .        (3.8) 

  Since (3.7) ≠  (3.8), there is a cut in )1,(−∞ . 

(b) If )2,1(∈z , then  

0)1arg( =−z , 

⎩
⎨
⎧−

=−
π
π

)2arg(z , 

⎩
⎨
⎧−

=−
π
π

)3arg(z . 

Taking π− : 2
1

2
1

2
1

321321 −−−−=−−⋅− zzzzzz ,               (3.9) 

Taking π : 2
1

2
1

2
1

321321 −−−−=−−⋅− zzzzzz .                (3.10) 

  Since (3.9) =  (3.10), there is no cut in )2,1( . 
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(c) If )3,2(∈z , then  

0)1arg( =−z , 

0)2arg( =−z , 

⎩
⎨
⎧−

=−
π
π

)3arg(z . 

Taking π− : 2
1

2
1

2
1

321321 −−−−=−−⋅− zzzizzz .              (3.11) 

Taking π : 2
1

2
1

2
1

321321 −−−=−−⋅− zzzizzz                  (3.12) 

  Since (3.11) ≠  (3.12), there is a cut in )3,2( . 

(d) If ),3( ∞∈z , then  

0)1arg( =−z , 

0)2arg( =−z , 

0)3arg( =−z . 

  It is clearly, there is no cut in ),3( ∞ . 

  Thus, we have a branch cut in )1,(−∞ , )3,2( . The graph shows in Fig 3.6 

                  

Fig 3.6 Branch cut in )1,(−∞ , )3,2(  

Note:  

     If we crosses the cut even times in each line section, then it will not change the 

sign. And if we crosses the cut odd times in each line section, then it will change the 

sign. It implies that the line section will become a branch cut. That is, given n  

branch points, if n  is even, then the branch cuts are this sections like ],[ 1−nn zz 、

],[ 32 −− nn zz …… and ],[ 12 zz . If n  is odd, then the branch cuts are this sections like  
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],( nz−∞ 、 ],[ 21 −− nn zz …and ],[ 12 zz . The graph shows in Fig 3-7. 

 

 

                                                       n  is even. 

 

                                                        

                                                       n  is odd. 

 

Fig 3-7 

3.3 The algebraic and geometric structure for Riemann surface of 

horizontal cut: 

  We will discuss the structure for Riemann surface of ∏
=

−=
3

1

)()(
j

jzzzf  in 

horizontal cut. 

(a) Algebra structure: 

   Let ],( 3z−∞ 、 ],[ 12 zz  represent the cuts in this Riemann surface and 〝+〞，〝–〞

are defined as following(the initial edge with +, the terminal edge with –) :  

  

 

 

 

Fig 3-8 

(i) If +∈ Iz ( + edge of sheet )Ⅰ , and ],[ 12 zzz∈ . 

Since jzz − > 0 ⇒  0)arg( =− jzz  for 3,2=j . 
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jzz − < 0 ⇒  π−=− )arg( jzz  for 1=j . 

Then  

∏
=

−=
3

1

)()(
j

jzzzf ∏
=

−=
3

1j
jzz  

         02
1

3

2

)
2

(
2
1

1
⋅

=

−

∏ −⋅−= i

j
j

i
ezzezz

π

 

         
2
1

3

1

)
2

(

∏
=

−
−⋅=

j
j

i
zze

π
2
1

3

1

)( ∏
=

−⋅−=
j

jzzi .      (3.13) 

(ii) If −∈ Iz ( – edge of sheet )Ⅰ , and ],[ 12 zzz∈ . 

Since jzz − > 0 ⇒  0)arg( =− jzz  for 3,2=j . 

jzz − < 0 ⇒  π=− )arg( jzz  for 1=j . 

