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ABSTRACT

We study the interaction between-coupling-strengths, delay and concavity for
a pair of two Mirollo-Strogatz-type oscillators. For a pair of two concave
oscillators with a nonzero delay, the complete phase diagrams with respect to
both inhibitory and excitatory coupling are given. In particular, we prove that the
delay and excitatory coupling induce multistable synchronization for such
system. On the other hand, the in-phase synchronization is shown to be unstable

for inhibitory coupling if the delay is not zero.

Key words: Biological Oscillators, Delay, Concavity, and Inhibitory and

Excitatory Coupling.
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1. Introduction

Large assemblies of oscillator units can spontaneously evolve to a state of large scale organi-
zation. Synchronization is the best known phenomenon of this kind, where after some transient
regime a coherent oscillatory activity of the set of oscillators emerges. This interesting phenom-
enon is quite common in many different disciplines such as engineering [28], physics [4, 13] and
[24], chemistry [14], as well as biology [27]. For example, southeastern fireflies, where thousands
of individuals gathered on trees flash in unison. Other examples of biological oscillators are
the rhythmic activity of cells of the heart pacemaker [12, 18, 20] and [26], of cells of pancreas
[22] and [23], and of neural networks [2, 8, 20, 21] and [25]. In the recent years, this topic has
gained increasing attention as synchronous oscillations have been observed in the visual cortex
[11, 6, 5], which were related to Gestalt properties of the stimulus. It has been pointed out that
synchronous firing activity may be a part of higher brain functions and a method for integrating
distributed information in an abstract representation [16, 17]. Abstracting from biophysical de-
tails, neurons belong to an important class of oscillators characterized by a pulselike interaction,
i.e., where the coupling consists in the transmission of a short pulse from an oscillator to its
partners. For an understanding of the general principles underlying synchronization phenom-
ena, it is useful to consider abstract oscillator models which contain various existing models
under very general assumptions and cangheitreated conveniently. We begin with describing the
Peskin’s model of n integrate-and-fire oscillators.”Let, the state of the i-th oscillator be denoted
il w5, 0< 2 < 1,4 =1,2,-- ,n with
input s; > 0, a normalized threshold'l and leakiness »; = 0. When z; = 1, the ith oscillator fires

by x;, where z; is subject to the’dynamics

and x; jumps back to zero. As a ‘consequernce of the firing of ith oscillator, the activation of any
other oscillator j is incremented by the coupling €;;.."Should no confusion arise, we write €;; as
€ji- This model was later generalized by Mirollg and Strogatz [19]. It was assumed that the state
variable x; evolves according to a map f;. When z; reaches the threshold, the oscillator fires and
x; jumps back instantly to zero, and the activation of any other oscillator j is incremented by
the positive coupling €;;. Specifically, z; evolve according to x; = f;(¢;), where f; : [0,1] — [0, 1]
is smooth, and strictly increasing, i.e., f/ > 0 on (0,1). Here ¢; is a phase variable so that (i)

do; 1
jzl =7 where T; is the cycle period for oscillator z; when evolving freely, (ii) ¢; = 0 when
i

the oscillator is at its lowest state z; = 0, and (iii) ¢; = 1 at the end of cycle when the oscillator
reaches the threshold x; = 1. Therefore, f; satisfy f;(0) = 0, fi(1) = 1. These maps f; are to

be called evolution maps. The inverses of f; are to be denoted by ¢;. If fi=f, 9. =9, T; =T

and ¢€;; = € for all ¢, j, then the corresponding system is called identical. Otherwise, it is called
nonidentical. Moreover, if f/ > O(resp., f/" < 0) for all i, then the system is said to consist of the
concave(resp., convex) oscillators. Assuming the identical system of convex oscillators, Mirollo
and Strogatz [19] proved rigorously that the globally pulse-coupled oscillators always synchronize
with zero phase difference. Their results solved the first conjecture of Peskin. Recently, Chang
and Juang [3] prove that for "nearly” identical system of convex oscillators, it will fire in unison.
That solves the Peskin’s second conjecture. Those results pertain only to excitatory couplings,
in realistic applications, however, one is also confronted with inhibitory couplings, which are
1



abundant, e.g., in the central nervous systems and whose importance for synchronization was
pointed out recently [15]. Furthermore, in most applications the transmission of a pulse requires
a finite propagation time. It is an important question, how synchronization over long distances
can be achieved when such temporal delays prevail (like in the visual cortex [7]). That is to say
every biological system has to deal with substantial delays that seem, heuristically speaking, to
constrain the process of synchronization.

In [9, 10], the study of general mechanisms of synchronization of the system of convex oscilla-
tors in cases where delay and also inhibitory couplings are present was given. In particular, they
presented a complete mathematical analysis for pairs of two Mirollo-Strogatz-type oscillators for
a wide range of delays 7 and coupling strengths e. Specifically, they showed that for inhibitory
couplings, the presence of delays can lead to stable in-phase synchronization. For excitatory
couplings, they showed that no stable in-phase synchronization exists. However, it was shown
numerically in [1] that globally coupled oscillators with pulse interaction can synchronize under
broader conditions. In particular, they demonstrated even the nonidentical system of concave
oscillators can synchronize provided that the concavity of the system is not too large. Such
numerical observation is also recently proved in [3].

The purpose of this thesis is to study how the roles of the concavity of the oscillators, the
presence of delays and excitatory / inhibitory couplings play out in reaching or not reaching
synchronization, and then compare theresults with. those from the system consisting of convex
oscillators [9, 10].

We study the interaction betweenscoupling. strengths, delay and concavity for a pair of two
Mirollo-Strogatz-type oscillatorsZFor a pait of two concave oscillators with a nonzero delay, the
complete phase diagrams with respect-to'both-inhibitory and excitatory coupling are given. In
particular, we prove that the delay and-excitatory ‘coupling induce multistable synchronization
for such system. On the other hand, the in-phase synchronization is shown to be unstable for
inhibitory coupling if the delay is not zero.

Summing up the earlier results and ours here, we conclude the following. For system of two
identical concave oscillators, it will not reach synchrony without delay. With delay, the system

will acquire in-phase synchronization with excitatory coupling on.



2. Model

The network consists of IV relaxation oscillators, which are caricatures of real pulse-coupled
neurons in biological systems [19]. Each oscillator ¢ may be described by a smooth function
f(¢#;), which is concave up and monotonically increasing [’ > 0, f” >0, f(0) =0, f(1)=1]. f
plays the role of an amplitude (e.g. the membrane potential) and ¢; € [0,1] is a phase, which
in the case of vanishing input from other oscillators corresponds to the normalized time elapsed
since the last firing of i. We assume from here on that the speed of each oscillator is one. When
f reaches the threshold f; := 1, the oscillator fires and ¢; and f are reset to zero. After a
time delay ¢t = 7, 7 € (0,0.5) , the spike reaches all the other oscillators (no self-interaction)
and raises (excitatory couplings) or lowers (inhibitory couplings) their amplitudes by an amount
¢ =¢(N — 1)~!, where € denotes the normalized coupling strength (¢ € (0,1]). The coupling to

the oscillators j may be represented equivalently by an increase or decrease in phase Ag;

5 + A¢; = g(min[f(¢;) + €,1]) := F+(¢j.¢), where g = f~! (2.1)

¢ + Agj = g(maz[f(¢;) +€,0]) := F_(¢;,¢), where g=f"" (2.2)

where Egs. (2.1) and (2.2) refer to excitatory and inhibitory coupling, respectively. We point
out that the concavity of f is responsible for the dependence of A¢; on ¢;, the larger the phase
¢j, the smaller the phase shift A¢;.

f(g) 12

1_ ____________ —_—— — ]

0.8
0.6 < Fes
0.4+ Ad,
0.2+ €

0 T T
0 0.5 1 1.5 2 2.5

¢
FIGURE 2.1. Function f(¢) and the dependence of the phase shift on ¢. With
excitatory couplings, an increase of € in the amplitude f corresponds to a shift of
phase that is larger when starting with a smaller phase (A¢y < A¢1). A negative
phase shift A¢s occurs with inhibitory couplings.

