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摘要 

 

在數學的領域中，透過不同數學方法而得到相同的理論是常見

的。本論文的目的是探討，透過不同的兩個方法來証明強正則圖的參

數, 一個利用變數的計算(如定理 7.6 所示)，另一個是利用線性代數

的方法(如定理 8.3). 結果顯示此強正則圖的參數呈現是一樣的。
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Abstract 

 

In the field of mathematics, it is common to achieve the same 

conclusion of the theory via various approaches. The purpose of this 

thesis is to probe the parameters of a strongly regular graph via two 

different methods, one (Theorem 7.6) with the use of counting 

argument and the other (Theorem 8.3) with a linear algebric method. 

The result shows that these parameters are determined explicitly and 

are the same.  
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1 Introduction

In mathematics, it is common to get the same theory through different

approaches. In this thesis, we adopt two different methods to construct a

strongly regular graph, one (Theorem 7.6) with the use of counting argument

and the other (Theorem 8.3) with a linear algebric method.

We consider a distance-regular graph Γ, called a D-bounded distance-

regular graph. This graph Γ contains many weak-geodetically closed sub-

graphs. We fix a weak-geodetically closed subgraph ∆ of diameter s and let

P (resp. B) be the set of all weak-geodetically closed subgraphs containing

∆ of diameter s+1 (resp. s+2). We show that (P,B) is a 2-design. We show

that the block graph of (P,B) is a strongly regular graph and determine its

parameters explicitly by two methods.

To do this, we need some concepts about graphs and designs. Hence, in

Chapter 2, we review some definitions and basic concepts of graphs, such as

regular graphs, subgraphs, eigenvalues, etc. In Example 2.2, a special graph,

Petersen graph, is introduced since it is an essential example in graph theory.

Next, Chapter 3 introduces the distance-regular graphs along with a spe-

cial class of distance-regular graphs, the class of strongly regular graphs,

which will be used in Chapter 5. Meanwhile, a classic theorem and its proof,

Theorem 3.5, are mentioned to characterize strongly regular graph by its

eigenvalues.
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In Chapter 4, we give some definitions of designs and its basic concepts.

Firstly, a t-design is presented accompanied with a special case, 2-design later

utilized in the following chapter.

Chapter 5 is about Quasisymmetric Designs and its relation to strongly

regular graphs. Quasisymmetric Design is known as a 2-design (P,B), which

constructs a graph with vertex set B. In Theorem 5.4, we know that this

graph is a strongly regular graph. Next, in Lemma 5.5, its parameters are

determined explicitly. Within Lemma 5.5, a special case, Corollay 5.6, will

be generated as well and used in Theorem 8.3.

In Chapter 6, we give some definitions and properties about D-bounded

distance-regular, which will be used in the next Chapter.

In Chapter 7, a strongly regular graph is constructed from a D-bounded

distance-regular graph. Firstly, we define a graph G(∆, 2) which is known to

be either a clique or a strongly regular graph in Theorem 7.1. The parame-

ters of a strongly regular graph will be obtained. It is worth noticing that

Theorem 7.6 is the main theorem in this thesis.

Finally, in Chaptet 8, we use a linear algebraic method to prove Theorem

7.6 again as Theorem 8.3 shown.
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2 Preliminaries of graphs

In this section we review some definitions and basic concepts of graphs.

The reader can refer to [13] for more details.

Definition 2.1. A graph G is a pair consisting of a vertex set V (G) and an

edge set E(G), where E(G) is a set containing some 2-subsets of V (G). For

a vertex u ∈ V (G) and an edge uv ∈ E(G), we say u is incident to uv and

u is adjacent to v.

Example 2.2. Let V (G) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and E(G) = {01, 12, 23, 34,

40, 05, 16, 27, 38, 49, 57, 58, 69, 68, 79}. Then G = (V (G), E(G)) is a graph.

See Figure 1 for the drawing of this graph. G is called the Petersen graph.

s

s

s

s

s

s s
s s

s
�

�
�

�
��

@
@

@
@

@@

�
�
�

@
@

@

���
���

HHH
HHH

A
A

A
A

AA

�
�
�
�
��

0

1

23

4

5

6

78

9

Figure 1: Petersen graph

Definition 2.3. The degree of vertex v in a graph G is the number of edges

incident to v. G is regular if every vertex has the same degree. It is b0-regular

if the common degree is b0.

Example 2.4. The Petersen graph is 3-regular.
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Definition 2.5. A path in a graph G is a sequence of vertices so that any

two consecutive vertices are adjacent. For two vertices u, v in G, a u, v-path

is a path with the first vertex u and the last vertex v.

Definition 2.6. A graph G is connected if each pair of vertices in G belongs

to a path.

Definition 2.7. If G has a u, v-path, then the distance from u to v, written

∂G(u, v) or simply ∂(u, v), is the least length of a u, v-path. If G has no such

path, then ∂(u, v) = ∞. The diameter (diam G) is

max{∂(u, v)|u, v ∈ V (G)}.

Example 2.8. The Petersen graph has diameter 2, since nonadjacent ver-

tices have a common neighbor.

Definition 2.9. A subgraph of a graph G is a graph H such that V (H) ⊆

V (G) and E(H) ⊆ E(G). An induced subgraph is a subgraph H of a graph

G such that if u, v ∈ V (H) and uv ∈ E(G) then uv ∈ E(H).

