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具多重解的自律微分方程鏈回歸集

研 究 生: 曾世忠 指導教授: 李明佳 教授

國立交通大學應用數學系碩士班

摘 要

1967 年, Strauss 和 Yorke 引介漸進自律微分方程當中的廣義正向極限集。 在這

篇論文中, 我們研究可能不具有惟一解的自律微分方程鏈回歸集。 在某些條件底

下, 我們可以進一步得到鏈回歸集的半不變性。而鏈回歸集和廣義正向極限集之

間的關係將會一併探討。
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Chain Recurrent Sets for

Autonomous Differential Equations

with Multiple Solutions

Student: Shih-Jhong Zeng Advisor: Prof. Ming-Chia Li

Department of Applied Mathematics

National Chiao Tung University

ABSTRACT

In 1967, Strauss and Yorke introduced the concept of generalized positive

limit sets for asymptotic autonomous differential equations. In this thesis,

we study chain recurrent sets for autonomous differential equations possibly

with multiple solutions. Under certain conditions, we obtain semi-invariance

of the chain recurrent set. Relations between chain recurrent sets and gener-

alized positive limit sets are also concerned.
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一 、 Introduction

To generalize the result of invariance of positive limit sets for autonomous

differential equations whose solutions are uniquely determined by initial con-

ditions in [4], in 1967, Strauss and Yorke introduced the concepts of semi-

invariance sets and generalized positive limit sets for asymptotically autono-

mous differential equations possibly with multiple solutions and obtained

the semi-invariance of generalized positive limit sets in [1]. A set is called

semi-invariant for an autonomous differential equation if for each point of

this set, there is a trajectory of given point lies in given set.

In this thesis, we study the chain recurrent sets for autonomous differen-

tial equations possibly whih multiple solutions. Under certain conditions,

we obtain semi-invariance of the chain recurrent set. Because the relations

between chain recurrent sets and generalized positive limit sets are also con-

cerned, we introduce the work of Strauss and Yorke in [1] before introducing

our study.
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二 、 Basic Settings

In this thesis,N is the set of positive integers,R is the set of real numbers,R+
is the set of nonnegative real numbers, and | · | is a norm ofRn .

Let Q ⊆Rn be an open set, f ∈C (Q , Rn ), t0 ∈R, and a , b ∈Q .

Consider the equation

x ′ = f (x ), (A)

Let x ( · ) (sometimes x ( · ) is abbreviated to x ) be a solution of (A), and let

x ( · ; t0, a ) be a solution of equation (A) with initial condition x (t0) = a and

maximal interval (α−, α+), where −∞ ≤ α− < t0 < α+ ≤ +∞, provided the

given initial value problem has a solution.

In this thesis, we assume that (A) satisfies the following three hypotheses

of:

(H1) (A)with the initial condition x (0) = a has a solution.

(H2) If (A) with initial condition x (t0) = a has a solution, and x ( · ; t0, a ) is a

solution of given initial value problem, then α+ =+∞, and 0∈ (α−, α+).

(H3) For ε > 0, there is a δ> 0 such that if |a −b |<δ, then

|x (1; 0, a )−x (1; 0, b )|< ε.

Note that we do not assume the uniqueness of (A)with given initial condition.

Different solutions of (A) may have different maximal intervals, even if they

have the same initial time and position.

Example 1 (pp. 79-84 in [3]). Consider the logistic equation

x ′ = x (1−x ) (1)

in (0, 1). The solutions are x (t ) = a
a+(1−a )e−t for t ∈ R, where a ∈ (0, 1). See

Figure 1. Hence (1) is an automonous differential equation satisfies (H1) to

(H3).

Example 2 (pp. 177 in [1]). Consider the equation

x ′ =

 (2−x )
1
2 if 1≤ x ≤ 2

x
1
2 if 0≤ x < 1

0 if x < 0 or x > 2

(2)

3
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Figure 1: Solutions of (1)
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Figure 2: Solutions of (2)

inR. The solutions are x (t ) = a for t ∈R, where a ≥ 2 or a ≤ 0, and

x (t ) =


0 if t < a
1
4
(t −a )2 if a ≤ t < a +2

−1
4
[t − (a +4)]2+2 if a +2≤ t ≤ a +4

2 if t > a +4

for t ∈R, where a ∈R.

See Figure 2.

Also (2) is an automonous differential equation satisfies (H1) to (H3).
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三 、 Semi-invariance and Generalized Positive Limit Sets

Before introducing our study, we introduce the concept of semi-invariance

and generalized positive limit sets for autonomous differential equations.