In this work, we consider the identical system of two concave oscillators with the delay. Before
we treat a pair of these oscillators in a mathematical analysis, we note some simple properties
of the functions F_ and F introduced in Egs. (2.1) and (2.2) that we will need in the next
paragraph:

Al: Fi(p,€) > ¢, for ¢ < 1.

A2: F_(¢,€) < ¢, for ¢ > 0.

A3: Fi(c+ ¢,e) — Fy(c—¢,e) < (c+ ¢) — (c— ¢) = 2¢, for ¢ — ¢ > 0 and
3



Fi(et.e) <
Ad: F_(c+ ¢,€) — (c—¢,) (c+¢) — (c— @) =2¢, for c+ ¢ < 1 and
F_(c—¢.e)>
A5t f(¢2) — (d>1)<f(d>z+a) f(@1+a), if ¢1 < ¢2,a>0, f'>0, f">0.
A6: J(h+a) - J(#h = a) < [(8h +a) = f(¢h—a), for ¢} = 61 + 5, 6 = da + .

a = 5 and ¢1 < ¢o.

AT: F ( ) ¢2<F—|—(d)17 )_¢1aif0<¢1<d)2afl>0af”>0aF(d)27€)<1
A8: Fy(¢p+T7,€) < Fi(¢,€) + 7 follows directly from A7.




3. Mathematical Analysis

In this section, we will derive phase diagrams that allow one to determine if and how two
oscillators synchronize their activities. We hereby consider a system S of two oscillators A and
B, both either inhibitorily or excitatorily coupled together with time delay 7.

To study the dynamics of S, we begin with assuming that the oscillator A just reaches the
threshold and is reset to ¢4 = 0 and ¢ = ¢ > 0. We further assume that if ¢p < 7, then
¢p must have fired ¢ time earlier. This assumption is not necessary in a mathematical sense,
but makes the analysis easier by reducing the number of case distinctions. It should also be
noted that since the speed of the oscillators is assumed to be one, the phase ¢ and the time ¢
is interchangeable. As the system S evolves, the phase positions of ¢4 and ¢p at time ¢ are to
be denoted by ¢4(t) and ¢p(t), respectively. We next define a firemap and a return map for
the system S of two oscillators A and B. Let ¢t = t,,; denote the time when oscillator 7 has just
fired its pth time and its phase is reset to zero. In this situation the system S is said to reach a

ground state. The firemap and the return map are defined as follows, similarly as in [10]:
(i) Firemap h(¢;(tpi)) = ¢i(tqr), where j # i, | # k and
i trk|trk > thi if ¢ € I,
reN,Iknel{nA,B}{ Hltrk > tpat 7} ifo €l

min totlbrge > tps otherwise .
reN,ke{A,B}{ pklfogt, > T}

(i) Return map R(6; (1)) = o(hy s o 124,
Suppose the system S just reaches a ground' state in oscillator ¢, then the firemap takes the

gk =

phase position of the non-ground-state, oscillator into the phase position of the non-ground state
oscillator when the system reaches the'immediate next ground state. The return map takes the
phase position of the non-ground state oscillatoriinto the phase position of the non-ground state
oscillator when the system reaches the next ground state in the same oscillators.

Before we begin the analysis of the different cases or configurations of the dynamics, we want
to illustrate our motivation for our choice of intervals in the subspace of initial phase differences
¢. Let us consider that S is a GS with oscillator A just being reset to ¢4 = 0 such that ¢ = ¢p.
In a first interval I, both oscillators have fired, but their spikes did not reach their destination
yet. Therefore, the consequences of the two pulses being received have to be evaluated. In
a second interval I, only the spike of oscillator A did not reach B and has to be taken into
account. In a third interval I3, oscillator B will reach the threshold before the spike of A can

be received. These considerations lead to the following definitions for Iy, I, and I3:

I: (bB S [O,T),
Iy: ¢pelr,1l—r1],
Is: (Ex0, In0): ¢p e (1—71,1].
On the one hand, the dynamics is very simple if we are looking at domain I3. After a time

t =1 — ¢ (from here on, we identify ¢ with the time elapsed since S has been in a GS), S will

be in a GS with ¢ = 0, which leads to a firemap h(¢) = 1 — ¢. Additional case distinctions
5



are not required here, and I3 will be referenced as region Ex0 (for excitatory couplings) or In0
(for inhibitory couplings) for reasons of conformity.

On the other hand, the detailed analysis of I; and I3 following in the next section requires one
to distinguish between excitatory and inhibitory coupling. In each case, we first heuristically
describe the temporal development of S to motivate the mathematical notation of the dynamics
that will follow afterwards. For brevity, we denote a spike originating from oscillator A as ”spike
A” and the oscillator A simply as ”A”. Each domain will be partitioned into smaller regions,
which we denote ExN or InN with successive numbering for excitatory and inhibitory coupling,

respectively.



4. Excitatory Couplings, € > 0

4.1. Construction of the FireMap.

Configuration I;
Exl: e<l—f(r+¢),e<f(l—¢)—f(tr—¢)and ¢ € I; (For fixed ¢, ¢ € [0, min{g(1 —
€) — T,u1,,T}), where u;, satisfies e = f(1 — ¢) — f(7 — ¢).)

time ¢ DA ¢B
0 0 P
T—¢ T—¢— Fy(T—¢,€) T
T Fo.(r—¢,e)+op<1 T+¢— Fr(t+d,e) <1
hp) =1—[Fy(T+ ¢,€) — Fi (T — ¢, €) — o) (4.1)

Using relation A3, we know that 0 < F (7 + ¢,€) — Fy (7 — ¢,€) < 2¢ for all ¢ € Exl, and
both the left and right equalities hold just as ¢ = 0. Then the firemap satisfies
hp) = 1—[Fyp(T+¢€) — Fi(T — ¢ ¢) — )
1—[2¢ — 9|
= 1-¢>1-1 (4.2)

v

Moreover, h(¢) =1 — ¢ just as ¢ = 0.

Ex2, : 1—f(p+7) <€ <sfl=¢)y=fr—¢), and ¢ € [ (For fixed €, ¢ €
[9(1 —€) — 7,min{us,,7}).)

time ¢ oA B
0 0 ¢
T_(b T_(b_)F-i-(T—(bae) T
T F.(tr—¢,e)+op<1 T+¢— Fr(t+d,e)=1
h() = Fi(T — ¢,€) + ¢ (4.3)

Since Fy (T — ¢,€) > Fi (T + ¢,€) — 20 Vo € Ex2,, and Fy (T + ¢,¢€) = 1,
o) = Fi(t—o,6)+ ¢
Fu(r+¢.¢) =20+ ¢
1-20+¢p=1—0¢
1—7. (4.4)

Y

v



Ex2,: f(l—¢)—f(r—¢)<e<1—f(r+¢),and ¢ € I; (For fixed €, ¢ € [uy,, min{g(1 —

€)—T,7}).)
time ¢ ba ¢B
0 0 )
T—¢ T—¢p—=F (t—¢,e) <1 7
T—¢+1—F(1—¢,¢e) 1—0 T+ 1—Fy (1 — ¢,€)
T Fi(tr—¢,e)+0—1>0 74+¢— Fi(T+¢,e) <1

h@) = Fi(r — ¢, €) = Fi (T +d,€) + ¢ (4.5)

Since F (T — ¢,€) — Fy (T + ¢, €) < 0 Vo € Ex2y, the firemap satisfies

FEx3:

h(¢) = F+(T_¢7E)_F+(T+¢7E)+¢
< 0+¢=0¢. (4.6)

fA=9)—f(r—9¢)<e<l—f(r—¢),1—f(r+¢)<e<1l—f(r—¢)and ¢ € .

time ¢ ba ¢B
0 0 P
T— ¢ T—¢—F (T—¢,e)<1 7T
T—¢p+1—F (1—¢,e) 10 T+ 1—Fy (1 — ¢,€)
T o — 1 —0fc) >0 7+4+¢— Fr(t+p,e)=1
h(¢) = — L+ F (T ¢.¢) (4.7)

Since F (1 — ¢, €) < 1, the firemap satisfies

Ex4 :

MO = ¢ — LEFL (T~ ¢.¢)
< p—1+1=4¢. (4.8)

e>1—f(r—¢)and p € I; (For fixed €, ¢ € [0,7 — g(1 —¢)).)

time ¢ Pa B
0 0 ¢
o T Fir—de=1 7
. o P b Fy(r 46,0 = 1
h(¢) = ¢ (4.9)

The firemap h is with the same initial conditions but A and B exchanged.



