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Abstract

In the field of mathematics, it is common to achieve the same
conclusion of the theory via various approaches. The purpose of this
thesis is to probe the parameters of a strongly regular graph via two
different methods, one (Theorem 7.6) with the use of counting
argument and the other (Theorem 8.3) with a linear algebric method.
The result shows that these parameters are determined explicitly and

are the same.
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1 Introduction

In mathematics, it is common to get the same theory through different
approaches. In this thesis, we adopt two different methods to construct a
strongly regular graph, one (Theorem 7.6) with the use of counting argument

and the other (Theorem 8.3) with a linear algebric method.

We consider a distance-regular graph I', called a D-bounded distance-
regular graph. This graph I' contains many weak-geodetically closed sub-
graphs. We fix a weak-geodetically closed subgraph A of diameter s and let
P (resp. B) be the set of all weak-geodetically closed subgraphs containing
A of diameter s+1 (resp. s#2). We show that (P, B) is a 2-design. We show
that the block graph of AP, B) is ‘a strongly, regular graph and determine its

parameters explicitly by two methods:

To do this, we need some ‘concepts-about graphs and designs. Hence, in
Chapter 2, we review some definitions and basic concepts of graphs, such as
regular graphs, subgraphs, eigenvalues, etc. In Example 2.2, a special graph,

Petersen graph, is introduced since it is an essential example in graph theory.

Next, Chapter 3 introduces the distance-regular graphs along with a spe-
cial class of distance-regular graphs, the class of strongly regular graphs,
which will be used in Chapter 5. Meanwhile, a classic theorem and its proof,
Theorem 3.5, are mentioned to characterize strongly regular graph by its

eigenvalues.



In Chapter 4, we give some definitions of designs and its basic concepts.
Firstly, a t-design is presented accompanied with a special case, 2-design later

utilized in the following chapter.

Chapter 5 is about Quasisymmetric Designs and its relation to strongly
regular graphs. Quasisymmetric Design is known as a 2-design (P, B), which
constructs a graph with vertex set B. In Theorem 5.4, we know that this
graph is a strongly regular graph. Next, in Lemma 5.5, its parameters are
determined explicitly. Within Lemma 5.5, a special case, Corollay 5.6, will

be generated as well and used in Theorem 8.3.

In Chapter 6, we give some definitions and properties about D-bounded

distance-regular, which Will be used iti the nextChapter.

In Chapter 7, a strongly regular‘graph is constructed from a D-bounded
distance-regular graph. Firstly, we define a graph G(A,2) which is known to
be either a clique or a strongly regular, graph in Theorem 7.1. The parame-
ters of a strongly regular graph will be obtained. It is worth noticing that

Theorem 7.6 is the main theorem in this thesis.

Finally, in Chaptet 8, we use a linear algebraic method to prove Theorem

7.6 again as Theorem 8.3 shown.



2 Preliminaries of graphs

In this section we review some definitions and basic concepts of graphs.

The reader can refer to [13] for more details.

Definition 2.1. A graph G is a pair consisting of a vertex set V(G) and an
edge set E(G), where E(G) is a set containing some 2-subsets of V(G). For
a vertex u € V(@) and an edge uwv € E(G), we say u is incident to uv and

u is adjacent to v.

Example 2.2. Let V(G) = {0,1,2,3,4,5,6,7,8,9} and E(G) = {01, 12, 23, 34,
40, 05,16, 27, 38,49, 57,58,69,68,79}. Then G = (V(G), E(G)) is a graph.
See Figure 1 for the drawing,of this grapht .G is called the Petersen graph.

Figure 1: Petersen graph

Definition 2.3. The degree of vertex v in a graph G is the number of edges
incident to v. G is reqular if every vertex has the same degree. It is by-regular

if the common degree is by.

Example 2.4. The Petersen graph is 3-regular.



Definition 2.5. A path in a graph G is a sequence of vertices so that any
two consecutive vertices are adjacent. For two vertices u,v in G, a u, v-path

is a path with the first vertex u and the last vertex v.

Definition 2.6. A graph G is connected if each pair of vertices in GG belongs
to a path.

Definition 2.7. If G has a u, v-path, then the distance from u to v, written
Og(u,v) or simply O(u,v), is the least length of a u, v-path. If G has no such
path, then O(u,v) = co. The diameter (diam G) is

max{d(u,v)|u,v € V(G)}.

Example 2.8. The Petersen_graph has diameter 2, since nonadjacent ver-

tices have a common neighbor.

Definition 2.9. A subgraph of a graph’'G is-a graph H such that V(H) C
V(G) and E(H) C E(G). An induced subgraph-is a subgraph H of a graph
G such that if u,v € V(H).anduw €-E(G) then uv € E(H).

