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ABSTRACT

In this thesis, we study that when the investor needs to pay a constant proportional
transaction cost at each trading in a financial market-how he (or) she decides the
optimal trading strategy. We give some main-results for the risk-neutral and
risk-averse investors, respectively, in discrete financial model. And we also discuss

the optimal trading strategy for the investor when he (or she) can only observe partial
information in the financial market.
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CHAPTER 1

Introduction

In a classic paper, Merton (1971) developed optimal portfolio and consumption
rules for an investor managing a portfolio of risky assets whose prices evolve as
geometric Brownian motions. In Merton’s model, it assumed that investors trade
costless. However, investors in real capital markets face nontrivial transaction costs,
so it is interested to discuss the effect on trading strategies when the assumption of
frictionless is removed.

Magill and Constantinides (1976) got-optimalstrading policies which are more
reasonable in continuous time theory formulated by Merton. Since they introduced
transaction costs in the model, the-investors traded: at suitable disjoint intervals of
time rather than trading at anytime. Davis and Norman (1990) investigated the
optimal consumption and investment decisions with transaction costs equal to a
fixed proportion of the amount transacted.

For the perspectives of the investors, we invest in some assets in discrete time,
thus, the information that we observed from the market is collected in discrete time.
Here we face a problem that if we only can observe the information which is collected
in discrete time, what decisions will be the best? What trading strategies will make
the maximal profit? Or under what decisions we will not be bankrupt in finite time?

Moreover, what trading strategies will make the maximal profit if we only can
observe the stock prices in discrete time model? Since in real capital market the

drift term b and the noise term B in the equation (2.1) are not observable. This



problem has been studied widely, for example, Karatzas and Xue (1991), Lakner
(1995, 1998), Bouchard and Pham (2003), and Xiong and Yang (2005). In such a
situation, we call the model with “partial information”.

In this thesis, we assume that the stock price is governed by a simple discrete
model similar to the Black-Scholes model with the interest rate 0. In Chapter 2, we
assume all coefficients in the model are deterministic and the noise term is Gaussian.
And we also assume an investor only need to pay constant proportional transaction
cost when he (or she) sells some stocks. We discuss two different utilities, says
risk-neutral and risk-averse, here. And for the risk-averse utility, we will find a “no
trading” interval and give some numerical results. In Chapter 3, we consider the
appreciation return of stock b as a random variable and assume b is Gaussian, then
use the method (optional projection theorem).in Huang (2007) to rewrite the stock
price model. Finally, we give a risk=averse utility example. In last chapter, we give

some ideas for the future work.



CHAPTER 2

Optimal Strategy with Transaction Cost in Discrete Model

The basic problem for the investor in the financial mathematics is to reach the
maximal profit via trading in the financial market. The trading strategy plays an
important role for every investor in a financial market. The main question is how
to find the best strategies in different cases. In this chapter we consider the case of
the market model with one risky asset (stock) and one riskless asset (bond).

Let (Q2, F,P) be a complete probability space.

2.1. Model Setup

Let (S,,)n>0 be stock prices in a financial market, whéere Sy € R* is given, and we
assume that the interest rate is identical to 0"AT fime n, suppose that the investor
can only observe the stock prices up to timem: Thus, the information the investor
observe is G,,, the natural filtration generated by Sy, S1, ..., Sp.

Assume that the stock prices follows the relation
(21) Sn—i—l - Sn = Sn[bn + Un(Bn-l—l - Bn)]a n 2 07

where b,, is the appreciation return of the stock, o, is volatility of the stock, and

(B,) is a noise.

Assumption 1.
(1) All the coefficients b,, and o,, are assumed as deterministic.
(2) (Bnt1— Bn)n>o0 is a Gaussian process with mean 0 and variance 1, and is (totally)

independent for all n > 0.



Under the Gaussian assumption it is not easy to know the distribution of S,,.
However, if we consider the stock return

Sn—i—l - Sn

Xn+1 — S 9

then the stock price equation (2.1) will be rewritten as

Remark 2.

2

(1) (X,41) is a Gaussian process with mean b,, and variance o;,.

(2) {X,41,n > 0} are totally independent for all n > 0.

We denote G* the natural filtration generated by { Xo, X1, -+, X, } with X, = Sp.
The following lemma tells us that Xg, X1, -, X, and Sy, S1,---,S, generate the

same filtration for all n.
Lemma 3. G =G, for all n > 0.

PROOF. Due to S,,11 = S, Xni1 + S,
(1) When n =0, G§ = Go.
(2) When n = k, assume that G; = Gj.
(3) When n = k + 1, we have

SnJrl -8,

Xn1 = S e Ort1 and Snt1 = S Xpp1 + 5, € QZH-

By mathematical inductions, we have G¥ = G,, for all n > 0.

Remark 4. Since G, is the o-field generated by Sy and Sy € R* is given, we

have Gy = {0, Q}. Then for any integrable random variable X, we have

E(X|Gy) = E(X).

4



Remark 5.
(1) By (2.2), B,+1 — B, is independent of G for all n > 0.

(2) By Lemma 3, B, — B, is also independent of G,, for n > 0.

2.2. Trading Strategy with Transaction Cost and Backward Inductions

In this section we introduce the trading strategy with transaction cost in discrete
time model, which is derived from the model specified in Kabanov (2002). Suppose
that the random variables &, and 7,1 describes the number of shares of assets
invested in stock and bond at time n (after the trading), respectively. Thus the

wealth process at time n is given by

(23) Vn = §n+15n =4 Nt i

Moreover, if the initial endowment. is'given by @, then the initial wealth z =

£0So + 1o-

Remark 6. (§,n) is called a trading strategy if both of &, and n,, are predictable
with respect to the filtration (G, ), i.e., &, is the number of shares of the stock between
the n — 1 (after the trading) and the time n (before the trading). Thus, our wealth

at time n is V,, (after the trading) defined by (2.3).

