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在擁有部分資訊且需付手續費的財務模型中 

之最佳投資策略 

   學生：胡仲軒                                       指導教授：吳慶堂 

 

國立交通大學應用數學系碩士班 

摘 要       
  
 
 
 
    本論文介紹當投資者在財務市場做交易的時候需要付一筆固定比率的手續

費時，投資人應該如何決定最佳投資策略。在這篇論文裡對於離散時間的財務模

型我們分別給風險中立、風險趨避兩種投資人一些結果。另一方面，本篇論文也

討論當投資人在市場裡只能觀察到部分資訊時，投資人又該如何決定最佳投資策

略。 
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Optimal Trading Strategy with Transaction 

Cost in a Partial Information Model 
 
 
Student：Chung-Hsuan Hu                      Advisors：Dr. Ching-Tang Wu 
 
   

Department of Applied Mathematics 
National Chiao Tung University 

ABSTRACT 

In this thesis, we study that when the investor needs to pay a constant proportional 
transaction cost at each trading in a financial market how he (or) she decides the 
optimal trading strategy. We give some main results for the risk-neutral and 
risk-averse investors, respectively, in discrete financial model. And we also discuss 
the optimal trading strategy for the investor when he (or she) can only observe partial 
information in the financial market. 
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CHAPTER 1

Introduction

In a classic paper, Merton (1971) developed optimal portfolio and consumption

rules for an investor managing a portfolio of risky assets whose prices evolve as

geometric Brownian motions. In Merton’s model, it assumed that investors trade

costless. However, investors in real capital markets face nontrivial transaction costs,

so it is interested to discuss the effect on trading strategies when the assumption of

frictionless is removed.

Magill and Constantinides (1976) got optimal trading policies which are more

reasonable in continuous time theory formulated by Merton. Since they introduced

transaction costs in the model, the investors traded at suitable disjoint intervals of

time rather than trading at anytime. Davis and Norman (1990) investigated the

optimal consumption and investment decisions with transaction costs equal to a

fixed proportion of the amount transacted.

For the perspectives of the investors, we invest in some assets in discrete time,

thus, the information that we observed from the market is collected in discrete time.

Here we face a problem that if we only can observe the information which is collected

in discrete time, what decisions will be the best? What trading strategies will make

the maximal profit? Or under what decisions we will not be bankrupt in finite time?

Moreover, what trading strategies will make the maximal profit if we only can

observe the stock prices in discrete time model? Since in real capital market the

drift term b and the noise term B in the equation (2.1) are not observable. This
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problem has been studied widely, for example, Karatzas and Xue (1991), Lakner

(1995, 1998), Bouchard and Pham (2003), and Xiong and Yang (2005). In such a

situation, we call the model with “partial information”.

In this thesis, we assume that the stock price is governed by a simple discrete

model similar to the Black-Scholes model with the interest rate 0. In Chapter 2, we

assume all coefficients in the model are deterministic and the noise term is Gaussian.

And we also assume an investor only need to pay constant proportional transaction

cost when he (or she) sells some stocks. We discuss two different utilities, says

risk-neutral and risk-averse, here. And for the risk-averse utility, we will find a “no

trading” interval and give some numerical results. In Chapter 3, we consider the

appreciation return of stock b as a random variable and assume b is Gaussian, then

use the method (optional projection theorem) in Huang (2007) to rewrite the stock

price model. Finally, we give a risk-averse utility example. In last chapter, we give

some ideas for the future work.
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CHAPTER 2

Optimal Strategy with Transaction Cost in Discrete Model

The basic problem for the investor in the financial mathematics is to reach the

maximal profit via trading in the financial market. The trading strategy plays an

important role for every investor in a financial market. The main question is how

to find the best strategies in different cases. In this chapter we consider the case of

the market model with one risky asset (stock) and one riskless asset (bond).

Let (Ω,F ,P) be a complete probability space.

2.1. Model Setup

Let (Sn)n≥0 be stock prices in a financial market, where S0 ∈ R+ is given, and we

assume that the interest rate is identical to 0. At time n, suppose that the investor

can only observe the stock prices up to time n. Thus, the information the investor

observe is Gn, the natural filtration generated by S0, S1, ..., Sn.

Assume that the stock prices follows the relation

(2.1) Sn+1 − Sn = Sn[bn + σn(Bn+1 −Bn)], n ≥ 0,

where bn is the appreciation return of the stock, σn is volatility of the stock, and

(Bn) is a noise.

Assumption 1.

(1) All the coefficients bn and σn are assumed as deterministic.

(2) (Bn+1−Bn)n≥0 is a Gaussian process with mean 0 and variance 1, and is (totally)

independent for all n ≥ 0.
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Under the Gaussian assumption it is not easy to know the distribution of Sn.

However, if we consider the stock return

Xn+1 =
Sn+1 − Sn

Sn
,

then the stock price equation (2.1) will be rewritten as

(2.2) Xn+1 = bn + σn(Bn+1 −Bn).

Remark 2.

(1) (Xn+1) is a Gaussian process with mean bn and variance σ2
n.

(2) {Xn+1, n ≥ 0} are totally independent for all n ≥ 0.

We denote G∗n the natural filtration generated by {X0, X1, · · · , Xn} withX0 = S0.

The following lemma tells us that X0, X1, · · · , Xn and S0, S1, · · · , Sn generate the

same filtration for all n.

Lemma 3. G∗n = Gn for all n ≥ 0.

PROOF. Due to Sn+1 = SnXn+1 + Sn,

(1) When n = 0, G∗0 = G0.

(2) When n = k, assume that G∗k = Gk.

(3) When n = k + 1, we have

Xn+1 =
Sn+1 − Sn

Sn
∈ Gk+1 and Sn+1 = SnXn+1 + Sn ∈ G∗k+1.

By mathematical inductions, we have G∗n = Gn for all n ≥ 0.

Remark 4. Since G0 is the σ-field generated by S0 and S0 ∈ R+ is given, we

have G0 = {∅,Ω}. Then for any integrable random variable X, we have

E(X|G0) = E(X).
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Remark 5.

(1) By (2.2), Bn+1 −Bn is independent of G∗n for all n ≥ 0.

(2) By Lemma 3, Bn+1 −Bn is also independent of Gn for n ≥ 0.

2.2. Trading Strategy with Transaction Cost and Backward Inductions

In this section we introduce the trading strategy with transaction cost in discrete

time model, which is derived from the model specified in Kabanov (2002). Suppose

that the random variables ξn+1 and ηn+1 describes the number of shares of assets

invested in stock and bond at time n (after the trading), respectively. Thus the

wealth process at time n is given by

(2.3) Vn = ξn+1Sn + ηn+1.

Moreover, if the initial endowment is given by x, then the initial wealth x =

ξ0S0 + η0.

Remark 6. (ξ, η) is called a trading strategy if both of ξn and ηn are predictable

with respect to the filtration (Gn), i.e., ξn is the number of shares of the stock between

the n− 1 (after the trading) and the time n (before the trading). Thus, our wealth

at time n is Vn (after the trading) defined by (2.3).

We assume that the investors need to pay the transaction cost when they sell

stocks and we denote the transfers from the stock to the bond by L
10

n (amount

by money) at time n. Moreover, we consider a model with constant proportional

transaction costs and the proportion is λ10 ∈ (0, 1). Thus, the wealth process (after
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the trading) is given by

Vn = ξn+1Sn + ηn+1 = Vn−1 + ξn(Sn − Sn−1)− λ10L
10

n n ≥ 1,

V0 = x− λ10L
10

0 .

And, by (2.3) we have

ηn+1 = ηn + (ξn − ξn+1)Sn − λ10L
10

n .

Remark 7. In Kabanov (2002), it introduces the following model with transac-

tion cost. Let V 1
n denote the total value (amount by money) of the stock at time

n under transaction cost, V 0
n denote the total value of the bond at time n under

transaction cost. And ξk represents the number of shares of the stock the investor

holds at time k − 1 (after the trading).

