Chapter 1 Elliptic functions

1.1 General theorem and properties of elliptic functions

In this chapter we follow reference [5], [6].

1.1.1 History:

The elliptic function is originated from the problem of finding the circumference of
the ellipse. The ideal of inverting an elliptic integral to obtain an elliptic function is
due to Abel, Jacobi and Gauss. It was realized that “inverse” of certain standard types
of such integrals, rather than the integrals themselves. The first properties of the
integral ware found by the brothers Jakob and Johann Bernoulli. The first
mathematician to study systematically the theory of elliptic integrals was Legendre,
he transformed the integrals in numerous types which Legendre called elliptic
integrals of the first, second, and.third kinds:

1.1.2 Doubly periodic functions:

A function f of a complex variableris.called‘periodic with period 2w if
f(z+2w)=1(2)

whenever z and z + 2w are in the domain of f. A function f is called doubly periodic
function if it has two periods 2@, and 2w, whose ratio is not purely real. A
meromorphic function f in the complex plane which has doubly periods is called an

elliptic function.

Note: (In reference [2])

If 2w,and 2 w,are periods whose ratio is real, then it is not double periodic for a

nonconstant elliptic function.

2 a . L .
Case 1. If 20)1 =E, where a and b are relatively prime integers, then there exists
W,

integers m and n such that mb + na = 1.



Let w=2w,+2w,. Then o isa period and we have the following
a’:a’l(ernﬂ) =601(m+ni) = (mb+na)=2,
2] b b b

SO @, =bw and w, =aw.Thusboth @ and @, integer multiples of .
Case 2. If &:/1, A is an irrational number. Given & >0, there are always
W,

integers p and q such that

<g or |2 P, —2qa)2| < 25|a)2|

Ipﬂ—ql=‘p(ﬂ)—q
@,

But then 2pw, —2qw, would be a period of f of arbitrary small modulus, which is
impossible.

1.1.3 Period parallelograms:

Suppose that in the plane of the variable z.we mark the points 0,2®,, 2@, and
20, +2w,, generally, all the points whose ‘complex coordinates are of the form
2nw, + 2mae, , where m and n are integers: Consider:the points of set 0, 2w,, 2w, and
2w, + 2w, ,and we obtain a paralleloegram as the vertices. If no point @ inside or on
the boundary of this parallelogram such that f(z+ ») = f(z) for all values of z, this
parallelogram is called a fundamental period parallelogram for
an elliptic function with periods 2@,, 2®,. Such a translated parallelogram, with no
zeros or poles on its boundary, will be called a cell.

1.1.4 Properties of the elliptic functions:

1. If an elliptic function f has no poles in some period parallelogram,
then f is constant.
2. If an elliptic function f has no zeros in some period parallelogram, then f is

a constant function.



3. The contour integral of an elliptic function taking along the boundary of any cell
is zero.

4. The sum of the residues of an elliptic function at its poles in any period
parallelogram is zero.

5. (Abel’s theorem) The number of zeros of an elliptic function in any period
parallelogram is equal to the number of poles, each counted with multiplicity.

1.2 Weierstrass elliptic function

1.2.1 Definition:

The Weierstrass elliptic function (z) is one of the famous elliptic function,

which is to define by the equation

1 1
(z-2mey=2nm,)° (2Mao, +2nw,)

@)=+ 3y

where @,, @, satisfy the condition thatsthe-ratio*is not purely real; the summation

extends over all integer values (positive, negative and:zero) of m and n, simultaneous

zero values of m and n excepted.: For-brevity, we write Q_  in place of
2Mmo, +2nw,.

1.2.2 Properties of #(2):

1.(z) isan even function with single double pole at €~ for integers m, n.
2.¢(z) satisfies the differential equation,

[0 (2 =4p"(2) - 9,0(2) - 0 (1.2)

where g, =60) Qmn, g, =140 Q°n, (called the invariants)



3. (Properties of homogeneity)

Pz 2oy, A0,) = 22 p(2,0,,0,) 120 (13)

80(/12;/1_49272_693)=1_280(Z?92193), A#0 (1.4)
where ((z;0,,0,) denote the function formed with periods 2w,, 2@, and
#(2,9,,0;) denote the function formed with invariants g,, d,.

4. (Addition-theorem)

a lf u+v+w=0, then

o) @)
pV) @) 14=0 (1.5)
pwW) o (w)
b.
2.(2) -9 Yy 16
p(z+y)= 4{50()50()} —(2) - p(y) (1.6)
C.
p(e7) =2 EZ))} = 20(2) w7)

unless 2z is a period. The result'is called the-duplication formula.

1.2.3 The constants e, e,, e,:

Let g(z) be the Weierstrass elliptic function with periods 2w,, 2w, . The value

w(@), p(o,), p(o;)(Where o +w,+ o, =0) are all unequal; and, if their value
be e, e,, e, respectively, then the roots of the cubic equation 4t* - g,t—g,=0

and e, #e, #e,. We have
e, +e,+e,=0

el~e2-e3=%

€,6,+6,6, + 6,8, = 9%



1.2.4 The Weierstrass-zeta function:

The Weierstrass-zeta ¢ (z) defined by the equation

B p(2), with limie@)-3=0.

Since the series for <go(z)—i2 converges uniformly throughout any domain from
4
which the neighborhoods of the points Q. are excluded, we can term-by-term
integrate and get
1 z 1
§(2) = ==[ {p(2) -3z
1

.z 1
:mZT; J‘(){(Z_gzm,n)z _Q'm’“}dz
1 ' 1 1 z
and so g”(z):;+mzr; {Z_Qm,n 3 +Q -} (1.8)

m,n m,n

1.2.5 Properties of Weierstrass=zeta function:

1.£(z) isan odd function. It is not a doubly-periodic function, and the residue of

£ (z) ateverypoleisl.

2. If we integrate the equation
©(z+2a,) = p(2)yand o(z +20,) = p(2) ,

we get

¢(z2+2m,)=¢(2) +2n,,
¢(2+2w,) = (2) +21,,
§(z2+2w;) = ¢(2) + 2m,

where 27,, 27,, and 2n, are the constants, putting z=2w@,, z=2m,, and
z=2w,, respectively, and use the face ¢(z) is an odd function, we have
n=<¢(o), n,=¢(®,), and n, =< (w,), where o, +w, +w, =0. We get that
relation 7, +7, +n, =0. This is the quasi-periodicity.