We assume that the investors need to pay the transaction cost when they sell
stocks and we denote the transfers from the stock to the bond by Z;o (amount
by money) at time n. Moreover, we consider a model with constant proportional

transaction costs and the proportion is A'® € (0,1). Thus, the wealth process (after

5



the trading) is given by
Vi = &ui1Sn + Tt = Vit +&(Sn = Sua) = XL, nz L,
Vo m o — AT
And, by (2.3) we have
M1 = N+ (§n — &nt1)Sn — )\1037110-

Remark 7. In Kabanov (2002), it introduces the following model with transac-
tion cost. Let V! denote the total value (amount by money) of the stock at time
n under transaction cost, V¥ denote the total value of the bond at time n under
transaction cost. And &, represents the number of shares of the stock the investor
holds at time k& — 1 (after the trading)

The portfolio value evolves according to the equation

n

an =t + ka(Sk = | Sk:—l) = ZZZI — Z(l + )\10)3’10
k=0 k=0

k=0
"0l =10
Ve=0"=>"T, +> L,
k=0 k=0

where f:f represents transfers from the ith to the jth asset at time n under transac-
tion costs, v° and v! are initial endowments in the bond and the stock respectively.
It is easy to verify that our model is equivalent to that introduced by Kabanov,
since

VIV = o 40t + Y &Sk — Sit) = DAL
k=0

k=0

= Vo 4+ &u(Sn — Sut) — AT,

Problem 8. For some future time n = N, in order to make the most profit, how

do we invest at the beginning under the model in a small investor perspectives?

6



Due to the argument in game theory, we know that the optimal decision can be

constructed by the backward induction, see, e.g., Fudenberg and Tirole (1991).

Definition 9 (Backward Induction). This is a mathematical technique for
finding the optimal choice in each step in a game. The idea is to start by solving the
optimal strategy of the last step, and then work backward to compute the optimal

strategy before.

At time N — 1 our goal is to find the optimal strategy {3 such that

(2.4) max ElU(Vy-1+E&nv(Sy — Sn-1))|Gn-1],

for given strategy (&, Mn)n<n—1, i.€., we aim to solve (2.4) to get the optimal solution

§x- Moreover, at time m < N — 2 we choose the optimal £, | satisfying

N N=1
max{E[U(Ve + Y &S = Sieny Yo MOL)[Gal},
k=m-+1 k=m+1

for given strategy (&n, n)n<m and & = & for k=im 42.

Remark 10. If the terminal time is 1, the optimal trading strategy solved by

the backward induction is that solved by the same as the maximal expected utility.

2.3. Optimal Strategy with Transaction Cost Under Risk-Neutral

Utility

In mathematical finance, utility function is a measure of the relative satisfaction
gained by consuming different bundles of goods and services. In our model utility
is a measure of the relative satisfaction gained by making different profits.

In this section we consider the risk-neutral utility function denoted by U(z) = z.
First we give a one-period example under the risk-neutral utility function and show

some results.



Example 11. If the terminal time is 1, by the maximal expected utility we want

to compute
EU (Vo +&(S1 = 50) = 2)) = El&a(S1 — So) = ALy .
(1) If we buy some stocks at time 0 (§ < &) and &; is Go-measurable, then

E[& (51 — So) — )\loz(l)o] = E[&(S1 — )]

= &SoE[by + 0o(B1 — By)].
Due to the Gaussian assumption we get
&1S0E[bo + 00(B1 — By)] = &150bo-
Hence,
(2.5) EU(Vo + &1 550y = )] = &50bo.
(2) If we sell some stocks at time 0 (& >"&;), then

El&1(S1 — 50) — NI |
= E[&S[bo + 00(By — By)] — AN'So(& — &)]

= —X950(& — &) + &Sobo + El€1S000(B1 — By)).
Because of the Gaussian assumption, we get
Bl&(S1 = So) = MLy ] = A8 (€ — &) + ESobo
Hence,

(2.6) ElU(Vo+ &(S1 — So) — )] = =A"50(& — &1) + &150bo < &1.Sobo,
8



since & > &;. From (2.5), (2.6), in the case without any restrictions on the trading
strategy, the investors trade according the sign of by. If by > 0, the investor should
buy the stocks as much as possible. If by + \!? < 0, the investors should make short-
sell as much as possible. In the case with constraint, for example, 0 < & < z/Sp,

no short-sell and no loan, the optimal strategy is given by

iL'/SQ, if b(_) ZO,

0, if by + MO <0
2.4. Optimal Strategy with Transaction Cost Under Risk-Averse Utility

We consider the risk-averse utility function given by

U(r) = 3 80 L)

where 8 > 0 is the absolute risk aversion and bé a constant.

First we show a one-period example below:

Example 12. If the terminal time is 1, by the maximal expected utility we have

to compute

E -—% exp(—0(Vo + &1(S1 — So) — 95))]

= F -—% exp(—@(—)\loféo +&1(S1 — SO)))}

L -
= B|—5 exp(ONOL, — 0&,(S; — So))}

1 10710
= _5E exp(ON"Ly — 0£1.S0[by + 00(By — BO)])}

1 _
= —5 exp(—06Sob0) B [exp(@)\loLéo — 06,S,00(By — BO))} .

We have to discuss it in two cases.



(1) If we buy stocks at time 0, then

1 _
—5 exp(—@&Sobo)E [exp(ﬁ)\wLéO — 661500’0<B1 — Bo))

1
= —5 eXp(—O&Sobo)E[exp(—@flSoao(Bl — Bo))]
Due to the Gaussian assumption, we get

1 1 1
—5 exp(—HflSobo)E[exp(—0§15000(31 — BO))] = —5 exp(—9£150b0 -+ 5625%5(2)0'(2])

Hence,

1 1 1
E[—§ exp(—=0(Vo + &1(S1 — So) — )] = ~3 exp(—0£1S0bo + 5925?530(2))-

Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal & and from x = &Sy + ne-wehave

b 5
0 >§0_93 770'

2. _ . o~
(2.7) & 0Syo2 S,

(2) If we sell stocks at time 0, then
1
FE —5 exp(—H(Vo + 61(51 - S()) — [E))
1
= —5 exp(—QélSobo)E[exp(H)\ng(50 — 51) — 951500'0(31 — Bo))]

Due to the Gaussian assumption of By — By, we have
1
Elexp(0A"So(§o — &1) — 0615000(B1 — By))] = exp(OX'°S, (& — &) + 5925%5308)
Hence,
1
E |:—5 exp(—Q(VD + 51(51 - So) — 33)):|

1 1
= —5 exp (—95150()0 + 9)\10S0(§0 — 51) + 5025%880'3) .