Definition 2.10. Let G be a graph with vertex set V' (G) of size n and edge
set E(G) of size m. The adjacency matriz of G, written A(G), is the n-by-n
matrix in which entry a;;, where ¢, 7 € V(G), is 1 if ij € E(G) and otherwise
is 0. The incidence matriz M(G) is the n-by-m matrix in which entry m;,,

where i € V(G) and e € E(G), is 1 if ¢ is incident to e and otherwise is 0.

Definition 2.11. The eigenvalues of a graph G are the eigenvalues of its

adjacency matrix A(G).

Definition 2.12. The complement G of a graph G is the graph with vertex

set V(G)=V(G) and the edge set E(G) = {uv | u,v € V(G),uv ¢ E(G)}.

4



Definition 2.13. Assume G is a connected graph with diameter D. For all

vertices x in G and for 0 < i < D, set

Gi(z) :=={y € G | 0(x,y) = i}.

3 Distance-regular graphs

Assume I is a connected graph with diameter D. I' is said to be distance-
regular whenever for 0 < h, i, j < D and for vertices x, y in I with d(x, y) = h,

the number

Py T@a L (y))|
is independent of x, y. The constants p% are known as the intersection num-
bers of I'. For convenience, set ¢; == piioq, a; "= pi;, b = pl;., and k; == pf,.

Note that ¢; =1, a9 = 0, bp =07and

lﬁ:cﬁ—ai—kbi for OSZSD

The Petersen graph described in Figure 1 is a distance-regular graph with
diameter D = 2 and intersection numbers ¢; = 1,¢co = 1,a1 = 0,a9 = 2,by =

3,b1 = 2.

Next, we give a special class of distance-regular graphs. Its diameter is

two.



Definition 3.1. A strongly reqular graph SRG (v, by, a1,co) is a by-regular

graph which has v vertices and the following properties hold:

(i) For any two adjacent vertices x, y, there are exactly a; vertices adjacent

to z and to y.

(ii) For any two nonadjacent vertices x,y, there are exactly ¢, vertices

adjacent to x and y.

Next, we give two examples.
Example 3.2. A pentagon is an SRG(5,2,0,1).

Example 3.3. The Petersen graphlisan.SRG(10,3,0,1).

Next, we introduce the lemma,which will be used later.

Lemma 3.4. A connected graph with' diameter d has at least d + 1 distinct

eigenvalues.

Proof. Let A = A(G) be the) adjacency. matrix. Suppose A has distinct
eigenvalues 6y, 01, ...,0,, where m < d. Then m(z) = [[",(z — 6;) is the

minimal polynomial of A. Hence A4~™"'m(A) = 0. Expanding to find
A = Cy AT+ Cyp A2 + .+ G, for some C; € R.

Pick two vertices z,y € G with d(z,y) = d. We check the xy position in the

above equation and find
0 7& (Ad):cy = (Cd—lAigl + Cd_QAg;Q + ...+ CO) = O,

a contradiction. O



The following theorem characterize a strongly regular graph by its eigen-

values.

Theorem 3.5. ([1, Problem 31H]). Let G denote a connected by-reqular graph
of diameter 2. Then G is a strongly reqular graph SRG(v, by, a1, c2) for some

scalars v, by, a1, co if and only if G has three distinct eigenvalues.

Proof. (=)Let A = A(G) be the adjacency matrix.

Observe - ~ _ .
1 bo 1
1 b 1
A — | | =0
1 bo 1

Claim(i): A? + (ca — ayfA +plcst=bo)I =, coJi.where J denotes the all 1’s

matrix.

Pick z,y € G. Compare-z, y entries-on-both sides, according to the following

three cases.

Case 1. d(x,y) =0
b0+0+(02—b0)'1202;

Case 2. O(x,y) =1:
CL1+(C2—CL1)'1+0:C2;

Case 3. O(x,y) =2
co+0+0=cs.

Claim(ii): (A —bol)(A% + (co — a1)A + (co — by)I) = 0.



The left hand side acts on (1,1,...,1)" is 0. Let w = (1,1,...,1)". Other
eigenvectors are orthogonal to u. Hence by claim(i)
(A — bo[)(A2 -+ (CQ - Cll)A + (CQ - bo)[)u = (A — bo[)(CQJ)’u

= 0.

By claim(ii), A has eigenvalues among by, (a;—cat/(ca — a1)? — 4(ca — by)) /2.
By Lemma 3.4, G has at least three eigenvalues. Hence GG has exactly three
eigenvalues.

(<) Clearly, G has a eigenvalue by. Suppose g < s are the other two.
Then (A — gI)(A —sI) = (by — g)(bo — s)J/|G|. (As above, apply both sides
to all eigenvectors of A.) Pick x,y € G.

Case 1. 9(x,y) =0

bo'— g)(by — s
A2 = (94 s)Azy —=gsk.)+ (% £|7)GE| 0— )
(bO . g)(bg — 5)

G

is independent of x =y, dud by = —gs + (bg'="g9)(bo — 5)/|G|.