The portfolio value evolves according to the equation

V 1
n = v1 +

n∑
k=0

ξk(Sk − Sk−1) +
n∑
k=0

L
01

k −
n∑
k=0

(1 + λ10)L
10

k

V 0
n = v0 −

n∑
k=0

L
01

k +
n∑
k=0

L
10

k

where L
ij

n represents transfers from the ith to the jth asset at time n under transac-

tion costs, v0 and v1 are initial endowments in the bond and the stock respectively.

It is easy to verify that our model is equivalent to that introduced by Kabanov,

since

V 1
n + V 0

n = v0 + v1 +
n∑
k=0

ξk(Sk − Sk−1)−
n∑
k=0

λ10L
10

k

= Vn−1 + ξn(Sn − Sn−1)− λ10L
10

n .

Problem 8. For some future time n = N , in order to make the most profit, how

do we invest at the beginning under the model in a small investor perspectives?
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Due to the argument in game theory, we know that the optimal decision can be

constructed by the backward induction, see, e.g., Fudenberg and Tirole (1991).

Definition 9 (Backward Induction). This is a mathematical technique for

finding the optimal choice in each step in a game. The idea is to start by solving the

optimal strategy of the last step, and then work backward to compute the optimal

strategy before.

At time N − 1 our goal is to find the optimal strategy ξ∗N such that

(2.4) max
ξN

E[U(VN−1 + ξN(SN − SN−1))|GN−1],

for given strategy (ξn, ηn)n≤N−1, i.e., we aim to solve (2.4) to get the optimal solution

ξ∗N . Moreover, at time m ≤ N − 2 we choose the optimal ξ∗m+1 satisfying

max{E[U(Vm +
N∑

k=m+1

ξk(Sk − Sk−1)−
N−1∑

k=m+1

λ10L
10

k )|Gm]},

for given strategy (ξn, ηn)n≤m and ξk = ξ∗k for k ≥ m+ 2.

Remark 10. If the terminal time is 1, the optimal trading strategy solved by

the backward induction is that solved by the same as the maximal expected utility.

2.3. Optimal Strategy with Transaction Cost Under Risk-Neutral

Utility

In mathematical finance, utility function is a measure of the relative satisfaction

gained by consuming different bundles of goods and services. In our model utility

is a measure of the relative satisfaction gained by making different profits.

In this section we consider the risk-neutral utility function denoted by U(x) = x.

First we give a one-period example under the risk-neutral utility function and show

some results.
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Example 11. If the terminal time is 1, by the maximal expected utility we want

to compute

E[U(V0 + ξ1(S1 − S0)− x)] = E[ξ1(S1 − S0)− λ10L
10

0 ].

(1) If we buy some stocks at time 0 (ξ0 < ξ1) and ξ1 is G0-measurable, then

E[ξ1(S1 − S0)− λ10L
10

0 ] = E[ξ1(S1 − S0)]

= ξ1S0E[b0 + σ0(B1 −B0)].

Due to the Gaussian assumption we get

ξ1S0E[b0 + σ0(B1 −B0)] = ξ1S0b0.

Hence,

(2.5) E[U(V0 + ξ1(S1 − S0)− x)] = ξ1S0b0.

(2) If we sell some stocks at time 0 (ξ0 > ξ1), then

E[ξ1(S1 − S0)− λ10L
10

0 ]

= E[ξ1S0[b0 + σ0(B1 −B0)]− λ10S0(ξ0 − ξ1)]

= −λ10S0(ξ0 − ξ1) + ξ1S0b0 + E[ξ1S0σ0(B1 −B0)].

Because of the Gaussian assumption, we get

E[ξ1(S1 − S0)− λ10L
10

0 ] = −λ10S0(ξ0 − ξ1) + ξ1S0b0

Hence,

(2.6) E[U(V0 + ξ1(S1 − S0)− x)] = −λ10S0(ξ0 − ξ1) + ξ1S0b0 ≤ ξ1S0b0,
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since ξ0 > ξ1. From (2.5), (2.6), in the case without any restrictions on the trading

strategy, the investors trade according the sign of b0. If b0 ≥ 0, the investor should

buy the stocks as much as possible. If b0 +λ10 < 0, the investors should make short-

sell as much as possible. In the case with constraint, for example, 0 ≤ ξ1 ≤ x/S0,

no short-sell and no loan, the optimal strategy is given by

ξ∗1 =

 x/S0, if b0 ≥ 0,

0, if b0 + λ10 < 0
.

2.4. Optimal Strategy with Transaction Cost Under Risk-Averse Utility

We consider the risk-averse utility function given by

U(x) = −1

θ
exp(−θx),

where θ > 0 is the absolute risk aversion and be a constant.

First we show a one-period example below.

Example 12. If the terminal time is 1, by the maximal expected utility we have

to compute

E

[
−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))

]
= E

[
−1

θ
exp(−θ(−λ10L

10

0 + ξ1(S1 − S0)))

]
= E

[
−1

θ
exp(θλ10L

10

0 − θξ1(S1 − S0))

]
= −1

θ
E
[
exp(θλ10L

10

0 − θξ1S0[b0 + σ0(B1 −B0)])
]

= −1

θ
exp(−θξ1S0b0)E

[
exp(θλ10L

10

0 − θξ1S0σ0(B1 −B0))
]
.

We have to discuss it in two cases.
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(1) If we buy stocks at time 0, then

−1

θ
exp(−θξ1S0b0)E

[
exp(θλ10L

10

0 − θξ1S0σ0(B1 −B0))
]

= −1

θ
exp(−θξ1S0b0)E[exp(−θξ1S0σ0(B1 −B0))].

Due to the Gaussian assumption, we get

−1

θ
exp(−θξ1S0b0)E[exp(−θξ1S0σ0(B1 −B0))] = −1

θ
exp(−θξ1S0b0 +

1

2
θ2ξ2

1S
2
0σ

2
0).

Hence,

E[−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))] = −1

θ
exp(−θξ1S0b0 +

1

2
θ2ξ2

1S
2
0σ

2
0).

Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal ξ1 and from x = ξ0S0 + η0 we have

(2.7) ξ1 =
b0

θS0σ2
0

> ξ0 =
x− η0

S0

.

(2) If we sell stocks at time 0, then

E

[
−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))

]
= −1

θ
exp(−θξ1S0b0)E[exp(θλ10S0(ξ0 − ξ1)− θξ1S0σ0(B1 −B0))].

Due to the Gaussian assumption of B1 −B0, we have

E[exp(θλ10S0(ξ0 − ξ1)− θξ1S0σ0(B1 −B0))] = exp(θλ10S0(ξ0 − ξ1) +
1

2
θ2ξ2

1S
2
0σ

2
0).

Hence,

E

[
−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))

]
= −1

θ
exp

(
−θξ1S0b0 + θλ10S0(ξ0 − ξ1) +

1

2
θ2ξ2

1S
2
0σ

2
0

)
.
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Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal ξ1 and from x = ξ0S0 + η0 we have

(2.8) ξ1 =
b0 + λ10

θS0σ2
0

< ξ0 =
x− η0

S0

.

From (2.7), (2.8), we conclude that the investors will neither buy nor sell stocks

when their initial wealth (amount by money) is in the interval[
b0
θσ2

0

+ η0,
b0 + λ10

θσ2
0

+ η0

]
.

Moreover, if one wants to buy stocks he may choose the strategy ξ1 =
b0

θS0σ2
0

at time

0 to reach the maximum profit, and if one wants to sell stocks he may choose the

strategy ξ1 =
b0 + λ10

θS0σ2
0

at time 0 to reach the maximum profit.

Remark 13. Now the “no trading” interval is[
b0
θσ2

0

+ η0,
b0 + λ10

θσ2
0

+ η0

]
.

And if one wants to buy (sell) stocks he may choose the strategy ξ1 =
b0

θS0σ2
0

(ξ1 =
b0 + λ10

θS0σ2
0

) at time 0. We find some phenomenons from this example.