Definition 2.10. Let G be a graph with vertex set V (G) of size n and edge

set E(G) of size m. The adjacency matrix of G, written A(G), is the n-by-n

matrix in which entry aij, where i, j ∈ V (G), is 1 if ij ∈ E(G) and otherwise

is 0. The incidence matrix M(G) is the n-by-m matrix in which entry mie,

where i ∈ V (G) and e ∈ E(G), is 1 if i is incident to e and otherwise is 0.

Definition 2.11. The eigenvalues of a graph G are the eigenvalues of its

adjacency matrix A(G).

Definition 2.12. The complement G of a graph G is the graph with vertex

set V (G)=V (G) and the edge set E(G) = {uv | u, v ∈ V (G), uv /∈ E(G)}.
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Definition 2.13. Assume G is a connected graph with diameter D. For all

vertices x in G and for 0 ≤ i ≤ D, set

Gi(x) := {y ∈ G | ∂(x, y) = i}.

3 Distance-regular graphs

Assume Γ is a connected graph with diameter D. Γ is said to be distance-

regular whenever for 0 ≤ h, i, j ≤ D and for vertices x, y in Γ with ∂(x, y) = h,

the number

ph
ij :=

∣∣Γi(x) ∩ Γj(y)
∣∣

is independent of x, y. The constants ph
ij are known as the intersection num-

bers of Γ. For convenience, set ci := pi
1i−1, ai := pi

1i, bi := pi
1i+1 and ki := p0

ii.

Note that c1 = 1, a0 = 0, bD = 0 and

k1 = ci + ai + bi for 0 ≤ i ≤ D.

The Petersen graph described in Figure 1 is a distance-regular graph with

diameter D = 2 and intersection numbers c1 = 1, c2 = 1, a1 = 0, a2 = 2, b0 =

3, b1 = 2.

Next, we give a special class of distance-regular graphs. Its diameter is

two.
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Definition 3.1. A strongly regular graph SRG(v, b0, a1, c2) is a b0-regular

graph which has v vertices and the following properties hold:

(i) For any two adjacent vertices x, y, there are exactly a1 vertices adjacent

to x and to y.

(ii) For any two nonadjacent vertices x, y, there are exactly c2 vertices

adjacent to x and y.

Next, we give two examples.

Example 3.2. A pentagon is an SRG(5, 2, 0, 1).

Example 3.3. The Petersen graph is an SRG(10, 3, 0, 1).

Next, we introduce the lemma, which will be used later.

Lemma 3.4. A connected graph with diameter d has at least d + 1 distinct

eigenvalues.

Proof. Let A = A(G) be the adjacency matrix. Suppose A has distinct

eigenvalues θ0, θ1, ..., θm where m < d. Then m(x) =
∏m

i=0(x − θi) is the

minimal polynomial of A. Hence Ad−m−1m(A) = 0. Expanding to find

Ad = Cd−1A
d−1 + Cd−2A

d−2 + ... + C0 for some Ci ∈ R.

Pick two vertices x, y ∈ G with ∂(x, y) = d. We check the xy position in the

above equation and find

0 6= (Ad)xy = (Cd−1A
d−1
xy + Cd−2A

d−2
xy + ... + C0) = 0,

a contradiction.
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The following theorem characterize a strongly regular graph by its eigen-

values.

Theorem 3.5. ([1, Problem 31H]). Let G denote a connected b0-regular graph

of diameter 2. Then G is a strongly regular graph SRG(v, b0, a1, c2) for some

scalars v, b0, a1, c2 if and only if G has three distinct eigenvalues.

Proof. (⇒)Let A = A(G) be the adjacency matrix.

Observe

A


1

1
...

1

 =


b0

b0

...

b0

 = b0


1

1
...

1

 .

Claim(i): A2 + (c2 − a1)A + (c2 − b0)I = c2J, where J denotes the all 1’s

matrix.

Pick x, y ∈ G. Compare x, y entries on both sides, according to the following

three cases.

Case 1. ∂(x, y) = 0 :

b0 + 0 + (c2 − b0) · 1 = c2;

Case 2. ∂(x, y) = 1 :

a1 + (c2 − a1) · 1 + 0 = c2;

Case 3. ∂(x, y) = 2 :

c2 + 0 + 0 = c2.

Claim(ii): (A− b0I)(A2 + (c2 − a1)A + (c2 − b0)I) = 0.

7



The left hand side acts on (1, 1, . . . , 1)t is 0. Let u = (1, 1, . . . , 1)t. Other

eigenvectors are orthogonal to u. Hence by claim(i)

(A− b0I)(A2 + (c2 − a1)A + (c2 − b0)I)u = (A− b0I)(c2J)u

= 0.

By claim(ii), A has eigenvalues among b0, (a1−c2±
√

(c2 − a1)2 − 4(c2 − b0))/2.

By Lemma 3.4, G has at least three eigenvalues. Hence G has exactly three

eigenvalues.

(⇐) Clearly, G has a eigenvalue b0. Suppose g < s are the other two.

Then (A− gI)(A− sI) = (b0 − g)(b0 − s)J/|G|. (As above, apply both sides

to all eigenvectors of A.) Pick x, y ∈ G.