Jay

Case 2. d(z,y) =1:

bo — q)(by —
Aiy = (9+5)Axy—981xy+ ( 0 g|)G(|0 S)
(bO_g)(bo—s)

G|

iS il’ldependent Of T,y Wlth a(m7y) == 1 and ap =g + S + (bO o g)(bo . 3)/|G|

oy

= g+s+

Case 3. d(z,y) =2

bo — q)(by —
Ay = (9+3)Axy—gsfxy+(0 72;(1'0 s)
(bo_g)(bo—s)

|G|

oy




is independent of x,y with d(x,y) = 2 and ¢y, = (by — g)(bo — s)/|G|.

(G has diameter 2. Since G has three eigenvalues. Hence by := by —a; — 1
is |G1(z) N Gy(y)| for any z,y € G with d(z,y) = 1. Then G is a strongly
regular graph.

O

Example 3.6. The Petersen graph is a 3-regular graph of diameter 2. And
from Example 3.3, we know it is a strongly regular graph . By Theorem 3.5,

the Petersen graph has three distinct eigenvalues.

4 Preliminaries of designs

We first give the definition of & design. and-its basic concepts.

Definition 4.1. (P, B)-is a t-(v, k, A) design whenever the following (i)-(iv)
hold.

(i) P is a finite set of v elements.
(ii) B is a class of subsets, called blocks, of P.
(iii) |B| =k for all B € B.

(iv) For any ¢ distinct elements py, po, ..., pr € P there are exactly A blocks
By, By, ..., By € B such that p; € B, for all 4, j.

A t-design is a t-(v, k, A) design for some positive integers v,k,\.

Next, we see two examples.



Example 4.2. P = {1,2,3,...,n}, B = {P}. Then (P, B) is a t-(n,n, 1)

design for any t = 1,2,... n.

Example 4.3. P = {0,112 = {0,1}x{0,1}. B = {{(0,0), (1,0)}, {(0,1), (1, 1)},

{(0,0), (0, D)}, {(1,0), (1, 1)}, {(0,0), (1, 1)}, {(1,0), (0, 1)} }. Then (P, B) is a
2-(4,2,1) design.

We give a few properties of 2-design which will be used later.

Lemma 4.4. ([1, Theorem 19.2]). In a 2-(v, k, \) design, there are

v k
b=\ / blocks.

2 2
Proof. We count the pairs (S, B), where S C B € B and |S| = 2, by two

ways:

v k
Hence b = A / : O
2 2

Lemma 4.5. ([1, Theorem 19.3}). (Foru = 0, 1,2, any i points in a 2-(v, k, \)
v—1 k—1

design (P,B) are contained in ~y; := A / blocks.
2—1 2—1

Proof. Let I C P with |I| =i. Count the pair (S, B), where SUI C B € B,

SNI=¢and |S|=2—1i, by two ways:

v—1 k—1
A=
2—1 2—1
v—1 k—1
Hence v; = A / : O
2—1 2—1

10



Definition 4.6. In a 2-(v,k, \) design, 73 = A(v — 1)/(k — 1) is usually

denoted by r, referred as the replication number.

We give the following example of 2-design. To calculate b and r.

Example 4.7. Let P = {1,2,3,4,5,6,7}, B = {{1,2,3},{1,6,7},{1,4,5},
{3,4,7},{2,5,7},{2,4,6},{3,5,6}}. Then (P,B) is 2-(7,3,1) design. And

7 3
b=1 / =7, r=17-1)/(3-1)=3.
2 2

5 Quasisymmetric designs and strongly reg-

ular graphs

In this section, we introduce the concept of Quasisymmetric Designs and
the graph which is constructed from a quasisymmetric design. This graph is

known to be a strongly regulangraph. We determine its parameters explicitly.

We give a special class of 2-design.

Definition 5.1. A quasisymmetric design (QSD) with parameters p < « is
a 2-design (P, B) such that |[BN B’| = p or « for all distinct blocks B and B’
in B.

We construct a graph from a quasisymmetric design.

Definition 5.2. Suppose that (P, B) is a QSD with parameters p < . Let
G be a graph with vertex set B and two vertices B and B’ of B are adjacent
if and only if |B N B’| = p. Then G is called the block graph of (P,B).

11



Next, we introduce the lemma, which will be used later.

Lemma 5.3. Let N denote the v xb incidence matrixz of (P, B) where v = |P)|

and b = |B| and J denote the all 1’s matriz, r is the replication number. Then

NNt = (r— NI+ AJ.

Proof.

(NN')ay = D NuNj,

teB
= Z NgeNye
leB
r, ife=uy,;
1 Aif x £y

=p((m2 ) L+ N )y

The following theorem is the main‘theorem.in this section.

Theorem 5.4. ([1, Theorem 21.2]):" The block graph G of a QSD (P,B)

with parameters p < « 1s a strongly reqular graph.