10



Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal & and from x = £,Sy + 1y we have

B b0+>\10

T —To

<& = S

From (2.7), (2.8), we conclude that the investors will neither buy nor sell stocks

when their initial wealth (amount by money) is in the interval

b0+ %+Aw+
00_3 Mo, 008 Mo

b
Moreover, if one wants to buy stocks he may choose the strategy & = 7 SO 5 at time
000
0 to reach the maximum profit, and if one wants to sell stocks he may choose the
bo+ A :
strategy {1 = ————— at time 0 to reach the maximum profit.
Remark 13. Now the “no trading”'interval is
bo+ %+Aw+
: bo
And if one wants to buy (sell) stocks he may choose the strategy & = 9502
000
bo + A1 . .
(& = W) at time 0. We find some phenomenons from this example.
000

(1) For fixed by and oy, if the initial stock price Sy is too high, we will be
conservative for our strategy in the stock.

(2) For fixed oy and Sy, if the appreciation rate of the stock be positive and
grows up, we invest the number of shares of the stock more.

(3) For fixed by and Sy, if the volatility of the stock grows up, we are conserva-
tive when investing the stock.

10
(4) The length of the “no trading” interval is et if A% increases or o de-
90
creases, the “no trading” interval becomes larger.

11



Example 14. If the terminal time is 2, by backward induction we figure out
this situation in two steps.

Stepl : Compute the case from time 1 to time 2.

E _—% exp(—0{Vi + &(Sy — S1) — Vo — &1(S1 — 50)})‘ 91]

= B[ exp(-0{(S: — ) —Awfio})’gl]

- F _% exp(—0{&S1[b1 + 01(By — By)] — AloziO})’ 911 '

(1) If we sell stocks at time 1, then

B |~ espl-0fasibi -+ ou(Ba - B - ALY 61

— E H exp(—0£:51 [by +51(Ba,— BUTHIN" (& — £)51)

o).

Since (By — Bj) is independent of Gy and is normally distributed, we have

;

FE [_% exp(—0&251[by +o1(By — By)] + 9)‘10(51 — &)51)

1 1
= —5 exp (—‘95251[)1 + 6>\IO(£1 - 62)51 + 592535120'%> .
Hence,

E {—% exp(—0{Vi + &(S2 — S1) — Vo — &i(Sh — SU)D‘ gl]
- —% exp (—9525151 + N6 — &)S1 + %925%5120%> :

Thus from the fundamental calculus, we maximize the conditional expec-

tation to get the optimal & and from the assumption & < & we have

by + A0
0510’%

12
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(2) If we buy stocks at time 1, then using the similar argument in Example 1
we have

b

2= 55,07

> .
Thus, for given &, the optimal solution is given by

by + A0 by

(2.9) §o = 05,07 Ha >b913“2 T 95,02 107 le< o }+£1 (g5 <6 —%}.

Step2 : Consider the trading period from time 0 to time 1, we replace the & by &,

which is given in (2.9) and compute the conditional expectation

.

= B |7 exp(~0{1h + & (STH M ENIEY HE,(5, — 51) — 7))

E —% exp(—0{V1 + £,(Se =51) — 2})

;
il

Similar as the argument as the trading period from time 1 to time 2. we have to

! — — _
= B exp(=0{-A"L, — XL, +&(S1 — So) + (S — 51)})

separate it into two cases.

(1) If we sell stocks at time 0, i.e., Z(l)o = (& — &1)So, then we have

- - B B
Bl exp(—0{=MNOT;" — AOT," + &,(S; — So) + &(Se — Sl)})’ gol

1 —10
= F|== exp<_9{_)\10(£0 — fl)SO — )\10L1 (I{f bl+’\10} + [{f b1 } + I{b1+/\ 0 >6> by })

0 05103 0810 = 05107

+61(51 = S0) + Ea(S2 = S0D) | o]

13



By some calculation, we get

10
E {—%exp (0/\10(50 —£1)Sy — 0€(S1 — So) + {ON0(&, — by + A 15,

9510%
by + A0 by
sy (5 T sy + 05 (5= S
+{—081(S2 — Sl)}] DEPPPUEE ) ‘90]
eg 06102 =1 =9, 02
1
= E[—é eXp(G)\lO(fo — 51)80 — 951(31 - So)
b+ A1) by 4+ A
H{ON6151 - O 2 ) - = (B2 — Bl>}]{s S b1+Al0
Ul O—]_ 9510%
v b
{—— - O__I(BQ 2 31)}I{Sl<$§}

+{— 9515151—9515101(32—31)}1 h g Al )|Go
9

S01> P]
&1 o' 9&10'1

Using the tower property of the conditional expectation, we may rewrite

the above equation in the following form

102
B exp(OX (& — £0)8 — 06:(S1 — ) + {65, — )

O'% } {S1>b91;1:\:%0
_h by + AL
it I o o PRI s
by
_0__1[{51<9;110%} 9515101[{ by <S<b1+,\10 }(BQ 31))191“90]

0¢1 o' =P1= 9{10'

14



Since (By — By) is independent of G; and is normally-distributed, we get

1 10 10 (bl + A10)2
E[—g exp({0A7 (€0 — &1)So — 0&1(S1 — So) + OATE151 — T‘%}]{S N

by 4+A10
0107

2
+{9)\10<50 - Sl)SO - 951 (Sl - SO) 2b Q}I{S1<

=l

H{ON(&o — &1) S0 — 01 (S — So) — 0€151b1 + 5926?5 }[{ b g il })]