Case 1. ∂(x, y) = 0 :

A2
xy = (g + s)Axy − gsIxy +

(b0 − g)(b0 − s)

|G|
Jxy

= −gs +
(b0 − g)(b0 − s)

|G|
is independent of x = y, and b0 = −gs + (b0 − g)(b0 − s)/|G|.

Case 2. ∂(x, y) = 1 :

A2
xy = (g + s)Axy − gsIxy +

(b0 − g)(b0 − s)

|G|
Jxy

= g + s +
(b0 − g)(b0 − s)

|G|
is independent of x, y with ∂(x, y) = 1 and a1 = g + s + (b0 − g)(b0 − s)/|G|.

Case 3. ∂(x, y) = 2 :

A2
xy = (g + s)Axy − gsIxy +

(b0 − g)(b0 − s)

|G|
Jxy

=
(b0 − g)(b0 − s)

|G|

8



is independent of x, y with ∂(x, y) = 2 and c2 = (b0 − g)(b0 − s)/|G|.

G has diameter 2. Since G has three eigenvalues. Hence b1 := b0− a1− 1

is |G1(x) ∩ G2(y)| for any x, y ∈ G with ∂(x, y) = 1. Then G is a strongly

regular graph.

Example 3.6. The Petersen graph is a 3-regular graph of diameter 2. And

from Example 3.3, we know it is a strongly regular graph . By Theorem 3.5,

the Petersen graph has three distinct eigenvalues.

4 Preliminaries of designs

We first give the definition of a design and its basic concepts.

Definition 4.1. (P,B) is a t-(v, k, λ) design whenever the following (i)-(iv)

hold.

(i) P is a finite set of v elements.

(ii) B is a class of subsets, called blocks , of P.

(iii) |B| = k for all B ∈ B.

(iv) For any t distinct elements p1, p2, ..., pt ∈ P there are exactly λ blocks

B1, B2, ..., Bλ ∈ B such that pi ∈ Bj for all i, j.

A t-design is a t-(v, k, λ) design for some positive integers v,k,λ.

Next, we see two examples.

9



Example 4.2. P = {1, 2, 3, . . . , n}, B = {P}. Then (P,B) is a t-(n, n, 1)

design for any t = 1, 2, . . . , n.

Example 4.3. P = {0, 1}2 = {0, 1}×{0, 1}. B = {{(0, 0), (1, 0)}, {(0, 1), (1, 1)},

{(0, 0), (0, 1)}, {(1, 0), (1, 1)}, {(0, 0), (1, 1)}, {(1, 0), (0, 1)}}. Then (P,B) is a

2-(4, 2, 1) design.

We give a few properties of 2-design which will be used later.

Lemma 4.4. ([1, Theorem 19.2]). In a 2-(v, k, λ) design, there are

b := λ

 v

2

 /

 k

2

 blocks.

Proof. We count the pairs (S, B), where S ⊆ B ∈ B and |S| = 2, by two

ways:  v

2

 λ = b

 k

2

 .

Hence b = λ

 v

2

 /

 k

2

 .

Lemma 4.5. ([1, Theorem 19.3]). For i = 0, 1, 2, any i points in a 2-(v, k, λ)

design (P,B) are contained in γi := λ

 v − i

2− i

 /

 k − i

2− i

 blocks.

Proof. Let I ⊆ P with |I| = i. Count the pair (S, B), where S ∪ I ⊆ B ∈ B,

S ∩ I = φ and |S| = 2− i, by two ways: v − i

2− i

 λ = γi

 k − i

2− i

 .

Hence γi = λ

 v − i

2− i

 /

 k − i

2− i

 .
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Definition 4.6. In a 2-(v, k, λ) design, γ1 = λ(v − 1)/(k − 1) is usually

denoted by r, referred as the replication number.

We give the following example of 2-design. To calculate b and r.

Example 4.7. Let P = {1, 2, 3, 4, 5, 6, 7}, B = {{1, 2, 3}, {1, 6, 7}, {1, 4, 5},

{3, 4, 7}, {2, 5, 7}, {2, 4, 6}, {3, 5, 6}}. Then (P,B) is 2-(7, 3, 1) design. And

b = 1

 7

2

 /

 3

2

 = 7, r = 1(7− 1)/(3− 1) = 3.

5 Quasisymmetric designs and strongly reg-

ular graphs

In this section, we introduce the concept of Quasisymmetric Designs and

the graph which is constructed from a quasisymmetric design. This graph is

known to be a strongly regular graph. We determine its parameters explicitly.

We give a special class of 2-design.

Definition 5.1. A quasisymmetric design (QSD) with parameters ρ < α is

a 2-design (P,B) such that |B ∩B′| = ρ or α for all distinct blocks B and B′

in B.

We construct a graph from a quasisymmetric design.

Definition 5.2. Suppose that (P,B) is a QSD with parameters ρ < α. Let

G be a graph with vertex set B and two vertices B and B′ of B are adjacent

if and only if |B ∩B′| = ρ. Then G is called the block graph of (P ,B).

11



Next, we introduce the lemma, which will be used later.

Lemma 5.3. Let N denote the v×b incidence matrix of (P,B) where v = |P |

and b = |B| and J denote the all 1’s matrix, r is the replication number. Then

NN t = (r − λ)I + λJ.

