
Chapter 5 
 

Distributional and Inferential Properties of Loss Indices 
 

In this chapter, we consider three loss function indices ,  and L , 
and investigate the statistical properties of their natural estimators. For , we 
show that the natural estimator is the UMVUE (uniformly minimum variance 
unbiased estimator), which is consistent and asymptotically efficient. We also 
obtain the MLE (maximum likelihood estimator), which has smaller mean 
square error than the UMVUE, hence it is more reliable, particularly, for short 
production run applications. For , we show that the natural estimator is the 
MLE. We also obtain the UMVUE, which is shown to be more reliable (has 
smaller mean squared error) than the MLE for applications with . We 
show that the UMVUE is consistent and asymptotically efficient. For , we 
show that the natural estimator is the MLE and also the UMVUE, which is 
consistent and asymptotically efficient. In addition, we construct tables of 90%, 
95%, and 99% upper confidence limits for  based on the UMVUE. We also 
construct tables of the maximum values of L  under µ  for which the 
process is capable 90%, 95%, and 99% of the time. An efficient UMP test based 
on the UMVUE of  is derived. Using the UMP test, a testing procedure is 
proposed. The estimators we recommend have all the desired statistical 
properties, and are considered reliable in determining whether a process meets 
the capability requirement. 
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5.1 Estimating Process Relative Inconsistency Loss 

To estimate the process relative inconsistency loss, we consider the natural 
estimator  defined as follows, where peL 12 ]
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The natural estimator  can be rewritten as p̂eL
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If the process follows the normal distribution, then  is distributed as 
, where  is a chi-squared distribution with  degrees 

of freedom. The probability density function of  can be easily derived as 
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The rth moment, the expected value, the variance, and the mean squared 
error of  can be obtained as follows: p̂eL
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If the process characteristic is normally distributed, an 100  upper 
confidence limit on L  can be established in terms of the estimator L  as 

, where  is the (lower)  percentile of the  
distribution. A capability testing can then be conducted. In addition, we can 
show that the natural estimator  is the UMVUE of , which is consistent. 
We can also show that 
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) converges to N  in distribution, 
and that  is asymptotically efficient (see Theorem 5.1 for proofs). Thus, in 
real-world applications using , which has all the desired statistical properties, 
as an estimate of  would be reasonable. 
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Theorem 5.1. If the process characteristic is normally distributed, then: 

(a) L  is the UMVUE of ; p̂e
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Proof. (a) Since S  is a sufficient and complete statistic for σ , and the 
unbiased estimator L  is a function of  only, then by Lehmann-Scheffé 
Theorem,  is the UMVUE.  
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(d) Under normality assumption, the information matrix can be calculated as 
shown below. Since the information lower bound is achieved, then  must be 
asymptotically efficient: 
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We note that by multiplying the UMVUE L  by the constant 
, we obtain the MLE of . We can show that the MLE  is 

consistent, and is asymptotically unbiased. We can show that 
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Since , then  underestimates the index L , but it has 
smaller variance. In fact, we may calculate  
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2ˆMSE( ) MSE( ) {(3 1)/[ ( 1)]}( )pe pe peL L n n n L− = − − >� , for all n. (5.12) 

Therefore, the MLE  has smaller mean squared error than the UMVUE 
, hence it is more reliable, particular for short production run applications. 

We consider some commonly used values of = 0.11, 0.06, 0.05, 0.04, and 0.03, 
equivalent to C = 1.00, 1.33, 1.50, 1.67, and 2.00, covering the widespread 
range of the precision requirements for most applications (see Table 17). Tables 
18(a) and 18(b) display the relative error of the UMVUE , defined 
as
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22ˆ{E[( )/ ] }pe peLpeL L− , for sample size n = 2(1)50, and 

60(10)500, 600(100)1000 with those commonly used values of = 0.11, 0.06, 
0.05, 0.04, 0.03. 

peL

 Table 17. Recommended range of  peL
 for various precision requirements. 

Range Precision Requirement 
0.06 0.11peL≤ ≤  Capable 

0.05 0.06peL≤ ≤  Satisfactory 

0.04 0.05peL≤ ≤  Good 

0.03 0.04peL≤ ≤  Excellent 

0.03peL ≤  Super 
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The square root of the relative mean squared error is a direct measurement, 
which presents the expected relative error of the estimation from the true . 
We note that for UMVUE , 

peL
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2

R
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Thus, for n = 300, we expect that the average error of  would be no greater 
than 8.18% of the true . Tables 19(a) and 19(b) display the relative error, pe
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Figure 48. Plot of [M  
with = 0.11, 0.06, 0.05, 0.04, 
0.03, versus sample size n = 2(1)50. 
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Figure 49. Plot of [M  
with = 0.11, 0.06, 0.05, 0.04, 
0.03, versus sample size n = 1(1)50. 
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Figure 48 plots 1
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ˆ[MSE ( )]peL  with = 0.11, 0.06, 0.05, 0.04, 0.03, versus 