06107~ "1 0gq 07
1 [ (b1 + \'10)?
— _E{AWO exp(ON'0(&y — €1)So — 0&1(x — Sp) + ONO¢ 1z — T‘%)f(x)dx
0¢107
9;110% 10 by
+ exp(ON"(& — &1)So — & (x — So) — 2T‘Q)f(x)dx
oo 1
by +A10 )
0 10%
+ / T exp(OA(6 — €1)S0 — 6u(x — o) — OEaby + S0°ETa’0}) f(a)da,
0¢107

where f(x) is the probability density functiom-of S, i.e.,

(.’17 = So — S()bo)2

(2.10) flx) = mexp(— 553a3 )-

Due to the first order condition with respect to &, we have

(2.11)

ﬁ (—ONOSy + 0N — O(x — Sp)) exp(OA (& — £1)So + N6 1w

14210
0107

B (bl +)\10)2

o — 06 = o)) ()

+ / & —OA1°S, — O(x — So)) exp(—2b— +ON(& — €1)80 — 0€1(x — So)) f(w)dx

oo

ler/\10
+/ 0107 —0byz + 622202, — ON°Sy — O(x — So)) exp(—0E1biz + 925195 o

0510'1

+ 9)\10(60 — £1>So - 961(17 — S(]))f(.’ll')dl' =0.

15



(2) If we buy stocks at time 0, i.e., f(l)o = 0, then we have

E[—% exp(—0{V1 + &(S2 — S1) — x})[Go

1 —10
= E[_é eXp<_9{_>\10L1 (I{g 51+A10} —+ ]{€1<gsb110%} + I{b1+/\10 e3>

+61(S1 — So) + &(S2 — 51)})[Gol.

)

952

By some calculation, we get

1 by + AL by + AL
E[—g exp(—0& (St — So) + {OX2(&— 1087:%)51 3 QIQST‘%(S —S)H g

by +A10
0¢102

b
+{—9m(52—51)}1{31%5715%}4-{—951(52 S1)}H, (L, <5,<utl )|Gol-

50_ _9510

A similar argument as in case (1), we have

1 10 (b + A1)
E[_E eXp(—9£1(51 - So) + {9)\ 5151 - T} {51>b91;:\:%0
b by + A
e L e
b
_0'_1[{‘91<9;110%} 9515101[{9;10 <5< (B2 = B1))[G1]|Gol-

16



Since (By — By) is independent of G; and the Gaussian assumption we get

1 10 (by + A19)2
E[—9 exp({—0&1(S1 — So) + 0N 6151 — 202 } {Sl>b91;/(\71%0}
bi
+{—06(51 — So) — 27%}1{51%5?0%}
+{—0& (51 — So) — 05161 + l92525202}1 10 )]
2 ML <si< )
1. [ by + \10)2
= __{/ exp(—0&,(z — So) + ON61x — %)f(x)daz
0 b61+,\120 20'1
51‘71
b1
0¢107 b?
+ exp(—0& (z — So) — 5—) [ (x)dx
—0o0 20-1
b1+>\120 1
+ / bjlgl exp(—0& (z — Sp) — 0 by + 592£f$20%)f($)d$},
9¢10%

where f(x) is the probability density function, of S, as in (2.10).

Due to the first order condition with respect to &;, we have

(2.12) / A% — (e — Sp)) expled e s OIS e s ()

by 201
b1
6¢107 bi
+/ (—0(x — Sp)) exp(—ﬁ — 0&(x — Sy)) f(x)dx
—00 1
b1+>\120
+ / :5101 <—061x + 62.1'20?51 - 9(.]7 — S()))
9¢10%

1
exp(—0& bix + 562 fr?o} — 08 (x — So)) f(x)dx = 0.

Conclusion : By the Backward Induction, we observe that when the investors
sell stocks at time 0 (i.e., & < &), the optimal trading strategy & (sell) at time 0
satisfies the equation (2.11); when the investors buy stocks at time 0 (i.e., & > &),
the optimal trading strategy & (buy) at time 0 satisfies the equation (2.12). And,

the optimal & at time 1 is chosen as in (2.9)

17



Remark 15. In Example 14, it is difficult to find the closed form for & in
equation (2.11) and (2.12). However, we can find some property of the equation
(2.11) and (2.12). For example, considering the equation (2.12), if we let

1+AL0 20
5 1
9.’510'1

F(&) = / TN — B — S)) exp(631%z — w — 061 (x — o)) f(x)d

by 9

+ /_ gz - S)) exp<—% — 0&1(x — S0)) f(x)dx

] 1
by +A10
-2
+ / :151 ! (—(%190 + 921’20%51 - 9(33 — So))
9{10'%

1
exp(—0& by + 5«92 drto] — 06 (v — Sp)) f(x)dz,

then
102
6) = [ O3 — 00 — o) 2apioxe, B — oo — ) (a)ao
1t 1
951‘71
. b?
1(’ 1
+ [T bl = o) exp( S ARt S )
1
bl+/\120
N :5101 (—0byx + 0*2%07€, — O(x — Sp))?

exp(—0& bix + = 92 22202 — 06 (x — Sp)) f(x)d.

So, F'(&,) > 0 for all &, which implies that either the equation (2.12) has a solution
or the optimal & happens at the two end points. And a similar result for the
equation (2.11). Then we can conclude that there is still a “no trading” interval in

two period case.
2.5. Numerical Results

In this section, we give some numerical results for the equation (2.11), (2.12)

and try to find the corresponding “no trading” intervals.
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In Example 14, we consider a two period model and get a result that if we buy
some stocks (§y < &), then the optimal strategy & must satisfy the equation (2.12)
and if we sell some stocks (£ > &), then the optimal strategy must satisfy the
equation (2.11).

Here we give some numerical results and observe how these parameters affects

the “no trading” interval.

2.5.1. The relation between b, and nontrading interval. First, we fix
So=1,0=1,b =1, M°=0.5, 0p = 1, 0y = 1, and discuss the relation between by

and the “no trading” interval from (2.11), (2.12).

bo 1 2 3 4 5 6 7

& (buy) 0.665 1.79- 3.62 “5:36 °6.99 8.53 10.02
& (sell) 1.36° 2.88 443 593 7.39 8.82 10.22
nontrading interval | 0.70 <1.09" 0.81 0.57* 0.40 0.29 0.20

From the table of the relation between by and &, we observe that & (buy) and
& (sell) are increasing when by becomes bigger. And from the Figure 2.1, the size

of the “no trading” interval may reach a maximum when b, € [1, 3].