(1) For fixed b0 and σ0, if the initial stock price S0 is too high, we will be

conservative for our strategy in the stock.

(2) For fixed σ0 and S0, if the appreciation rate of the stock be positive and

grows up, we invest the number of shares of the stock more.

(3) For fixed b0 and S0, if the volatility of the stock grows up, we are conserva-

tive when investing the stock.

(4) The length of the “no trading” interval is
λ10

θσ2
0

, if λ10 increases or σ2
0 de-

creases, the “no trading” interval becomes larger.
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Example 14. If the terminal time is 2, by backward induction we figure out

this situation in two steps.

Step1 : Compute the case from time 1 to time 2.

E

[
−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− V0 − ξ1(S1 − S0)})

∣∣∣∣G1

]
= E

[
−1

θ
exp(−θ{ξ2(S2 − S1)− λ10L

10

1 })
∣∣∣∣G1

]
= E

[
−1

θ
exp(−θ{ξ2S1[b1 + σ1(B2 −B1)]− λ10L

10

1 })
∣∣∣∣G1

]
.

(1) If we sell stocks at time 1, then

E

[
−1

θ
exp(−θ{ξ2S1[b1 + σ1(B2 −B1)]− λ10L

10

1 })
∣∣∣∣G1

]
= E

[
−1

θ
exp(−θξ2S1[b1 + σ1(B2 −B1)] + θλ10(ξ1 − ξ2)S1)

∣∣∣∣G1

]
.

Since (B2 −B1) is independent of G1 and is normally distributed, we have

E

[
−1

θ
exp(−θξ2S1[b1 + σ1(B2 −B1)] + θλ10(ξ1 − ξ2)S1)

∣∣∣∣G1

]
= −1

θ
exp

(
−θξ2S1b1 + θλ10(ξ1 − ξ2)S1 +

1

2
θ2ξ2

2S
2
1σ

2
1

)
.

Hence,

E

[
−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− V0 − ξ1(S1 − S0)})

∣∣∣∣G1

]
= −1

θ
exp

(
−θξ2S1b1 + θλ10(ξ1 − ξ2)S1 +

1

2
θ2ξ2

2S
2
1σ

2
1

)
.

Thus from the fundamental calculus, we maximize the conditional expec-

tation to get the optimal ξ2 and from the assumption ξ2 < ξ1 we have

ξ2 =
b1 + λ10

θS1σ2
1

< ξ1.
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(2) If we buy stocks at time 1, then using the similar argument in Example 1

we have

ξ2 =
b1

θS1σ2
1

> ξ1.

Thus, for given ξ1, the optimal solution is given by

(2.9) ξ2 =
b1 + λ10

θS1σ2
1

I
{ξ1> b1+λ10

θS1σ
2
1
}

+
b1

θS1σ2
1

I{ξ1< b1
θS1σ

2
1
} + ξ1I{ b1

θS1σ
2
1
≤ξ1≤ b1+λ10

θS1σ
2
1
}
.

Step2 : Consider the trading period from time 0 to time 1, we replace the ξ2 by ξ2

which is given in (2.9) and compute the conditional expectation

E

[
−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− x})

∣∣∣∣G0

]
= E

[
−1

θ
exp(−θ{V0 + ξ1(S1 − S0)− λ10L

10

1 + ξ2(S2 − S1)− x})
∣∣∣∣G0

]
= E

[
−1

θ
exp(−θ{−λ10L

10

0 − λ10L
10

1 + ξ1(S1 − S0) + ξ2(S2 − S1)})
∣∣∣∣G0

]
.

Similar as the argument as the trading period from time 1 to time 2. we have to

separate it into two cases.

(1) If we sell stocks at time 0, i.e., L
10

0 = (ξ0 − ξ1)S0, then we have

E

[
−1

θ
exp(−θ{−λ10L

10

0 − λ10L
10

1 + ξ1(S1 − S0) + ξ2(S2 − S1)})
∣∣∣∣G0

]

= E

[
−1

θ
exp(−θ{−λ10(ξ0 − ξ1)S0 − λ10L

10

1 (I
{ξ1> b1+λ10

θS1σ
2
1
}

+ I{ξ1< b1
θS1σ

2
1
} + I

{ b1+λ10

θS1σ
2
1
≥ξ1≥ b1

θS1σ
2
1
}
)

+ξ1(S1 − S0) + ξ2(S2 − S1)})
∣∣∣G0

]
.
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By some calculation, we get

E

[
−1

θ
exp

(
θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0) + {θλ10(ξ1 −

b1 + λ10

θS1σ2
1

)S1

−θb1 + λ10

θS1σ2
1

(S2 − S1)}I{S1>
b1+λ10

θξ1σ
2
1
}

+ {−θ b1
θS1σ2

1

(S2 − S1)}I{S1<
b1

θξ1σ
2
1
}

+{−θξ1(S2 − S1)}I{ b1
θξ1σ

2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}

) ∣∣∣G0

]

= E[−1

θ
exp(θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0)

+{θλ10ξ1S1 −
(b1 + λ10)2

σ2
1

− b1 + λ10

σ1

(B2 −B1)}I{S1>
b1+λ10

θξ1σ
2
1
}

+{− b
2
1

σ2
1

− b1
σ1

(B2 −B1)}I{S1<
b1

θξ1σ
2
1
}

+{−θξ1S1b1 − θξ1S1σ1(B2 −B1)}I{ b1
θξ1σ

2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
)|G0]

Using the tower property of the conditional expectation, we may rewrite

the above equation in the following form

E[−1

θ
exp(θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0) + {θλ10ξ1S1 −

(b1 + λ10)2

σ2
1

}I
{S1>

b1+λ10

θξ1σ
2
1
}

− b
2
1

σ2
1

I{S1<
b1

θξ1σ
2
1
} − θξ1S1b1I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
)E[exp({−b1 + λ10

σ1

I
{S1>

b1+λ10

θξ1σ
2
1
}

− b1
σ1

I{S1<
b1

θξ1σ
2
1
} − θξ1S1σ1I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
}(B2 −B1))|G1]|G0].
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Since (B2 −B1) is independent of G1 and is normally-distributed, we get

E[−1

θ
exp({θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0) + θλ10ξ1S1 −

(b1 + λ10)2

2σ2
1

}I
{S1>

b1+λ10

θξ1σ
2
1
}

+{θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0)−
b21

2σ2
1

}I{S1<
b1

θξ1σ
2
1
}

+{θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0)− θξ1S1b1 +
1

2
θ2ξ2

1S
2
1σ

2
1}I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
)]

= −1

θ
{
∫ ∞
b1+λ10

θξ1σ
2
1

exp(θλ10(ξ0 − ξ1)S0 − θξ1(x− S0) + θλ10ξ1x−
(b1 + λ10)2

2σ2
1

)f(x)dx

+

∫ b1
θξ1σ

2
1

−∞
exp(θλ10(ξ0 − ξ1)S0 − θξ1(x− S0)−

b21
2σ2

1

)f(x)dx

+

∫ b1+λ10

θξ1σ
2
1

b1
θξ1σ

2
1

exp(θλ10(ξ0 − ξ1)S0 − θξ1(x− S0)− θξ1xb1 +
1

2
θ2ξ2

1x
2σ2

1)f(x)dx},

where f(x) is the probability density function of S1, i.e.,

(2.10) f(x) =
1√

2πS0σ0

exp(−(x− S0 − S0b0)
2

2S2
0σ

2
0

).