Then   

∏
=

−=
3

1

)()(
j

jzzzf ∏
=

−=
3

1j
jzz  

         02
1

3

2

)
2

(
2
1

1
⋅

=
∏ −⋅−= i

j
j

i
ezzezz

π

 

         
2
1

3

1

)
2

(

∏
=

−⋅=
j

j

i
zze

π
2
1

3

1

)( ∏
=

−⋅=
j

jzzi .       (3.14) 

Because of that )(zf ∣ −I
 = )(zf− ∣ +I

, this result implies that  

)(zf ∣ II  = )(zf− ∣ I                    (3.15) 
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(b) Geometric structure: 

   We will discuss the geometric structure for Riemann surface of zzf =)( . Since 

there is a cut in ]0,(−∞ , and we obtain one sheet with two edges in each cut by taken  

of counterclockwise which labeled the edge of lower-cut with + and the edge of 

upper-cut with –. There are two surface, one is, say sheet withⅠ  ),[)(arg ππ−∈zf ; 

another is, say sheet  with Ⅱ )3,[)(arg ππ∈zf . We must attach the lower edge of 

sheet Ⅰ to the upper edge of sheet Ⅱ, the upper edge of sheet Ⅰ to the lower edge of 

sheet Ⅱ. This is without self-intersection. This result of the construction is a Riemann 

surface whose points are in one-to-one correspondence with the points in the 

planezf −)( . Especially, this correspondence is continuous if the continuity is 

defined in the sense suggested by the construction. 

  We take 3=n  to discuss the geometric structure for Riemann surface of 

∏
=

−=
n

j
jzzzf

1

)()(  in horizontal cuts, as shown in Fig.3-9. The first is a sphere 

with two cuts, and become the second like a balloon has two holes. Then we copy this 

balloon and gum them according to the above method. Finally, it looks like a donut. 

Because for 3=n  it have four branch points (∞ is an branch point). 
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Fig 3-9 Geometric structure 
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(c) Algebraic structure sv.  Geometric structure: 

We also use 3=n  to discuss. Before talking about the relation between algebraic 

structure and geometric structure, we need to denote something as the following : 

(i) If the curve is drawn by solid line : 

  In algebraic structure, it means the curve is in sheet ;Ⅰ  

  In geometric structure, it means the curve is in the overhead Riemann surface. 

(ii) If the curve is drawn by dash line : 

In algebraic structure, it means the curve is in sheet ;Ⅱ  

   In geometric structure, it means the curve is in the ventral Riemann surface. 

We give some example to show that the curve in algebraic structure and its 

corresponding in geometric structure in Fig.3-10 to Fig.3-12. 

 

 

 

 

 

 

Fig 3-10 Algebraic structure sv.  Geometric structure 

 

 

 

 

 

 

Fig 3-11 Algebraic structure sv.  Geometric structure 
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+
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- 

 

+



 

 

 

 

 

Fig 3-12 Algebraic structure sv.  Geometric structure 

3.4 The Riemann surface of ∏
=

−=
n

i
izzzf

1

)()(  with Cz j ∈ : 

  In this section, we will discuss the Riemann surface with the vertical cut structure. 

Similarly, the construction is like the construction of the horizontal cut. We can define 

that ∏
=

−=
n

i
izzzf

1

)()(  and ))(,( zfz  belong to sheet Ⅰ iff )
2

,
2

3[)(arg ππ
−∈zf , 

i.e. )
2

,
2

3[)arg( ππ
−∈− jzz  and ))(,( zfz belong to sheet Ⅱ iff )

2
3,

2
[)(arg ππ

∈zf  

i.e. )
2

,
2

3[)arg( ππ
−∈− jzz . 

  About the vertical cut structure analysis method is the same as horizontal cut 

structure. We can consider that 2=n  and iz =1 , iz 22 = . 

                   

Fig 3-13 
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(a) If )2,( iz ∞∈ , then 

 

⎪
⎩

⎪
⎨

⎧−
=−

2

2
3

)arg( π

π

iz , 

 

⎪
⎩

⎪
⎨

⎧−
=−

2

2
3

)2arg( π

π

iz . 

 

Taking 
2

3π
− : 2

1
2
1)

2
3(

2
1

2
1

2122 −−=−−=−⋅−
−

zzieiziziziz
i π

       (3.13) 

Taking 
2
π : 2

1
2
1)

2
(

2
1

2
1

2122 −−=−−=−⋅− zzieiziziziz
i π

           (3.14) 

  Since (3.13) = (3.14), there is no cut in )2,( i∞ . 