4. (Properties of homogeneity)

¢(Az; Aoy, Aw,) = ¢ (2,0, @,), 2 %0



5. (Legendre’s relation)

Tl
W, =T, = 11,05 =130, =1]30, — 1,03 = ? . (1.9)

1.2.6 The Weierstrass-sigma function:

The Weierstrass-sigma function defined by the equation

9 ogo(z) = £(2), with 1imZE _1,
dz -0 7

On account of the uniformity of convergence of the series of ¢(z), except near the
poles of £'(z), we may integrate the series term-by-term.

we get

Z2

20%mn

a(z)=zg'{(1—QZ )exp(QZ +

m,n m,n

)}. (1.10)

1.2.7 Properties of Weierstrass=sigma function:

1. The product for o(z) converges absolutely and uniformly in any bounded

domain.

2. The function o(z) is an odd fungtion with simple zeros at all the points Q.

3. If we integrate the equation
$(2+20,)={(2)+ 21,
we get
o(z+2m,) =ce’o(2),

where c is the constant, putting z =-a,, and then ¢ = —e***,

Consequently,

o(z+2m,) = " Y5(2);
o(z+2m,) = € g(2);

o(z+2w,) = """ 5(7),



where @, +w, + @, =0, and 7, +n,+n,=0. This is the quasi-periodicity. The
exponential —e?" ) (where r=1,2,3) is called the periodicity factor of the o (z).
4. (Properties of homogeneity)

O'(/lz; Ao, Ao, ) = /Ia(z; @, a)z)
1.3 The Theta-functions
1.3.1 Theta-function:

Let 7 Dbe (constant) complex number whose imaginary part is positive; and write

q=e""",sothat |g|<1.

Consider the function 9,(z,q), defined by the series

00

9,(z,q)= . (-1)"q"e*™

nN=—o0

It is evident that

4,(z,9) =1+Z(—1)”qnz cos2nz,

n=1

further 9 (z2+77,q) = Z (=1)2grgPe™

_ _q—le—ziz i(_l)mlq(ml)zez(ml)iz ’
and so 8,(z+7r,q) =-q " 9,(z,9).
In consequence of these results, $,(z,q) is called a quasi doubly-periodic function,
and accordingly 1 and —q'e™®* are called the periodicity factors associated with the

periods 7 and 7zr.

1.3.2 Four types of theta-functions:

The function % (z,q) is defined by the equation

9,(2,9)=9,(z +%z,q) =1+22qnz cos2nz

n=1



Next, 4 (z,q) isdefinedintermsof 9,(z,q) by the equation

1
Zi+—mt T
ha)=-re © 9(z+=—.0)

1.

=23 (-1)"q"? sin(@n+1)z.

n=0
Lastly, 9,(z,q) is defined by the equation

15

%(2,9) =9 (z +%, q) =2y g2 cos(2n+1)z.
n=0

Summary,
8 =25 ("7 sin2n+1z. (1.11)
n=0
%(z,9) = ZZOO: q(n%)z cos(2n+1)z. (1.12)
n=0
9(z,9) =1+ Ziqnz cos2nz. (1.13)
n=1
9,(z,9) =1+i(—1)”qnz c0s.2Nnz". (1.14)
=]

For brevity, the parameter g-will usually not be specified, so that 4 (z) will be

written for 9(z,q), for 1=1,2,34.

1.3.3 The theta-functions as infinite products:

1

9,(z,q) = 2g* sin zﬁ (1-9°")1-2g*" cos2z +q*"). (1.15)
n=1
9,(z,q) = Zq% cos zﬁ(l— q*")1+29°" cos2z +q*") (1.16)
n=1
9,(2,q) = [ [ (0-0*")(@+ 297" cos 2z +q*"?). (1.17)
n=1
8,(2.0) = [ [ @~ ™)@~ 207" cos 2z + q*"?). (1.18)
n=1

1.3.4 Properties of the theta-functions:

1.9,(z) is an odd function and the other theta function are even functions, because
of the trigonometrical series.

2. The zeroof $(z,q), for 1=1,2,3,4, mneZ

8



9, (z)=0,where z=0+mz+nzr,
% (2) =0, where z:%+m7z+nm,

%(2) =0, where z :%+%+m7z+nm,

9,(z2)=0, where z :%+m7z+nm.
3. The identity $*2(0) +9*4(0) = &,*(0). (1.17)

4. The identity 9, (0) = ,(0)%,(0)%,(0). (1.18)

5. The differential equation satisfied by the theta-functions
0°9.(z, 09 (z,

T (2 2 =4i7z—’( 2 , fo
oz or

1.4 Jacobian elliptic functions

r j=1,2,3,4. (1.19)

1.4.1 Definition of Jacobian.elliptic functions:

The elliptic functions snu, cnu.,.and dnu.-are.defined as ratios of theta-functions

as below:
snu 283_(0)& (120)
%,(0)'9,(2)
_ 40 %) (1.21)
% (0) 4,(2) '
dnu = 29 %(2) (122)
%(0) 3,(2)
where z = ——.
%°(0)
Note:

If the parameter 7 is purely imaginary (q real), the elliptic

functions are all real for real values of u.

1.4.2 Double periodicity of the Jacobian elliptic functions:

We can use the following identities to find the double periods of the elliptic

9



functions snu, cnu, and dnu . Writing N = ge®”, then
(2)=-9(z+7)=-NG(z+77)=NSG (z2+ 7+ 77)
% (2)=-9%(z+7)=N%(z+7r) =-NG,(z+ 7 + 77)
K(2)=%(z+7)=N&K(z+7r) =N (2 + 7 + 77)
$(2)=9,(z+7)=-N(z+77) =N, (2 + 7 + 77)

Thus,

sn(u+279,°(0)) =snu, sn(u+zz3°(0)) =snu,
snu has two periods 2m932(0) and ml932(0) whose ratio %r must be the complex

(with positive imaginary part). We shall write

K :%7&932(0), iK :%::7932(0) K,

then,
sn(u #4K)=sn(u +2iK)=snu,
The periods of snu are 4K:and 2iK .
Also,

cn(u +4K) =sn(u 2K +2iK*) =cnu,,
dn(u +2K)=dn(u +4iK) =dnu,
cnu has periods 4K and 2K +2iK ; dnu has periods 2K and 4iK .
Now, the zeros of snu, cnu, and dnu are determinable by the theta-functios and

the definition of snu, cnu, and dnu.