Proof.

(NN t)xy =
∑
`∈B

Nx`N
t
`y

=
∑
`∈B

Nx`Ny`

=

 r, if x = y ;

λ, if x 6= y ;

= ((r − λ)I + λJ)xy.

The following theorem is the main theorem in this section.

Theorem 5.4. ([1, Theorem 21.2]). The block graph G of a QSD (P,B)

with parameters ρ < α is a strongly regular graph.

Proof. Let A(G) denote the adjacency matrix of G, and N denote the v × b

incidence matrix of (P,B) where v = |P | and b = |B|. Let k be the cardinality

of a block in B and J denotes the all 1’s matrix.

Claim: N tN = kI + ρA + α(J − I − A).

Pick two block B, B′ ∈ B. Compare the BB′-entry on both sides.

12



Case 1. B = B′ :

k = |B ∩B′| = k + 0 + α(1− 1− 0);

Case 2. |B ∩B′| = ρ :

ρ = 0 + ρ + α(1− 0− 1);

Case 3. |B ∩B′| = α :

α = 0 + 0 + α(1− 0− 0).

The claim follows from this.

Note that A = (N tN + (α− k)I − αJ)/(ρ− α).

Recall that NN t = (r−λ)I +λJ. We know that both NN t and N tN have

all-one eigenvectors j(of different lengths!) with eigenvalue r−λ+λv (= kr).

We know that NN t has only the eigenvalue r − λ with multiplicity v − 1.

Therefore N tN has this same eigenvalue, with the same multiplicity, and the

eigenvalue 0 with multiplicity b− v. Observe

A


1

1
...

1

 =
kr + α− k − αb

ρ− α


1

1
...

1

 .

Hence G is regular. Observe the eigenvectors of N tN are eigenvectors of I

and J. Hence the other 2 eigenvalues of A are

r − λ + α− k + 0

ρ− α
,

0 + α− k + 0

ρ− α
.

13



Hence G has exactly three eigenvalues. By Theorem 3.5, we obtain G is a

strongly regular graph.

In Theorem 5.4, we know ”G is a strongly regular regular.” Next, in the

following lemma, we will determine its parameters explicitly.

Lemma 5.5. Let G denote the strongly regular graph obtained in Theorem

5.4 with parameters (v, b0, a1, c2). Then the following (i)-(iv) hold.

(i) v = |G|,

(ii) b0 =
kr + (α− k)− αb

ρ− α
,

(iii) a1 =
(ρ− α)(r − λ + 2(α− k) + kr + α− k − αb) + (α− k)(r − λ + α− k)

(ρ− α)2 ,

(iv) c2 =
(α− k)(r − λ + α− k) + (ρ− α)(kr + α− k − αb)

(ρ− α)2 .

Where b = |B|, r is the replication number, and k is the cardinality of a block

in B.

Proof. Clearly, G has a eigenvalue b0. Suppose g < s are the other two

eigenvalues of G. Where g = (r − λ + α− k)/(ρ− α), s = (α− k)/(ρ− α).

(ii) Observe that

b0 =
kr + α− k − αb

ρ− α

= −gs +
(k − g)(k − s)

| G |
.

14



(iii) Observe that

a1 = g + s +
(k − g)(k − s)

|G|
= g + s + b0 + gs

=
r − λ + α− k

ρ− α
+

α− k

ρ− α
+

kr + α− k − αb

ρ− α
+

(r − λ + α− k)(α− k)

(ρ− α)2

=
(ρ− α)(r − λ + 2(α− k) + kr + α− k − αb) + (α− k)(r − λ + α− k)

(ρ− α)2 .

(iv) Observe that

c2 =
(k − g)(k − s)

| G |
= b0 + gs

=
kr + α− k − αb

ρ− α
+

(r − λ + α− k)(α− k)

(ρ− α)2

=
(ρ− α)(kr + α− k − αb) + (α− k)(r − λ + α− k)

(ρ− α)2 .

We give a special case of lemma 5.5, which will be used later.

Corollary 5.6. From Lemma 5.5, and let ρ = 0, α = 1, λ = 1, we have

(ii) b0 = −kr + k − 1 + b;

(iii) a1 = 2k − 2kr − 2 + b + k2;

(iv) c2 = r − 2kr + k2 + b− 1.

Proof. From Lemma 5.5, and let ρ = 0, α = 1, λ = 1.

15



(ii) We have

b0 =
kr + α− k − αb

ρ− α

=
kr + 1− k − b

0− 1

= −kr − 1 + k + b.

(iii) We have

a1 =
(ρ− α)(r − λ + 2(α− k) + kr + α− k − αb) + (α− k)(r − λ + α− k)

(ρ− α)2

=
(0− 1)(r − 1 + 2(1− k) + kr + 1− k − b) + (1− k)(r − 1 + 1− k)

(0− 1)2

= (−1)(r − 1 + 2− 2k + kr + 1− k − b) + r − k − kr + k2

= (−1)(r + 2− 3k + kr − b) + r − k − kr + k2

= −r − 2 + 3k − kr + b + r − k − kr + k2

= 2k − 2kr − 2 + b + k2.