In practice, the proportion of the transaction cost is usually 0.003, the appreci-
ation return of the stock b and the volatility of the stock o have values between 0.5
and 1.5. So, we give another data here.

We fix So = 1,0 =1, by =1, \'Y =0.003, 09 = 0.5, 01 = 0.5, and discuss the

relation between by and the “no trading” interval from (2.11), (2.12).
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FiGURE 2.1. The relation between by and &;

bo 05 06 07 08 09 1.0 1.1

& (buy) 1.99 239 279 3.19 3.59 3.99 4.39

& (sell) 2.01 241 280 3.20 3.60 4.00 4.41

nontrading interval | 0.02 0.02 0.01 0.01 0.01 0.01 0.02

From the table of the relation between by and &1, we observe that & (buy) and
&1 (sell) are increasing when by becomes bigger. From the Figure 2.2, the size of “no

trading” interval may reach a minimum when by € [0.6, 1.1].
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F1GURE 2.2. The relation between by and &;

2.5.2. The relation between b; and nontrading interval. Second, we fix
So=1,0=1,by=1, AM?=0.5, 00 =1, 0y =1, and discuss the relation between b,

and the “no trading” interval.

by 1 2 3 4 5 6 7

& (buy) 0.66 0.89 0.98 0.99 0.99 0.99 0.99
& (sell) 1.36 140 1.45 148 1.49 1.50 1.50
nontrading interval | 0.70 0.51 0.47 0.49 0.50 0.51 0.51
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F1GURE 2.3. The relation between b, and &

From the table of the relation between b; and &, we observe that & (buy) and
&1 (sell) increase slowly when b; becomes bigger. And from the Figure 2.3, the size
of the “no trading” interval has a very small change even b, gets bigger.

In practice, the proportion of the transaction cost is usually 0.003, the appreci-
ation return of the stock b and the volatility of the stock o have values between 0.5
and 1.5. So, we give another data here.

We fix Sp=1,60 =1, by = 0.5, A\!* = 0.003, 0y = 0.5, o7 = 0.5, and discuss the

relation between b; and the “no trading” interval.
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FI1GURE 2.4. The relation between b, and &

by 05 06 07 08 09 1.0 1.1
& (buy) 1.99 199 1.99 199 1.99 199 1.99
& (sell) 2.00 2.00 2.00 2.01 2.01 2.01 2.01
nontrading interval | 0.01 0.01 0.01 0.02 0.02 0.02 0.02

From the table of the relation between b; and &1, we observe that & (buy) and
& (sell) increase slowly when b; becomes bigger. From the Figure 2.4, the size of

the “no trading” interval has a very small change even b; gets bigger.
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2.5.3. The relation between o, and nontrading interval. Third, we fix
So=0.05,0=1,b =1, A\ =0.5, by = 1, oy = 1, and discuss the relation between

oo and the “no trading” interval.

0o 1 2 3 4 ) 6 7

& (buy) 13.39 4.72 221 1.25 0.79 0.55 0.40
& (sell) 2731 6.86 3.24 1.86 1.19 0.83 0.61
nontrading interval | 13.92 2.14 1.03 0.61 0.40 0.28 0.21

From the table of the relation between oy and &;, we observe that & (buy) and
& (sell) decrease very quickly when o becomes bigger. And from the Figure 2.5,
the size of the “no trading” interval deetease very tapidly when oy gets bigger.

In practice, the proportion of the transaction cost is usually 0.003, the appreci-
ation return of the stock b and the=wolatility-of the stock o have values between 0.5
and 1.5. So, we give another data here.

We fix Sp=1,0 =1, by = 0.5, A9 = 0.003,"by = 0.5, 0, = 0.5, and discuss the

relation between oy and the “no trading” interval.

0o 0.5 0.6 0.7 0.8 0.9 1.0 1.1
& (buy) 1.994 1.386 1.019 0.780 0.617 0.499 0.413
&1 (sell) 2.006 1.394 1.025 0.785 0.620 0.502 0.415
nontrading interval | 0.012 0.008 0.006 0.005 0.003 0.003 0.002

From the table of the relation between oy and &;, we observe that & (buy) and
& (sell) decrease very quickly when oy becomes bigger. From the Figure 2.6, the

size of the “no trading” interval decrease when og gets bigger.
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CHAPTER 3

Optimal Strategy with Transaction Cost in a Partial

Information Discrete Model

In this chapter, we relax the restriction on the drift term b, and we use the
method introduced by Huang (2007).

Let (2, F,P) be a complete probability space.

3.1. Model Setup

Let (Sy)n>0 be the stock prices in the:market, where Sy € RT is given. The stock

price follows the recursive relation
(31) Sn+1 - Sn = Sn[bn i Un(Bn+1 b Bn)]7

where b, is the appreciation return of the'stock; o, is volatility of the stock, and

(B,) is a noise.

Assumption 16.
(1) o, is assumed to be deterministic for all n and (b,,),>0 is assumed as a sequence
of random variables.
(2) (Bn+1 — By) is a Gaussian process with mean 0 and variance 1, and they are
(totally) independent for all n > 0.

(3) The processes (Bn+1 — By) and (b,) are independent.

At time n, we observe the stock prices up to time n, so we let (G,)n>0 be the

natural filtration generated by Sy, Sy, - -, Sp.
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Consider the stock return

Sn+1 - Sn

Xn+l - S 3

then the model will be rewritten by
XnJrl = bn + Un(Bn+1 - Bn)

Also recall that we have G = G, as in Chapter 2, for G* is the natural filtration

generated by Xg, Xq,---, X,,.

3.2. Optional Projection and The Gaussian Case

Denote by b the optional projection, with respect to the filtration G,, of the

process b, and we have

~

bn = EfbalGyl.

Consider the G,-measurable process

n—1

(3.2) Ly = Sn — 84 =) 0.5k

k=0

From some computation we have (L,) is a martingale with respect to (G,).