This is special case of work of Strauss and Yorke in [1].
First we introduce the concept of semi-invariance for autonomous differ-

ential equations.

3.1 Semi-invariance and Invariance

Definition 3 (Semi-invariance and Invariance). Let Γ⊆Q .

Γ is semi-invariant for (A) if for a ∈ Γ, there is a solution x (t ; 0, x0) such

that

x ((α−, α+); 0, a )⊆ Γ.

If the solutions of (A) are uniquely determined by initial time and initial

position, then Γ is invariant for (A).

Remark 4. It’s easily seen that the union of a collection of (semi-)invariant

sets is also (semi-)invariant.

Second we introduce the concept of generalized positive limit sets for au-

tonomous differential equations.

3.2 Generalized Positive Limit Sets

Definition 5 (Generalized Positive Limit Sets). Let F belongs to the family of

all solutions of (A).
The generalized positive limit set of F , denoted by ΩA(F ), is the set of those

points b ∈Q which there are sequences {tn}n∈N in R+ with limn→∞ tn = +∞
and {xn ( · )}n∈N in F such that

lim
n→∞xn (tn ) = b.

For convenience, denote ΩA({x ( · )}) by ΩA(x ).

Remark 6. If the solutions of (A) are uniquely determined by initial condi-

tions, then ΩA(x ) = ΩA(x (0)), where ΩA(x (0)) is the positive limit set of x (0) for

(A). That is why we use the adjective “generalized”.
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Remark 7. By definition 5, it’s seen that for each family F of solutions of (A),∪
x∈F ΩA(x ) ⊆ ΩA(F ). However

∪
x∈F ΩA(x ) 6= ΩA(F ) in general. See example 8

and example 9.

Example 8. Consider the logistic equation (1) in (0, 1).
By example 1, for each solution x of (1) in (0, 1), Ω1(x ) = ;. However if F is

the family of all solutions of (1) in (0, 1), then Ω1(F ) = (0, 1).
Indeed, for each solution x of (1) in (0, 1), there is a a ∈ (0, 1) such that

x (t ) = a
a+(1−a )e−t for all t ∈ R. Since x (t ) = a

a+(1−a )e−t increases to 1 as t ap-

proachs to +∞, and 1 6∈ (0, 1), Ω1(x ) = ;.
For 0< b < 1 and T > 0, 0< b

(1−b )e T+b
< 1 and x (T ; 0, b

(1−b )e T+b
) = b . Hence

limn→∞x (n ; 0, b
(1−b )e n+b

) = b . Therefore Ω1(F ) = (0, 1).

Example 9. Consider equation (2) inR.

By example 2, for each nonconstant solution x of (2),Ω2(x ) = {2}. However

if F is the family of all nonconstant solution of (2), then Ω2(F ) = [0, 2].
Indeed, for each nonconstant solution x of (2), there is a a ∈R such that

x (t ) =


0 if t < a
1
4
(t −a )2 if a ≤ t < a +2

−1
4
[t − (a +4)]2+2 if a +2≤ t ≤ a +4

2 if t > a +4.

Since x (t ) increases to 2 as t approachs to +∞, Ω2(x ) = {2}.
For 0≤b ≤ 2, since all nonconstant solution of (2) are horizental shift of

x0(t ) =


0 if t < 0
1
4

t 2 if 0≤ t < 2

−1
4
(t −4)2+2 if 2≤ t ≤ 4

2 if t > 4,

and x0(R) = [0, 2], Ω2(F ) = [0, 2].

Here is a special cace that ΩA(F ) =
∪

x∈F ΩA(x ). It’s seen by definition 5.

Property 10. If F is a finite family of solutions of (A), thenΩA(F ) =
∪

x∈F ΩA(x ).

Third we introduce the semi-invariance of generalized positive limit sets

for autonomous differential equations.

6



3.3 Semi-invariance of Generalized Positive Limit Sets

In [1], Strauss and Yorke obtained the remarkable property of generalized

limit sets for asymptotically autonomous differential equations. Of course,

autonomous differential equations are one kind of asymptotically autono-

mous differential equations. Here we just list the version for autonomous

differential equations.

Theorem 11 (Special Case of Theorem 2.4 in [1]). For every family F of solu-

tions of (A), the generalized positive limit set ΩA(F ) is semi-invariant for (A).

7
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四 、 ε-chains and Chain Recurrent Sets

After introducing the work of Strauss and Yorke, we introduce our study.