sample size n = 2(1)50 and Figure 49 plots 
peL

R pe

n

 with L = 0.11, 0.06, 
0.05, 0.04, 0.03, versus sample size n = 1(1)50. The sensitivity of square root of 
the relative mean squared error for both estimators due to the process relative 
inconsistency loss , as well as sample size n can then be easily understood. 
For short run applications (such as accepting a supplier providing short 
production runs in QS-9000 certification), the difference between the two 
relative errors is considered significant for sample size , and we strongly 
recommend using the MLE  rather than the UMVUE L . For other 
applications with sample size , the difference between the two estimators 
is negligible (less than 0.52%). 
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5.2 Estimating Process Relative Off-Target Loss 

To estimate the relative off-target loss, we consider the natural estimator 
 defined as the following, where ôtL

1i
X

=
 is the conventional 

estimator of the process mean . We note that the estimator  can also be 
written as a function of : 
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If the process characteristic is normally distributed, then the estimator  
is distributed as [ / , where  is a non-central chi-squared 
distribution with one degree of freedom and non-centrality parameter 

. Therefore, the probability density function of L  can be 
expressed as  
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If the process characteristic is normally distributed, an  upper 
confidence limit on  can be expressed in terms of the estimator L  as 

, where  is the (lower) α  percentile of the χ  
distribution. A capability testing can then be conducted. In practice, we note 
that parameter  is unknown and should be estimated by the sample data. 

100(1 )%α−
otL ôt
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Theorem 5.2 If the process characteristic is normally distributed, then: 

(a) L  is the UMVUE of ; ot
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(d) Under normality assumption, the information matrix can be calculated as 
follows. Since the information lower bound is achieved, then L  must be 
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We note that the MLE  has smaller variance than the UMVUE . 
However, we can show that , and so 

, which is greater than 0 for n 
= 2, equal to 0 for n = 3, and less than 0 for . Therefore, the UMVUE  
has smaller mean squared error than the MLE , and is more reliable for 
applications with n . Tables 20(a) and 20(b) display the relative error, 
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Tables 21(a) and 21(b) display the relative error, 1
2ˆ )]otL[M , of the 

MLE  for = 0.11, 0.06, 0.05, 0.04, 0.03, and = 0.25 is fixed (tables of peL otL
 for other values of  are available from the authors). We note 

that for , the difference between the two relative errors (percentage of 
deviations) is significant, and we recommend using the UMVUE L  rather 
than the MLE .  However, for n , the difference between the two is 
negligible (less than 0.04%), and using either of the two estimators is equally 
reliable. 
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5.3 Estimating Process Expected Relative Loss 

To estimate the process expected relative loss (a combined measure of 
process relative inconsistency loss and process relative off-target loss), we 
consider the nature estimator  defined as the following, where êL
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If the process characteristic is normally distributed, then the estimator  
is distributed as [ / , where  is a non-central chi-squared 
distribution with n degrees of freedom and non-centrality parameter 

 / . Therefore, the probability density function of 
 can be expressed as 

êL
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The rth moment (hence the expected value, the variance, and the mean squared 
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(d) Under general conditions, ˆ( e en L L−
2 4 [4 ( )µ µ+ −

)
2 2 4 4= − + −

 converges to  in distribution, 
where . Therefore, 

2(0, )eN σ
4

4 )/ ]dσ3[4( ) / ] / ] [(e T d T dσ µ σ µ n  
 converges to  in distribution if the process is 

normal. 
ˆ −

ˆ

( eL )eL (0,2 2 )pe ot pe eN L L L L+

(e) Under normality assumption, the information matrix can be calculated as 
shown below. Since the information lower bound is achieved, then the estimator 

 must be asymptotically efficient: eL
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5.4 Testing Process Capability Based on Process Loss 

Under normality assumption, nL  is distributed as χ δ , a 
non-central chi-squared distribution with n degrees of freedom and non- 
centrality parameter . Let U U  
be a statistic calculated from the sample data satisfying , 
where the confidence level  does not depend on . Then, U is an  

 upper confidence limit for . We note that 

ˆ /( )e e otL L−
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2

 

ˆ ˆP( /( ) /( ))e e ot e otnL L L nL U L= − ≥ −  

2 ˆP( ( ) /( ))n enL U Lχ δ= ≥ − ot 1 α= − .                (5.34) 

Thus, , where  is the (lower)  percentile 
of the  distribution. An 100  upper confidence limit on  can 
be expressed, in terms of , as . On the other hand, to 
test  versus , we claim that the 
process is capable for at least  of the time if . We can show 
that the critical value c , where C is the capability 
requirement preset. Then,  is the maximum value of 
the estimated expected relative loss  in order that the process is considered 
capable at least  of the time.  
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)δ
)δ+