Proposition 17 (Huang (2007), Proposition 28). Let

D? = 62 + E[b, — b,)?

n —

and assume that D, is bounded away from 0 for n > 0. There exists a martingale

process (B )nso with respect to the filtration (G,) such that

n—1

(3.3) Ly =" DpSk(Bit1 — By),
k=0

where B, .1 — B,, has mean 0 and variance 1 for all n.
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From (3.1),(3.2) and (3.3), our model is described by

Sn—i—l - Sn = Sn[bn + Un(Bn+1 - Bn)]
= Spulbn + Du(Boi1 — By

Thus,

A~ ~

Dn(BnJrl - Bn) = (bn - bn) + Un(-BnJrl - Bn)

Assumption 18. We assume that b, is a Gaussian process and {b,} is indepen-

dent of {B,+1 — B,}.

Recall

Sn—i—l - S

Xn+1 = S to= bn S Un(Bn+1 - Bn)

and G, = G for all n > 0. Let
L, =Lx,={coXo+ Xy +es +e, Xyywheré ¢; € R for 0 < j <n}.
Then we have the following two Lemma.

Lemma 19 (Huang (2007), Lemma 30). Let b = E[b,|£,]. Then there exists a

sequence of coefficients ¢; for 0 < 7 < n such that

by = coXo + A1 X1+ -+ + EnXon.

A~

Lemma 20 (Huang (2007), Lemma 31). b, = E[b,|G,] = E[b,|L,].

Recall

A A ~

Dn(Bn-l—l - Bn) - (bn - bn) + Un(Bn+1 - Bn)y

the following proposition is given.
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Proposition 21 (Huang (2007), Proposition 32). (Bns1 — By) is a Gaussian
process with mean 0 and variance 1 and they are independent with each other for

n > 0.
From the Huang’s work above, we can rewrite our model as follows:
Sus1 — Sn = Snlbn + Dn(Bys1 — By)]
and recall our wealth process (after the trading)
Vi = Eui1Sn + Mst = Vi1 + 6(Sn — S 1) = AL Wi >0

with the initial wealth x = £,Sy + 179 > 0..,We,will show the risk-neutral and risk-
averse utility result. Our decision rule is alsorthebackward induction. We first give

an example for the Gaussian assumption with the utility
Ulz) = z,
and then give an example for the utility
1
U(x) = — expl(—0),

where 6 > 0 is the absolute risk aversion and be a constant.

3.3. Examples for Risk-Neutral and Risk-Averse Utility Functions

Example 22. If the terminal time is 1, by the maximal expected utility we want

to compute

E[UVy + (S — So) — 2)] = E[€1(S1 — So) — ALy ).
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(1) If we buy some stocks at time 0 (§y < &) and &, is Go-measurable, then

E[1(S1 — So) — ALy ] = E[&(S) — So))

= &SoE[bo + Do(B1 — By)].
By Proposition 21, we get
&1S0E by + Do(B1 — By)] = & Sobo.
Hence,
(3:4) E[U(Vo + &(S1 = So) = )] = &15bo.
(2) If we sell some stocks at time 0 (§y > &), then

E[4(S1 — 50) =0 o)
= E[&So[bo + DBy = Bl =X Su(&, — £1)]

= —NS(& — &) + €iSobo+BE1So Do(Br — By)).
By Proposition 21, we get

El&1(S1— 8o) — MLy | = —\Sp(& — &) + &1Sobo
Hence,

(3.5) E[U(Vo + &1(S1 — So) — )] = =A1"Sp (& — &) + €180bo < €1S0bo,

since & > &. From (3.4), (3.5), in the case without any restrictions on the trading

strategy, the investors trade according the sign of bo. If by > 0, the investor should

buy the stocks as much as possible. If bo+ N0 < 0, the investors should make short-

sell as much as possible. In the case with constraint, for example, 0 < & < z/Sp,
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no short-sell and no loan, the optimal strategy is given by

I/S(), if l;o Z O,

0, if by + A0 < 0
Example 23. If the terminal time is 1, by the maximal expected utility we have

to compute
1
El=5 exp(=0(Vo + &4(51 = 55) - 2))]
1 1010
=B exp(=0(=ATLy +&(S1 = 5)))]
1 1010
:E[—g exp(Q/\ LO - 951(51 - So))]
1 10710 7 A 2
= — EE[GXP(Q)\ LO — 95150 [bo + D()(Bl — Bo)])]
1 . LB . .
= — 5 exp(—HﬁlSObO)E[eXp(G)\lOLéO =. 95150D0(B1 - Bo))]
(1) If we buy stocks at time 0, then
1 . "T. . .
-5 exp(—0&1Sobo) EJexpONT, — 0, SoDo(B1 — By))]
1 - . .
= —5 eXp(—HflSobo)E[exp(—€§150D0(31 — B()))]
Since the Gaussian assumption, we get
1 - - A 1 - 1
—5 exp(—0& Sobo) Elexp(—0& S0 Do(Br = Bo))] = =7 exp(—6€150bo + 59253531)3).
Hence,

1 1 A 1
E[—g exp(—=0(Vo + &1(S1 — So) — )] = 3 exp(—0£1S0bo + 5925553173)'

Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal & and from x = £,Sy + 1y we have
l;o LMo

(3.6) &= QSOD(Q) > & = S
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(2) If we sell stocks at time 0, then

E[_g exp(—8(Vy + £1(S) — So) — )]

- % exp(—0&1Sobo) Elexp (60X Sy (& — &) — 0€1.S0Do(B1 — Bo))).

Since the Gaussian assumption, we get
10 3 3 10 L 920212
E[exp(@)\ SQ(&] — £1) — 9£1SOD0(BI — Bo))] = exp(Q)\ S()(go - 51) + 5‘9 §ISOD0).
Hence,

E[—% exp(—0(Vot+-&1 (S, —So)—1))] = —% exp(—9£15060+m1°50(50—51)+%925353193)-

Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal & and from x = &£3S5¢ + 1y we have

7 10
(3.7) & = % <& == ;O"O.
From (3.6), (3.7), we conclude that the investors will neither buy nor sell stocks
when their initial wealth (amount by money) is in the interval Gb_lgg + 1o, boe—i_—D/g\lo + 1o .
Moreover, if one wants to buy stocks he may choose the strategy & = 7 SZ:JODE) at

time 0 to reach the maximum profit, and if one wants to sell stocks he may choose
10

0 . )
———— at time 0 to reach the maximum profit.
0S,D2 P

the strategy & =

Remark 24. Now the “no trading” interval is

bo . b + A0 .
GD(Z) 7]07 Q_Dg 7]0
. bo
And if one wants to buy (sell) stocks he may choose the strategy & = 052
00
by + A1 : :
(& = W) at time 0. We find some phenomenons from this example.
00
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(1) For fixed bo and Dy. If the initial stock price Sy is too high, we will be
conservative for our strategy in the stock.