Proof. Let A(G) denote the adjacency matrix of G, and N denote the v X b
incidence matrix of (P, B) where v = | P| and b = |B|. Let k be the cardinality

of a block in B and J denotes the all 1’s matrix.
Claim: N'N = kI + pA+a(J — 1 — A).

Pick two block B, B’ € B. Compare the BB’-entry on both sides.

12



Case 1. B= B’ :

k=|BNB'|=k+0+a(l—-1-0);

Case 2. |[BNB'|=p :

p=0+p+a(l-0-1)

Case 3. |[BNB|=a :

a=0+0+a(l—-0-0).
The claim follows from this.
Note that A = (N'N + (= k)T — oJ)/(p=a).

Recall that NN* = (r— \) I+ XL We know that both NN* and NN have
all-one eigenvectors j(of different lengths!) with €igenvalue r — A+ v (= kr).
We know that NN! ha§ only théeigenvaliie # — \ with multiplicity v — 1.
Therefore N*N has this safue eigenvalue, with the same multiplicity, and the

eigenvalue 0 with multiplicity b — v."Observe

1 1

4 1 :kr—l—a—k—ab 1
p—a

1 1

Hence G is regular. Observe the eigenvectors of N'N are eigenvectors of I

and J. Hence the other 2 eigenvalues of A are

r—A4+a—k+0 0+a—k+0
p— ’ p—ao
13



Hence G has exactly three eigenvalues. By Theorem 3.5, we obtain G is a

strongly regular graph. [

In Theorem 5.4, we know "G is a strongly regular regular.” Next, in the

following lemma, we will determine its parameters explicitly.

Lemma 5.5. Let G denote the strongly reqular graph obtained in Theorem
5.4 with parameters (v, by, ay,cy). Then the following (i)-(iv) hold.

(i) v=1G],
. krt(a—k)—ab
(i1) by = p— :
C(pma)(r = A+ 2@ k) kit a—k—ab)+(a—k)(r—A+a—k)
(11i) a1 = 5 7
(p5 )
(a—k:)(r—)\—i—oz—k)+(p—a)(kr—|—oz—k—ozb).

(Z.,U) C2 = (p = Oé)2

Where b = |B|, r is the replicationmumberyl and k is the cardinality of a block

i B.

Proof. Clearly, G has a eigenvalue by. Suppose g < s are the other two
eigenvalues of G. Where g = (r—A+a—k)/(p—a),s = (a—k)/(p — ).

(ii) Observe that

kr+a —k — ab
p—

(k —g)(k —s)
G|

by =

= —g5—|—

14



(iii) Observe that

_ (k= g)(k —s)
a, = g+5+ ‘G|
= g+s+by+gs
r—At+a—-k a—k kr+a—-k—ab (r—At+a—k)a—k)
= + + + ;
p—a p—a p—a (p—a)
 (pma)ir—=A+2a—k)+kr+a—k—ab)+(a—k)(r—A+a—k)
(p—a)? '
(iv) Observe that
L -9
|G |
= by +gs
B kr+0z—k—ab+(r—)\+a—k)(a—k)
p—d - (a5 )’
_ (p—a)kr+a=k—-ab)t (= k)(r—A+a—k)
' (o~ oy |

We give a special caser of lemma 5.5, -which will be used later.
Corollary 5.6. From Lemma 5.5, and let p =0, = 1, A\ = 1, we have
(ii) b = —kr +k —1+1;
(111) ay = 2k — 2kr — 2+ b+ k%
(iv) co =1 —2kr +k*+b— 1.

Proof. From Lemma 5.5, and let p =0, =1, A= 1.

15



(ii) We have

kr4+a—k— ab
p—
kr+1—k—>
0—1
= —kr—1+k+0b0.

bo =

(iii) We have

(p—a)(r—A+2(a—k)+kr+a—k—ab)+ (a—k)(r—A+a—k)

" (o= a)?
0= —1+20 k) +hkr+1-k—-b)+(1—-k)(r—1+1—k)
- (0—1)?
= (=1)(r— 142 — 2k 1—k—b)+r—k—kr+k2

(iv) We have
(@—k)r—A+a—k) +(p—a)kr+a—k— ab)

e (p— )’

(1= k)(r—1+1—k)+(0—1)(kr +1—k —b)
(0—1)?

= (1=Fk)(r—Fk+(1)kr+1—-k—0)

= r—k—kr4+k*—kr—1+k+b

= r—2%kr+k+b—1.

16



6 D-bounded distance-regular graphs

Let ' denote a distance-regular graph with diameter D > 3. A sequence

of vertices x,y, z of I' is weak-geodetic whenever
Nz, y) + 0y, 2) < O(x,2) + 1,

where 0 is the distance function of I'. A subgraph A of I' is weak-geodetically
closed whenever for all weak-geodetic sequences of vertices x,y,z of I' we
have

r,z€ A=y e A.