Due to the first order condition with respect to ξ1, we have

∫ ∞
b1+λ10

θξ1σ
2
1

(−θλ10S0 + θλ10x− θ(x− S0)) exp(θλ10(ξ0 − ξ1)S0 + θλ10ξ1x

(2.11)

− (b1 + λ10)2

2σ2
1

− θξ1(x− S0))f(x)dx

+

∫ b1
θξ1σ

2
1

−∞
(−θλ10S0 − θ(x− S0)) exp(− b21

2σ2
1

+ θλ10(ξ0 − ξ1)S0 − θξ1(x− S0))f(x)dx

+

∫ b1+λ10

θξ1σ
2
1

b1
θξ1σ

2
1

(−θb1x+ θ2x2σ2
1ξ1 − θλ10S0 − θ(x− S0)) exp(−θξ1b1x+

1

2
θ2ξ2

1x
2σ2

1

+ θλ10(ξ0 − ξ1)S0 − θξ1(x− S0))f(x)dx = 0.
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(2) If we buy stocks at time 0, i.e., L
10

0 = 0, then we have

E[−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− x})|G0]

= E[−1

θ
exp(−θ{−λ10L

10

1 (I
{ξ1> b1+λ10

θS1σ
2
1
}

+ I{ξ1< b1
θS1σ

2
1
} + I

{ b1+λ10

θS1σ
2
1
≥ξ1≥ b1

θS1σ
2
1
}
)

+ξ1(S1 − S0) + ξ2(S2 − S1)})|G0].

By some calculation, we get

E[−1

θ
exp(−θξ1(S1 − S0) + {θλ10(ξ1 −

b1 + λ10

θS1σ2
1

)S1 − θ
b1 + λ10

θS1σ2
1

(S2 − S1)}I{S1>
b1+λ10

θξ1σ
2
1
}

+{−θ b1
θS1σ2

1

(S2 − S1)}I{S1<
b1

θξ1σ
2
1
} + {−θξ1(S2 − S1)}I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
)|G0].

A similar argument as in case (1), we have

E[−1

θ
exp(−θξ1(S1 − S0) + {θλ10ξ1S1 −

(b1 + λ10)2

σ2
1

}I
{S1>

b1+λ10

θξ1σ
2
1
}

− b
2
1

σ2
1

I{S1<
b1

θξ1σ
2
1
} − θξ1S1b1I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
)E[exp({−b1 + λ10

σ1

I
{S1>

b1+λ10

θξ1σ
2
1
}

− b1
σ1

I{S1<
b1

θξ1σ
2
1
} − θξ1S1σ1I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
}(B2 −B1))|G1]|G0].
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Since (B2 −B1) is independent of G1 and the Gaussian assumption we get

E[−1

θ
exp({−θξ1(S1 − S0) + θλ10ξ1S1 −

(b1 + λ10)2

2σ2
1

}I
{S1>

b1+λ10

θξ1σ
2
1
}

+{−θξ1(S1 − S0)−
b21

2σ2
1

}I{S1<
b1

θξ1σ
2
1
}

+{−θξ1(S1 − S0)− θξ1S1b1 +
1

2
θ2ξ2

1S
2
1σ

2
1}I{ b1

θξ1σ
2
1
≤S1≤ b1+λ10

θξ1σ
2
1
}
)]

= −1

θ
{
∫ ∞
b1+λ10

θξ1σ
2
1

exp(−θξ1(x− S0) + θλ10ξ1x−
(b1 + λ10)2

2σ2
1

)f(x)dx

+

∫ b1
θξ1σ

2
1

−∞
exp(−θξ1(x− S0)−

b21
2σ2

1

)f(x)dx

+

∫ b1+λ10

θξ1σ
2
1

b1
θξ1σ

2
1

exp(−θξ1(x− S0)− θξ1xb1 +
1

2
θ2ξ2

1x
2σ2

1)f(x)dx},

where f(x) is the probability density function of S1, as in (2.10).

Due to the first order condition with respect to ξ1, we have∫ ∞
b1+λ10

θξ1σ
2
1

(θλ10x− θ(x− S0)) exp(θλ10ξ1x−
(b1 + λ10)2

2σ2
1

− θξ1(x− S0))f(x)dx(2.12)

+

∫ b1
θξ1σ

2
1

−∞
(−θ(x− S0)) exp(− b21

2σ2
1

− θξ1(x− S0))f(x)dx

+

∫ b1+λ10

θξ1σ
2
1

b1
θξ1σ

2
1

(−θb1x+ θ2x2σ2
1ξ1 − θ(x− S0))

exp(−θξ1b1x+
1

2
θ2ξ2

1x
2σ2

1 − θξ1(x− S0))f(x)dx = 0.

Conclusion : By the Backward Induction, we observe that when the investors

sell stocks at time 0 (i.e., ξ1 < ξ0), the optimal trading strategy ξ∗1 (sell) at time 0

satisfies the equation (2.11); when the investors buy stocks at time 0 (i.e., ξ1 > ξ0),

the optimal trading strategy ξ∗1 (buy) at time 0 satisfies the equation (2.12). And,

the optimal ξ∗2 at time 1 is chosen as in (2.9)
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Remark 15. In Example 14, it is difficult to find the closed form for ξ1 in

equation (2.11) and (2.12). However, we can find some property of the equation

(2.11) and (2.12). For example, considering the equation (2.12), if we let

F (ξ1) =

∫ ∞
b1+λ10

θξ1σ
2
1

(θλ10x− θ(x− S0)) exp(θλ10ξ1x−
(b1 + λ10)2

2σ2
1

− θξ1(x− S0))f(x)dx

+

∫ b1
θξ1σ

2
1

−∞
(−θ(x− S0)) exp(− b21

2σ2
1

− θξ1(x− S0))f(x)dx

+

∫ b1+λ10

θξ1σ
2
1

b1
θξ1σ

2
1

(−θb1x+ θ2x2σ2
1ξ1 − θ(x− S0))

exp(−θξ1b1x+
1

2
θ2ξ2

1x
2σ2

1 − θξ1(x− S0))f(x)dx,

then

F
′
(ξ1) =

∫ ∞
b1+λ10

θξ1σ
2
1

(θλ10x− θ(x− S0))
2 exp(θλ10ξ1x−

(b1 + λ10)2

2σ2
1

− θξ1(x− S0))f(x)dx

+

∫ b1
θξ1σ

2
1

−∞
(−θ(x− S0))

2 exp(− b21
2σ2

1

− θξ1(x− S0))f(x)dx

+

∫ b1+λ10

θξ1σ
2
1

b1
θξ1σ

2
1

(−θb1x+ θ2x2σ2
1ξ1 − θ(x− S0))

2

exp(−θξ1b1x+
1

2
θ2ξ2

1x
2σ2

1 − θξ1(x− S0))f(x)dx.

So, F
′
(ξ1) ≥ 0 for all ξ1, which implies that either the equation (2.12) has a solution

or the optimal ξ∗1 happens at the two end points. And a similar result for the

equation (2.11). Then we can conclude that there is still a “no trading” interval in

two period case.

2.5. Numerical Results

In this section, we give some numerical results for the equation (2.11), (2.12)

and try to find the corresponding “no trading” intervals.
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In Example 14, we consider a two period model and get a result that if we buy

some stocks (ξ0 < ξ1), then the optimal strategy ξ1 must satisfy the equation (2.12)

and if we sell some stocks (ξ0 > ξ1), then the optimal strategy must satisfy the

equation (2.11).

Here we give some numerical results and observe how these parameters affects

the “no trading” interval.

2.5.1. The relation between b0 and nontrading interval. First, we fix

S0 = 1, θ = 1, b1 = 1, λ10 = 0.5, σ0 = 1, σ1 = 1, and discuss the relation between b0

and the “no trading” interval from (2.11), (2.12).

b0 1 2 3 4 5 6 7

ξ1 (buy) 0.66 1.79 3.62 5.36 6.99 8.53 10.02

ξ1 (sell) 1.36 2.88 4.43 5.93 7.39 8.82 10.22

nontrading interval 0.70 1.09 0.81 0.57 0.40 0.29 0.20

From the table of the relation between b0 and ξ1, we observe that ξ1 (buy) and

ξ1 (sell) are increasing when b0 becomes bigger. And from the Figure 2.1, the size

of the “no trading” interval may reach a maximum when b0 ∈ [1, 3].

In practice, the proportion of the transaction cost is usually 0.003, the appreci-

ation return of the stock b and the volatility of the stock σ have values between 0.5

and 1.5. So, we give another data here.