Configuration I

Ex5: e<1—f(r+¢)and p € I (For fixed ¢, ¢ € [1,9(1 —€) —7).)

time t Pa B
0 0 ¢
T T T+¢_)F+(T+¢7€)<1
@) =1—-F (T+d,€)+T (4.10)

Since 7+ ¢ < Fy. (T + ¢,€) < 1 and 7 < ¢, the firemap satisfies
hg) = 1—F (t+¢,e)+7
< l-7-¢+¢=1-r1, (4.11)
and
h(¢p) = 1—Fi(t+¢,e)+ 71
> 1-147=T. (4.12)

Exz6: e>1— f(p+7)and ¢ € Iy (For fixed ¢, ¢ € [max{r,g9(1 —€) —7},1—7].)

time ¢ ba ¢B
0 0 P
T . T+¢—>F+(T+(Z§,6):1
T (4.13)

Configuration I3

Ex0: o€ 13
time ¢ oA B
0 0 P
1—6 1—6 10

he) =1-o (4.14)



4.2. Dynamics in Cases.

Configuration I;
Dynamics in Fzl:e<1— f(t1+¢), e< f(1—¢)— f(r1—¢) and ¢ € I; (For fixed e,
¢ € [0,min{g(1 —€) — 7,u1,,7}), where u;, satisfies e = f(1 —¢) — f(7 — ¢).)

h(¢) :1_|F+(T+¢7E)_F+(T_¢7E)_¢|

By Eq. (4.2), the firemap h : Ex1 — FEz0. Specifically, when ¢ satisfies Fly (T — ¢,€) + ¢ =
F. (1 + ¢,¢), h(¢) = 1, which means ¢4 and ¢p synchronize. Moreover, the return map R

satisfies
R(¢) = [Fi(T+¢.€) = Fy(T — ¢,e) — 9| < & (4.15)

The equality holds just as ¢ = 0. Since ¢ € Ezl and R(¢) < ¢, R(¢) € Ex1.
Proposition 4.1. For each ¢ € Exl, R*(¢) — 0, as k — oc.

Proof. Suppose not, i.e., 3¢ € Exl, RF(¢) -+ 0, as k — oo. Then R¥(¢) # 0 Vk € N. Otherwise,
R™(¢) = 0 for large enough m € N. By Eq. (4.15), R*(¢) € Exl Vk € N and R(¢) < ¢.
Inductively, ¢ > R(¢) > --- > RF71(¢) > RF(¢) > 0. Since {R¥(¢)} is a monotone and
bounded sequence in Ez1, and R(¢) is continuous in Exl. {R*(¢)} is a convergent sequence,
i.e., R¥(¢) — ¢*, for some ¢* € (0,%), and such @* is a fixed point. It is a contradiction since
no fixed point in Ez1\{0}, by Eq.(4.15):

0
Corollary 4.1. For each ¢ € Edl, ¢ i andpprsynchronize.
Dynamics in Ex2,:1— f(t+¢)<e< f(l=¢)— f(r—¢) and ¢ € ; (For fixed e,
¢ € [g(1 —€) — 7,min{uy,, 7}).)
ho) = Fy(T —d,e) + ¢
Remark 4.1. ¢ =0 ¢ Ex2,.
By Eq. (4.4), the firemap h : E22, — Ex0. Then the return map R satisfies
R(¢) = h(h(¢)) =1—h(e)
= 1-F(r=0,) = ¢
= Py (t+¢,¢) - Fi(r—¢,6) = ¢
< 20— ¢=0. (4.16)

Since ¢ € Ex2, and R(¢) < ¢, R(¢) € Exl U Ex2,.
Proposition 4.2. There is no ¢ € Ex2, such that Rk(gb) € Ex2, for all k=0,1,2,---.

Proof. Suppose not, i.e., 3¢ € Ex2, such that R¥(¢) € Fa2, for all k = 0,1,2---. Note that

R(¢) is continuous in Fz2,. Moreover, R(¢) < ¢, V¢ € Ex2,. Inductively ¢ > R(¢) > -+ >
10



RF1(¢) > R¥(¢) > 0. Thus, R¥(¢) — ¢* for some ¢* € Ex2,, and such ¢* is a fixed point. It
makes a contradiction with Eq. (4.16).
(]

Corollary 4.2. For each ¢ € FEx2,, there is a k € N, depending on ¢, such that Rk(gb) € Exl.

Dynamics in Fz2,: f(1—¢)— f(t1—¢) <e<1—f(r+¢)and ¢ € I; (For fixed e,
¢ € [u1,, min{g(1 —€) —7,7}).)

h(¢) = Fi(T — ¢,€) — Fi (T + dy€) + &

Remark 4.2. ¢ =0 ¢ Ex2;.
By Eq. (4.6), the firemap h : Ex2, — Exl1 U Ex2y.
Proposition 4.3. There is no ¢ € Ex2y, such that h*(¢) € Ex2, for all k =0,1,2,---.

Proof. Suppose not, i.e., 3¢ € Ex2, such that h¥(¢) € Ex2, for all k = 0,1,2---. Note that
h(¢) is continuous in Ex2;,. Moreover, h(¢) < ¢, V¢ € Ex2,. Inductively ¢ > R(¢) > --- >
RF1(¢) > RF(¢) > 0. Thus, h¥(¢) — ¢* for some ¢* € Ex2,, and such ¢* is a fixed point. Tt
makes a contradiction with Eq. (4.6).

U

Corollary 4.3. For each ¢ € Ex2;), there is ak € N, depending on ¢, such that h*(¢) € Exl.

Dynamics in Fz3:1— f(1+ )L e<TTfT= ¢)y f(1—0)— f(r1—¢) <e<1—f(T—0¢)
and ¢ € I.

h($) =61 Y Fi (7 — ¢,¢)

Remark 4.3. ¢ =0 ¢ Ex3.

By Eq.(4.8), the firemap h : Ex3 +— I;. More precisely,

(i) Ife<1— f(7), h: Ex3— ExlUEx2,U Ex2, U Ex3, since the slope of the lower bound of
Ex3 is negative (—f'(7+ ¢) < 0and —f'(1 —¢) + f'(1 — ¢) < 0.

(ii) Ife>1— f(7), h: Ex3+— Ex3 U Ex4 , since the slope of the upper bound of Ez3 is
positive (f'(7 — ¢) > 0).

Proposition 4.4. (i) If ¢ < 1 — f(7), there is no ¢ € Ex3 such that h*(¢) € Ex3 for all
k=0,1,2,---. (i) Ife > 1 — f(7), for each ¢ € Ex3, h*(¢) € Ex3 for all k € N. Moreover,
h¥(¢) — 7 — g(1 — €) for all ¢ € Ex3.

Proof.
(i) Suppose not, i.e., 3¢ € Ex3 such that h*(¢) € Ex3, for all k = 0,1,2,---. Since as
e < 1— f(r), Ex3 = [g(1 — €),7), or Ex3 = [uy,,7) and the sequence {h*(¢)} must satisfy

h*(¢) — ¢*, where ¢* is a fixed point for h in Ex3. It makes a contradiction with Eq. (4.8).
11



(ii) If € > 1 — f(7), Ex3 = (1 — g(1 — €),7), where 7 — g(1 — €) > 0, and the equality holds just
as e = 1 — f(7). Because of
hMr™) = 7—1+4F(r—T10¢)
= 7-1+g9(e) <, (4.17)
and
hM(r—g(l—e)") = 7—9g(l—€) =1+ F(r—7+g(l—¢)e)
= 7-g(l—-¢—1+1=7—g(1—e). (4.18)
Also, for any ¢ € Fx3,
W(¢) = 1+FL(T—¢,)
= 1-g(fr-¢)+f (T - ¢)
> 1-g(f(r =) f (T —9)
= 1-1=0. (4.19)
We obtain 7 — g(1 —€) = h((7 — g(1 — €))T) < h(¢) < h(77) < 7. Therefore, for each ¢ € Ex3,
h*(¢) € Ex3 for all k € N. Moreover, by Eqs. (4.8), (4.17), (4.18), (4.19), the sequence {h*(¢)}

is decreasing. Hence, h*(¢) — ¢*. Since there s no fixed point in Ez3, ¢* € bd(FEx3). Tt follows

that ¢* =7 — g(1 — €) which is also-the boundary 6f Fx4.
O

Specifically, if e = 1 — f(7), we obtain ¢*=0, i.e., ¢» and ¢p synchronize.