Double periods Zgros
anu 4K and 2iK 97(0)(0+ Mz +nz)=2mK + 2inK’
cnu 4K and 2K +21K 1932(0)(%+ mz +nzr)=(2m+1)K + 2inK’
dny 2N and4iK SO+ 7+ mr+n) = (2m+ DK +i(2n + DK

Table 1-1 (The periods and zeros of Jacobian elliptic functions)

10



1.4.3 Properties of Jacobian elliptic functions:

1. (Differential equation)

2
Let x= ‘;22 (g) be a parameter, and snu satisfy the differential

3

equation
(—jy)z — -y )(L-KPyD), (1.23)
u

5°0)

The parameter « is called the modulus; if x = (0)
3

2 (- .
k°+x =1, x is called the complementary modulus. In the numerical express of

x,and «,
1+
K= 4q2H( q _1) (1.24)
o 2n—1 4
H Zn_l) (1.25)
n=1
Note:

If q isrealand 0<q<1,then 0<x<1, O<x <1.
On the other hand, cnu, and dnu satisfy the following differential equation,

respectively.

(dy) — @y (k2 + KPP

(j—yf — @y )y -K)
u .

11



2. The identities
snu +cn’u =1,

dn’u +x’sn’u =1,
dn’u — x%cn’u =« 7.
3. The derivative of Jacobian elliptic functions.

d
—snu =cnudnu,
du

d
—cnu =-snudnu,
du

d

—dnu =-«x%snucnu.
du

4. The power series expansions of snu, cnu, and dnu .

(1.26)
(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

we can use the face that sn0=0, cn0=1,dn0=1, and 3. in section1.4.3 to

find the Maclaurin series as following,

snu=u —%(1+ K2’ +$(1+14/<2 U’ —- -

cnu :1—£u2 +£(1+ APt =
21 4l

dnu =1—£K‘2U2 +£(4K2 +xut -
2! 4

1.4.4 Elliptic integral of the first kind:

The function snu satisfies the differential equation
d
(o) =a-y)a-xy"),
u
we have the integral representation of snu is

y(u) 1 dt
O Ja-t)a-«%?)

U=

12

thus y=sn(u,x).

(1.32)

(1.33)

(1.34)

(1.35)



A special case of the integral representation is

L dt,
1- &%)

(1.36)

K=
0\/(1_,[2)
this is the complete elliptic integral of the first kind, if we let t=sing, and we have

at once

K :j% L dg. (1.37)
¢ J(@-x’sin® @)

1.4.5 The graph of Jacobian sn(u,x):

1
a.sn(u,—):
©“5)

~ - 1f ~
/
a5 0 | s s | 10 15
\\\—0.5
\ \“ “ \ / \
N 0 A v
. 1
Fig 1-1 (The graph of sn (U’E))
1
b.sn(u,—=):
V2
™ 2\ 1 N N
15 | -10 5 5 10 15
05
‘\_/"'J‘ \\_/_1 [ \_/‘ \_/

. 1
Fig 1-2 (The graph of sn (u,—
g 1-2 (The grap ( ﬁ))

13



c.sn(u,l):

0.5 |

Fig 1-3 (The graph of sn(u,1))

14



Chapter 2 The simple pendulum

2.1 Introduction:

Let | be the length of the suspension, g the gravitational acceleration, and m the
mass of the bob. Then, if & is the angle made by the string with the downward

vertical and v is the velocity of the bob at any time t, its energy is conserved provided
% mv? + (—mgl cos @) = constant , (2.1)

Kinetic energy + Potential energy = constant.

where the Kinetic energy is %mvz, and the potential energy is (-mglcos®). Since

v=I 0 putting »” ==, consequently, the equation (2.1) can be written in the form

_|@

2
%6’ — w* cos @ = constant (2.2)

2.2 Analysis:
First, let’s consider the differential equation of the following

U(t) £sinth{t)=0,.U (0) = 0. 2.3)
by the energy method,
U (t)xU (t) +U (t) xsinU (t) = 0. (2.4)
integration the both side of (2) we obtation that
%[U ]2 —cosU (t) = E, where E>-1,
%[U ®]% +[L-cosU(t)]=E’, whereE =E+1>0. (2.5)

the kinetic energy is %[U (t)]2 and the potential energy is 1—cosU (t), we call the

E” to be the total energy.
Before solving the equation (2.5), we analyze the relation between the Kinetic
energy, the potential energy and the phase portrait. Given the energy

E"=15 E =2and E =3.

15



The relation of potential energy(P.E) and the angle(U) as following,

P.E

-4p -3p -2p -D p 2p 3p 4p

Fig 2-1 (The graph of U-P.E)

The phase portrait (t,U)

Fig 2-2 (Phase Portrait (t,U))

2.3 Apply the Jacobian elliptic function to solve the pendulum

motion:

Second, we want to use the Jacobian elliptic function and the elliptic

integral of first kind to solve (2.3). The integral representation of U (t) is

. U (1) 1 de

°  J2E" - 2[1-cos&]

U (t) 1 ] *
t= ——_d&,since E =E+1,
J.O V2E +2cos¢& ¢
16



(@ When 0<E"<2,ie. —~1<E<1,thereisa « in (0,7), such that
—cosa =E, since cosx in (0,7:) IS an one-to-one mapping, the E can be chosen.
And

t_J-U(t) 1 |2
o J2E+2cosé
ZJ-U(t) 1 de |
0 J-2cosa+2cosé
1

=" . —d.
\/— 2(1-2sin E)+2(1—25|n E)

100 1
== dé. 2.6
ol \/ s (26)
sin® = —sin“ =
2
o sin§
Let 0 <x=sin—<1, and z:—z,then
2 K

1
= 1
t=|x dz . (2.7)
IO \/1— 22 \/1—1(222

According to the Jacobian elliptic functionsn(t), we have that

sn(t) :lsinu—(t).
K

thatis U (t) = 2sin™"(x-sn(t)).
The motion is periodic and the period is equal to 4K . Since the pendulum
occupies the highest position (u=«) after a quarter-period.