We fix S0 = 1, θ = 1, b1 = 1, λ10 = 0.003, σ0 = 0.5, σ1 = 0.5, and discuss the

relation between b0 and the “no trading” interval from (2.11), (2.12).
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Figure 2.1. The relation between b0 and ξ1

b0 0.5 0.6 0.7 0.8 0.9 1.0 1.1

ξ1 (buy) 1.99 2.39 2.79 3.19 3.59 3.99 4.39

ξ1 (sell) 2.01 2.41 2.80 3.20 3.60 4.00 4.41

nontrading interval 0.02 0.02 0.01 0.01 0.01 0.01 0.02

From the table of the relation between b0 and ξ1, we observe that ξ1 (buy) and

ξ1 (sell) are increasing when b0 becomes bigger. From the Figure 2.2, the size of “no

trading” interval may reach a minimum when b0 ∈ [0.6, 1.1].
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Figure 2.2. The relation between b0 and ξ1

2.5.2. The relation between b1 and nontrading interval. Second, we fix

S0 = 1, θ = 1, b0 = 1, λ10 = 0.5, σ0 = 1, σ1 = 1, and discuss the relation between b1

and the “no trading” interval.

b1 1 2 3 4 5 6 7

ξ1 (buy) 0.66 0.89 0.98 0.99 0.99 0.99 0.99

ξ1 (sell) 1.36 1.40 1.45 1.48 1.49 1.50 1.50

nontrading interval 0.70 0.51 0.47 0.49 0.50 0.51 0.51
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Figure 2.3. The relation between b1 and ξ1

From the table of the relation between b1 and ξ1, we observe that ξ1 (buy) and

ξ1 (sell) increase slowly when b1 becomes bigger. And from the Figure 2.3, the size

of the “no trading” interval has a very small change even b1 gets bigger.

In practice, the proportion of the transaction cost is usually 0.003, the appreci-

ation return of the stock b and the volatility of the stock σ have values between 0.5

and 1.5. So, we give another data here.

We fix S0 = 1, θ = 1, b0 = 0.5, λ10 = 0.003, σ0 = 0.5, σ1 = 0.5, and discuss the

relation between b1 and the “no trading” interval.
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Figure 2.4. The relation between b1 and ξ1

b1 0.5 0.6 0.7 0.8 0.9 1.0 1.1

ξ1 (buy) 1.99 1.99 1.99 1.99 1.99 1.99 1.99

ξ1 (sell) 2.00 2.00 2.00 2.01 2.01 2.01 2.01

nontrading interval 0.01 0.01 0.01 0.02 0.02 0.02 0.02

From the table of the relation between b1 and ξ1, we observe that ξ1 (buy) and

ξ1 (sell) increase slowly when b1 becomes bigger. From the Figure 2.4, the size of

the “no trading” interval has a very small change even b1 gets bigger.
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2.5.3. The relation between σ0 and nontrading interval. Third, we fix

S0 = 0.05, θ = 1, b1 = 1, λ10 = 0.5, b0 = 1, σ1 = 1, and discuss the relation between

σ0 and the “no trading” interval.

σ0 1 2 3 4 5 6 7

ξ1 (buy) 13.39 4.72 2.21 1.25 0.79 0.55 0.40

ξ1 (sell) 27.31 6.86 3.24 1.86 1.19 0.83 0.61

nontrading interval 13.92 2.14 1.03 0.61 0.40 0.28 0.21

From the table of the relation between σ0 and ξ1, we observe that ξ1 (buy) and

ξ1 (sell) decrease very quickly when σ0 becomes bigger. And from the Figure 2.5,

the size of the “no trading” interval decrease very rapidly when σ0 gets bigger.

In practice, the proportion of the transaction cost is usually 0.003, the appreci-

ation return of the stock b and the volatility of the stock σ have values between 0.5

and 1.5. So, we give another data here.

We fix S0 = 1, θ = 1, b1 = 0.5, λ10 = 0.003, b0 = 0.5, σ1 = 0.5, and discuss the

relation between σ0 and the “no trading” interval.

σ0 0.5 0.6 0.7 0.8 0.9 1.0 1.1

ξ1 (buy) 1.994 1.386 1.019 0.780 0.617 0.499 0.413

ξ1 (sell) 2.006 1.394 1.025 0.785 0.620 0.502 0.415

nontrading interval 0.012 0.008 0.006 0.005 0.003 0.003 0.002

From the table of the relation between σ0 and ξ1, we observe that ξ1 (buy) and

ξ1 (sell) decrease very quickly when σ0 becomes bigger. From the Figure 2.6, the

size of the “no trading” interval decrease when σ0 gets bigger.
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Figure 2.5. The relation between σ0 and ξ1
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Figure 2.6. The relation between σ0 and ξ1
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CHAPTER 3

Optimal Strategy with Transaction Cost in a Partial

Information Discrete Model

In this chapter, we relax the restriction on the drift term bn and we use the

method introduced by Huang (2007).

Let (Ω,F ,P) be a complete probability space.

3.1. Model Setup

Let (Sn)n≥0 be the stock prices in the market, where S0 ∈ R+ is given. The stock

price follows the recursive relation

(3.1) Sn+1 − Sn = Sn[bn + σn(Bn+1 −Bn)],

where bn is the appreciation return of the stock, σn is volatility of the stock, and

(Bn) is a noise.

Assumption 16.

(1) σn is assumed to be deterministic for all n and (bn)n≥0 is assumed as a sequence

of random variables.

(2) (Bn+1 − Bn) is a Gaussian process with mean 0 and variance 1, and they are

(totally) independent for all n ≥ 0.

(3) The processes (Bn+1 −Bn) and (bn) are independent.

At time n, we observe the stock prices up to time n, so we let (Gn)n≥0 be the

natural filtration generated by S0, S1, · · · , Sn.

27



Consider the stock return

Xn+1 =
Sn+1 − Sn

Sn
,

then the model will be rewritten by

Xn+1 = bn + σn(Bn+1 −Bn).

Also recall that we have G∗n = Gn as in Chapter 2, for G∗n is the natural filtration

generated by X0, X1, · · · , Xn.

3.2. Optional Projection and The Gaussian Case

Denote by b̂ the optional projection, with respect to the filtration Gn, of the

process bn and we have

b̂n = E[bn|Gn].

Consider the Gn-measurable process

(3.2) L̂n = Sn − S0 −
n−1∑
k=0

b̂kSk.

From some computation we have (L̂n) is a martingale with respect to (Gn).

Proposition 17 (Huang (2007), Proposition 28). Let

D2
n = σ2

n + E[bn − b̂n]2

and assume that Dn is bounded away from 0 for n ≥ 0. There exists a martingale

process (B̂n)n≥0 with respect to the filtration (Gn) such that

(3.3) L̂n =
n−1∑
k=0

DkSk(B̂k+1 − B̂k),

where B̂n+1 − B̂n has mean 0 and variance 1 for all n.
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From (3.1),(3.2) and (3.3), our model is described by

Sn+1 − Sn = Sn[bn + σn(Bn+1 −Bn)]

= Sn[b̂n +Dn(B̂n+1 − B̂n)].

Thus,

Dn(B̂n+1 − B̂n) = (bn − b̂n) + σn(Bn+1 −Bn).

Assumption 18. We assume that bn is a Gaussian process and {bn} is indepen-

dent of {Bn+1 −Bn}.

Recall

Xn+1 =
Sn+1 − Sn

Sn
= bn + σn(Bn+1 −Bn)

and Gn = G∗n for all n ≥ 0. Let

Ln = LX,n = {c0X0 + c1X1 + · · ·+ cnXn where cj ∈ R for 0 ≤ j ≤ n}.

Then we have the following two Lemma.

Lemma 19 (Huang (2007), Lemma 30). Let b̌ = E[bn|Ln]. Then there exists a

sequence of coefficients čj for 0 ≤ j ≤ n such that

b̌n = č0X0 + č1X1 + · · ·+ čnXn.