Corollary 4.4. (i) If e < 1 — f(7); foreach &€ Ex3, h*(¢) € Exl U Ex2, U Ex2;, for some
k€ N. (ii) If e > 1 — f(7), for each ¢ € Ead;hF(p) — 7 — g(1 —€) as k — oo. Specifically, if
e=1— f(7), for each ¢ € Ex3, ¢4 and ¢pp synchronize.

Dynamics in Ex4:e>1— f(t—¢) and ¢ € I; (For fixed ¢, ¢ € [0,7 — g(1 —€)).)
h(¢) = ¢

Thus, h : Ex4 — Ex4. Specifically, if ¢ = 0 € Ex4, h*(¢) = 0 € Ex4, Vk € N,

Corollary 4.5. For each ¢ € Exd, ¢ is a marginal stable fized point in Fx4.
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Configuration I
Dynamics in Exz5:e<1— f(t+ ¢) and ¢ € I  (For fixed ¢, ¢ € [1,9(1 —€) —7).)

ho)=1—F (T4 ¢,e) + 71

By Egs. (4.11), (4.12), we have 7 < h(¢) < 1 — 7. Hence h : Ex5 > Is.
Lemma 4.1. For each ¢ € Ex5, hk((b) € Exb fork=0,1,2,---.

Proof. For each ¢ € Ex5, since e < 1— f(1+ ¢) and ¢ > 7, e <1 — f(27). Let ¢9 = g(1 — ¢),
Agy = g(f(¢po)+e)—eand A27 = g(f(27)+¢€)—e. Since g(f(¢o)+€) = 1and f” > 0, Agg < A2,
ie., Fi(pg,€) — po < Fr(27,¢) — 27. Clearly, Fi (17 + ¢,€) > Fy(27,¢) for ¢ € [1,1 — 7|. Then

we have

h(¢) < h(r)

1—Fi(2r,e)+ 7
< 14 ¢o— Fi(po,€) =27+ 71
= tg-a—g(flgl -+ -7
= g(l—¢ —m.
Thus, h(¢) € (1,9(1 — €) — 7), i.e., h(¢) € Ex5. Inductively, h*(¢) € Ex5 for k = 0,1,2,---.
Therefore, the lemma holds.
U

Lemma 4.2. —1 < }/(¢) <0 and Q< R'(¢) < 1'Np.€ Exb.

Proof. From direct computation,-0 >'h (@) = ~¢(f(z + &) +¢€) - f'(T+ ¢) > =g (f(r + ¢)) -
f'(T+¢) = —1, since g <0 andg' (A7 +0)) = f'(7+¢) = 1. Since R'(¢) = h'(h(¢)) - h'(), we
obtain 0 < R'(¢) < 1.

U

Proposition 4.5. There exists a unique fized point for h in Exb, and it is an attractor.

Proof. Define A(¢) = h(¢p) — ¢. Clearly, A'(¢) = h/(¢) — 1. From Lemma 4.2, we have h'(¢) < 0,
and then A'(¢) = h/(¢) — 1 < 0. By the definition of Ex5, Fx5 = [1,g9(1 — €) — 7). Denote
0 =g(1 —e€) — 7. Now, let’s check the values of A(67) and A(7).

(i) If ¢ = 9, we figure out that F (§ + 7,¢) = 1. It follows that h(6~) = 7, and

A(6™) = h(07)-d=717-d<0.
(ii) If ¢ = 7, we have
A(r) = h(r)—7
= 1-F 216 +7—71
= 1—F;(21,¢) > 0.
The last inequality follows directly from the definition of Fx5.
Hence h has a unique fixed point ¢* € Ex5, ie., h(¢*) = ¢*. Since R(¢*) = h*(¢*) and
0 < R'(¢) < 1, such ¢* is also the unique fixed point for R in Ex5. Moreover, since
"< R(d) <o if ¢>9,
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and

¢ > R(¢)>¢ if <o,

the fixed point ¢* for R and hence for h is an attractor.
O

Corollary 4.6. For each ¢ € Ex5, h¥(¢) converges to the fized point ¢* € Ex5, which is an

attractor.

Dynamics in F26: ¢ >1— f(1+¢) and ¢ € Iy  (For fixed ¢, ¢ € [max{7,g(1 —¢) —
Th1-1])
h(¢) =7

Thus, h : Ex6 — Is.
Corollary 4.7. For each ¢ € Ex6, the firemap maps ¢ to the line ¢ = 7.

Configuration I3

Dynamics in Ez0: ¢ € I3

Thus, h: Ex0 — I4.

Corollary 4.8. For each ¢ € ExQ, h(¢) €15
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4.3. Construction of Phase Diagrams.
Peskin modeled the pacemaker as a network of N ”integrate-and-fire” oscillators, each char-

acterized by a voltagelike state variable x;, subject to the dynamics

=—rx;+s, 0<uxz <1, i=1,2,---N. (4.20)

Mirollo and Strogatz [19] proposed a new model and they assume that x evolves according
to x = f(¢), where f : [0,1] — [0,1] is smooth, monotonic increasing (f’ > 0), and concave
down (f” < 0). Here ¢ € [0,1] is a phase variable such that (i) d¢/dt = 1/T, where T is a cycle
period. (ii) f(0) = 0. (iii) f(1) = 1. Then they generate the function f and its inverse function

g which are given in the following, respectively.

f@) = - ()
(4.21)
_ =)
g(x) In(=2)

In contrast, we assume there exists—a function ' f* which is smooth, monotonic increasing
(f" > 0), and concave up (f” > 0).:50, we switch the function f and g of Eq. (4.21) to be the
model of our phase diagrams.

We fixed s = 1, and change the variable'=:then‘we have three different kinds of figures in
Figure 4.1:

(a) Whenr =04 and 7=0.2, f(1—¢) — f(r1—¢) >1— f(T+ ¢) V¢ € I;.

(b) When r =0.7and 7 =0.2, f(1—¢) — f(r—¢) <1— f(T+ ¢) Vo € 1.

(¢) When r =0.72 and 7 = 0.35, f(1—¢) — f(T — ¢) and 1 — f(7 + ¢) have an

intersection in Ij.

Moreover, we add Figure 4.2 which is a phase diagram we make from Ernst [10] as a contrast.
And it’s energy function f and inverse function ¢ is exactly the Mirollo-Strogatz-type (Eq. 4.21)
oscillators we just mentioned.

And there are some notations for the following figures:

i+ e=1=f(r+9)
lo © e=f(1-9¢)—f(r—09)
I3 + e=1-f(r—9)

In the following tables, we fixed an arbitrary € > 0, and shift ¢ in [0,1]. Therefore, we clearly
see which area (ExzN) does the oscillator begin and figure out where it ends.
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1
D £(8) = Tt >0, >0

n(=*)
e . Ex0,
IExb}%.
(DK
fl-tH
1-f(2t -

FIGURE 4.1. (a) s =1, r = 0:dy"
r=0.72, 7 = 0.35. -

e 1

1-f (T

1-f(2t -
f(f-:)—

(-t
1{}(2:)-

Ex2

a

€ Dynamics

Multistability

¢—0,if pely, I3

0<e<1-—f(27) 6 bt iféel
Ezxb5’

Complete Syn.
Lag Syn. with Lag ¢7% 5

¢—>0, if¢€Il,I3

1—f2r) <e<1—f(r) 6— T, ifpel

Complete Syn.
Lag Syn. with Lag 7

¢ — ¢, if p € Fxd, Ex04
¢ — ¢, if ¢ € Ex3, Ex03
d)—>7‘, 1f¢€I2

1-f(r)<e<1

Lag Syn. with Lag ¢
Lag Syn. with Lag ¢,
Lag Syn. with Lag 7.