Weak-geodetically closed subgraphs are called strongly closed subgraphs in
[7]. We refer the reader.to [9]; [2],-[5]; [8)s. [10], [6] for the constructions of
weak-geodetically closed subgraphs of I':'It is iminediate from the definition
that a weak-geodetically elosed subgraph.A is an induced subgraph of I" and
the distance function on A is.induced from'that on I'. I is D-bounded if (i)
all of the weak-geodetically closed subgraphs of I' are regular; and (ii) for all
vertices x,y of I', x,y are contained in a common weak-geodetically closed
subgraph A(x,y) of diameter d(z,y). In fact A(x,y) is uniquely determined
by the vertices  and y [10, Corollary 5.4], and is distance-regular [10, Corol-
lary 5.3]. Regular near polygons [2], [6], [9] and Hermitian forms graphs [5]
are examples of D-bounded distance-regular graphs. The classification of D-

bounded distance-regular graphs with some additional assumptions can be

found in [11], [12].

17



Below we recall a few properties in a D-bounded distance-regular graph,
which will be used in the next section. Let I" denote a D-bounded distance-
regular graph where D > 3 is the diameter of I'. Let a;, b;, ¢; denote the
intersection numbers of I' for 0 < i < D. Let A denote a weak-geodetically
closed subgraph of diameter s for 0 < s < D. Note that A is regular by the
assumption (i) of D-bounded definition. In fact A is distance-regular with

intersection numbers
a;(A) = ai(l)
b (A AT, b.(T)

for 0 < i < s [10, Corollary;5.3). In particuldr a weak-geodetically closed
subgraph of diameter I=is'a clique of size by — 6; + 1, and we refer such a
clique to a line. The intersegtion of weak-geodetically closed subgraphs is
either an empty set or a weak-geodetically elosed subgraph. Hence |[AN/| €
{0,1,b9 — by + 1} for any line ¢ in I Tiet = denote a vertex in A. Then A, (x)
is a disjoint union of (by — bs)/(by — b1) cliques of the form ¢ — {x}, where

¢ C A is a line containing x. There are

by bo—b,
bo—b;  byg—b;

lines ¢’ containing x such that ¢/ € A. For such a line ¢, there exists a unique
weak-geodetically closed subgraph A’ of diameter s + 1 containing A and ¢'.

There are
bo —bst1 bo — by

bo — b1 bp — by

18



lines ¢ (including ¢') containing = such that ¢/ — {z} C A’ — A.

7 Construct strongly regular graphs from D-

bounded distance-regular graphs

Throughout the section, let I' denote a D-bounded distance-regular graph
with intersection numbers b;,¢; for 0 < ¢ < D. Note that b; > b;;, for
0 <i< D-—1][11, Lemma 2.6]. Fix an integer 0 < s < D — 3 and a
weak-geodetically closed subgraph A of T' with diameter s. Let P = P(A)
denote the collection of weak-geddetically closed subgraphs containing A. If
A = {z} for some vertex, & of I themrwe write'P(x) for P(A). It was shown
that P is a ranked atomie-lattice [3],#where rank(Q2) is diameter(f2) — s
for @ € P. Let P; =+P;(A) denote the set of rank j elements in P for
0<j<D-—s. Foreach 1 <% <D —s wedefine a graph G(A,7) whose
vertex set is P;, and vertex (Yis;adjagent to vertex Q' in G(A, ) if and only

NEVIRRVRS P;_1, where €2, Qe P

Theorem 7.1. G(A,2) is either a clique or a strongly reqular graph with

parameters
bs+2(bs - bs+2>

bo(G ) 7.1
= b o — bira) =

bs—i—l - bs+2 2 bs+2
= (——m — 1 2
al(G) ( bs - bs-‘,—l ) * bs+1 - bs+2 ’ (7 )

bs — by

e(G) = (b——l)i)2' (7.3)

19



Proof. Fix x € A and 2 € Py. Then x € A C Q by the construction. First
we prove the number by(G) = by(G)(2) as expressed in (7.1). We do this
by counting the triples (£2,¢,¢') in the order and its reversed order where
QY € Py such that QN Q' € Py, and £,/ C Q' are lines containing x such that
(—{z} CQNQY —Aand ' — {z} C Q' — Q. We find

bO_bs—H bO_bs bO_bs+2 bO_bs—l—l
bo(G — —
O ey S My SOl S sy ey

bO bO - bs+2 bD - bs+2 . bD - bs

p— _— ].
oo o T, b

to obtain (7.1).