First we introduce the ε-chains for autonomous differential equations.

This is necessary for defining the chain recurrent sets for autonomous dif-

ferential equations.

Definition 12 (ε-chains). Let a , b ∈Q , ε > 0, T ≥ 1, and k ∈N.

A finite sequence {x0 = a , x1, . . . , xk =b} inQ is called an ε-chain of length

T from a to b for (A) if there is a finite sequence {t0 = 0, t1, . . . , tk } inR+ such

that for all j = 1, . . . , k , t j ≥ 1, there is an x ( · ; t0+ . . .+ t j−1, x j−1), such that

|x (t0+ . . .+ t j ; t0+ . . .+ t j−1, x j−1)−x j |< ε, and t0+ . . .+ tk = T .

Second we define the chain recurrent sets for autonomous differential

equations by the term of ε-chains.

Definition 13 (Chain Recurrent Sets). The chain recurrent set of (A), denoted

byRA, is the set of those points c ∈Q which for ε > 0 , there are ε-chains from

c to itself.

In fact, all points in the chain recurrent set of (A) have additional property

as follows.

Property 14. The chain recurrent set of (A) is the set of those points c ∈ Q

which for ε > 0 and T ≥ 1, there are ε-chains of length greater than T from c

to itself.

Proof. LetR be the set of those points c ∈Q which for ε > 0 and T ≥ 1, there

are ε-chains of length greater than T from c to itself.

It’s obvious thatR ⊆RA.

For c ∈RA and ε > 0, there exist an ε-chain {x0 = c , x1, · · · , xk = c } from c

to itself. If this ε-chain is of length T0, then

{x0 = c , x1, . . . , xk = c , xk+1 = x1, x2k−1 = xk−1, x2k = xk }
is an ε-chain of length 2 ·T0 from c to itself. By similar manner and induction,

{x0 = c , x1, . . . , xk = c , . . . , x (l−1)k+1 = x1, x l k−1 = xk−1, x l k = xk }
is an ε-chain of length l ·T0 from c to itself for l ∈N. Thus by Archimedean

property, c ∈R . HenceRA ⊆R .

ThereforeR =RA

9



Remark 15. RA may be an empty set. See example 15.

Example 16. Consider the logistic equation (1) in (0, 1). ThenR1 = ;.
Indeed, since for 0 < a < 1, x (t ; 0, a ) = a

a+(1−a )e−t for t ∈ R is strictly in-

cresing onR, by definition 12 and definition 13, a 6∈ R1. HenceR1 = ;.
Example 17. Consider equation (2) inR, thenR2 = (−∞, 0]∪ [2, +∞).

Indeed, for c ≤ 0 or c ≥ 2, take x (t ; 0, c ) = c for t ∈R. Then for ε > 0 and

T ≥ 1, {c , c} with corresponding time sequence {0, T + 1} is an ε-chain of

length T +1, since x (T +1; 0, c ) = c . Hence (−∞, 0]∪ [2, +∞)⊆R2.

For 0< a ≤ 1,

x (t ; 0, a ) =


0 if t < 2a

1
2

1
4
(t −2a

1
2 )2 if 2a

1
2 ≤ t < 2a

1
2 +2

−1
4
[t − (2a

1
2 +4)]2+2 if 2a

1
2 +2≤ t ≤ 2a

1
2 +4

2 if t > 2a
1
2 +4.

For 1< a < 2,

x (t ; 0, a ) =


0 if t < 2(2−a )

1
2 −4

1
4
{t − [2(2−a )

1
2 −4]}2 if 2(2−a )

1
2 −4≤ t < 2(2−a )

1
2 −2

−1
4
[t −2(2−a )

1
2 ]2+2 if 2(2−a )

1
2 −2≤ t ≤ 2(2−a )

1
2

2 if t > 2(2−a )
1
2 .

Thus for a ∈ (0, 2), x ( · ; 0, a ) is increasing on R and strictly increasing on a

neighborhood of 0. Hence (0, 2) 6∈ R2.

Therefore,R2 = (−∞, 0]∪ [2, +∞).

10



五 、 Semi-invariance of Chain Recurrent Sets

The semi-invariance of chain recurrent set is the main result of this thesis.

To obtain this result, we declare relations between chain recurrent sets and

generalized positive limit sets.

5.1 Chain Recurrent Sets and Generalized Positive Limit Sets

First we declare the chain recurrent set of (A) contain all generalized positive

limit sets of single solution.

Theorem 18.
∪

x ′= f (x )ΩA(x )⊆RA.