Lemma 20 (Huang (2007), Lemma 31). b̂n = E[bn|Gn] = E[bn|Ln].

Recall

Dn(B̂n+1 − B̂n) = (bn − b̂n) + σn(Bn+1 −Bn),

the following proposition is given.
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Proposition 21 (Huang (2007), Proposition 32). (B̂n+1 − B̂n) is a Gaussian

process with mean 0 and variance 1 and they are independent with each other for

n ≥ 0.

From the Huang’s work above, we can rewrite our model as follows:

Sn+1 − Sn = Sn[b̂n +Dn(B̂n+1 − B̂n)]

and recall our wealth process (after the trading)

Vn = ξn+1Sn + ηn+1 = Vn−1 + ξn(Sn − Sn−1)− λ10L
10

n ∀n ≥ 0

with the initial wealth x = ξ0S0 + η0 > 0. We will show the risk-neutral and risk-

averse utility result. Our decision rule is also the backward induction. We first give

an example for the Gaussian assumption with the utility

U(x) = x,

and then give an example for the utility

U(x) = −1

θ
exp(−θx),

where θ > 0 is the absolute risk aversion and be a constant.

3.3. Examples for Risk-Neutral and Risk-Averse Utility Functions

Example 22. If the terminal time is 1, by the maximal expected utility we want

to compute

E[U(V0 + ξ1(S1 − S0)− x)] = E[ξ1(S1 − S0)− λ10L
10

0 ].
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(1) If we buy some stocks at time 0 (ξ0 < ξ1) and ξ1 is G0-measurable, then

E[ξ1(S1 − S0)− λ10L
10

0 ] = E[ξ1(S1 − S0)]

= ξ1S0E[b̂0 +D0(B̂1 − B̂0)].

By Proposition 21, we get

ξ1S0E[b̂0 +D0(B̂1 − B̂0)] = ξ1S0b̂0.

Hence,

(3.4) E[U(V0 + ξ1(S1 − S0)− x)] = ξ1S0b̂0.

(2) If we sell some stocks at time 0 (ξ0 > ξ1), then

E[ξ1(S1 − S0)− λ10L
10

0 ]

= E[ξ1S0[b̂0 +D0(B̂1 − B̂0)]− λ10S0(ξ0 − ξ1)]

= −λ10S0(ξ0 − ξ1) + ξ1S0b̂0 + E[ξ1S0D0(B̂1 − B̂0)].

By Proposition 21, we get

E[ξ1(S1 − S0)− λ10L
10

0 ] = −λ10S0(ξ0 − ξ1) + ξ1S0b̂0

Hence,

(3.5) E[U(V0 + ξ1(S1 − S0)− x)] = −λ10S0(ξ0 − ξ1) + ξ1S0b̂0 ≤ ξ1S0b̂0,

since ξ0 > ξ1. From (3.4), (3.5), in the case without any restrictions on the trading

strategy, the investors trade according the sign of b̂0. If b̂0 ≥ 0, the investor should

buy the stocks as much as possible. If b̂0 +λ10 < 0, the investors should make short-

sell as much as possible. In the case with constraint, for example, 0 ≤ ξ1 ≤ x/S0,
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no short-sell and no loan, the optimal strategy is given by

ξ∗1 =

 x/S0, if b̂0 ≥ 0,

0, if b̂0 + λ10 < 0
.

Example 23. If the terminal time is 1, by the maximal expected utility we have

to compute

E[−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))]

=E[−1

θ
exp(−θ(−λ10L

10

0 + ξ1(S1 − S0)))]

=E[−1

θ
exp(θλ10L

10

0 − θξ1(S1 − S0))]

=− 1

θ
E[exp(θλ10L

10

0 − θξ1S0[b̂0 +D0(B̂1 − B̂0)])]

=− 1

θ
exp(−θξ1S0b̂0)E[exp(θλ10L

10

0 − θξ1S0D0(B̂1 − B̂0))].

(1) If we buy stocks at time 0, then

−1

θ
exp(−θξ1S0b̂0)E[exp(θλ10L

10

0 − θξ1S0D0(B̂1 − B̂0))]

= −1

θ
exp(−θξ1S0b̂0)E[exp(−θξ1S0D0(B̂1 − B̂0))].

Since the Gaussian assumption, we get

−1

θ
exp(−θξ1S0b̂0)E[exp(−θξ1S0D0(B̂1 − B̂0))] = −1

θ
exp(−θξ1S0b̂0 +

1

2
θ2ξ2

1S
2
0D

2
0).

Hence,

E[−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))] = −1

θ
exp(−θξ1S0b̂0 +

1

2
θ2ξ2

1S
2
0D

2
0).

Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal ξ1 and from x = ξ0S0 + η0 we have

(3.6) ξ1 =
b̂0

θS0D2
0

> ξ0 =
x− η0

S0

.
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(2) If we sell stocks at time 0, then

E[−1

θ
exp(−θ(V0 + ξ1(S1 − S0)− x))]

= −1

θ
exp(−θξ1S0b̂0)E[exp(θλ10S0(ξ0 − ξ1)− θξ1S0D0(B̂1 − B̂0))].

Since the Gaussian assumption, we get

E[exp(θλ10S0(ξ0 − ξ1)− θξ1S0D0(B̂1 − B̂0))] = exp(θλ10S0(ξ0 − ξ1) +
1

2
θ2ξ2

1S
2
0D

2
0).

Hence,

E[−1

θ
exp(−θ(V0+ξ1(S1−S0)−x))] = −1

θ
exp(−θξ1S0b̂0+θλ

10S0(ξ0−ξ1)+
1

2
θ2ξ2

1S
2
0D

2
0).

Thus from the fundamental calculus, we maximize the conditional expectation

to get the optimal ξ1 and from x = ξ0S0 + η0 we have

(3.7) ξ1 =
b̂0 + λ10

θS0D2
0

< ξ0 =
x− η0

S0

.

From (3.6), (3.7), we conclude that the investors will neither buy nor sell stocks

when their initial wealth (amount by money) is in the interval

[
b̂0
θD2

0

+ η0,
b̂0 + λ10

θD2
0

+ η0

]
.

Moreover, if one wants to buy stocks he may choose the strategy ξ1 =
b̂0

θS0D2
0

at

time 0 to reach the maximum profit, and if one wants to sell stocks he may choose

the strategy ξ1 =
b̂0 + λ10

θS0D2
0

at time 0 to reach the maximum profit.

Remark 24. Now the “no trading” interval is[
b̂0
θD2

0

+ η0,
b̂0 + λ10

θD2
0

+ η0

]
.

And if one wants to buy (sell) stocks he may choose the strategy ξ1 =
b̂0

θS0D2
0

(ξ1 =
b̂0 + λ10

θS0D2
0

) at time 0. We find some phenomenons from this example.
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(1) For fixed b̂0 and D0. If the initial stock price S0 is too high, we will be

conservative for our strategy in the stock.

(2) For fixed D0 and S0, if b̂n is positive and grows up, we invest the number

of shares of the stock more.

(3) For fixed b̂0 and S0, if the volatility of the stock grows up, we are conserva-

tive when investing the stock.

(4) The length of the “no trading” interval is
λ10

θD2
0

, if λ10 increases or D2
0 de-

creases, the “no trading” interval becomes larger.

Example 25. If the terminal time is 2, by backward induction we figure out

this situation in two steps.

Step1 : Compute the one-period case

E[−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− V0 − ξ1(S1 − S0)})|G1]

= E[−1

θ
exp(−θ{ξ2(S2 − S1)− λ10L

10

1 })|G1]

= E[−1

θ
exp(−θ{ξ2S1[b̂1 +D1(B̂2 − B̂1)]− λ10L

10

1 })|G1].

(1) If we sell stocks at time 1, then

E[−1

θ
exp(−θ{ξ2S1[b̂1 +D1(B̂2 − B̂1)]− λ10L

10

1 })|G1]

= E[−1

θ
exp(−θξ2S1[b̂1 +D1(B̂2 − B̂1)] + θλ10(ξ1 − ξ2)S1)|G1].