Second we fix another ' € P, such that Q N QY € P;. We prove the
number a;(G) = a1 (G)(€2, Q%) as expressed in (7.2). Let A\; (resp. A2) denote
the number of Q" € P, such that

QPO =0"N2=0'n0 (7.4)
(resp.
Q"N e P, VA eR, QN NA" =A). (7.5)
Note that
aq (G) == )\1 + )\2. (76)

To determine \; we count the pairs (2", ¢”) in the order and its reversed order,
where " € P, satisfies (7.4) and ¢ C Q" is a line such that ¢/  QUQ'. We
find

bo—b,  by—by
bO bO - bs+2 bO - bs+1
_9 1. 77
G 2, b S (7.7)
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To determine Ay we count the triples (7, ¢,¢') in the order and its reversed
order, where Q" € P, satisfies (7.5), and ¢,¢ C Q" are lines containing x

such that ¢ —{z} CQ —Q and ¢ — {z} C Q' — Q. We find

bO - bs+1 bO - bs bO - bs+1 bO - bs
A _ _
2 X (S ) T T )
bO - bs+2 bO - bs+1 bO - bs—l—? bO - bs+1) % 1. (78)

bo — by bo — by bo — by bo — by
(7.2) is immediate by solving (7.6)-(7.8) for a,(G).

Third we fix ©” € Py such that QN Q" = A. We prove the number
2(G) = c(G)(2,9") as expressed in (7.3). We do this by counting the
triples (", ¢,¢") in the order and its reversed order, where Q" € Py such
that Q"7 NQ, Q"N Q" € Py, andil, 0" TQ" are lines containing x such that
(—{z} CQ—Q" and ¢" ={x} CQ" — Q. We.find
by — Bor Bk b by — by b b,

(G) > S O ;)

bo — beige\ by +bs bo.— bsya by — b, x 1. (7.9)

(G, s AT = 5, — 0.
(7.3) follows from (7.9). O

Theorem 7.1 is a generalization of [4], which proves in the case A = {z}

for some vertex x of I' and some additional assumptions.

Theorem 7.2. ([13, Theorem 8.6.33]). The complement G of an SRG (v, by, a1, c2)
G is an SRG(v,v — by — 1,0 — 2bg + c3 — 2,0 — 2by + aq)

Proof. For each adjacent pair u, w in G, there are 2(by — 1) —a; other vertices
in Gq(u) UGq(w), so v and w have v — 2 — 2(bg — 1) + a1 = v — 2bg + a1
common nonneighbors. When w, w are not adjacent, there are 2by—c, vertices

in G1(u) UGy (w) and thus v — 2by + ¢ common nonneighbors. O
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Example 7.3. The Petersen graph G, an SRG (10, 3,0, 1). Its complement
G is an SRG (10,6, 3,4).

Next, we introduce the following lemma, which will be used later.

Lemma 7.4. Set

P :={A'|A" D Ais a weak — geodetically closed subgraph of diameter s+1 inT'}.

bs

Proof. Observe

bs bs - bs+1
Pli=
Pl (G )G )
T bs = bs—l—l

by counting arguments.

Lemma 7.5. Set

B = {A"|A" D A is a weak-geodetically closed subgraph of diameter s+2 inT}.
bsbs+1

(Ds+1 = bss2)(bs — bsyo)

Proof. We count the pair (A’; A”) such that A € P, A’ € B and A" C A” to

find

Then |B| =

bs+1 bs - bs+2
Pl x (————— = |B| x .
| ’ (bs+1 - bs+2) | | (bs - bs+2) - (strl - bs+2)
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By Lemma 7.4

bs bs bs - bs
- ) = BIx
bs bs—l—l bs+1 bs+2 bs bs+1
Hence
|B| _ bs x bs+1 « bs - bs—l—l

bs - b5+1 bs+1 - bs+2 bs - bs+2
bsbs+1

(bs—l—l - bs+2)<bs - bs+2) '

Theorem 7.6. G(A,?2) is a strongly-reqular graph with parameters

bsb§+2 - b2+2 N bg+1bs+2 + bs+1b§+§ ‘

(bs - b8+1>(b8+1 -3 bs-I—ZHbs, B bs+2) -

) o 2bgb§+1 B bsb§+1 = 3()3()54_‘1[]’5_@ 7 2bsbzl+1bs+2 + 2b§+1bs+2 _ bgb8+2
B 1 (bs i bs+1)2(bs+1 - bs—l—?)(bs - bs+2)

5O202 o + Sbabs s 1OEEET 202002 5 = Bbeb2 5 + by bD o + b
4+ 512 + 9050541 s+2 1 SV +1Ys+2 sYs+2 + Usq1 s5+2 + s+2.
‘ (bs — bs+1)2(bs+1 o bs+2)(bs - bs+2)
bsb§+1 + 25§b§+2 = 3bsb§+2 W bgbs;&-lbs+2 + 3b5b5+1b§+2 - bs+1b§+2
(bs - bs+1>2<bs+1 - bs+2)(bs - bs+2)

_3bsbs+1b§+2 B bs+1b§+2 B 3bsb§+1bs+2 + b§+1 + b§+2
(bs - bs+1)2<bs+1 - bs+2)(bs - bs+2)

02((_;)