(iv) We have

c2 =
(α− k)(r − λ + α− k) + (ρ− α)(kr + α− k − αb)

(ρ− α)2

=
(1− k)(r − 1 + 1− k) + (0− 1)(kr + 1− k − b)

(0− 1)2

= (1− k)(r − k) + (−1)(kr + 1− k − b)

= r − k − kr + k2 − kr − 1 + k + b

= r − 2kr + k2 + b− 1.
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6 D-bounded distance-regular graphs

Let Γ denote a distance-regular graph with diameter D ≥ 3. A sequence

of vertices x, y, z of Γ is weak-geodetic whenever

∂(x, y) + ∂(y, z) ≤ ∂(x, z) + 1,

where ∂ is the distance function of Γ. A subgraph ∆ of Γ is weak-geodetically

closed whenever for all weak-geodetic sequences of vertices x, y, z of Γ we

have

x, z ∈ ∆ =⇒ y ∈ ∆.

Weak-geodetically closed subgraphs are called strongly closed subgraphs in

[7]. We refer the reader to [9], [2], [5], [8], [10], [6] for the constructions of

weak-geodetically closed subgraphs of Γ. It is immediate from the definition

that a weak-geodetically closed subgraph ∆ is an induced subgraph of Γ and

the distance function on ∆ is induced from that on Γ. Γ is D-bounded if (i)

all of the weak-geodetically closed subgraphs of Γ are regular; and (ii) for all

vertices x, y of Γ, x, y are contained in a common weak-geodetically closed

subgraph ∆(x, y) of diameter ∂(x, y). In fact ∆(x, y) is uniquely determined

by the vertices x and y [10, Corollary 5.4], and is distance-regular [10, Corol-

lary 5.3]. Regular near polygons [2], [6], [9] and Hermitian forms graphs [5]

are examples of D-bounded distance-regular graphs. The classification of D-

bounded distance-regular graphs with some additional assumptions can be

found in [11], [12].
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Below we recall a few properties in a D-bounded distance-regular graph,

which will be used in the next section. Let Γ denote a D-bounded distance-

regular graph where D ≥ 3 is the diameter of Γ. Let ai, bi, ci denote the

intersection numbers of Γ for 0 ≤ i ≤ D. Let ∆ denote a weak-geodetically

closed subgraph of diameter s for 0 ≤ s ≤ D. Note that ∆ is regular by the

assumption (i) of D-bounded definition. In fact ∆ is distance-regular with

intersection numbers

ai(∆) = ai(Γ)

ci(∆) = ci(Γ)

bi(∆) = bi(Γ)− bs(Γ)

for 0 ≤ i ≤ s [10, Corollary 5.3]. In particular a weak-geodetically closed

subgraph of diameter 1 is a clique of size b0 − b1 + 1, and we refer such a

clique to a line. The intersection of weak-geodetically closed subgraphs is

either an empty set or a weak-geodetically closed subgraph. Hence |∆∩ `| ∈

{0, 1, b0− b1 +1} for any line ` in Γ. Let x denote a vertex in ∆. Then ∆1(x)

is a disjoint union of (b0 − bs)/(b0 − b1) cliques of the form ` − {x}, where

` ⊆ ∆ is a line containing x. There are

b0

b0 − b1

− b0 − bs

b0 − b1

lines `′ containing x such that `′ 6⊆ ∆. For such a line `′, there exists a unique

weak-geodetically closed subgraph ∆′ of diameter s + 1 containing ∆ and `′.

There are

b0 − bs+1

b0 − b1

− b0 − bs

b0 − b1
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lines `′′ (including `′) containing x such that `′′ − {x} ⊆ ∆′ −∆.

7 Construct strongly regular graphs from D-

bounded distance-regular graphs

Throughout the section, let Γ denote a D-bounded distance-regular graph

with intersection numbers bi, ci for 0 ≤ i ≤ D. Note that bi > bi+1 for

0 ≤ i ≤ D − 1 [11, Lemma 2.6]. Fix an integer 0 ≤ s ≤ D − 3 and a

weak-geodetically closed subgraph ∆ of Γ with diameter s. Let P = P(∆)

denote the collection of weak-geodetically closed subgraphs containing ∆. If

∆ = {x} for some vertex x of Γ then we write P(x) for P(∆). It was shown

that P is a ranked atomic lattice [3], where rank(Ω) is diameter(Ω) − s

for Ω ∈ P . Let Pj = Pj(∆) denote the set of rank j elements in P for

0 ≤ j ≤ D − s. For each 1 ≤ i ≤ D − s we define a graph G(∆, i) whose

vertex set is Pi, and vertex Ω is adjacent to vertex Ω′ in G(∆, i) if and only

if Ω ∩ Ω′ ∈ Pi−1, where Ω, Ω′ ∈ Pi.