(2) For fixed Dy and Sy, if b, is positive and grows up, we invest the number
of shares of the stock more.

(3) For fixed by and Sop, if the volatility of the stock grows up, we are conserva-
tive when investing the stock.

10

(4) The length of the “no trading” interval is Tk if A% increases or D2 de-
0

creases, the “no trading” interval becomes larger.

Example 25. If the terminal time is 2, by backward induction we figure out
this situation in two steps.

Stepl : Compute the one-period case

E[—% exp(—0{Vi £6:(8s = 81) = Vo —&(S1 — So)DIG]

= E[—% exp(—0{& (52 =15)) — )\lozio})‘gl]

1 . pinliliR —
= El-gexp(=0{&S1[b1 + Di(By — Bi)] — AT 1) IG])
(1) If we sell stocks at time 1, then

Bl exp(~{&Silbr + Di(By — B)] ~ NI )lGu

= E[_é exp(—0&51[b1 + Dy(By — By)] + 0A°(& — £)51)|G1].

Since (B’Q — Bl) is independent of G; and the Gaussian assumption we have

E[_% exp(—0&:51[by + Di(By — By)] + 0N0(& — £)51)|G4]

1 - 1
- -3 exp(—0&51b1 + ON'O(& — &) S, + 592535503).
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Hence,

E[—% exp(—0{Vi + &(Sy — S1) — Vo — &(S1 — So) })|G1]

1 ~ 1
= —5 exp(—9§251b1 + 9)\10(51 — 52)51 —+ 592535121)%)

Thus from the fundamental calculus, we maximize the conditional expec-

tation to get the optimal & and from the assumption & < & we have

by + A1

= G52

< &.

(2) If we buy stocks at time 1, then using the similar argument in Example 1

we have
by
= e
52 951D% gl
Step2 : Choose
b A0 by
= = 5 — ] I
27 95,D? {sl>;1;1;2 951D2 {slﬁ)s }+§1 {9;; <& f—’;;;; }

We replace the & by &, and compute

Bl exp(—0{Vi +E(S: — 1) — ]|

= Bl exp(~0{V + & (5 — 80) ~ N} + E(S, — 1) — eIl

= Bl exp(~6{-X"L}’ ~ WO + (51 — S0) +EalS — S0DIGe]

(1) If we sell stocks at time 0, i.e., féo = (& — &1)So, then we have

E[_% exp(—0{—MT, — ML+ &1(S1 — So) + &5(S2 — 51)})|Go]

1 —_
= Bl exp(—0{-N"(6 — €)% = XL, _

)

b1+>\10} + 1 +1 b 4AL0

05, D2 {§1<es D2} {951D2 *es D2}

+£1(51 — So) + €5(S2 — 51)})1Go).-
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By some calculation, we get

1 0 " by + 10
E[—— exp(@)\ (50 — 51)50 — ‘951(51 — S()) + {9/\ (51 — B} )Sl
0 0S,D?

by + 10 by
s D7 65, D? (52 =S5, ”;;j;;ﬁ{ 9951192(82 — S, 1< ek
H6(S2 = SOH iy g o) )IG0]
§1D7 0¢1 D7
1
= E[—g exp(&)\w(fo — 51)50 — 961(81 — So>

I (R R T PP A
H{ON0E, S, o b (B Bl)}f{sl>b61;1§;}

B2 by . -
H{——L — L(By— B}

D? Dl( >~ B} {52t

+{—06,51by — 0£,.5, Di( B = Bi)}l <51+A10}>’go]

.01 1
0g§ D=, — 0&1D?

Using the conditional expectation property, we have

(b + A19)?

1
E[_é exp(@)\lo(fo — 51)5{) — 961 (Sl — S()) + {9)\105151 — D% }[{S >b1+>\10}

0¢1D?
B% 7 Z)l -+ /\10
— L o — I E SN
D? I{sl<0;;1D%} 0615101 (Gl << _b;;;;“}) lexp({ D, sihEy
by
_El{sl<9;1,32} - 951511)1]{95;%@ _2;;0}}(32 B1))G:]1G0].
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Since (B, — By) is independent of G, and the Gaussian assumption we get

[ 1ex ({9)\10<5 £)S 0, (S _S)+9)\10§S _M}[
E ~3 p 0 1)920 11 0 1=l 2D? {51 >b61§+;20
10 — b2
{ (§0 —€1)So §1(5 0) ~ D2} {51<9§ Dz}

H{ON(& — &1)Sp — 0&1(Sy — So) — 0&S1by + = 92§152D2}I by

95 D2 <51 —?;22
1 e by 4 A0
= —{/ exp(ON0(&y — €1)Sy — 0&1 (2 — Sp) + ONO¢ 2 — %)f(x)dx

Q b91+>‘10 2D1

£ D¥

by 82
0¢1 D?
+/ exp(@)\lo(é’o — 51)5@ — 951(33 — So) — 2—1;2)f($>d1'
oo 1

81 +A10
0¢1 D2

}

)

+ / o exp(ON (& — &) S0 — 061 (x — So) — O&abrr + %e%%ﬁD%)f(:v)dx},

2
0§1D1

where f(x) is the probability density functionof S, i.e.,

(LU — SO T 50[;0)2

(3'8) f(ib) = \/%—SODO exp(— ZSng )

Due to the first order condition with respect to &;, we have

(3.9)
A o (FONOSo + 0Nz — O — o)) exp(OX(& — &) So + 0N Er
é)lngli
(31 +)\10)2
— ——— —0&(z = 5))f(z)dx
N SUSEONE
by 82
0&1D?
+/ (—ON'°Sy — 0(z — Sp)) exp(—Q—D% + ON(& — &) S0 — 0&1(x — So)) f (x)da
b1+,\10
+ / j“’ (—0b1z + 0222 D32, — ON'°S, — O(x — Sp)) exp(—0&1byx + ~6%¢22* D?
0€1 D3

+ 0N (& — &1)So — 01 (x — So)) f(x)dx = 0,
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where f(z) is given in (3.8).

