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ABSTRACT

In 1967, Strauss and Yorke-introduced the concept of generalized positive
limit sets for asymptotic autonomous differential equations. In this thesis,
we study chain recurrent sets for autonomous differential equations possibly
with multiple solutions. Under certain conditions, we obtain semi-invariance
of the chain recurrent set. Relations between chain recurrent sets and gener-
alized positive limit sets are also concerned.
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— + Introduction

To generalize the result of invariance of positive limit sets for autonomous
differential equations whose solutions are uniquely determined by initial con-
ditions in [4], in 1967, Strauss and Yorke introduced the concepts of semi-
invariance sets and generalized positive limit sets for asymptotically autono-
mous differential equations possibly with multiple solutions and obtained
the semi-invariance of generalized positive limit sets in [1]. A set is called
semi-invariant for an autonomous differential equation if for each point of
this set, there is a trajectory of given point lies in given set.

In this thesis, we study the chain recurrent sets for autonomous differen-
tial equations possibly whih multiple solutions. Under certain conditions,
we obtain semi-invariance of the chain recurrent set. Because the relations
between chain recurrent sets and generalized positive limit sets are also con-
cerned, we introduce the work of Strauss and Yorke in [1] before introducing
our study.






— ~ Basic Settings

In this thesis, N is the set of positive integers, R is the set of real numbers, Ry
is the set of nonnegative real numbers, and | - | is a norm of R”.

Let Q € R" be an open set, f € C(Q, R"?), tpreR,and a, b €Q.

Consider the equation

x'=f(x), (A)

Let x( - ) (sometimes x( - ) is abbreviated to x) be a solution of (A), and let
x(-; to, a) be a solution of equation (A) with initial condition x(¢#y) = a and
maximal interval (¢, at), where —oco < o~ < fy < a* < 400, provided the
given initial value problem has a solution.

In this thesis, we assume that (A) satisfies the following three hypotheses
of:

(H1) (A) with the initial condition x(0) = a has a solution.

(H2) If (A) with initial condition x(7,) =@ has a solution, and x( - ; ty, a)is a
solution of given initial'value problem;then a™ =400, and 0 € (a~, a™).

(H3) For ¢ >0, there is a 6 > 0 such that if |a = b| < 6, then

|%(1;.0, a) —x(T; 0, b)| < e.

Note that we do not assume the uniqueness of (A) with given initial condition.
Different solutions of (A) may have different maximal intervals, even if they
have the same initial time and position.

Example 1 (pp. 79-84 in [3]). Consider the logistic equation
x'=x(1-x) (1)

in (0, 1). The solutions are x(t) = 4 = for t € R, where a € (0, 1). See

a+(l1—a)e
Figure 1. Hence (1) is an automonous differential equation satisfies (H1) to

(H3).
Example 2 (pp. 177 in [1]). Consider the equation

(2—x) if1<x<?2
ifo<x<1 (2)
0 ifx<OQorx>2

N =

X = X
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Figure 1: Solutions of (1)

Figure 2: Solutions of (2)

in R. The solutions are x(t)=a for t € R, where a >2 or a <0, and

fo ift<a
1 2 .
“(t—a ifat<a+2
x(t) =1 4(1 ) T for t € R, where a € R.
—t—(a+4)*+2 ifa+2<tr<a+4
{2 ift>a+4
See Figure 2.

Also (2) is an automonous differential equation satisfies (H1) to (H3).



— » Semi-invariance and Generalized Positive Limit Sets

Before introducing our study, we introduce the concept of semi-invariance
and generalized positive limit sets for autonomous differential equations.
This is special case of work of Strauss and Yorke in [1].

First we introduce the concept of semi-invariance for autonomous differ-
ential equations.

3.1 Semi-invariance and Invariance

Definition 3 (Semi-invariance and Invariance). LetI' C Q.
I' is semi-invariant for (A) if for a €T, there is a solution x(t; 0, xy) such
that
x((a, a*);0,a)T.