16
Yf ¢ € Ex0,,, then h(¢) € Exn for n = 3,4.




sS—T

(I0) f(¢) =

(

Sl®»
S| ®»

)%, f>0, f" <0

€

Dynamics

Multistability

0<e<1-—f(27)

¢ - ¢Em5*7 if ¢ S IlaE$5*7[3
¢ —Period(r, h(T)), if ¢ € [\ Ex5*

Lag Syn. with Lag ¢};,5-
Lag Syn. with Lag 7

1—-f@2r)<e<1-—f(1)

¢ — Pppaor 7, if o€ 11,13

Depends on the behavior of Ex2

¢ —T1,if p €l Lag Syn. with Lag 7
- f(<e<t 0 Ohen 10 S Il Fag Syn. with Log d5.s
-1, ifpel Lag Syn. with Lag 7

17




5. Inhibitory Couplings, ¢ <0
5.1. Construction of the FireMap.

Configuration I;

Inl: |e| < f(T—¢)and ¢ € I}
= e>—f(r—¢)and p€;  (For fixed €, ¢ € [0,7 — g(—¢)).)

time t Pa B

0 0 ¢

r—¢ T—¢p—F (1—¢,e)>0 7

T F_ (r—¢,6)+ ¢ T+¢—F_(T1+¢,€) >0
hop)=1—F_(1+ ¢,e)+ F_ (1 — ¢, e) + ¢ (5.1)

Using relation A4, F__ (1 + ¢,€) > F_(1 — ¢, €) + 2¢, we have ¢p(7) > ¢p4(7). Since F_(1 —
¢,€) > 0, the firemap satisfies
B($) = 1-F (146,00 +F_(r—¢,6) +6
> 1—(1+¢)+F_(1—¢,e) + ¢
= 1— 74 Fi7 — @, €)
> JFT. (5.2)

In2: f(r—@) < ld < f(r+0) ad g e
= —f(r—¢) > € >—f(1+ ¢yand ¢ €y~ (Forfixed ¢, ¢ € [0,7).)

time t DA ¢B
0 0 ¢
T—0¢ T—¢p—F (T—¢,e)=0 7
- ) T+¢—F_(T1+¢,€) >0
h(p) =1—[F_(T+ ¢,€) — ¢| (5.3)

Since F_ (7 + ¢,€) < 7 + ¢, the firemap satisfies

Wo) = 1=|F(7+¢,¢) =9l
l—|r+¢—9|
= 1—-7 (5.4)

\%

(i) If F_(T+ ¢,€) > ¢,
Define In2, : —f(1 — ¢) > e > —f(r) (For fixed €, ¢ € [la,, 7], where ly, =7 — g(—¢).)

@) =1-F (T +¢,e) +¢

Define In2y : —f(7) > € > f(¢) — f(r+¢) (For fixed €, ¢ € (ly,, 7), where I, satisfies
e=[f(¢)—f(r+¢))

o) =1—-F_(T+d,e)+¢
18



(ii) If F_(T + ¢,€) < 9,
Define In2.: f(¢) — f(T+¢) > e > —f(t+¢) (For fixed €, ¢ € [g(—€) — 7,min{ly,,T}).)

R(¢) =h(¢) =1+ F (T + €)= ¢

(iii) If F_(T + ¢,€) = ¢,
Define In2; : e = f(¢) — f(1+¢) (For fixed €, ¢ = Iy,.)

h(¢) =1

In3: f(r+¢)<|e/and ¢ € I
=e>—f(r+¢)and ¢ € I; (For fixed €, ¢ € [0, min{g(—€) — 7,7}).)

time t A B

0 0 ¢

T—0¢ T—¢p—F (1—¢,e)=0 7

T ¢ T+¢_)F—(T+¢7€):0
ho)=R(¢)=1—¢ (5.5)

Configuration® I,

Ind: le| < f(r+¢)— f(2r) andig € Iy
=e> f(21)— f(t+¢) and ¢ € > b (Eor fixed €, o€ (14,1 —7], where Iy = g(f(27) —€) —T.)

time ¢ DA B

0 0 ¢

T T 7_+¢_)F—(T+¢76)>0
ho)=1—F_ (14 ¢p,e) + 71 (5.6)

We assume that |e| is small enough such that F_(7+¢, €) > 27. Since 27 < F_(7+¢,€) < T+,

the firemap satisfies
h(¢) = 1—F_(1+¢,e)+ 7
< l1=-2r+7=1-m, (5.7)
and
h(¢) = 1—F_(1+¢,e)+ 71
> 1l—7—0¢+T1
= 1l—-9¢>T (5.8)
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In5: f(tr+¢)— f271)<|e| < f(T+ ¢) and ¢ € I,
= f@2r)—f(r+¢)=e>—f(r+¢)and ¢ € I

time ¢

ba

B

0

T

0

T

ho) =1—[F (7 +¢,€) = 7|

¢
T+¢— F_ (14 ¢,e) >0

(5.9)

We assume that |e| is bigger than that in In4 such that 0 < F_(7 + ¢,e) < 27, then the

firemap satisfies

> 1— |27 — 71|

o) = 1= |F(T+¢,e) -]

= 1—-7. (510)
In6: f(r+¢)<|e|and ¢ € I,
= —f(r+¢)>eand ¢ € Iy (For fixed €, ¢ € [1,9(—¢€) — 7].)
time t Pa B
0 0 P
T T T+¢—F (T+¢,e)=0
) =R(d)=1—1 (5.11)
Configuration I
n0: ¢ €Iy
time t Pa B
0 0 ¢
-9 1—-9¢ 1—0
ho)=1-¢ (5.12)
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5.2. Dynamics in Cases.

Configuration I}
Dynamics in Inl: e > —f(71—¢) and ¢ € I (For fixed ¢, ¢ € [0,7 — g(—¢)).)

ho)=1—F_(1+¢,e)+ F_ (1 — d,e) + ¢

By Eq. (5.2), thus h : Inl — In0. Then the return map satisfies
R(¢) = h(h(¢)) =1- h((b)
> 2%-¢=0.
The equality holds just as ¢ = 0. Since ¢ € Inl and R(¢) > ¢, R(¢) € Inl U In2. Specifically,
if  =0¢€ Inl, R*(¢) =0 € Inl.
Proposition 5.1. There is no ¢ € In1\{0} such that R*(¢) € In1\{0} for all k =0,1,2,---
Proof. Suppose not, i.e., 3¢ € In1\{0} s.t. R¥(¢) € In1\{0} for all k = 0,1,2,---. Note that
R(¢) is continuous in (0,7 — g(—e¢)], since

Ry - | -0+ 00 — EaiBidtg, o .
F_ (14 ¢,¢) = ¢ € In2,V In2,. (5.14, 5.18)

The return maps of In2, and In2 will be proved in Egs. (5.14), (5.18).

. { R((r = g(=e)") = F-Qreg(sOpmm=e(=e);
R(r—g(=¢))  =F_(21 —g(=e)) — (T =g(*)).
Moreover, R(¢) > ¢, V¢ € In1\{0}. Thus, R*(¢) — ¢* for some ¢* € (0,7 — g(—e)], and

such ¢* is a fixed point. That is R(¢*) = ¢*. It follows that ¢* = 7 — g(—¢), or e = — f(7 — ¢*),
then F_ (7 — ¢*,¢) = 0. Hence,

R(¢*)=¢*
= F_(T+¢% €)= F_(T—¢" € —¢" =09
= F(T+¢ €) —¢"=¢"
= F_(1+¢"¢) =2¢"
= fr+¢") +e=f(2¢")
= f(r+¢") = f(r—=0") = f(2¢7) — f(0) = f(¢"+ ¢") — f(o" — ¢")

By relation A6, we know f(7 4 ¢*) — f(7 — ¢*) > f(¢* + ¢*) — f(¢* — ¢*), since T > ¢*. -«
O

Corollary 5.1. For each ¢ € In1\{0}, there is a k € N, depending on ¢, such that R*(¢) € In2.
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Dynamics in In2, : —f(r —¢) > e > —f(r) and ¢ € I (For fixed ¢, ¢ € [lo,, 7],

where Iy, =7 — g(—e€).)
h¢) =1—F_(T+¢,€)+ ¢

By Eq. (5.4), thus h : In2, — In0. Then the return map satisfies

R(¢) = h(h(¢)) =1—h(¢)
= F—(T+¢7E)_¢
< TH+o—¢=T.