Since (B̂2− B̂1) is independent of G1 and the Gaussian assumption we have

E[−1

θ
exp(−θξ2S1[b̂1 +D1(B̂2 − B̂1)] + θλ10(ξ1 − ξ2)S1)|G1]

= −1

θ
exp(−θξ2S1b̂1 + θλ10(ξ1 − ξ2)S1 +

1

2
θ2ξ2

2S
2
1D

2
1).
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Hence,

E[−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− V0 − ξ1(S1 − S0)})|G1]

= −1

θ
exp(−θξ2S1b̂1 + θλ10(ξ1 − ξ2)S1 +

1

2
θ2ξ2

2S
2
1D

2
1).

Thus from the fundamental calculus, we maximize the conditional expec-

tation to get the optimal ξ2 and from the assumption ξ2 < ξ1 we have

ξ2 =
b̂1 + λ10

θS1D2
1

< ξ1.

(2) If we buy stocks at time 1, then using the similar argument in Example 1

we have

ξ2 =
b̂1

θS1D2
1

> ξ1.

Step2 : Choose

ξ2 =
b̂1 + λ10

θS1D2
1

I
{ξ1> b̂1+λ10

θS1D
2
1
}

+
b̂1

θS1D2
1

I
{ξ1< b̂1

θS1D
2
1
}

+ ξ1I{ b̂1
θS1D

2
1
≤ξ1≤ b̂1+λ10

θS1D
2
1
}
.

We replace the ξ2 by ξ2 and compute

E[−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− x})|G0]

= E[−1

θ
exp(−θ{V0 + ξ1(S1 − S0)− λ10L

10

1 + ξ2(S2 − S1)− x})|G0]

= E[−1

θ
exp(−θ{−λ10L

10

0 − λ10L
10

1 + ξ1(S1 − S0) + ξ2(S2 − S1)})|G0].

(1) If we sell stocks at time 0, i.e., L
10

0 = (ξ0 − ξ1)S0, then we have

E[−1

θ
exp(−θ{−λ10L

10

0 − λ10L
10

1 + ξ1(S1 − S0) + ξ2(S2 − S1)})|G0]

= E[−1

θ
exp(−θ{−λ10(ξ0 − ξ1)S0 − λ10L

10

1 (I
{ξ1> b̂1+λ10

θS1D
2
1
}

+ I
{ξ1< b̂1

θS1D
2
1
}

+ I
{ b̂1+λ10

θS1D
2
1
≥ξ1≥ b̂1

θS1D
2
1
}
)

+ξ1(S1 − S0) + ξ2(S2 − S1)})|G0].
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By some calculation, we get

E[−1

θ
exp(θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0) + {θλ10(ξ1 −

b̂1 + λ10

θS1D2
1

)S1

−θ b̂1 + λ10

θS1D2
1

(S2 − S1)}I{S1>
b̂1+λ10

θξ1D
2
1
}

+ {−θ b̂1
θS1D2

1

(S2 − S1)}I{S1<
b̂1

θξ1D
2
1
}

+{−θξ1(S2 − S1)}I{ b̂1
θξ1D

2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)|G0]

= E[−1

θ
exp(θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0)

+{θλ10ξ1S1 −
(b̂1 + λ10)2

D2
1

− b̂1 + λ10

D1

(B̂2 − B̂1)}I{S1>
b̂1+λ10

θξ1D
2
1
}

+{− b̂21
D2

1

− b̂1
D1

(B̂2 − B̂1)}I{S1<
b̂1

θξ1D
2
1
}

+{−θξ1S1b̂1 − θξ1S1D1(B̂2 − B̂1)}I{ b̂1
θξ1D

2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)|G0]

Using the conditional expectation property, we have

E[−1

θ
exp(θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0) + {θλ10ξ1S1 −

(b̂1 + λ10)2

D2
1

}I
{S1>

b̂1+λ10

θξ1D
2
1
}

− b̂21
D2

1

I
{S1<

b̂1
θξ1D

2
1
}
− θξ1S1b̂1I{ b̂1

θξ1D
2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)E[exp({− b̂1 + λ10

D1

I
{S1>

b̂1+λ10

θξ1D
2
1
}

− b̂1
D1

I
{S1<

b̂1
θξ1D

2
1
}
− θξ1S1D1I{ b̂1

θξ1D
2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
}(B̂2 − B̂1))|G1]|G0].
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Since (B̂2 − B̂1) is independent of G1 and the Gaussian assumption we get

E[−1

θ
exp({θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0) + θλ10ξ1S1 −

(b̂1 + λ10)2

2D2
1

}I
{S1>

b̂1+λ10

θξ1D
2
1
}

+{θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0)−
b̂21

2D2
1

}I
{S1<

b̂1
θξ1D

2
1
}

+{θλ10(ξ0 − ξ1)S0 − θξ1(S1 − S0)− θξ1S1b̂1 +
1

2
θ2ξ2

1S
2
1D

2
1}I{ b̂1

θξ1D
2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)]

= −1

θ
{
∫ ∞
b̂1+λ10

θξ1D
2
1

exp(θλ10(ξ0 − ξ1)S0 − θξ1(x− S0) + θλ10ξ1x−
(b̂1 + λ10)2

2D2
1

)f(x)dx

+

∫ b̂1
θξ1D

2
1

−∞
exp(θλ10(ξ0 − ξ1)S0 − θξ1(x− S0)−

b̂21
2D2

1

)f(x)dx

+

∫ b̂1+λ10

θξ1D
2
1

b̂1
θξ1D

2
1

exp(θλ10(ξ0 − ξ1)S0 − θξ1(x− S0)− θξ1b̂1x+
1

2
θ2ξ2

1x
2D2

1)f(x)dx},

where f(x) is the probability density function of S1, i.e.,

(3.8) f(x) =
1√

2πS0D0

exp(−(x− S0 − S0b̂0)
2

2S2
0D

2
0

).

Due to the first order condition with respect to ξ1, we have

∫ ∞
b̂1+λ10

θξ1D
2
1

(−θλ10S0 + θλ10x− θ(x− S0)) exp(θλ10(ξ0 − ξ1)S0 + θλ10ξ1x

(3.9)

− (b̂1 + λ10)2

2D2
1

− θξ1(x− S0))f(x)dx

+

∫ b̂1
θξ1D

2
1

−∞
(−θλ10S0 − θ(x− S0)) exp(− b̂21

2D2
1

+ θλ10(ξ0 − ξ1)S0 − θξ1(x− S0))f(x)dx

+

∫ b̂1+λ10

θξ1D
2
1

b̂1
θξ1D

2
1

(−θb̂1x+ θ2x2D2
1ξ1 − θλ10S0 − θ(x− S0)) exp(−θξ1b̂1x+

1

2
θ2ξ2

1x
2D2

1

+ θλ10(ξ0 − ξ1)S0 − θξ1(x− S0))f(x)dx = 0,
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where f(x) is given in (3.8).

(2) If we buy stocks at time 0, i.e., L
10

0 = 0, then we have

E[−1

θ
exp(−θ{V1 + ξ2(S2 − S1)− x})|G0]

= E[−1

θ
exp(−θ{−λ10L

10

1 (I
{ξ1> b̂1+λ10

θS1D
2
1
}

+ I
{ξ1< b̂1

θS1D
2
1
}

+ I
{ b̂1+λ10

θS1D
2
1
≥ξ1≥ b̂1

θS1D
2
1
}
)

+ξ1(S1 − S0) + ξ2(S2 − S1)})|G0].

By some calculation, we get

E[−1

θ
exp(−θξ1(S1 − S0) + {θλ10(ξ1 −

b̂1 + λ10

θS1D2
1

)S1 − θ
b̂1 + λ10

θS1D2
1

(S2 − S1)}I{S1>
b̂1+λ10

θξ1D
2
1
}

+{−θ b̂1
θS1D2

1

(S2 − S1)}I{S1<
b̂1

θξ1D
2
1
}

+ {−θξ1(S2 − S1)}I{ b̂1
θξ1D

2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)|G0].