Proof. Observe

bsbs—H
(bsy1 — boga)(bs — boy2)

v=[Pa| = |B| =
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and by Theorem 7.2, we have

bo(G) = v—by(G) —1

bbsi1 bysa(by — byr2)’
( ) (b - bs+1)(bs+1 - bs+2)(bs - bs+2)
(b — bor1)(bost — boya) (b — beya)
(bs — by11) (b1 — besa) (bs — byss)
b

2 3 2
sbara — Uiy — U3 1bssa + bsrably

( s+l)< s+1 7 bs+2)(b8 - bs+2) .

s+1 — bs-‘r?)(b - bs+2

al(é) = U—Qbo(G)—{—CQ—QJ

bsbs+1 bs+2(bs - bs+2)2

— —2
(bs+1 - bs+2)(bs - bs+2)7 (bs o bé+1)(bs+1 - bs+2)(bs - bs+2)
(bs — byy2)2 FISR
e _2 L=
(bs - bs+1)2 o i ]

bsbs (bs —beta)®
(bst1 — by )by — b§+2)(bg =1bsy1)?2
bs+2(bs = bsi)?(bs — bsgi )’
(et — beea) (o2 EOBRENOE < ber2)?
(bs = bay2)®(bsy1 — baya)
(bers — bura)(bs — bug2) (s — bora)?
(bess — bosa) (s — buga) (b — bosn)?
(bs+1 — bs2)(bs — bs12)(bs — bsi1)?
D2, | — byl — 302bycibyen — 2b,b, bers + 260, bers — Db
(bs = bs11)?(bs1 — bsya)(bs — bsy2)
+5b§b§+2 + 3bsbys1 b2y — 202450315 — By + beya bl + bs+2
(s — bur)?(brer — bura)(be — bora)

—2

—2
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co(G) = v—2by(G) + a;
bsbs+1 bs+2(bs - bs+2)2

= —2
(bs+1 - bs+2>(bs - bs+2) (bs - bs+1)(bs+1 - bs+2)(bs - bs+2>
bs-i—l - bs+2 2 bs+2
+ —1
( bs - bs+1 ) bs—i—l - bs+2

bsbsr1(bs — bsi1)”

(bs+1 = bs2)(bs — bs42)(bs — bst1)?

2bss2(bs — bssz)?(bs — bsi1)
(Bt — bor2)(Bs — bor) (Bs — born)?

(bysr — beys)*(by — byio)

(bs—l-l - bs+2)(bs - bs+2)(bs - b8+1>2

bs+2(bs - bs+1)2(bs - bs+2)
(bs-i-l - bs+2)(bs oF bs+2)(bs o bs+1)2
(bs+1 - bs+2)(bs _ bs+2)(bs " bs+1)2
(bs+1 - bs+2)(bs = bs-l;é)(bs i bs+1)2
bsb§+1 + 26§b§+2 ) 3bsb2+2 '_’bzbs+1bs+2 + 3b5b8+1b§+2 - bs+1b§+2

(bs ) bS+1)2(bs+1 - bs+2)(bs - bs+2)
_3bsbs+1b§+2 . bs+16§+2 i= 3b8b§+1bs+2 + bg—i—l + b§+2
(bs = bsg1)?(bs1 — bsga)(bs — bsy2)

+

+

8 Another proof of Theorem 7.6

We prove Theorem 7.6 by a linear algebraic method in this section. Let
I'A,P=P(A),G(A,i) be as in Section 7, and P, B be as in Lemma 7.4 and
Lemma 7.5.

A quasisymmetric design (QSD) with parameters p < avis a 2 — (v, k, \)

design (such that |B N B’| = p or « for all distinct blocks B and B’.)
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From Lemma 7.4, we immediately have the following Lemma.

Lemma 8.1. (P,B) is a 2-(v,k,1) quasisymmetric design with parameters

0,1, where
v o= by/(bs — bsy1),
k = (bs - bs+2)/(bs - bs+1>‘
L]

Corollary 8.2. (P, B) is a 2-(v, k, 1) quasisymmetric design with parameters
0,1. Then

(i)
bsbs-l—l
(bs e bs+2)(bs+1 o1 bs+2)‘

b:

(ii)

v — bs;rl
bs+1 n bs+2‘
Proof.
(i) By Lemma 4.4. Hence

p - Av(v—1)
 k(E—1)
_v(v—1)
 k(k—1)
v " v—1
kT k-1

bsbs—H

(bs - b8+2>(bs+1 - bs+2) .
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(ii) By Lemma 4.5. Hence

Av—1)
k—1
v—1
k—1
bs+1

bs+1 - bs+2

Below we will proof the Theorem 7.6 by another method.