Proof. If
∪

x ′= f (x )ΩA(x ) = ;, it’s readily. Hence
∪

x ′= f (x )ΩA(x ) 6= ; is assumed.

For b ∈∪x ′= f (x )ΩA(x ), b ∈ ΩA(x ) for some solution x of (A). Hence by defi-

nition 5, there exist a sequence {tn}n∈N ofR+ with limn→∞ tn =+∞ such that

limn→∞x (tn ) = b .

Thus for ε > 0 and T ≥ 1, by (H1) to (H3), there is a δ> 0 such that if a ∈Q

and |a −b |<δ, then for each x ( · ; 0, a ), x ( · ; 0, b ),

|x (1; 0, a )−x (1; 0, b )|< ε.

Since limn→∞ tn =+∞ and limn→∞x (tn ) = b , there are K , N ∈N so that

|x (tK )−b |<δ, |x (tN )−b |< ε, and tN − tK > T.

Note that x ( · + tK ) is a solution of (A) with initial condition x (0) = x (tK )
and x (1) = x (1+ tK ), and x (tN ) = x ([tN − (tK + 1) + (tK + 1)]). Hence denote

x ( · + tK ) by x ( · ; 0, x (tK )) and x ( · ; 1, x (tK +1)).
Conclude above arguments, it’s seen that

|x (1; 0,b )−x (tK +1)|= |x (1; 0,b )−x (1; 0, x (tK ))|< ε (|b −x (tK )|<δ),
and

|x (tN − tK ; 1,x (tK ))−b |= |x (tN )−b |< ε.

Hence by definition 12, {b , x (tK + 1), b} is an ε-chain of length greater

than T with corresponding time sequence {0, 1, tN − (tK +1)}.
With the fact that a ∈∪x ′= f (x )ΩA(x ), ε > 0, and T ≥ 1 are arbitrary given,

by property 14,
∪

x ′= f (x )ΩA(x )⊆RA.

11



Second we declare the chain recurrent set of (A) is contained by some

union of generalized positive limit sets of some families of solutions of (A).
Under additional assumptions, the chain recurrent set is equal to some union

of generalized positive limit sets of some families of solutions of (A).

Theorem 19. IfRA 6= ;, then for c ∈RA, there is a family Fc of solutions of (A)
such that

RA ⊆
∪

c∈RA

ΩA(Fc ).

Moreover, if for each c ∈RA, Fc can be chosen that ΩA(Fc ) =
∪

x∈Fc
ΩA(x ), then

RA =
∪

c∈RA

ΩA(Fc ).

Proof. Fix c ∈RA. By property 14, for n ∈N, there is an 1
n

-chain

{xn , 0 = c , xn , 1, . . . , xn , kn = c }
with corresponding time sequence

{tn , 0 = 0, tn , 1, tn , kn }
such that the length of the 1

n
-chain is greater than n if n > 1.

For n ∈N, let

xc , n ( · ) = x ( · ; tn , 0+ tn , 1+ . . .+ tn , kn−1, xn , kn−1),

where x ( · ; tn , 0+ tn , 1+ . . .+ tn , kn−1, xn , kn−1) is given by definition 12, and

tc , n = tn , 0+ tn , 1+ . . .+ tn , kn .

Then by setting above and definition 12, for n ∈ N {tc , n}n∈N is in R+ with

limn→∞ tc , n =+∞, and |xc , n (tc , n )−c |= |x (tc , n ; tn , 0+tn , 1+. . .+tn , kn−1, xn , kn−1)−
xn , kn |< 1

n
. Hence {xc , n ( · )}n∈N is a sequence of solutions of (A)with

lim
n→∞xc , n (tc , n ) = c .

Let Fc = {xc , n ( · )}n∈N. Then by above argument,RA ⊆∪c∈RA
ΩA(Fc ).

The second statement is obviously by theorem 17.

12



5.2 Semi-invariance of Chain Recurrent Sets

After declaring the relations between chain recurrent sets and generalized

positive limit sets, the semi-invariance of chain recurrent sets is corollary of

theorem 19, theorem 11, and remark 4.

Theorem 20. If all hypotheses in theorem 19 holds, thenRA is semi-invariant.

Example 21. Consider (2) inR. By example 17,R2 = (−∞, 0]∪ [2, +∞). Since

for c ∈ R2, {c } = Ω2(xc ), where xc (t ) = c for t ∈ R. Hence by theorem 18,

theorem 19, and theorem 20,R2 is semi-invariant.
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