(2) If we buy stocks at time 0, i.e., f(l) = 0, then we have

S1) — x})|Go]

1
Bl—g exp(=0{V1 + &(S2 —
— B exp(o0{— 20T (1 o 41 15 0 b )
0 1 a> ”;;;2} G S} e 262 st}

+£1(51 — So) + €5(S2 — 51)}1)1Go).-

By some calculation, we get

by + A1
L (S — SO ha
0.5, D2 (52 =51} O

1 bi Al
E[=5 exp(—06:(S1 = 50) + {061 g St =
T
+ {—961(52 — Sl)}[{ by <S <{,1+A10})|go].
9g, D2 =" 1="0¢, D?

(S2 B Sl)}[{s 9.5 DQ}

by
095,02

Using the conditional expectation property, we have

1 (31 +)\10>2

E[—g exp(—Q{l(Sl — So) + {0)\106151 — T}]{ >[,01§+;120}
by + A1

})E[exp({— D1 ]{S >b91§+2120}

2 :
1

b - eflslbll by b1+A10
{5, 5e =515 2

} e <

b
2 668D 0, }(B
b 12141 b b+ 2=
D, {Sl<0§11D%} {@S 1< 015 D2
38
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Since (B, — By) is independent of G, and the Gaussian assumption we get

ey,
QD% } {Sl>b1+)\10}

2
0¢1 D3

Bl exp({—061(S1 — S0) + 6X"6.5) -

i
HEOE =) op s s
1

A 1
{0 (51 — So) — 0815161 + 5925351217%}]{ g cbienio))]

<51<
0&1 D? 0¢1 D?

(b1 + A10)?
2D3

1 o0
= —5‘%1“10

exp(—061 (z — Sy) + 0N %61z — ) f(x)da
0€1 D3

+/Ongl exp(—0& (z — Sp) —

o0

B fa)da
2D?
By +A10
0¢1 D] 7 L oo 22
+ . exp(—0&(z — So) — 06101z + 50 12°D3) f(x)dz},
0¢1 D3

where f(x) is the probability densityfunction, of S, as in (3.8).

Due to the first order condition with respect to &;, we have

(3.10)

AOO o Oz — O(z — Sp)) exp(ON0€1x — % — 0¢(x — So)) f(z)dx
0 ilDQ b2
[ 0l Su) expl— 5ty — B6s (o~ So)) )

51+>\10
01 D? (

A .
E Obiz + 02 D6y — (o — S0)) exp(—06ib1 + S0°€12° DY — 661 (x — S0)) f (a)da = 0,
0€1 D3

where f(x) is given in (3.8).

Conclusion : We get a similar result as in Example 14.
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CHAPTER 4

Future Works

In above chapters, we consider the discrete model with the transaction costs,

and we find that “no trading” intervals and the optimal strategies corresponding to

selling assets and buying assets respectively. But many results are still open. We

will illustrate as follows :

()

First, if the investor is a “large” investor, i.e., the amount of the investment
would influence the stock price, how can the investors reach their optimal
strategies?

Second, in the discrete maodel,-if the drift term b, is random and b, is
“not” independent of the noise termy; ¢an weé find the “no trading” intervals
and the optimal strategies corresponding toselling assets and buying assets
respectively?

In our model, the stock price is driven by the recursive relation
Sn+1 - Sn = Sn[bn + Un(Bn+1 - Bn)]7

so the stock price may be negative. However, it will become confused if
we do not assume that S, is positive for all n. Because we will have the
conclusion that we sell the stocks at time 0 when by > foj(x — 1) — A'°
and buy the stocks at time 0 when by < o (x — 19). So if we introduce
another stock price model in which the stock price S,, is positive for all n,
what strategy will be suggested? Simply, we can give the model setup as

follows :
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Let (Q,F,P) be a complete probability space. Let (S,),>0 be the stock

prices in the market and is driven by
SnJrl = ZnSna

where i, is a nonnegative random variable and wu, := In%, is normally
distributed, and Sy € R is given. Hence similar problems will be discussed
as follows :
(1) First, if our market is frictionless (no transaction cost), then for a given
risk-neutral or risk-averse utility, what strategy will be find under the
backward induction in this model?

(2) Second, if there is transaction cost in this model, What is the result?

Example 26. Here we’give alone period model result for (1). If the
terminal time is 1 and the utility function is2U(x) = Inz, by backward

induction we have to compute

E[U Vo + &1(S1 — 50))|Go] =E[In{x + &1 (S1 — So) }Go

=E[In{z + &S0 (exp(uo) — 1) }Gol.

Since Gy = {¢, 2} and assume that ug is normally distributed with mean 0

variance 1, then we get

Elln{x + & So(exp(uo) — 1) }|Go]

2

=¢% / Z Infir + & So(expy) — 1)} exp(— 2 )y

Due to the first order condition with respect to &, we have

< Sp(exp(y) —1) y? -
/oo x4 &S0 (exp(y) — 1) exp(—E)dy =0
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By the change of variable, we get

> So(exp(y) — 1) P
/0 zexp(y) — £150(exp(y) — 1) exp( 9 )dy

> Solexp(y) — 1) Y’
= exp(—=)dy.
/0 x + &150(exp(y) — 1) P 2 )%
Then we choose the optimal & = =
250

This example gives a result for one period case in the frictionless market
model. But how about the two period case or even for any finite terminal
time N7 And how is the result for the same problem in the model with

transaction cost?

(d) If there are more than one risky assets in our model, what is the optimal
trading strategy?
(e) Finally, extending our discrete model-to:continuous time model and solve

the similar problems by using other‘mathematical tools.
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