Thus R(¢) € InlU In2.

Lemma 5.1. For each fized €, there exists a fived point for R in In2,.

Proof. Note that R(¢) is continuous in [7 — g(—¢), 7].
If ¢ = la,, we know that e = —f(7 — lp,). The return map

R(l2a) = F_(T—I_lza?E) _lza
= g(f(T+1a,) = f(T = 12,)) =2,
> g(f(laasflag) == f (2, —12,)) —l2, (AS)
= 280 |, IRuisd
If ¢ = 7, the return map
Rt 2aE) — 7
= T = T.

By Egs. (5.15), (5.16), there exists a fixed point for R in In2,.

Since R(¢) = ¢,

R(¢) = ¢
F(r+de)=¢=9¢
F_(T+¢,¢) =2¢
g(f (T + ) +e€) =2¢
€= [f(20) = f(T+ ).

Thus, the fixed point in In2, must satisfies e(¢) = f(2¢) — f(7 + ¢).

$odu

(5.14)

(5.15)

(5.16)

(5.17)

Proposition 5.2. For each fized €, suppose that € (¢) = 2f'(2¢) — f'(T + ¢) > 0, then the fized

point for R in In2, is unique, and it is an attractor.

Proof. For each fixed €, suppose not, i.e., Je, ¢1 < ¢p2 € In2, s.t. R(p1) = ¢1, and R(p2) = ¢o.
By Eq. (5.17), we have € = f(2¢1) — f(7+ ¢1) = f(2¢2) — f(7 + ¢2). By the Rolle’s Theorem,
¢’ € (p1,02) s.t. €(¢') = 0. This makes contradiction. Therefore, if 2f'(2¢) — /(7 + ¢) > 0,
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then the fixed point for R in In2, is unique.
For any ¢ € In2,,

R(¢) = F.(r+¢e) —1

g(f(r+¢) —leDf(r+) -1
gJfr+o)f(r+¢)—1

> 1—-1=0.

V

Thus, lo, < R(l3,) < R(¢) < R(7) < 7. Hence, In2, is a trapping region.
Let ¢* be the fixed point of R(¢), i.e., R(¢p*) = ¢*.
()As ¢ > ¢,
R(¢) < ¢ (Otherwise, there exists another fixed point in [¢, 7].)
= RY$) < <RY9)<R(g) <o, Vh=12
and RF(¢) > RF(¢*) = ¢*, Vk=1,2,--- (" R is increasing.)
= ¢" <RM¢)<R"U¢p) <<, VE=1,2,-
Thus, the sequence {R*(¢)} is decreasing, and RF(¢) — ¢*.
(i) As ¢ < ¢,
Similarly, the sequence {R*(¢)} isdincreasing, ‘dand R*(¢) — ¢*.

The unique fixed point ¢* is an attragtor;
O

Corollary 5.2. For ecach ¢ € In2q, RE()-converges ito the fized point ¢*. Specifically, if ¢ = 0,
then the fixed point ¢* =0, i.e., ¢4 and ¢p synchromize.

Dynamics in In2,: —f(7) > e > f(¢)="f(T+ ¢) and ¢ € I; (For fixed ¢, ¢ € [l3,,7),
where I, satisfies € = f(¢) — f(7+ ¢).)

h(¢) =1—F_(T + ¢,¢e) + ¢

Remark 5.1. ¢ =0 & In2;.

By Eq. (5.4), thus h : In2, — In0. Then the return map satisfies
R(¢) = h(h(¢)) =1—h(¢)
= F.(T+¢,e)—¢ (5.18)
< TH+o—0=T1.
Since —f(1) > €, R(¢) & Inl U In2,. It follows that R(¢) € In2\In2, U In3.
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Proposition 5.3. There is no ¢ € In2y such that Rk(gb) € In2y for allk=0,1,2,---.

Proof. Note that R(¢) is continuous in [l,, 7]. Assume that there exists a fixed point for R in

In2;,. Since the return map of In2; is the same as that in In2,. It follows that

R(¢)=¢

& e=f(20) = f(r+¢) > f(20—2¢) — f(r+¢—2¢) (5.17, A5)

& e=f(20) = f(r+¢)>—f(r—¢)>—f(r) (For ¢ #0 € In2.)

& e> —f(7).
This contradicts the region of the € in In2,. Then there is no fixed point for R in In2y.

Since R(lp,) = 0 and R(7) = F_(271,€¢) — 7 < 7, it follows that R(¢) < ¢. Otherwise, there

exists fixed points in [ly,, 7]. Thus, ¢ is decreasing in In2;,.
Suppose not, i.e., 3¢ € In2y, s.t. R¥(¢) € In2y, for all k = 0,1,2,---. Since ¢ is decreasing,
R¥(¢) — ¢*, for some ¢* € [lg,, 7]. It follows that ¢* = Iy, is a fixed point in In2,. It makes

contradiction.

O

Corollary 5.3. For each ¢ € In2y, there is a k € N, depending on ¢, such that Rk(gb) €
In2.UIn24;U In3.

Dynamics in In2. : f(¢) — f(@+ ¢) e —f(z + ¢) and ¢ € I; (For fixed e,
¢ € [g(—€) — 7, min{ly,, 7}).)
R(@) = My =1=F_(z+¢,€) — ¢

Remark 5.2. ¢ =0 ¢ In2,.

By Eq. (5.4), thus R, h : In2. — In0. We iterate the return map and derive
h(R(¢)) = 1—R(¢)=1-h(¢)
= ¢—F_(T+d,¢) (5.19)
< 0.

Since R(¢) € In0, h(R(¢)) < ¢, h(R(¢)) € In2. U In3.
Note that h(R(¢)) is continuous in In2., and h(R(g(—¢) — 7)) = g(—¢) — 7. Clearly, we know
that h'(R(¢)) =1 — F_(7 + ¢,€) < 0. For each ¢ € In2., since g(—¢) — 7 < ¢, we have

h(R(g(—€) — 7)) > h(R(9))
= g(—€) —7 > h(R(9))
= W(R($)) & In2., h(R(¢)) € In3.

Corollary 5.4. For each ¢ € In2., h(R(¢)) € In3.
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Dynamics in In2;: e = f(¢) — f(t+¢) and ¢ € I;  (For fixed €, ¢ =Iy,.)

h(¢) =1

Corollary 5.5. For each ¢ € In2g4, ¢4 and ¢p synchronize.

Dynamics in In3:e < —f(7+¢) and ¢ € I; (For fixed ¢, ¢ € [0, min{g(—¢) —7,7}).)

h¢) = R(¢) =1—-¢

Thus, A, R : In3 — In0. Specifically, if ¢ =0, ¢4 and ¢p synchronize.
Corollary 5.6. For each ¢ € In3, ¢ and h(¢) is a Period.

Configuration I
Dynamics in Ind : e > f(27)— f(t+¢) and ¢ € I,  (For fixed ¢, ¢ € (I4,1— 7], where
la=g(f(27) =€) —7.)

hop)=1—F_(1+ ¢,e) + 71

By Egs. (5.7), (5.8), thus 7 < h(¢) < 1 — 7 such that h : Ind — Ind U Inb5U In6.

Note that h is continuous in [l4, 1 — 7. Since,

W) = { 1—F_ (t1+¢,6)+ 1, ¢ elnd; (i) =1-m; (5.20)

= =
1 —|F_(T + ¢y€) —7| @€ 1In5.  (5.9) h(ly) =1-71
Lemma 5.2. There exists a unique.fixed pointfor h.in In4.