Because of the following,

.2
U =0=2E +2cosU =-2cosa + 2cosU = U=«.

And the period T is

1 1
T=4
01— 72/1— k%72

where K is the complete elliptic integral of the first kind.

dz = 4K | (2.8)

17



(b) When E"=2 je E=1,

U (t) 1
t= —
IO w/2+2cos d

U (t)

\/_‘[ w/1+cos§ g

U (t)

o ——1
\/_ ‘/2 2sin? é
2
(t)
——j“ . (2.9)
1+sin? 5
\ 2

Let singzx,then
smw
_.[ 2 dX
Integration gives us that
1 1+smU§t)
t==In—-=-_, (2.10)
2 i — smu(t)
2
which implies that
. U(t) =)
sin——= 5 =tanh(t), ie U(t) =2sin™ tanh(t). (2.11)

This formula shows that as t increasing from 0 to « the angle U(t)
increasing from 0 to =, ie, the pendulum always moves in one direction, and the
uppermost position, which it never attains, is its limit position.

(c)When E">2,ie E>1,

tzj-um 1 |2
0 J2E+2cosé

1

_jo““)\/ dé

(2E +2)—4sin2§

18



& 2 )
Let x==,and x= <1, then it become that
2 N2+ 2E
U (t)
- 1
— 2 =
t KL X.

N1-x?sin? x

Let sinx=y,then

(2.11)

Therefore,

(2.12)

When E* > 2, the Fundamental Theorem of Calculus tells us

dt 1
= >0

dU  /2E +2cosU (t)

J-U (1) 1

0

J2E +2¢0s¢

the angle U (t) — oo, the pendulum is never stopping.

(2.13)

From the integral form t = d& we know that when t — oo,

2.4 About the period with:different total enerqy:

(@) The total energy 0 < E"<2.

We can show that the period is always greater than 27 when the total energy in

0<E*<2.

1
—7241— k%72

Since by (2.8) the periodis T = 4J‘01J dz = 4K , given an energy
1

E” in (0,2), there is a correspondence K:,}E? in (0,1). Because of that for

ze(0), 0< , and we have that

1 1
<
\/1—22 \/1—22\/1—1<222

19



1

1 1 1
dz < dz
J.O\/l—T IO\/l—zzx/l—Kzzz

then 27 = 4]04(1 2 <4f =T.

Vi-22 N 2J1 x222

and if &y < x>, then for ze(01),

1 1
<
\/1—22\/1—1<1222 \/1—22\/1—1@222

thus T(xy) <T(xy) (the T(x) denotes the period with parameter «).

The periodic T is always greater than 2z, and increasing as the total energy

increasing from 0 to 2. And the period will tend to « as the total energy E

tend to 2.

(b) The total energy E"=2.
In the section 2.3 (b) we know that the: U (t)-—>z as t — «, we say the periodic
is oo. It will spend for infinite time returning to the ariginal situation.

(c) The total energy E">2.

In the section 2.3 (c) we know that the U (t) >« as t — o, and the phase

portrait (t,U) in the section 2.2. It is no periodicity.

2.4 Summary:

The problem of the simple pendulum is a nonlinear second order PDE, if we give a
initial energy E’, then there is a x to correspond the initial energy E, thus there
is a Jacobian elliptic function sn(u,x) to correspond the initial energy E". We list
two table which is the relation with difference initial energy E~ and some numerical
result in the following, and the K is denoted the complete elliptic integral, x is the
modular, and T is denoted the period. The main ideal in section 2.3 can be found in
[5] and [7].

20



Solution

Period

0<E <2 E"'=2 E">2

* 2
E 1 =
2
U (t) = 2sin*(x -sn(t)) U (t) = 2sin* tanh(t) U(t)=2sin™ sn(l)
K
4K o0 No periodicity
Table 2-1 (The relation of E", x, U (t), and period )
1 3 5
0 = = = 3
2 . 2 2 2
R ASESLTY 2 2
2 \2 2 V5 J6

0 7.4136 8.3439 797654 0 No periodicity No periodicity

Table 2-2 (E”, x, T innumerical value)
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Chapter 3 Riemann Surface

Laint 1

In the last chapter, the solution t=L" 2 N - 2dz IS as an inverse
1-z°V1-kx"2z

question. But the function

is not an analytic function. We need the

1
V1-7221— k272

Riemann surface to structure an analytic function of . The construct

1
V1-2%V1-x22
of the Riemann surface from reference [8]

3.1 Introduction:

Let’s consider the function f(z) = Jz todefinea single-value and analytic

function on the Riemann surface.

Assume z eC, and we can use the polar form for z,

piarety (3.1)
= rei(9+27r) ; (32)

Tofindthe ~/z , the (3.1) becomes

1 G
e ST o
and the (3.1) becomes
LR TEAT L) L i 12
Az =r% 2 =r2e ? =-r2e?,.
10 140
Since r2e 2 # —r2e 2, we have that f(z) =+/z is a multi-valued function at

each zeC, and which is not analytic on C. How can we make the function
f(z) = Jz tobecome a single-valued function and analyticon C?

Consider the two cuts from0to —oo and let
P ={C\(~x,0]|6, =argze[-7",77)}
and
P, ={C\(~x,0]|6, =argz e[z*,37 ")} as Fig.3-1 shows.

22



P1
P2

T 3w

(a) (b)

Fig. 3-1 (P1, P2 plane)

We can define two functions f,(z) and f,(z) on P1 and P2, respectively, by

fl(z):\/;, ZeP,.

f2(2)=ﬁ, zeP;.

4
2

1
Then f,(z)= Jz = |z|5e is a single-valued function defined at each z e P, and

analyticon P,.

1% 1 hrer (L 14
And f,(z)=+z=|zze 2 =|zze 2 =|zjze 2e"" =—|z]ze 2 =—f,(z) isalsoa

single-valued function defined at each z € P, and analyticon P,.