(b) If )2,( iiz∈ , then 

⎪
⎩

⎪
⎨

⎧−
=−

2

2
3

)arg( π

π

iz , 

2
)arg( π

−=− iz . 

Taking 
2

3π
− : 2

1
2
1

)(2
1

2
1

2122 −−−=−−=−⋅− − zzeiziziziz i π        (3.15) 

Taking 
2
π : 2

1
2
1

)0(2
1

2
1

2122 −−=−−=−⋅− zzeiziziziz i .           (3.16) 

Since (3.15) ≠  (3.16), there is a cut in )2,( ii . 

(c) If ),( iz −∞∈ , then it is like in (a). 

  Thus, we have a branch cut in )2,( ii . 
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Fig 3-14 Branch cut in )2,( ii  

We can use the simpler way to get branch cut. We take 4=n  with iz =1 、

iz 22 = 、 iz 33 =  and iz 44 = , that is, 1z < 2z < 3z <…< nz , as shown in Fig.3-15.  

 
 
 
 
 
 

Fig.3-15 Branch cuts 

When crossing the cut even times in each line section, it will not change sign. 

When crossing the cut odd times in each line section will change sign，this implies the 

line section will form a branch cut. Hence we have the branch cuts in ],[ 34 zz  and 

],[ 12 zz . The cut structure is showed in Fig.3-16. 

 

 
 
 
 
 

 

Fig.3-16 Branch cuts in ],[ 34 zz  and ],[ 12 zz  
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3.5 The algebraic and geometric structure for Riemann surface of 

vertical cut: 

  For simplicity, we use 4=n  to discuss the structure for Riemann surface of 

∏
=

−=
4

1

)()(
j

jzzzf  in vertical cut. In the cut structure, we still depend on the 

countclockwise to take〝+〞、〝–〞 sign. The definition of solid-line and dash-line are 

the same as horizontal cut case. 

 

 

 

 

 

 

 

 

Fig.3-17 

(a) Algebra structure: 

  Let ],[ 34 zz 、 ],[ 12 zz  represent the cuts in this Riemann surface and 〝+〞，〝–〞

are defined as following(the initial edge with +, the terminal edge with –) : 

(i) If +∈ Iz ( + edge of sheet )Ⅰ , and ],[ 12 zzz∈ . 

Since 
2

)arg( 1
π

−=− zz  and 
2

3)arg( 2
π

−=− zz  . )
2

,()arg( ππ−∈− jzz  for 

4,3=j . 

Then  
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+    - 

+    - 

Z 2  

Z1  

Z 3  

Z 4  

+    - +    - 

Z1  Z 3  

Z 2  
Z 4  

Z 



∏
=

−=
4

1

)()(
j

jzzzf  ∏
=

−=
4

1j
jzz  

    2
)arg(

2
1

4,3,1

)
4

3(
2
1

2

jzz
i

j
j

i
ezzezz

−

=

−

∏ −⋅−=
π

 

    2
)arg(

2
1

4,3,1

2
1

2)
2
2(

jzz
i

j
j ezzzzi

−

=
∏ −⋅−−= .          (3.17) 

(ii) If −∈ Iz ( – edge of sheet )Ⅰ , and ],[ 12 zzz∈ . 

Since 
2

)arg( 1
π

−=− zz  and 
2

)arg( 2
π

=− zz  . )
2

,()arg( ππ−∈− jzz  for 

4,3=j . 

Then  

∏
=

−=
4

1

)()(
j

jzzzf ∏
=

−=
4

1j
jzz  

    2
)arg(

2
1

4,3,1

)
4

(
2
1

2

jzz
i

j
j

i
ezzezz

−

=
∏ −⋅−=

π

             (3.18) 

    2
)arg(

2
1

4,3,1

2
1

2)
2
2(

jzz
i

j
j ezzzzi

−

=
∏ −⋅−=             (3.19) 

Because of that )(zf ∣ −I
 = )(zf− ∣ +I

, this result implies that  

)(zf ∣ II  = )(zf− ∣ I  

(b) Geometric structure: 