If the solutions of (A) are uniquely determined by initial time and initial
position, then I' is invariant for,(A).

Remark 4. It’s easily seen that/theunion of-a collection of (semi-)invariant

sets is also (semi-)invariant.

Second we introduce the concept of generalized positive limit sets for au-
tonomous differential equations.

3.2 Generalized Positive Limit Sets

Definition 5 (Generalized Positive Limit Sets). Let F belongs to the family of
all solutions of (A).

The generalized positive limit set of F, denoted by Q,(F), is the set of those
points b € Q which there are sequences {t,},en in Ry with lim,,_ £, = +00
and {x,(-)}.en in F such that

%inoloxn(tn) =b.
For convenience, denote ,({x( - )}) by Q,(x).

Remark 6. If the solutions of (A) are uniquely determined by initial condi-
tions, then ,(x) = Q,(x(0)), where Q,(x(0)) is the positive limit set of x(0) for
(A). That is why we use the adjective “generalized”.



Remark 7. By definition 5, it’s seen that for each family F of solutions of (A),
Uyer Qa(x) € Q4(F). However | J
and example 9.

Qu(x) # Qu(F) in general. See example 8

x€F

Example 8. Consider the logistic equation (1) in (0, 1).

By example 1, for each solution x of (1) in (0, 1), 2,(x) = 0. However if F is
the family of all solutions of (1) in (0, 1), then ©,(F)=(0, 1).

Indeed, for each solution x of (1) in (0, 1), there is a a € (0, 1) such that
x(t) = m for all + € R. Since x(t) = m increases to 1 as t ap-
proachs to +00, and 1 € (0, 1), 2,(x)=0.

ForO0<b<1and T>0,O<(1_b)%<l and x(T; 0, u—mﬁ):b' Hence

lim,,_« x(n; 0, u—m%): b. Therefore O,(F)=(0, 1).

Example 9. Consider equation (2) in R.
By example 2, for each nonconstant solution x of (2), ,(x) = {2}. However
if F is the family of all nonconstant solution of (2), then ,(F)= [0, 2].
Indeed, for each nonconstant solution x of(2), there is a a € R such that

(O iftr<a
(1) = | i(lt—a)2 ifast<a+2
—;lt—(a+4)+2 ifa+2<t<a+4
\2 ift >a+4.

Since x(t) increases to 2 as t approachs to 400, §2,(x) = {2}.
For 0 < b <2, since all nonconstant solution of (2) are horizental shift of

(0 if £ <0
1.2 .
=t ifo<tr<?2
X()(l'):{ 41 .
—ﬂt—4y+2 if2<t<4
\2 if t >4,

and xO(R) = [07 2]) QZ(F) = [0) 2]
Here is a special cace that Q,(F) = Uxe £ §(x). It’'s seen by definition 5.

Property 10. IfF is a finite family of solutions of (A), then Q\(F) =], Qa(x).

xeF

Third we introduce the semi-invariance of generalized positive limit sets
for autonomous differential equations.



3.3 Semi-invariance of Generalized Positive Limit Sets

In [1], Strauss and Yorke obtained the remarkable property of generalized
limit sets for asymptotically autonomous differential equations. Of course,
autonomous differential equations are one kind of asymptotically autono-
mous differential equations. Here we just list the version for autonomous
differential equations.

Theorem 11 (Special Case of Theorem 2.4 in [1]). For every family F of solu-
tions of (A), the generalized positive limit set Q,(F) is semi-invariant for (A).






PO + e-chains and Chain Recurrent Sets

After introducing the work of Strauss and Yorke, we introduce our study.

First we introduce the e-chains for autonomous differential equations.
This is necessary for defining the chain recurrent sets for autonomous dif-
ferential equations.

Definition 12 (¢-chains). Leta, b€Q,e>0,T>1,and k € N.