Using the conditional expectation property, we have

E[−1

θ
exp(−θξ1(S1 − S0) + {θλ10ξ1S1 −

(b̂1 + λ10)2

D2
1

}I
{S1>

b̂1+λ10

θξ1D
2
1
}

− b̂21
D2

1

I
{S1<

b̂1
θξ1D

2
1
}
− θξ1S1b̂1I{ b̂1

θξ1D
2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)E[exp({− b̂1 + λ10

D1

I
{S1>

b̂1+λ10

θξ1D
2
1
}

− b̂1
D1

I
{S1<

b̂1
θξ1D

2
1
}
− θξ1S1D1I{ b̂1

θξ1D
2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
}(B̂2 − B̂1))|G1]|G0].
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Since (B̂2 − B̂1) is independent of G1 and the Gaussian assumption we get

E[−1

θ
exp({−θξ1(S1 − S0) + θλ10ξ1S1 −

(b̂1 + λ10)2

2D2
1

}I
{S1>

b̂1+λ10

θξ1D
2
1
}

+{−θξ1(S1 − S0)−
b̂21

2D2
1

}I
{S1<

b̂1
θξ1D

2
1
}

+{−θξ1(S1 − S0)− θξ1S1b̂1 +
1

2
θ2ξ2

1S
2
1D

2
1}I{ b̂1

θξ1D
2
1
≤S1≤ b̂1+λ10

θξ1D
2
1
}
)]

= −1

θ
{
∫ ∞
b̂1+λ10

θξ1D
2
1

exp(−θξ1(x− S0) + θλ10ξ1x−
(b̂1 + λ10)2

2D2
1

)f(x)dx

+

∫ b̂1
θξ1D

2
1

−∞
exp(−θξ1(x− S0)−

b̂21
2D2

1

)f(x)dx

+

∫ b̂1+λ10

θξ1D
2
1

b̂1
θξ1D

2
1

exp(−θξ1(x− S0)− θξ1b̂1x+
1

2
θ2ξ2

1x
2D2

1)f(x)dx},

where f(x) is the probability density function of S1, as in (3.8).

Due to the first order condition with respect to ξ1, we have

∫ ∞
b̂1+λ10

θξ1D
2
1

(θλ10x− θ(x− S0)) exp(θλ10ξ1x−
(b̂1 + λ10)2

2D2
1

− θξ1(x− S0))f(x)dx

(3.10)

+

∫ b̂1
θξ1D

2
1

−∞
(−θ(x− S0)) exp(− b̂21

2D2
1

− θξ1(x− S0))f(x)dx

+

∫ b̂1+λ10

θξ1D
2
1

b̂1
θξ1D

2
1

(−θb̂1x+ θ2x2D2
1ξ1 − θ(x− S0)) exp(−θξ1b̂1x+

1

2
θ2ξ2

1x
2D2

1 − θξ1(x− S0))f(x)dx = 0,

where f(x) is given in (3.8).

Conclusion : We get a similar result as in Example 14.
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CHAPTER 4

Future Works

In above chapters, we consider the discrete model with the transaction costs,

and we find that “no trading” intervals and the optimal strategies corresponding to

selling assets and buying assets respectively. But many results are still open. We

will illustrate as follows :

(a) First, if the investor is a “large” investor, i.e., the amount of the investment

would influence the stock price, how can the investors reach their optimal

strategies?

(b) Second, in the discrete model, if the drift term bn is random and bn is

“not” independent of the noise term, can we find the “no trading” intervals

and the optimal strategies corresponding to selling assets and buying assets

respectively?

(c) In our model, the stock price is driven by the recursive relation

Sn+1 − Sn = Sn[bn + σn(Bn+1 −Bn)],

so the stock price may be negative. However, it will become confused if

we do not assume that Sn is positive for all n. Because we will have the

conclusion that we sell the stocks at time 0 when b0 > θσ2
0(x − η0) − λ10

and buy the stocks at time 0 when b0 < θσ2
0(x − η0). So if we introduce

another stock price model in which the stock price Sn is positive for all n,

what strategy will be suggested? Simply, we can give the model setup as

follows :
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Let (Ω,F ,P) be a complete probability space. Let (Sn)n≥0 be the stock

prices in the market and is driven by

Sn+1 = inSn,

where in is a nonnegative random variable and un := ln in is normally

distributed, and S0 ∈ R+ is given. Hence similar problems will be discussed

as follows :

(1) First, if our market is frictionless (no transaction cost), then for a given

risk-neutral or risk-averse utility, what strategy will be find under the

backward induction in this model?

(2) Second, if there is transaction cost in this model, What is the result?

Example 26. Here we give a one period model result for (1). If the

terminal time is 1 and the utility function is U(x) = lnx, by backward

induction we have to compute

E[U(V0 + ξ1(S1 − S0))|G0] =E[ln{x+ ξ1(S1 − S0)}|G0]

=E[ln{x+ ξ1S0(exp(u0)− 1)}|G0].

Since G0 = {φ,Ω} and assume that u0 is normally distributed with mean 0

variance 1, then we get

E[ln{x+ ξ1S0(exp(u0)− 1)}|G0]

=
1√
2π

∫ ∞
−∞

ln{x+ ξ1S0(exp(y)− 1)} exp(−y
2

2
)dy.

Due to the first order condition with respect to ξ1, we have∫ ∞
−∞

S0(exp(y)− 1)

x+ ξ1S0(exp(y)− 1)
exp(−y

2

2
)dy = 0
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By the change of variable, we get∫ ∞
0

S0(exp(y)− 1)

x exp(y)− ξ1S0(exp(y)− 1)
exp(−y

2

2
)dy

=

∫ ∞
0

S0(exp(y)− 1)

x+ ξ1S0(exp(y)− 1)
exp(−y

2

2
)dy.

Then we choose the optimal ξ1 =
x

2S0

.

This example gives a result for one period case in the frictionless market

model. But how about the two period case or even for any finite terminal

time N? And how is the result for the same problem in the model with

transaction cost?

(d) If there are more than one risky assets in our model, what is the optimal

trading strategy?

(e) Finally, extending our discrete model to continuous time model and solve

the similar problems by using other mathematical tools.
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[4] H. Föllmer and D. Sondermann. Hedging of Non-Redundant Contingent Claims. Contributions

to Mathematical Economics. 205-223, 1986.

[5] D. Fudenberg and J. Tirole. Game theory, First Edition. MIT Press. 1991.

[6] C.-C. Huang. Optimal Hedging Strategy with Partial Information in Discrete Financial Model.

Master Thesis in National University of Kaohsiung, 2007.

[7] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, Second Edition.

Springer. 1988.

[8] I. Karatzas and S. E. Shreve. Methods of Mathematical Finance, First Edition. Springer. 1998.

[9] I. Karatzas and X.-X. Xue. A note on utility maximization under partial observations. Math-

ematical Finance 1. 57-70, 1991.

[10] D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to Finance, First

Edition. Springer. 1996.

[11] P. Lakner. Utility maximization with partial information. Stochastic Processes and their Ap-

plications 56. 247-273, 1995.

[12] P. Lakner. Optimal trading strategy for an investor : the case of partial information. Stochastic

Processes and their Applications 76. 77-97, 1998.

[13] M. J. P. Magill and G. M. Constantinides. Portfolio Selection with Transaction Costs. J.

Economic Theory 13. 245-263, 1976.

45



[14] R. C. Merton. Optimum Consumption and Portfolio Rules in a Continuous-Time Todel. J.

Econ. Theory 3. 373-413, 1971.

[15] B. Øksendal. Stochastic Differential Equations : An introduction with Applications, Sixth

Edition. Springer. 2005.

[16] J. Xiong and Z. Yang. Optimal investment strategy under saving/borrowing rates spread with

partial information. WIAS Preprint. No. 908, 2004.

46


	學位論文格式-9522520
	paper1-2-change