Theorem 7.1. G(∆, 2) is either a clique or a strongly regular graph with

parameters

b0(G) =
bs+2(bs − bs+2)

(bs − bs+1)(bs+1 − bs+2)
, (7.1)

a1(G) = (
bs+1 − bs+2

bs − bs+1

)2 +
bs+2

bs+1 − bs+2

− 1, (7.2)

c2(G) = (
bs − bs+2

bs − bs+1

)2. (7.3)
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Proof. Fix x ∈ ∆ and Ω ∈ P2. Then x ∈ ∆ ⊆ Ω by the construction. First

we prove the number b0(G) = b0(G)(Ω) as expressed in (7.1). We do this

by counting the triples (Ω′, `, `′) in the order and its reversed order where

Ω′ ∈ P2 such that Ω∩Ω′ ∈ P1, and `, `′ ⊆ Ω′ are lines containing x such that

`− {x} ⊆ Ω ∩ Ω′ −∆ and `′ − {x} ⊆ Ω′ − Ω. We find

b0(G)× (
b0 − bs+1

b0 − b1

− b0 − bs

b0 − b1

)× (
b0 − bs+2

b0 − b1

− b0 − bs+1

b0 − b1

)

= (
b0

b0 − b1

− b0 − bs+2

b0 − b1

)× (
b0 − bs+2

b0 − b1

− b0 − bs

b0 − b1

)× 1

to obtain (7.1).

Second we fix another Ω′ ∈ P2 such that Ω ∩ Ω′ ∈ P1. We prove the

number a1(G) = a1(G)(Ω, Ω′) as expressed in (7.2). Let λ1 (resp. λ2) denote

the number of Ω′′ ∈ P2 such that

Ω′′ ∩ Ω = Ω′′ ∩ Ω′ = Ω′ ∩ Ω (7.4)

(resp.

Ω′′ ∩ Ω ∈ P1, Ω
′′ ∩ Ω′ ∈ P1, Ω ∩ Ω′ ∩ Ω′′ = ∆). (7.5)

Note that

a1(G) = λ1 + λ2. (7.6)

To determine λ1 we count the pairs (Ω′′, `′′) in the order and its reversed order,

where Ω′′ ∈ P2 satisfies (7.4) and `′′ ⊆ Ω′′ is a line such that `′′ 6⊆ Ω∪Ω′. We

find

λ1 × (
b0 − bs+2

b0 − b1

− b0 − bs+1

b0 − b1

)

= (
b0

b0 − b1

− 2
b0 − bs+2

b0 − b1

+
b0 − bs+1

b0 − b1

)× 1. (7.7)
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To determine λ2 we count the triples (Ω′′, `, `′) in the order and its reversed

order, where Ω′′ ∈ P2 satisfies (7.5), and `, `′ ⊆ Ω′′ are lines containing x

such that `− {x} ⊆ Ω− Ω′ and `′ − {x} ⊆ Ω′ − Ω. We find

λ2 × (
b0 − bs+1

b0 − b1

− b0 − bs

b0 − b1

)× ((
b0 − bs+1

b0 − b1

− b0 − bs

b0 − b1

)

= (
b0 − bs+2

b0 − b1

− b0 − bs+1

b0 − b1

)× (
b0 − bs+2

b0 − b1

− b0 − bs+1

b0 − b1

)× 1. (7.8)

(7.2) is immediate by solving (7.6)-(7.8) for a1(G).

Third we fix Ω′′ ∈ P2 such that Ω ∩ Ω′′ = ∆. We prove the number

c2(G) = c2(G)(Ω, Ω′′) as expressed in (7.3). We do this by counting the

triples (Ω′′′, `, `′′) in the order and its reversed order, where Ω′′′ ∈ P2 such

that Ω′′′ ∩ Ω, Ω′′′ ∩ Ω′′ ∈ P1, and `, `′′ ⊆ Ω′′′ are lines containing x such that

`− {x} ⊆ Ω− Ω′′ and `′′ − {x} ⊆ Ω′′ − Ω. We find

c2(G)× (
b0 − bs+1

b0 − b1

− b0 − bs

b0 − b1

)× (
b0 − bs+1

b0 − b1

− b0 − bs

b0 − b1

)

= (
b0 − bs+2

b0 − b1

− b0 − bs

b0 − b1

)× (
b0 − bs+2

b0 − b1

− b0 − bs

b0 − b1

)× 1. (7.9)

(7.3) follows from (7.9).

Theorem 7.1 is a generalization of [4], which proves in the case ∆ = {x}

for some vertex x of Γ and some additional assumptions.

Theorem 7.2. ([13, Theorem 8.6.33]). The complement G of an SRG(v, b0, a1, c2)

G is an SRG(v, v − b0 − 1, v − 2b0 + c2 − 2, v − 2b0 + a1)

Proof. For each adjacent pair u, w in G, there are 2(b0−1)−a1 other vertices

in G1(u) ∪ G1(w), so u and w have v − 2 − 2(b0 − 1) + a1 = v − 2b0 + a1

common nonneighbors. When u, w are not adjacent, there are 2b0−c2 vertices

in G1(u) ∪G1(w) and thus v − 2b0 + c2 common nonneighbors.
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Example 7.3. The Petersen graph G, an SRG (10, 3, 0, 1). Its complement

G is an SRG (10, 6, 3, 4).

Next, we introduce the following lemma, which will be used later.

Lemma 7.4. Set

P := {∆′|∆′ ⊇ ∆ is a weak− geodetically closed subgraph of diameter s+1 in Γ}.

Then |P | = bs

bs − bs+1

.

Proof. Observe

|P | = (
bs

b0 − b1

)/(
bs − bs+1

b0 − b1

)

=
bs

bs − bs+1

by counting arguments.

Lemma 7.5. Set

B = {∆′′|∆′′ ⊇ ∆ is a weak-geodetically closed subgraph of diameter s+2 in Γ}.