Let D, ={(-«,0]|argz = 7}, the figure show as the following.
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D1

argz=r

Fig. 3-2 (D, ={(—=»,0]|argz = 7})

1 392 1 % 1
If zeP, and argz tendsto 7~ - then z=|zfze ? —|zze? =ilz2 ,

1 .argz

if zeP, and argz tendsto 7" - then \/E:|z|5eIT —>|z|%ei% = i|z|% :
so /z is continuous cross the cut (—o0,0] for zeD;.
Therefore, we can define that
f,(2)=+z » 2eD,,

1
then f,(z)=+/z = i|z|2 and whichis analytic on: D, .

On the other hand, let D, ={(—,0]|arg z =37}, the figure show as the following.

D2
31~

argz=3r

Fig. 3-3 (D, ={(-=,0]|argz =37})
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137 1
—zze 2 =-ilzf2

argz

agz
2

1
If zeP, and argz tendsto 3z, then vz =|z|2e

argz

] 1 i a4k
if zeP, and argz tendsto -z, then vz =|z2e 2 —|zze 2 =-ifz]z |
so +/z is continuous cross the cut (-,0] for zeD,.

Similarly, we can define that

f,(2)=+z, zeD,,

1
then f,(z) =—ilz|2 =—f,(z) and which is analyticon D,.
According to the above discussion, we can construct a single-valued function for

\Jz , the conclusion as the following:

Let D=P,UP, U(—x»,0] and the,fanction':F : D — C defined as

f,(2) v zeP,
) = f,(z) , zeP,
t3(2)=rm 2D,
f,(z) ,-z€D,

the function F(z) isreally single-valued and analytic on D, satisfying

f(2)=-1,2) and 1,(2)=-1,(2).

3.2 The Riemann surface of f(z)= /ﬁ(z—zi) with z;eR:
i=1

Let f(z)= /H(z—zi) , Zj € R with n distinct real numbers and satisfy that
i=1

2> 7, > e > z,. For example, we can consider that n=2 and the branch point

are z,=1,and z,=2.

If the cut show as in Fig. 3-4
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q
q
q
v

Fig. 3-4 (The cut in two branch point)
@) If ze(-»1), then
arg(z-1) = {_ g ,
VA
arg(z-2) = {_ﬂ.
T

27

Taking —7: Nz 1z-2=[z-1z[z-28e 7 = |z 12}z, (3:3)
.2z
Taking 71 Nz 1Nz-2=|s- 12— 2ze 2 = Jz 12z -2 (3.4)

Since (3.3) = (3.4), there is no cut In_ (=o0;1).
(b) If ze(L,2), then
arg(z=1) =0,

arg(z-2) :{ d
T

Taking —7 : \/z—l-\/z—Z:|z—]ﬁ|z—2|%ei(%)=—i|z—]ﬁ|z—2|%, (3.5)
Taking 7 : «/z—l'\/z—z:|z—]ﬁ|z—2|%ei(%)=i|z—]4%|z—2|% (3.6)

Since (3.5) = (3.6), thereisacutin (1,2)
(©) If ze(2,), then
arg(z-1)=0
arg(z—2)=0
It is clearly, there is no cutin (2,).
Thus, we have a branch cut in (1,2) as Fig 3-5.
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A

1 2
Fig 3-5 Branch cut in (1,2)

The second example considers that N = 3, and the branch points are
2,=12,=2,2,=3.

@ If ze(-»,1), then

arg(z-1) = {_ﬁ ,
T
arg(z—-2) = {_”
T
arg(z—3)={_”.
T
i ] 1
Taking —7: Vz-1-+z-2J2-3=-ilz=12|z- 22|z -3, (3.7)
1 4 1
Taking 7: Vz-1-vz-2Jz-3=ijz—12]z=22|z- 3. . (3.8)
Since (3.7) # (3.8),thereisacutin (—x,1).
(b) If ze(1,2), then
arg(z-1)=0,

arg(z—2)={‘”,
T

arg(z-3) :{ d
T

Taking —7: Vz-1-z-24Jz2-3=-z —]ﬁ|z —2|%|z —3|%, (3.9)

1 1 1
Taking 7: Vz-1-vz-2vz-3=-z-12|z-22|z-32. (3.10)
Since (3.9) = (3.10), thereisnocutin (12).
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(©) If ze(2,3), then
arg(z-1) =0,
arg(z-2)=0,

arg(z —3) :{ g
T

Taking —7z: vz-1-4z-27-3=-iz —]ﬁ|z —2|%|z —3|%. (3.11)

Taking 7: vz-1-Jz-24z-3=i|z —]ﬁ|z - 2|%|z —3|% (3.12)
Since (3.11) # (3.12), thereisacutin (2,3).
(d) If ze(3,x),then
arg(z-1)=0,
arg(z-2)=0,
arg(z — 3) =0.
It is clearly, there is no cut in-(3,).

Thus, we have a branch cutin (—¢,1),(2,3) . The graph shows in Fig 3.6

Fig 3.6 Branch cut in (—,1), (2,3)
Note:

If we crosses the cut even times in each line section, then it will not change the
sign. And if we crosses the cut odd times in each line section, then it will change the
sign. It implies that the line section will become a branch cut. That is, given n
branch points, if n is even, then the branch cuts are this sections like [z,,z,,] -
[z,,.2,5]...... and [z,,z,].If n isodd, then the branch cuts are this sections like
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(-»,2,]1 ~ [2,4,2,,]...and [z,,Z,]. The graph shows in Fig 3-7.

Zn &n-l an /\/\/\/\23 ZZ/\/\/\/\Zl

n iseven.
Zn-3 74
EEEEEEER n |50dd.
Zn-2 Z4
Fig 3-7

3.3 The algebraic and geometric structure for Riemann surface of

horizontal cut:

3
We will discuss the structure for Riemann surface-of f(z)= /H (z-z;) in
j=1

horizontal cut.