Proof. From Eq. (5.20), we know that A{l4)'="T — 7 > l4. It follows that

hMop)=1—-F_(T+d,e)+T
= NW(p)=—-F (1+¢,e) <—1 (5.21)
1-7 1-7
= /l R (p)do < / —1d¢

4 Iy

= h(l—7)—=h(ly) < =[(1—=7)—14]
= h(l—T)<h(l4)—[(1—7’)—l4]:l4<1—7’. (5.22)

Since h(ly) > lg and h(1 — 7) < 1 — 7, h(¢) has fixed points.

Now, we claim that the fixed point for h in In4 is unique.
Suppose not, i.e., 3p; < ¢2 € Ind s.t. h(¢1) = ¢1 and h(¢2) = ¢2. By Mean Value Theorem,
h —h
B (¢) = M for some ¢’ € (¢1, P2)
P2 — 1
= N(¢)=1 for some ¢’ € (¢1,p2)

This is a contradiction with Eq. (5.21). Thus, there exists a unique fixed point ¢* for h in In4.
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Since there exists a fixed point for h,
h(¢) =¢
= 1-F (t1+¢,e)+17=9¢
= 1+7-0=g(f(T+¢)+e¢)
= e=f(14+7—0¢)— f(T+¢). (5.23)

Thus, the fixed point in In4 must satisfy €(¢) = f(1+7— ¢) — f(7 + ).

Proposition 5.4. Except for ¢ = ¢*, there is no ¢ € Ind such that hk((b) € Ind for all
k=0,1,2,---. i.e., The unique fixed point ¢* for h in Ind is a repellor.

Proof. Suppose not, i.e., 3¢ € Ind s.t. h*(p) € In4, for all k = 0,1,2,---. Let

Si:={¢:hl(¢) € Ind} = Syisaninterval, S #0. (- ¢* € S1 and h/(¢) < —1)
Sy == {¢: h*(¢) € In4} = Sy is an interval, Sy # (0. (" ¢* € Sy C S and %}F((ﬁ) > 1)

= S:={¢:hF(¢) € IndVk} = ﬁ Siris an interval (noempty).
k=1
By Eq. (5.21), R'(¢) = K (h(p))h (¢)5> 1. ‘Let H(¢) = R(¢p) — ¢, then we have H'(¢) =
R'(¢) —1>0.
10
(@) If ¢ <o,

H(¢) <H(¢7)=0 = R(9) <.
(i) If ¢ > ¢,
H(¢) > H(¢*) =0 = ¢ <R(¢).
Then (i) RF(¢) < --- < R%(¢) < R(¢) < ¢ < ¢*, Vk €N.
and (ii) R¥(¢) > --- > R%(¢) > R(¢) > ¢ > ¢*, Vk € N.
90
(i) If <9,
H(R(¢)) < H(¢)
= R(R(¢)) — R(¢) < R(¢) — ¢
= [R(¢) — ¢l < |R*(¢) — R(9)]
(i) If ¢ > ¢,
H(¢) < H(R(9))
= [R(¢) — ¢l < |[R*(¢) — R(9)]
For fixed €, |[R¥(¢) — 6| = |R¥(¢) — RE=1(@)| + - -- + |R(¢) — ¢|. By the inequality,
|R¥(¢) — ¢| > k|R(¢) — ¢|, for k > 2.
Thus, for each point ¢ € S such that R (¢) ¢ S. It contradicts the definition of S.
In conclusion, the unique fixed point ¢* for h in In4 is a repellor, and h*(¢) € In5U In6 for

some k € N.
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Corollary 5.7. For each ¢ € In4, there exists a unique fized point ¢* which is a repellor. Also
there is a k € N, depending on ¢, such that h*(¢) € In5U Ine.

Dynamics in In5: f(27) — f(1+¢) > e > —f(T+ ¢) and ¢ € I,
h(@) =1—|F(1+ ¢,€) =7l

By Eq. (5.10), thus A : Inb +— In0 U ly_;, where l;_;, is the line ¢ = 1 — 7. The firemap
h(¢) =1—71 € l1_; just as ¢ = ly. Also, if pa(T) > ¢p(7), R(p) = h(d).
Furthermore,
h(¢) =1
& |F(T+¢,e) —7[=0
& g(f(r+¢)+e) =1
& e=[f(1)— f(r+9)
Therefore, ¢4 and ¢p synchronize just as €(¢) = f(7) — f(7 + ¢).

Corollary 5.8. For each ¢ € In5, h: In5— In0Uli_,. Specifically, when e(¢) = f(1)— f(7+
@), 4 and ¢p synchronize.

Dynamics in In6 : —f(7 + ¢) > e and ¢ € Is 1s (For fixed ¢, ¢ € [1,g(—¢) — 7].)

h(@) = R() =1 —7

Thus h : In6 — Ind U Inb.
Corollary 5.9. For each ¢ € In6;:h: In6 — IndUdnb.

Configuration I3

Dynamics in In0: ¢ € I3

Thus, A : In0 — 1.

Corollary 5.10. In0 is the same as Ex0 and we have h : In0 — I4.
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5.3. Construction of Phase Diagrams.

Since for all ¢ € In6, h(¢) = 1 — 7, and the line 1 — 7 belongs to In4, Inb, In6. Let’s
find out how the oscillators run when ¢ = 1 — 7. We find that different 7 leads to three different

cases.

Theorem 5.1.

1 1
Case 1: 7 < g(i) b (Figure 5.1: 7 =0.25)

= 3G1,Gy s.t. f(21) — 1< Gy <Gy < —f(27), and G1 = Go when T = g(%) — %
(i) If € € [G1, G2, then h(1 — T) € In6.
(ii)If € € [f(27) — 1,G1) U (G2,0), then h(1 — ) € Inb.
(ii)If e € (—1, f(21) — 1), then h(1 —T) € In0.
Case 2: g(%) - % <7< 59(%) (Figure 5.2: 7 =10.3)
= (i) If e € [f(27) — 1,0), then h(1 — T) € In5.
(ii)If e € (=1, f(21) — 1), then h(1 —7) € InO0.
Case 3: T > %g(%) (Figure 5.3: T =10.4)
= (i) If e € [f(27) — 1,0), then h(1 — T) € In5.
(ii)If e € (=1, f(21) — 1), then h(1 — 7) € InO.

— —

Proof. We clearly know that the line 1 — me&dnd, Inb, In6. If ¢ € Ind, then € > f(27) — f(7 + ¢)
and ¢ € Iy, i.e., if ¢ € Ind, then &> f(27)='1. Onthe-other hand, If ¢ € In6, then e < —f(7+ ¢)
and ¢ € Iy, i.e., if ¢ € In6, then'e < —f(27).

Case 1:

Vo =1— 71 € Ind, by Eq. (5.20),

h(1—7)<ly=h(1—7) € In5V Iné. (5.24)

f@2r) —1l<e< —f(27)

h(1—1) eInG@{
le| > f(r+ h(1—1)).

1 1
On the one hand, since f(27)—1 < e < —f(27), f(27) —1 < —f(27), or equivalently, 7 < —g(=).

2
On the other hand, since h(1 —7)=1—g(1 —¢€) + T,
el = f(r+h(1—7))
& —e>f2r+1—-g(1+e)
& g(—e)>21+1—g(l+¢)
& g(—e)+g(l+e) >27+1. (5.25)

Define K (¢) := g(—e¢) + g(1 + ¢€). Then we have

and



1 1 1
Here K'(¢) =0 as € = ~3 and the maximum value of K is K(_§) = 2¢(=). Since K(_§ +z)=

K(—% — x) ie., K is symmetric at € = —% and [f(27) — 1]+ [-f(27)] = 2 - (—%), for a fixed

N[ —

1
7, Je € (f(21) — 1,—f(27)) st. g(—e) + g(1 +€) > 27 + 1, if and only if 29(5) > 27+ 1, ie,

1 1 1 1
T < 9(5) 3 < 3 9(5) Moreover, the collection of such € is an interval.
1 1
Thus, there is a € such that A(1 — 7) € In6 with 1 — 7 € In4 if and only if 7 < 9(5) —

and as 7 < g(%) — %, set S ={1—171 € Ind,h(1 — 1) € In6} = [G1,G3] # 0 for some G1,Gsy €
(f2r) —1,—(F7).
(i)If e € [f(27)—1,G1)U(G2,0), then 1 —7 € Ind. By Eq. (5.24) and (i), we obtain h(1—7) € Inb.
(iii)If € € (-1, f(27) — 1), then 1 — 7 € In5 by the definition of In5. Thus, h(1 — 7) € In0.
Case 2:
If r < %g(%), then f(2r) — 1 < —f(27). Hence, 3[G1, Ga] € (F(27) — 1, —f(27)).
(i) The proof is the same as Case 1-(ii).
(ii) The proof is the same as Case 1-(iii).
Case 3:
If 7 > %g(%), thenf(27) — 1> —f(27).
(i) The proof is the same as Case 1-(ii).
(ii) The proof is the same as Case 1-({ii)- O

In the following Figure 5.1 ~ 53, we-use|the particular energy function f and inverse function
g which are used in Section 4.3 (The inverse.of Eq. (4.21)). Also, we fix s := 1, r := 0.9, and three
different 7 in Figure 5.1 ~ 5.3.