Then |B| = bsbs+1

(bs+1 − bs+2)(bs − bs+2)
.

Proof. We count the pair (∆′, ∆′′) such that ∆ ∈ P, ∆′ ∈ B and ∆′ ⊆ ∆′′ to

find

|P | × (
bs+1

bs+1 − bs+2

) = |B| × bs − bs+2

(bs − bs+2)− (bs+1 − bs+2)
.
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By Lemma 7.4

bs

bs − bs+1

× (
bs+1

bs+1 − bs+2

) = |B| × bs − bs+2

bs − bs+1

.

Hence

|B| =
bs

bs − bs+1

× bs+1

bs+1 − bs+2

× bs − bs+1

bs − bs+2

=
bsbs+1

(bs+1 − bs+2)(bs − bs+2)
.

Theorem 7.6. G(∆, 2) is a strongly regular graph with parameters

b0(Ḡ) =
bsb

2
s+2 − b3

s+2 − b2
s+1bs+2 + bs+1b

2
s+2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)
.

a1(Ḡ) =
2b2

sb
2
s+1 − bsb

3
s+1 − 3b2

sbs+1bs+2 − 2bsb
2
s+1bs+2 + 2b3

s+1bs+2 − b3
sbs+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
5b2

sb
2
s+2 + 3bsbs+1b

2
s+2 − 2b2

s+1b
2
s+2 − 5bsb

3
s+2 + bs+1b

3
s+2 + b4

s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.

c2(Ḡ) =
bsb

3
s+1 + 2b2

sb
2
s+2 − 3bsb

3
s+2 − b2

sbs+1bs+2 + 3bsbs+1b
2
s+2 − bs+1b

3
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
−3bsbs+1b

2
s+2 − bs+1b

3
s+2 − 3bsb

2
s+1bs+2 + b2

s+1 + b4
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.

Proof. Observe

v = |P2| = |B| = bsbs+1

(bs+1 − bs+2)(bs − bs+2)
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and by Theorem 7.2, we have

b0(Ḡ) = v − b0(G)− 1

=
bsbs+1

(bs+1 − bs+2)(bs − bs+2)
− bs+2(bs − bs+2)

2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

− (bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

=
bsb

2
s+2 − b3

s+2 − b2
s+1bs+2 + bs+1b

2
s+2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)
.

a1(Ḡ) = v − 2b0(G) + c2 − 2

=
bsbs+1

(bs+1 − bs+2)(bs − bs+2)
− 2

bs+2(bs − bs+2)
2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

+
(bs − bs+2)

2

(bs − bs+1)2
− 2

=
bsbs+1(bs − bs+1)

2

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

−2
bs+2(bs − bs+2)

2(bs − bs+1)

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

+
(bs − bs+2)

3(bs+1 − bs+2)

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

−2
(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)

2

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

=
2b2

sb
2
s+1 − bsb

3
s+1 − 3b2

sbs+1bs+2 − 2bsb
2
s+1bs+2 + 2b3

s+1bs+2 − b3
sbs+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
5b2

sb
2
s+2 + 3bsbs+1b

2
s+2 − 2b2

s+1b
2
s+2 − 5bsb

3
s+2 + bs+1b

3
s+2 + b4

s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.
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c2(Ḡ) = v − 2b0(G) + a1

=
bsbs+1

(bs+1 − bs+2)(bs − bs+2)
− 2

bs+2(bs − bs+2)
2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

+(
bs+1 − bs+2

bs − bs+1

)2 +
bs+2

bs+1 − bs+2

− 1

=
bsbs+1(bs − bs+1)

2

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

− 2bs+2(bs − bs+2)
2(bs − bs+1)

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

+
(bs+1 − bs+2)

3(bs − bs+2)

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

+
bs+2(bs − bs+1)

2(bs − bs+2)

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

−(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)
2

(bs+1 − bs+2)(bs − bs+2)(bs − bs+1)2

=
bsb

3
s+1 + 2b2

sb
2
s+2 − 3bsb

3
s+2 − b2

sbs+1bs+2 + 3bsbs+1b
2
s+2 − bs+1b

3
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
−3bsbs+1b

2
s+2 − bs+1b

3
s+2 − 3bsb

2
s+1bs+2 + b2

s+1 + b4
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.

8 Another proof of Theorem 7.6

We prove Theorem 7.6 by a linear algebraic method in this section. Let

Γ, ∆,P = P(∆), G(∆, i) be as in Section 7, and P,B be as in Lemma 7.4 and

Lemma 7.5.

A quasisymmetric design (QSD) with parameters ρ < α is a 2− (v, k, λ)

design (such that |B ∩B′| = ρ or α for all distinct blocks B and B′.)
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From Lemma 7.4, we immediately have the following Lemma.

Lemma 8.1. (P,B) is a 2-(v, k, 1) quasisymmetric design with parameters

0, 1, where

v = bs/(bs − bs+1),

k = (bs − bs+2)/(bs − bs+1).

�

Corollary 8.2. (P,B) is a 2-(v, k, 1) quasisymmetric design with parameters

0, 1. Then

(i)

b =
bsbs+1

(bs − bs+2)(bs+1 − bs+2)
.