(a) Algebra structure:

Let (-oo,z,] ~ [2,,2,] represent the cuts in this Riemann surface and “+” > *-”

are defined as following(the initial edge with +, the terminal edge with -) :

Fig 3-8

(i)If zel"(+edgeofsheet 1),and ze€[z,,z].
Since z-z;>0 = arg(z-z;)=0 for j=23.
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2-2;<0 = arg(z-z;)=-n for j=1

f(2) = /f[(z—zj) :f[‘/z—zj

1
=[z- Zlﬁei(ig) fyz - ZJ‘Zei'O
-

Then

i-%) 3 % 3 %
—e 2 -H‘z—zj‘ =(—I)-H‘Z—Zj‘ : (3.13)
j=1 j=1
(i) If zel (—edgeofsheet 1), and zelz,,z].
Since z-z;>0 = arg(z-z;)=0 for j=23.

2-2;<0 = arg(z=z;)==for j=1.

Then
3 3
f(2) =] T¢z=2,y=]]yz-2,
j=1 i=1
1 3% 3 =
=|z—zl|5e'(5)-H‘z—zj‘ze”’
j=2
1 1
i(%) 3 2 3 2
=e -H‘z—zj‘ =(I)-H‘Z—Zj‘ : (3.14)
i=1 j=1
Because of that f(z) | = = —f(z) | ,.,thisresultimplies that
f(Z) ‘ o= _f(z) | I (3-15)
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(b) Geometric structure:
We will discuss the geometric structure for Riemann surface of f(z) = Jz . Since

there isa cutin (—,0], and we obtain one sheet with two edges in each cut by taken

of counterclockwise which labeled the edge of lower-cut with + and the edge of
upper-cut with —. There are two surface, one is, say sheet I with arg f(z) € [-7, 7);
another is, say sheet II with arg f(z) €[#,37). We must attach the lower edge of
sheet I to the upper edge of sheet II, the upper edge of sheet I to the lower edge of
sheet II. This is without self-intersection. This result of the construction is a Riemann
surface whose points are in one-to-one correspondence with the points in the
f (z) — plane . Especially, this correspondence is continuous if the continuity is
defined in the sense suggested by the construction.

We take n=3 to discuss: the geometric structure for Riemann surface of

f(z)= /H(z—zj) in horizontal cuts;-as shown'in Fig.3-9. The first is a sphere
j=1

with two cuts, and become the second like:a balloon has two holes. Then we copy this
balloon and gum them according to the above method. Finally, it looks like a donut.

Because for n =3 it have four branch points (co is an branch point).
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-+ 73 Z2 + Z1

( I ’+):(H’ _>

(I,-)=(1L, )

Fig 3-9 Geometric structure
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(c) Algebraic structure v.s Geometric structure:
We also use n=3 to discuss. Before talking about the relation between algebraic
structure and geometric structure, we need to denote something as the following :
(i) If the curve is drawn by solid line :
In algebraic structure, it means the curve is in sheet T ;
In geometric structure, it means the curve is in the overhead Riemann surface.
(i) If the curve is drawn by dash line :
In algebraic structure, it means the curve is in sheet II ;
In geometric structure, it means the curve is in the ventral Riemann surface.
We give some example to show that the curve in algebraic structure and its

corresponding in geometric structure in Fig.3-10 to Fig.3-12.

Fig 3-10 Algebraic structure v.s Geometric structure

Fig 3-11 Algebraic structure v.s Geometric structure
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Z1

Fig 3-12 Algebraic structure v.s Geometric structure

3.4 The Riemann surface of f(z)= /ﬁ(z-zi) with Z; € C:
i=1

In this section, we will discuss the Riemann surface with the vertical cut structure.

Similarly, the construction is like the construction of the horizontal cut. We can define
n . 3T &

that f(z)= /H(z—zi) and (z, f(z2)),:belong to sheet 1 iff argf(z)e[—?,g),
i=1

ie. arg(z—-z;) e[—%,%) and (z, f(z)) belong'tosheet II iff arg f(z) e[%,%[)

ie. arg(z—-z;) e[—%,%).

About the vertical cut structure analysis method is the same as horizontal cut
structure. We can consider that n=2 and z, =i, z, =2i.

ImZ

A

2i

v

ReZ

Fig 3-13
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@) If z €(x,2i), then

_3
_ 2
arg(z —1) 7
2
_37
_2i) — 2
arg(z - 2i) 7
2
Taking ——: Jz—i-4Jz-2i |z—|| |z—2||2e G =ilz- ]j|z—2| (3.13)
Taking %: Nz—i-NJz-2i :|z—i|%|z—2i|%ei(%) :i|z—]ﬁ|z—2|% (3.14)

Since (3.13) = (3.14), there is-no.cut in* (e0,21) .

(b) If z e (i,2i), then

3
arg(z—i) = 2
2
. T
arg(z—i)=—-=—.
9(z-1)=-7

Taking —377[: NZ—i-4z-2i =|z—i|%|z—2i|%e‘(‘”) :—|z—]ﬁ|z—2|% (3.15)
Taking %: Nz—i-NJz-2i :|z—i|%|z—2i|%e‘(°) :|z—]ﬁ|z—2|%. (3.16)

Since (3.15) # (3.16), thereisacutin (i,2i).
(©) If z e (—m,i), thenitis like in (a).

Thus, we have a branch cut in (i,2i).
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2i

v

ReZ

Fig 3-14 Branch cut in(i,2i)
We can use the simpler way to get branch cut. We take n=4 with z, =i ~

z,=2i ~ z,=3i and z, =4i,thatis, z,<z,<z,<...<z,,asshown in Fig.3-15.

L
""" T O i e
______ -5
______ I__,__i___________ -

Fig.3-15 Branch cuts
When crossing the cut even times in each line section, it will not change sign.
When crossing the cut odd times in each line section will change sign - this implies the

line section will form a branch cut. Hence we have the branch cuts in [z,,z,] and

[z,,2,]. The cut structure is showed in Fig.3-16.
ImZ

Z4 4j
7 =5
Z;

Z %?I

ReZ

Fig.3-16 Branch cuts in [z,,z;,] and [z,,Z,]
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3.5 The algebraic and geometric structure for Riemann surface of

vertical cut:

For simplicity, we use n=4 to discuss the structure for Riemann surface of

4
f(z2) = /H(z —z;) invertical cut. In the cut structure, we still depend on the
=1

countclockwise to take “+” ~ “=” sign. The definition of solid-line and dash-line are

the same as horizontal cut case.