Theorem 8.3. G(A,2) is a quasisymmetric design (QSD) with parameters

p=0,a=1X=1. By Corollary 5.6, G(A,2) is a strongly reqular graph
with parameters
(ii)

e b§+1¢s+2 + bs+1b§+2_
(bs — bs—!—l)(rbs—o—l T bs+2)(bs - bs+2)

bo(G)w= =

(iii)

2b§b§+1 — bsbi-ﬁ-l B 3b§bs+1bs+2 - 2bsb§+1bs+2 + 2b§+1bs+2 — bng+2

a(G) =
1< ) (bs - bs+1)2<bs+1 - bs+2)(bs - bs+2>
B 4 Bhibu bRy — 202410 — B0ub + biabis bl
(bS - bS+1)2(bs+1 - bs+2)<b8 - b8+2)
(iv)
@) = babB,y + 26252, — 3byb3y — b2hys1bass + 3abas1b2,y — bes1 BBy

(bS - b8+1)2<bs+1 - bs+2)<b8 - b8+2)
_3bsbs+1b§+2 — bs+1b§+2 — 3bsbz+1bs+2 + b§+1 + b§+2
(bS - b8+1)2(bs+1 - bs+2)(bs - bS+2)
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P’f’OOf. Where k = (bs - bs+2)/(bs - bs+1)7 b= bsbs—i-l/(bs - b8+2)(bs+1 - b8+2)7
r= bs+1/(bs+1 - bs+2)'

(ii) From Corollary 5.6, we have

bo(G) = —kr +k —1+0.

Hence
bo(G) = —kr+k—1+0
_ _(bs - bs+2)bs+1 + bs - bs+2 1 + bsbs+1
(bs - bs+1>(bs+1 - bs+2) (bs - bs+1) (bs - bs+2>(bs+1 - bs+2)

o _bs-‘rl(bs - bs+2)2 + (bs - bs+2>2(bs+l - bs+2)

N (bs - bs+1)(bs+1 - bs+2)(bs - bs+2) (bs - bs+1)(bs+1 - bs+2)(bs - bs+2)
(bs - b8+1)(b8+1' L bs+2)(bs = bs+2) + bsstrl (bs - strl)

(bs - strl)(bs—f—l - bs+2)(bs = bs+2) ) (bs - strl)(strl - bs+2)(bs - bs+2)
bsb§+2 B b§+2 =] b§+1bs+2ﬁ+ bs+1b§+2

(bs - bs+1)(b$+1 o bs+2)(bs i_be-l-2) ‘

(ii) From Corollary 5.6, Vwe haye

a1(G) = U2k =2+ b + k2.
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Hence

a(G) = 2k —2kr —2+0b+ K

b =bus) 2 —badbar bebais
(bs — bas1)  (bs — bys1)(bss1 — beyo) (bs — bar2) (bes1 — byra)
(bs — byy2)?
(bs — bsy1)?

(2b§+2 - 2bsbs+1 + 2bg—i-l - 2bs+1bs+2)(bs - bs—i—l)(bs - bs—i-?)
(bs — bys1)2(bsr1 — ber2) (b — byro)
bsbsi1(bs — bsy1)? N (bs = bsr2)®(bsy1 — bsya)
(bs — by31)2(bost — bsr2)(bs — byra)  (bs — bgr1)2(bss — boy2) (bs — byya)
U207 1 — bbdyy — 3620gi1bess — 20507, born + 263 beys — Dibss
(bs - bs+1)2(bs+1 - bs+2)(bs - bs+2)
+5b§b§+2 + 3bsbas1 b2y — 202410215 — B,y + beyi by + b§+2'

(bs 5 bs+1)2(bs+1: _’bs+2)<bs - bs+2)

(iv) From Corollary 5.6, we have 1 -

_|_

cofG) = =t + b =51
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Hence

c(G) = r—2kr+k+0b-1
b Bebushi) (b bo?
(v —borz) (0 — bur) (ot — bura) | (bs = bopa)?
bsbsi1

Tl )b —bora)

bes1(by — bay1)?(bs — bayo)

(s — be1)?(hrss — busa)(bs — bura)
2(bs = bys1)(bs = bs12)?bs

(bs = bsy1)2(bs1 — bsy2)(bs — bsy2)

(b — bep2)*(bess — beso)
(bs - bs-i—l) ( s+1 = bs+2)(b - bs+2)
bsbst1(bs — bs11

_|_

)?
(bs — 1) 2(Deit —boda) (b — bsro)
_ (bs — b$+1) ( s+ g bs+2)(bs L s+2)
(bs — g 1) Absii = 3 2) (b, T bss2)
bsbg—‘rl — 2b§b§+2 3bsbs+2 b2bgp1bsy0 + 3bsbs+1b§+2
I (bs - bs—|-17)2(bs—|—1 - bs+2))(bs - bs+2)
B b R IOE ko)
(bs - bs+1)2<bs+1 - bs+2)(b il bs+2)
—3bsbss 102 = Dagblig = B0sbZ 1 bsi2 + 031 + b
(b — bor1)2 (o1 — bora) (bs — bora) |

+

]

From the proof of Theorem 8.3, we obtain result similar to theorem 7.6.
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