(ii)

r =
bs+1

bs+1 − bs+2

.

Proof.

(i) By Lemma 4.4. Hence

b =
λv(v − 1)

k(k − 1)

=
v(v − 1)

k(k − 1)

=
v

k
× v − 1

k − 1

=
bsbs+1

(bs − bs+2)(bs+1 − bs+2)
.
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(ii) By Lemma 4.5. Hence

r =
λ(v − 1)

k − 1

=
v − 1

k − 1

=
bs+1

bs+1 − bs+2

.

Below we will proof the Theorem 7.6 by another method.

Theorem 8.3. G(∆, 2) is a quasisymmetric design (QSD) with parameters

ρ = 0, α = 1, λ = 1. By Corollary 5.6, G(∆, 2) is a strongly regular graph

with parameters

(ii)

b0(G) =
bsb

2
s+2 − b3

s+2 − b2
s+1bs+2 + bs+1b

2
s+2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)
.

(iii)

a1(G) =
2b2

sb
2
s+1 − bsb

3
s+1 − 3b2

sbs+1bs+2 − 2bsb
2
s+1bs+2 + 2b3

s+1bs+2 − b3
sbs+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
5b2

sb
2
s+2 + 3bsbs+1b

2
s+2 − 2b2

s+1b
2
s+2 − 5bsb

3
s+2 + bs+1b

3
s+2 + b4

s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.

(iv)

c2(G) =
bsb

3
s+1 + 2b2

sb
2
s+2 − 3bsb

3
s+2 − b2

sbs+1bs+2 + 3bsbs+1b
2
s+2 − bs+1b

3
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
−3bsbs+1b

2
s+2 − bs+1b

3
s+2 − 3bsb

2
s+1bs+2 + b2

s+1 + b4
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.
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Proof. Where k = (bs− bs+2)/(bs− bs+1), b = bsbs+1/(bs− bs+2)(bs+1− bs+2),

r = bs+1/(bs+1 − bs+2).

(ii) From Corollary 5.6, we have

b0(G) = −kr + k − 1 + b.

Hence

b0(G) = −kr + k − 1 + b

=
−(bs − bs+2)bs+1

(bs − bs+1)(bs+1 − bs+2)
+

bs − bs+2

(bs − bs+1)
− 1 +

bsbs+1

(bs − bs+2)(bs+1 − bs+2)

=
−bs+1(bs − bs+2)

2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)
+

(bs − bs+2)
2(bs+1 − bs+2)

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

−(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)
+

bsbs+1(bs − bs+1)

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)

=
bsb

2
s+2 − b3

s+2 − b2
s+1bs+2 + bs+1b

2
s+2

(bs − bs+1)(bs+1 − bs+2)(bs − bs+2)
.

(ii) From Corollary 5.6, we have

a1(G) = 2k − 2kr − 2 + b + k2.
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Hence

a1(G) = 2k − 2kr − 2 + b + k2

=
2(bs − bs+2)

(bs − bs+1)
− 2(bs − bs+2)bs+1

(bs − bs+1)(bs+1 − bs+2)
− 2 +

bsbs+1

(bs − bs+2)(bs+1 − bs+2)

+
(bs − bs+2)

2

(bs − bs+1)2

=
(2b2

s+2 − 2bsbs+1 + 2b2
s+1 − 2bs+1bs+2)(bs − bs+1)(bs − bs+2)

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
bsbs+1(bs − bs+1)

2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
+

(bs − bs+2)
3(bs+1 − bs+2)

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

=
2b2

sb
2
s+1 − bsb

3
s+1 − 3b2

sbs+1bs+2 − 2bsb
2
s+1bs+2 + 2b3

s+1bs+2 − b3
sbs+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
5b2

sb
2
s+2 + 3bsbs+1b

2
s+2 − 2b2

s+1b
2
s+2 − 5bsb

3
s+2 + bs+1b

3
s+2 + b4

s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.

(iv) From Corollary 5.6, we have

c2(G) = r − 2kr + k2 + b− 1.
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Hence

c2(G) = r − 2kr + k2 + b− 1

=
bs+1

(bs+1 − bs+2)
− 2

(bs − bs+2bs+1)

(bs − bs+1)(bs+1 − bs+2)
+

(bs − bs+2)
2

(bs − bs+1)2

+
bsbs+1

(bs − bs+2)(bs+1 − bs+2)
− 1

=
bs+1(bs − bs+1)

2(bs − bs+2)

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

− 2(bs − bs+1)(bs − bs+2)
2bs+1

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
(bs − bs+2)

3(bs+1 − bs+2)

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
bsbs+1(bs − bs+1)

2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

−(bs − bs+1)
2(bs+1 − bs+2)(bs − bs+2)

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

=
bsb

3
s+1 + 2b2

sb
2
s+2 − 3bsb

3
s+2 − b2

sbs+1bs+2 + 3bsbs+1b
2
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

+
−bs+1b

3
s+2 − bs+2)(bs − bs+2)

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)

−3bsbs+1b
2
s+2 − bs+1b

3
s+2 − 3bsb

2
s+1bs+2 + b2

s+1 + b4
s+2

(bs − bs+1)2(bs+1 − bs+2)(bs − bs+2)
.

From the proof of Theorem 8.3, we obtain result similar to theorem 7.6.
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