  The construct a geometric structure for Riemann surface of ∏
=

−=
n

j
jzzzf

1

)()(  

is the same as horizontal cuts. The graph show in Fig 3-18 
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Fig 3-18 Geometric structure 

 

 

39 

- -

Z4  +  Z3 Z2  +  Z1 

- -

++
Z4      Z3 Z2     Z1 

Z4   +    Z3 

Z4        Z3 

Z4   -    Z3 Z2   -    Z1 

Z2   +    Z1 

Z2        Z1 

Ⅱ

Ⅰ

Ⅰ

Ⅱ

+ +

- -

Z4 

Z3 Z2 
 Z1 

Ⅱ

Ⅰ

(Ⅰ,+)=(Ⅱ,-) 

(Ⅰ,-)=(Ⅱ,+) 



3.6 Application in Riemann surface (Complex Integral): 

  We will give some examples about the horizontal cut. 

Example1. 

  Evaluate that ∫ −−
γ

dzzz 21 , where γ  is a circle of radius 
2
3 , 2 , and 3 at 

center 
2
3 . 

(i) γ  is a circle of radius 
2
3  at center 

2
3 . 

(a) Path integral  

Let θiez
2
3

2
3
+= , θθ diedz i

2
3

= , then  

iideeiedzzz iii 785398.0
4

2
2
3

2
31

2
3

2
3

2
321 −≈−=−+−+=−− ∫∫ −

πθ
π
π

θθθ

γ
 

(b) Riemann surface 

 1  to  2 2  to  1 

Integral path angle value angle value 

1−z  0 1 0 1 

2−z  π−  i−  π  i  

Sheet +I  −I  

Total 21 −− zz  i−  i  

Table 3-1 

The integral becomes as following, 

∫
+

=−−
I

dzzz 21 idrrri 392699.01
1
0

−≈−− ∫ . 

∫
−

=−−
I

dzzz 21 idrrri 392699.01
0

1
−≈−∫ . 
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By Riemann surface theory we have that, 



              ∫∫
−+

−−=−−
II

dzzzdzzz 2121  

Therefore, the integral =−−∫
γ

dzzz 21 idzzz
I

785398.0212 −≈−−∫
+

. 

(ii) γ  is a circle of radius 2 at center 
2
3 . 

(a) Path integral 

Let θiez 2
2
3
+= , θθ diedz i2= , then  

iideeiedzzz iii 785398.0
4

22
2
312

2
3221 −≈−=−+−+=−− ∫∫ −

πθ
π
π

θθθ

γ
. 

(b) Riemann surface 

  According to the above (i) and Table 3-1, we have  

idzzz
I

392699.021 −≈−−∫
+

, 

idzzz
I

392699.021 −≈−−∫
−

. 

Therefore, the integral =−−∫
γ

dzzz 21 idzzz
I

785398.0212 −≈−−∫
+

. 

(iii) γ  is a circle of radius 3 at center 
2
3 . 

(a) Path integral  

idzzz 785398.021 −≈−−∫
γ

. 

(b) Riemann surface 

idzzz
I

392699.021 −≈−−∫
+

, 

idzzz
I

392699.021 −≈−−∫
−

. 

  This result does not surprise us. Because the path integral will remain the cut  

]2,1[ , others be cancelled by analytic. 
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Example2. 



Evaluate that ∫ −−γ

dz
zz 21

1 , where γ  is a circle of radius 
2
3 , 2, 3 at center 

2
3 . 

(i) γ  is a circle of radius 
2
3  at center 

2
3 . 

(a) Path integral  

Let θiez
2
3

2
3
+= , θθ diedz i

2
3

= , then  

πθ
π
π θθ

θ

γ
id

ee
iedz

zz ii

i 2
2

2
3

2
31

2
3

2
3

1
2
3

21
1

=
−+−+

=
−− ∫∫ −

. 