Z,

-N

N+

SN
TaNT N
N

S
= B
+ N

Fig.3-17
(a) Algebra structure:
Let [z,,2,] ~ [z,,2z,] represent the cuts in this Riemann surfaceand “+” > ™7
are defined as following(the initial edge with +, the terminal edge with -) :
(i)If zel"(+edgeofsheet 1),and ze[z,,2,].
Since arg(z-1z,)= —% and arg(z—1z,)= —3?7[ arg(z—z;) e (—72',%) for
i=34.

Then
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f(z)= /H(z—zj) :lj[,/z—zj

1
1 i(——”) 3 iarg(z—zj)
=|z-1z,ze ¢ -H‘z—zj‘ e ?
j=1,3,4
\/E 1 % iarg(z—zj)
“CFeafe Tz e
j=1,3,4

(i) If zel (—edgeofsheet 1),and ze[z,,z,].

Since arg(z—zl):—% and arg(z—zz):% .arg(z—zj)e(—n,%) for

j=34.
Then
4 4
t@) = [[@2) =TIz -z,
j=1 j=1
5 % 2o=z))
=|z %2,|2¢ ~H‘z—zj‘ e 2 (3.18)
j=1.3,4
2 > ang(z-z))
1 iar Z—Zj
:(—Zi)|z—zz|E-H‘z—zj‘2e 2 (3.19)
2 j=1,3,4
Because of that f(z) | = = —f(z) | ,.,thisresultimplies that
f(Z) | o= —f(Z) ’ I

(b) Geometric structure:

n
The construct a geometric structure for Riemann surface of f(z) = /H(z -Z;)
j=1

is the same as horizontal cuts. The graph show in Fig 3-18
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Z4 + Z3 Z2 + Z1

(I,+)=(1,-)

(I,-)=(1L,+)

Fig 3-18 Geometric structure

39



3.6 Application in Riemann surface (Complex Integral):

We will give some examples about the horizontal cut.

Examplel.

Evaluate that §«/z—l«/z—2dz, where » is a circle of radius g 2, and 3 at
e

3
center —.
2

(1) y isacircle of radius g at center %
(a) Path integral

Let z :g+§e‘5, dz :%iemde . then

3. i (3 3 3 3, z. .
Ji—1Nz-2dz=[" —|e'9\/—+—e“9 —1\/—+—e"9—2d<9=——|z—0.785398l
i j—nz 22 2 2 4

(b) Riemann surface

1 to 2 2 to 1
Integral path angle value angle value
z-1 0 1 0 1
Jz-2 -7 —i Vs i
Sheet I (I
Total vz -1vz -2 ~i i
Table 3-1

The integral becomes as following,

_[\/z 1z -2dz = - ijgﬁ«/r —1dr ~ —0.392699i .
4

J‘«/z 1z -2dz = ile\/F«/r —1dr ~ —0.392699i .
J

40

By Riemann surface theory we have that,



J'\/z -1z -2dz =J\/z -1z -2dz
1+ 1~
Therefore, the integral §\/z -1Jz-2dz=2 J'«/z —14Jz - 2dz ~ -0.785398i .
7 |+

(if) y isacircle of radius 2 at center %
(a) Path integral

Let z= g+2e“’ . dz =2ie'?do, then

§v2-1z-202=[" 2iei‘9\/g+ 2e'? —1\/§+ 2¢'? —2do = —%i ~ —0.785398i .
4

(b) Riemann surface

According to the above (i) and Table 3-1, we have

[z 14z - 2dz ~ —0.392699i
I+
[V2=14z =20z ~~0.392699i .
8
Therefore, the integral §\/ z-1NVz—-2dz=2 j«/z —1+/z - 2dz =~ —0.785398i .
7 I~

(iii) » isacircle of radius 3 at center %

(a) Path integral

§«/z —14/7 - 2dz ~ —0.785398i .
V4

(b) Riemann surface

j Vz -1z - 2dz ~ —0.392699i
I+
j Nz -1z —2dz ~ —0.392699i .
;

This result does not surprise us. Because the path integral will remain the cut
[1,2], others be cancelled by analytic.
41
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dz , where y isacircle of radius g,Z,Bat center >

1
Evaluate that ¢ —————
f«/z —1Jz-2

(i) y isacircle of radius g at center >

(a) Path integral

Let z =§+§e“’, dz =%ie”’d¢9 . then

1 T 3. ip 1 .
£F1—ﬂdz = j_ﬂzle \/3+3ei9 _1\/3+3ei9 - 2d9 = 2ir.
2 2 2 2
(b) Riemann surface
1 to 2 2 to 1
Integral path angle value angle value
z-1 0 1 0 1
Jz-2 —7 —i V4 i
Sheet Bl I~
1 B
Total — ! |
Table 3-2
The integral becomes as following,
[— e[ ————dr=ix
NN A NN
dr=irx

I;dz:—ijo;
N e R N Ve
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By Riemann surface theory we have that,



1 1
0= | ———0z
,J:«/z—l«/z—Z ;[«/2—1«/2—2
1 1 .
_—  dz=2|——dz=2ir.
'[«/2—1«/2—2 ;[«/z—l«/z—z
(i) y isacircle of radius 2 at center g

(a) Path integral

Let z= g+2e‘9 . dz =2ie'?do, then

dz =" 2ie" do =2iz

\/3 +2e'" —1\/3+ 2e'% -2
2 2

According to the above (i) and Table 3-2, we have

1
e

(b) Riemann surface

dr =iz

I;dz :ij.l;
NN e R e

dr=iz

I;dzz_ijo;
11z -2 tJral-r

By Riemann surface theory

dz =2ir.

J';dzzg‘[;
7@@ SAz-1z-2

(iii) y isacircle of radius 3 at center %

It must be the same as (i) and (ii). The result is also the same as (i) and (ii).