A finite sequence {xo =a, X1, ..., Xy = b} in Qis called an ¢ -chain of length
T from a to b for (A) if there is a finite sequence {#y =0, 11, ..., f;} in R} such
thatforall j=1, ..., k, ; > 1, thereisan x(-; to+...+¢j_1, Xj_1), such that

|x(to+...4+t;; to+...+ti_1, xi-1)—xj|<e,and to+...+ . =T.
J j J J

Second we define the chain recurrent sets for autonomous differential
equations by the term of -chains.

Definition 13 (Chain Recurrent Sets). The chain recurrent set of (A), denoted
by Z,, is the set of those pointsi¢ € Q which for € > 0, there are ¢-chains from
c to itself.

In fact, all points in the ¢hain recurrent set of (A) have additional property
as follows.

Property 14. The chain recurrent set.of (A) is the set of those points ¢ € Q
which fore >0 and T > 1, there are ¢ -chains of length greater than T from c
to itself.

Proof. Let Z be the set of those points ¢ € Q which for € >0 and T > 1, there
are £-chains of length greater than T from c to itself.

It's obvious that 2 C Z,.

For c € Z, and ¢ > 0, there exist an £-chain {xo=c, x1, ---, Xy =c} from ¢
to itself. If this £-chain is of length Ty, then

{xo=c, X1, ..., Xk =€, X1 = X1, X2k—1 = Xf—1, X2k = Xic}
is an e-chain of length 2- Tj from c to itself. By similar manner and induction,
{xo=c¢, x1,..., xr=c, ..., X(1-1)k+1 = X1, X[k—1 = Xk—-1, Xk = Xk}

is an e-chain of length [ - Ty from c to itself for / € N. Thus by Archimedean
property, c € Z. Hence £, C Z.
Therefore #Z = %, L



Remark 15. £, may be an empty set. See example 15.

Example 16. Consider the logistic equation (1) in (0, 1). Then 2, =0.

Indeed, since for0 < a <1, x(t; 0, a) = 2 __ for ¢ € R is strictly in-

a+(l—a)e~
cresing on R, by definition 12 and definition 13, a ¢ Z,. Hence %, =0.

Example 17. Consider equation (2) in R, then 2, =(—00, 0] U [2, +00).
Indeed, for c <0 or ¢ > 2, take x(¢; 0, ¢) = c for t € R. Then for £ > 0 and

T > 1, {c, c} with corresponding time sequence {0, T + 1} is an £-chain of

length T+ 1, since x(T+1; 0, ¢)=c. Hence (—o0, 0] U [2, +00) C X,.
ForO0<a <1,

(0 if r <2a?
1 1 . 1 1
~(t —2az)? if2az <t <2az2+2
x(t;O,a)Z{ 4(1 )1 oo 1 1
—;[t—Qa>+4)*+2 if2a>+2<r<2a>+4
| 2 if t >2a2+4.
Forl<a<?2,
(0 ift <22~ a): —4
Lif—[22—a)s—A4]R if20@2—a) —4<r<2(2—a):—2
x(t;0,a)=4 *} 1 - 1 1
—; [t —22—a)2+2"if2(2-a): —2<t <2(2—a):
| 2 if£=2(2—a):.

Thus for a € (0, 2), x(-; 0, a) is increasing on R and strictly increasing on a
neighborhood of 0. Hence (0, 2) & %..
Therefore, 2, =(—o00, 0] U [2, +00).

10



5+ Semi-invariance of Chain Recurrent Sets

The semi-invariance of chain recurrent set is the main result of this thesis.
To obtain this result, we declare relations between chain recurrent sets and
generalized positive limit sets.

5.1 Chain Recurrent Sets and Generalized Positive Limit Sets

First we declare the chain recurrent set of (A) contain all generalized positive
limit sets of single solution.