(b) Riemann surface 

 1  to  2 2  to  1 

Integral path angle value angle value 

1−z  0 1 0 1 

2−z  π−  i−  π  i  

Sheet +I  −I  

Total
21

1
−− zz

 i  i−  

Table 3-2 

The integral becomes as following, 

πidr
rr

idz
zzI

=
−

=
−− ∫∫

+

1
0 1

1
21

1  

                  πidr
rr

idz
zzI

=
−

−=
−− ∫∫

−

0
1 1

1
21

1  
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By Riemann surface theory we have that, 



                 ∫∫
−+ −−

=
−− II

dz
zz

dz
zz 21

1
21

1  

      ∫∫
+

=
−−

=
−− I

idz
zz

dz
zz

π
γ

2
21

12
21

1 . 

(ii) γ  is a circle of radius 2 at center 
2
3 . 

(a) Path integral  

Let θiez 2
2
3
+= , θθ diedz i2= , then  

πθ
π

π
θθ

θ

γ

id
ee

iedz
zz ii

i 2
22

2
312

2
3

12
21

1
=

−+−+
=

−− ∫∫ −
 

(b) Riemann surface 

According to the above (i) and Table 3-2, we have  

     πidr
rr

idz
zzI

=
−

=
−− ∫∫

+

1

0 1
1

21
1   

     πidr
rr

idz
zzI

=
−

−=
−− ∫∫

−

0

1 1
1

21
1  

By Riemann surface theory  

∫∫
+

=
−−

=
−− I

idz
zz

dz
zz

π
γ

2
21

12
21

1 . 

(iii) γ  is a circle of radius 3 at center 
2
3 . 

  It must be the same as (i) and (ii). The result is also the same as (i) and (ii). 

  We can say that every closed simple curve γ  whose region contain the cut  

],[ 21 zz  where , 1z  and 2z  in R, then the integral will be  

∫∫
+ −−

=
−− I

dz
zzzz

dz
zzzz 2121

121

γ

, 

and             ∫∫
−+ −−

=
−− II

dz
zzzz

dz
zzzz 2121

11  
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Example 3 



  Evaluate that ∫ −−−−
γ

dzzzzz 4321 , where γ  is a circle of radius 
2
5 , 

3 at center 
2
5 . 

(i) γ  is a circle of radius 
2
5  at center 

2
5 . 

(a) Path integral  

Let θiez
2
5

2
5
+= , θθ diedz i

2
5

= , then  

∫ −−−−
γ

dzzzzz 4321   

θ
π

π

θθθθθ deeeeie iiiii∫− −+−+−+−+= 4
2
5

2
53

2
5

2
52

2
5

2
51

2
5

2
5

2
5  

i1516 1021805.5104369.9 −− ×+×−≈  

(b) Riemann surface 

  For simple we let 4321)( −−−−= zzzzzf  

 1  to  2 2  to  1 

Integral path angle value angle value 

1−z  0 1 0 1 

2−z  π−  i−  π  i  

3−z  π−  i−  π  i  

4−z  π−  i−  π  i  

Sheet +I  −I  

Total )(zf  i  i−  

Table 3-3 
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 3  to  4 4  to  3 

Integral path angle value angle value 

1−z  0 1 0 1 

2−z  0 1 0 1 

3−z  0 1 0 1 

4−z  π−  i−  π  i  

Sheet +I  −I  

Total )(zf  i−  i  

Table 3-4 

The integral becomes as following, 

 ∫
+

−−−−
I

dzzzzz 4321  

    ∫∫ ++−−+−−−=
1

0

1

0
211)(321 drrrrridrrrrri  

    ii 76002.076002.0 −≈  
    0≈  
 

∫
−

−−−−
I

dzzzzz 4321  

    ∫∫ ++−+−−−−=
0

1

0

1
211321 drrrrridrrrrri  

    ii 76002.076002.0 −≈  
    0≈  

By Riemann surface theory we also have that, 

     043214321 ≈−−−−=−−−− ∫∫
−+ II

dzzzzzdzzzzz  

And 

     0432124321 ≈−−−−=−−−− ∫∫
+I

dzzzzzdzzzzz
γ

 

But the numerical value is 01021805.5104369.9 1516 ≠×+×− −− i  

45 

 Why do we gain this result? Does it contradict to our Riemann surface theory? 