Moreover, we add Figure 5.4 which is"the phase diagram we make from Ernst [10] as a contrast.
And it’s energy function f and inverse' fun¢tion'g is exactly the Mirollo-Strogatz-type (Eq. 4.21)
oscillators we mentioned before. Also, we fixed s := 1, r := 0.4, and 7 = 0.2 in Figure 5.4.

And there are some notations for the following figures:
b e=—f(r—9¢)
lo + e=—f(r+¢)
I3 :+ e=[f(27)—f(T+9)
Dy : V¢ € Dy, ¢ is an attractor.
Dy : V¢ € Ds, the complete synchronization occurs.
D3 : V¢ € D3, ¢ is a repellor.
Dy : V¢ € D4, the complete synchronization occurs.

In the following tables, we fixed an arbitrary € < 0, and shift ¢ in [0,1]. Therefore, we clearly

see which area (InN) does the oscillator begin and figure out where it ends.

29



In( s_w)

S

(D f(9) =

N —o»

In(=%)
1
Case 1: 7<g(=)— =

, f'>0, f7>0

2

o
0 ¢ 0.25 O'|75 1
\2, |
f(1)lgZ 12N N o
-f(2t)+f(t)
P.=In2,
-f(21)-
Gt — - — N\, — +n6 -
€
cT NP B | W i
In3
f(21)-17
D,
-1
FIGURE 5.1. s := 15 r7="0:977 = 0.25, where s > r > 0
€ Dynamics Multistability
Tna. > if ¢ € I1,12\Ds, I Lag Syn. with Lag ¢7,,
Cfr)<e<0 ¢ — Glna,. if ¢ € [1,12\Ds, I3 g Syn. w g PIn2,
¢ — ¢, if p € D3 Lag Syn. with Lag ¢
¢ —Period(¢7,3,1 — @Ins), if ¢ € [1\D2, [2\{Ds U D4}, I3 | Lag Syn. with Lag ¢7,3
Ga<e< —f(7) ¢ —0,if ¢ € Do, Dy Complete Syn.
¢ — ¢, if ¢ € Ds Lag Syn. with Lag ¢
¢ HPeriOd((ﬁ;n?n 1- d)?nS): ifpelh,ls Lag Syn' with Lag d)?nS
¢ —Period(¢7,3,1 — dIns), if ¢ € Ind\{li_> U D3}, In5\D,s | Lag Syn. with Lag ¢7,3
Gi1<e<Go ¢ —Period(1 —1,h(1 — 7)), if ¢ € l1—+,In6 Lag Syn. with Lag 1 — 7

d)—)qﬁ,ifd)ED;g
¢ —0,if ¢ € Dy

Lag Syn. with Lag ¢
Complete Syn.

f@21) —1<e< G,
—-1<e< f(2r) -1

¢ —Period(¢1,3,1 — dins), if ¢ € I1, [L\{Ds U Du}, I
6 —0,if ¢ € Dy

Lag Syn. with Lag ¢7,3
Lag Syn. with Lag ¢
Complete Syn.

e=f(2r)—-1

¢p—1—71,if ¢ €l1_7,In6
¢ —Period (@73, 1 — @Ins), if ¢ € 1, L\{DaUl1—+}, I3
6 —0,if ¢ € Dy

Lag Syn. with Lag 1 — 7
Lag Syn. with Lag ¢,
Complete Syn.
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1 1
Case 2: 9(5) —5<T < —-g9(%)

o
0 p 01.3 @5 0.7 1
In /V \\
f T g NN
-f(2t)+f(tH

D.=[n2,

-f(2t)-

fl2t)-1

FIGURE 5.2. §:="19r =09, 7= 0.3, where s > 7 > 0

In0

-1

€ Dynamics Multistability
—f(r) < e<0 ¢ = Pinz,, if ¢ € I, [5\Ds, I3 Lag Syn. with Lag ¢7,2,
B ¢— ¢, if € Ds Lag Syn. with Lag ¢

fer) —1l<e< —f(7),
-1<e< f(2r)-1

¢ —Period(¢7ns, 1 — ¢1ns), if ¢ € [1\D2, I2\{D3 U D4}, I
¢—>O, if¢€D2,D4
¢ — ¢,if p€ Ds

Lag Syn. with Lag ¢7,3
Complete Syn.
Lag Syn. with Lag ¢

e=f(2r)—1

¢—1—r1,if ¢ €li_7,In6
& —Period (@i, 1 — Gins), if 6 € I, L\{Ds UL, }, Iy
¢ —0,if ¢ € Dy

Lag Syn. with Lag 1 — 7
Lag Syn. with Lag ¢7,53
Complete Syn.
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1

1
C 3: —g(=
ase T>2g(2)

D.=In2,
-f(2t)+f(t)
f(2t)-1-

-f(21)

In0

FIGURE 5.3. 5:="137r:=10.9, /= 0.4, where s > r > 0

Dynamics

Multistability

—f(r)<e<O0

¢ - ¢?n2a7 if ¢ € —[1712\D3713
¢— ¢, if peDs

Lag Syn. with Lag ¢7,2,
Lag Syn. with Lag ¢

f@er)—1l<e< —f(r),
—1<e< f(2r) -1

é HPeriOd(dﬁn& 1- ¢;n3)7 if ¢ € Il\D27 12\{D3 U D4}7 I3

¢—>O,if¢€D2,D4
¢ — ¢, if ¢ € D3

Lag Syn. with Lag ¢7,3
Complete Syn.
Lag Syn. with Lag ¢

e=f(2r)—-1

¢—1—T1,ifpeli_r,In6

¢ —>Period(¢}n3, 1- ¢7n3)7 if ¢ € Il7 12\{D4 U l177}713

¢ — 0, if ¢ € Dy

Lag Syn. with Lag 1 — 7
Lag Syn. with Lag ¢7,3
Complete Syn.
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s s§,8—r
am 7)== 209 p >0, 1 <0
¢
02
|
€ In1 d/:
| In4
|
|
f)K In2 :
f(ot)-14 |
|
| In5
-f(21)-
|
|
In3 I
|
| In6
|
. |
FIGURE 5.4. 0.2, where s >r >0
€ Multistability
Fr) <e<0 Inb, I3 Complete Syn.
= O @5 s i ¢ € Ind Lag Syn. with Lag ¢%,,
£ =1 < e < — () @ — Plns, if ¢ € 11,Inb, I3 Lag Syn. with Lag ¢7,,5
¢ — Pl if @ € Ind Lag Syn. with Lag ¢7,,,
—1<e< f(2r)-1 ¢ — Oips, @€, In, I3 Lag Syn. with Lag ¢7,,5
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6. Conclusion

It was numerically demonstrated in [10] that with N > 2 convex oscillators, the system
reveal multistable phase clustering for inhibitory couplings. For N > 2 concave oscillators the
corresponding system also has multistable phase clustering for excitatory couplings. Since for
N = 2, the corresponding system has stable in-phase synchronization. It will be interesting to
treat N as a parameter so as to see how the system evolves from synchronization to clustering

synchronization as N increases.
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