We can say that every closed simple curve 7 whose region contain the cut

[z,,z,] where, z, and z, inR, then the integral will be

1 1
dz,
'7[4/2—214/2—22 JZ-2,472-1, ‘
1 1
dz = d
NAlZ—Z,42-12, ‘ ,Iﬂ/z—zlﬂ/z—z2 ‘
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Example 3



Evaluate that §\/z—1¢z—2¢z—3\/z—4dz,where 7 is acircle of radius g
4
3 at center E

(i) y isacircle of radius g at center g
(a) Path integral
Let z=§+§e‘9, dz=§ie‘9d6?,then
2 2 2

ii;\/z—lx/z—Z\/Z—S\/z—4dz

:r §ie“9\/5+§e“’ —1\/E+Ee“" —2\/§+§e”’ —3\/§+§e”’ —4d6
- 2 2 2 2 2 2 2 2 2

~-9.4369x10 10 4+ 521805x10~1°j

(b) Riemann surface

For simple we let f(z) =~z 21z =2~z =3\/224

L= 2 2 to 1
Integral path angle value angle value
Jz-1 0 1 0 1
7-2 -7 —1 V4 i
z-3 - —1 4 I
Jzi-4 - —i V4 i
Sheet I I~
Total f (2) i =1
Table 3-3
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Integral path

NK‘ N N NK‘
| | | |
SN w N =

Sheet

Total f(z)

3 to 4
angle value
0 1
0 1
0 1
- _ij
|+
—i

Table 3-4

The integral becomes as following,

_[\/2—1\/2—2\/2—3\/2—4dz

angle

= ij'olx/?\/l—r\/2—r\/3—rdr+(—i)'|':\/?\/1—r\/r +1+/r +2dr

~ 0.76002i — 0.76002i

~0

_[\/2—1\/2—2\/2—3\/2—4dz

:—iJ;O\/Fx/l—r\/Z—r\/S—rdr+ifﬁ¢1—r¢r +1~/r +2dr

~ 0.76002i — 0.76002i

~0

By Riemann surface theory we also have that,

Ix/z—lx/z—ZJz—3\/z—4dz = J'\/z—lx/z—Z\/z—3\/z—4dz ~0
1" |~

And

is\/z—lx/z—Z\/z—3\/z—4dz=2J.\/z—1\/z—2\/z—3\/z—4d2z0
4 I

But the numerical value is —9.4369x107*° +5.21805x10 i # 0
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Why do we gain this result? Does it contradict to our Riemann surface theory?



Let’s to look at the value —9.4369x107"° +5.21805x10*°i, the real part and the

imaginary part multiply a small order term, respectively. Because the computer has

some error, the value §\/z ~1z-2+z2-3+/z-4dz is always equal to zero.
Ve

Why does thisJVz—lx/z—Z\/z—3\/z—4dz = J'Jz—lx/z—zx/z—3\/z—4dz =07
1 1~

Because f(z)=+/z-1vz—-24z-3vJz—4 in our integral look on as the radius

function, it is symmetric! We can try another f(z)=+vz-1vz—-2+z-3+z-35

with the same path.

ii;\/z—lx/z—Z\/Z—S\/z—&Sdz

v
:r §ie“9\/5+§e“’ —1\/E+Ee“" —2\/§+§e”’ —3\/§+§e”’ -3.5d¢
- 2 2 2 2 2 2 2 2 2

~1.77636 x10 12 +1.03084i

~ 1.03084i (the reason is discussed in above)
And

_[\/z ~1Jz-2+2-3+/z-3.50z

s

= iJj\/1— rJrv2-r+/25- rdr+(—i)J':5\/1.5—r\/F\/r +1/r+2dr

~ 0.68002i — 0.164603i

~ 0.515418i

_[\/z —1Jz-2+2-3+2z-3.5dz
4

= —iJ;O\/l— r\/F\/Z—r\/2.5—rdr+ijoosdl.5— rv/r/r +1r + 2dr
~ 0.68002i — 0.164603i
~ 0.515418i
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Again confirms that,



.[\/2—1\/2—2\/2—3\/2—3.5dz= .[\/2—1\/2—2\/2—3\/2—3.5dz

§\/z —1Jz -2z =37 -35dz ~1.03084i
V4

2sz —1z—2+/7—3+/7—3.5dz ~ 5.15418i x 2 ~1.03084i
4

This time the integral §\/z ~1Jz-2+42-3+/z2-3.5dz is not zero.
Ve

(i) y isacircle of radius 3 at center E

(a) Path integral
ii;\/z—lx/z—zx/z—B\/z—4dz
Y

= I 3ie“9\/g+3e”’ —1\/g+3e”} —2\/g+3e‘9 —3\/g+3ei9 —4d@

~ 2.22045x10716 +1.70974 x10714j

~0

Try again that sz—lx/z—Z\/z—?n/z—S.Sdz with » is a circle of radius 3 at
7

center § .

§\/z —1Jz -2z -3+7-35dz ~ 3.55271x10 "+ +1.03084i ~1.03084i .
V4
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1
Evaluate that 513\/2 Wz-2vz-3Jz-4

center § .

(i) y isacircle of radius g at center g

(a) Path integral

dz, where y isa circle of radius g at

Let z=§+§e‘9, dz=§ie‘9d¢9,then
2 2 2
§§ ! dz
" NZ-1J7-22-3Vz-4
- e < 46
\/5+5e‘9—1\/5+5ei9—2\/5+5e‘9—3\/5+5e'9 4
2 2 2 2 2 2 2 2

~ 2.77556 x10717 +1.40513x10 716 ~ 0.
(b) Riemann surface

For simple we let f(z) =

and by Table 3-3, Table 3-4

1
V= INZ =24z

we have that,

IJz 1\/2—2\/2 3Jz-4

—3Jz-4

=i OJFJl—rJz— Far+

~1.68575i

rv3-
—1.68575i

~
~

0

1 dz
2Jz-3VJz-4

,J‘Jz—lx/z—

Ol Jr1-

dr
rJr+1r+2

1 dr

——ijo 1
L r1=r2=ry3-r
~1.68575i —1.68575i

~
~

0
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By Riemann surface theory we also have that,

+i'[1 Jri-r

Vr+1Jr +2



1 1
,[ «/z—l«/z—2«/z—3«/z—4dz B IJ \/2—1«/2—2«/2—3«/2—4dz ~0

And

1 B 1
i«/z—l«/z—Z«/z—B\/z—4dz_2|J: Jz_lJz_sz_342_4d

z~0
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