Theorem 18. [ J Q(x)C R,.

x'=f(x)

Proof. 1f( J.._ o () =0, it’s readily. Hence U, fy S(x) # 0 is assumed.
For b € U Y= f(x) Qu(x), b € Q,(x) for some solution x of (A). Hence by defi-
nition 5, there exist a sequence {t,},en of Ry with lim,,_ £,, =400 such that
lim,, - x(t,)=b.
Thus for e >0and T > 1, by (H1) to (H3), there is a 0 > 0 such thatif a € Q
and |a — b| < 0, then for each x(-; 0, a), x(+;.0, b),

|x(1; 0,'a)y=x(1; 0, b)| < e.
Since lim,,_., t;, = 400 and lim;=s%(t;,) = b, there are K, N € N so that
|x(tx)—b| <0, |x(ty)—Db| < e, and ty — tx > T.

Note that x( - + fx) is a solution of (A) with initial condition x(0) = x(tx)
and x(1) = x(1+ tx), and x(ty) = x([ty — (tx + 1)+ (tx + 1)]). Hence denote
x(-+tx)byx(-;0, x(tx)) and x(-; 1, x(tx +1)).

Conclude above arguments, it’s seen that

|x(1; 0,b) —x(tx +1)|=1[x(1; 0,b) — x(1; 0, x(tx)) <& (Ib—x(tx)l <0),
and
lx(tn — tx; 1, x(tx))— bl =|x(tn) — b| < &.

Hence by definition 12, {b, x(tx + 1), b} is an e-chain of length greater
than T with corresponding time sequence {0, 1, ty — (tx + 1)}.

With the fact thata € J,_ o ful(x), € >0, and T > 1 are arbitrary given,
by property 14, Ux,:f(x) O (x) C Z,. O

11



Second we declare the chain recurrent set of (A) is contained by some
union of generalized positive limit sets of some families of solutions of (A).
Under additional assumptions, the chain recurrent set is equal to some union
of generalized positive limit sets of some families of solutions of (A).

Theorem 19. If Z, # 0, then for c € %, there is a family F. of solutions of (A)
such that

%, < | u(F).

CER

Moreover, if for each c € #,, F. can be chosen that Q,(F;) = UxE E Qu(x), then
R = U QA(FC)'
CEAR,

Proof. Fix ¢ € Z,. By property 14, for n € N, there is an %—chain
{Xn0=0¢, Xy s 3 Xk, =}
with corresponding time sequence
{0, 0= 05 B Tk, 8

such that the length of the %—chain is greater than n if n > 1.
Forn e, let

Xe, n( : ) = X( 5 In,0 + In1 +...+ ZLn,kn—ly Xn, kn—l)»
where x(-; 0+ tp1+...+ tn k,—1, Xn, k,—1) i given by definition 12, and
tc,n:tn,0+tny]+...+tn’kn.

Then by setting above and definition 12, for n € N {¢ ,}.en is in R} with
lim,_ Ie,n =100, and |xc, n(tc, n)—cC|l= |x(tc, ny tnottnt+...+ln k,—1, Xn, kn—l)_
Xn k| < % Hence {x. (- )}.en is a sequence of solutions of (A) with

lim x. (¢t »)=c.
n—0o00

Let F, ={x., »(*)}nen. Then by above argument, %2, C Uceng Qu(F,).
The second statement is obviously by theorem 17. O

12



5.2 Semi-invariance of Chain Recurrent Sets

After declaring the relations between chain recurrent sets and generalized
positive limit sets, the semi-invariance of chain recurrent sets is corollary of
theorem 19, theorem 11, and remark 4.

Theorem 20. If all hypotheses in theorem 19 holds, then R, is semi-invariant.

Example 21. Consider (2) in R. By example 17, #Z, = (—00, 0]U[2, 400). Since
for c € #Z,, {c} = Q(x.), where x.(t) = ¢ for t € R. Hence by theorem 18,
theorem 19, and theorem 20, %, is semi-invariant.

13
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