  Let’s to look at the value i1516 1021805.5104369.9 −− ×+×− , the real part and the 

imaginary part multiply a small order term, respectively. Because the computer has 

some error, the value ∫ −−−−
γ

dzzzzz 4321  is always equal to zero. 

  Why does this 043214321 =−−−−=−−−− ∫∫
−+ II

dzzzzzdzzzzz ? 

Because 4321)( −−−−= zzzzzf  in our integral look on as the radius 

function, it is symmetric! We can try another 5.3321)( −−−−= zzzzzf  

with the same path. 

∫ −−−−
γ

dzzzzz 5.3321   

θ
π

π

θθθθθ deeeeie iiiii∫− −+−+−+−+= 5.3
2
5

2
53

2
5

2
52

2
5

2
51

2
5

2
5

2
5  

i03084.11077636.1 15 +×≈ −  

i03084.1≈ (the reason is discussed in above ) 

And  

∫
+

−−−−
I

dzzzzz 5.3321  

∫∫ ++−−+−−−=
5.0

0

1

0
215.1)(5.221 drrrrridrrrrri  

ii 164603.068002.0 −≈  

i515418.0≈  

∫
−

−−−−
I

dzzzzz 5.3321  

∫∫ ++−+−−−−=
0

5.0

0

1
215.15.221 drrrrridrrrrri  

ii 164603.068002.0 −≈  

i515418.0≈  

46 

  Again confirms that, 



∫∫
−+

−−−−=−−−−
II

dzzzzzdzzzzz 5.33215.3321  

∫ −−−−
γ

dzzzzz 5.3321 i03084.1≈  

∫
+

−−−−
I

dzzzzz 5.33212 215418.5 ×≈ i i03084.1≈  

  This time the integral ∫ −−−−
γ

dzzzzz 5.3321  is not zero. 

(ii) γ  is a circle of radius 3 at center 
2
5 . 

(a) Path integral  

∫ −−−−
γ

dzzzzz 4321  

θ
π

π

θθθθθ deeeeie iiiii∫− −+−+−+−+= 43
2
533

2
523

2
513

2
53  

i1416 1070974.11022045.2 −− ×+×≈  

0≈  

  Try again that ∫ −−−−
γ

dzzzzz 5.3321  with γ  is a circle of radius 3 at 

center 
2
5 . 

iidzzzzz 03084.103084.11055271.35.3321 15 ≈+×≈−−−− −∫
γ

. 
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Example 4  



Evaluate that ∫ −−−−γ

dz
zzzz 4321

1 , where γ  is a circle of radius 
2
5 , at 

center 
2
5 . 

(i) γ  is a circle of radius 
2
5  at center 

2
5 . 

(a) Path integral  

Let θiez
2
5

2
5
+= , θθ diedz i

2
5

= , then  

∫ −−−−γ

dz
zzzz 4321

1  

θ
π

π
θθθθ

θ d
eeee

ie
iiii

i∫−
−+−+−+−+

=
4

2
5

2
53

2
5

2
52

2
5

2
51

2
5

2
5

1
2
5  

1617 1040513.11077556.2 −− ×+×≈ 0≈ . 

(b) Riemann surface 

For simple we let 
4321

1)(
−−−−

=
zzzz

zf  and by Table 3-3, Table 3-4 

we have that,  

∫
+ −−−−I

dz
zzzz 4321

1  

∫∫ ++−
−+

−−−
=

1

0

1

0 211
1)(

321
1 dr

rrrr
idr

rrrr
i  

ii 68575.168575.1 −≈  

0≈  

∫
− −−−−I

dz
zzzz 4321

1  

∫∫ ++−
+

−−−
−=

0

1

0

1 211
1

321
1 dr

rrrr
idr

rrrr
i  

ii 68575.168575.1 −≈  

0≈  
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By Riemann surface theory we also have that, 



     0
4321

1
4321

1
≈

−−−−
=

−−−− ∫∫
−+ II

dz
zzzz

dz
zzzz

 

And 

     0
4321

12
4321

1
≈

−−−−
=

−−−− ∫∫
+I

dz
zzzz

dz
zzzzγ
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