H
êL ≤

By letting , we have . The formula 
for calculating critical value c  can be written as c n  

, which is easy to understand and straightforward to apply. But, 
since the process measurement  and  must be estimated from the sampled 
data to obtain the characteristic parameter , a great degree of uncertainty 
may be introduced to capability assessments due to sampling errors. Johnson 
(1992) suggested to estimate  and σ  by 

( )/Tξ µ σ= −

µ

2 2( ) /n T nδ µ σ= − =
0 =

ξ

0 [ ( , )χ α ξ ⋅n

/[ (1 )]ξ+n
µ σ

X  and S , respectively, to obtain 
upper confidence limit [( (which is equivalent to our 
expression ) for L . Such approach introduces 
additional sampling errors from estimating , and would be less reliable. 
Consequently, any decisions made would provide less quality assurance to the 
customers.  

n
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ξ
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]
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otU L= + 2ˆ[ /e nnL χ α(

 60



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.018

0.020

0.022

0.024

0.026

0.028

0.030

 
Figure 50. Plots of 0c  vs | | for 

= 0.03, n = 30, 50, 70, 100, 150, 
200 (bottom to top). 
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Figure 51. Plots of 0c  vs | | for 

= 0.04, n = 30, 50, 70, 100, 150, 
200 (bottom to top). 
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Figure 52. Plots of 0c  vs | | for 

= 0.06, n = 30, 50, 70, 100, 150, 
200 (bottom to top). 
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Figure 53. Plots of 0c  vs | | for 

= 0.11, n = 30, 50, 70, 100, 150, 
200 (bottom to top). 

ξ
eL

To eliminate the need for further estimating the characteristic parameter 
, we examine the sensitivity of the critical value  against the 

parameter . The results indicate that the critical value  is increasing in ξ  
and reaches its minimum at  (hence ) in all cases. Figures 50 - 53 
plot the curves of the critical value  versus the parameter = 0(0.05)3.00, n 
= 30, 50, 70, 100, 150, 200 with confidence level = 0.95, for = 0.03, 0.04, 
0.06 and 0.11, respectively. Hence, for practical purpose we may calculate the 
critical value  by setting ξ ξ  for given L , n, and , without having 
to further estimate the parameter . Thus, based on such approach, the  
confidence level can be ensured and the decisions made are indeed more reliable. 

( )/Tξ µ σ= − 0c
0c

0ξ = Tµ =
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)
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ξ
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γ eL
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ξ
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γ

Uniformly Most Powerful Test 

For testing hypothesis about L ,  versus 
, we define a test as  (reject ) if <c , and 

 otherwise, is the uniformly most powerful (UMP) test of level α  
under  (hence µ ), where  is determined by E [ . The 

e

φ
0 : (eH L C incapable≥
1= 0H êL

*( )]C X =

1 : (eH L C capable<
*( ) 0xφ =

0ξ =

*( )x 0

φ αT= 0c
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proof is shown as follows. For the test, the power function is 

* * 2
0( , ) E [ ( )] P [ ( )/

e ee L L nL X ncβ φ φ χ= = < ]eL .            (5.35) 

For , = , where  is the (lower)  
percentile of the  distribution. From the probability density function of , 
we define  as: 
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.    (5.36) 

Since for L L , the ratio λ  is an increasing function of x, then 

e
 has monotone likelihood ratio (MLR) property in L . 

Therefore, the test  must be the UMP test. 
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Making Decisions 

Tables 22(a), 23(a), and 24(a) give 90%, 95%, and 99% upper confidence 
limits for  under µ  with n given, and  calculated from the sample 
data. On the other hand, we note that  depends on U 
and . In the special case where  and U equals the recommended 
maximum value for , the probability that  would be either 1 or 0 if 

 were known. In practice, since  is unknown, we take a random sample of 
size n and calculate . Tables 22(b), 23(b), and 24(b) give critical values of  
in the case , for the process to be considered capable (i.e., ) 90%, 
95%, and 99% of the time. The following example illustrates the use of these 
tables. To determine whether the process meets the capability requirement, we 
first determine C, and the - risk. Then, we calculate the estimator  from 
the sample. From the appropriate table, we find the critical value  based on 
the - risk, capability requirement C, and sample size n. If the estimated value 

 is less than the critical value , then we conclude that the process meets 
the preset capability requirement. 
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An Example of Testing Le 

A practice that is becoming increasingly common in industry is to require a 
supplier to demonstrate process capability as part of the contractual agreement. 
Suppose a customer has told his supplier that, in order to quality for business 
with his company, the supplier must demonstrate that his process capability  
is less than 0.06. This problem may be formulated as a hypothesis-testing 
problem: 

eL

0 : 0.06 (eH L incapable≥ , 

1 : 0.06 (eH L capable< . 

 

In statistical hypothesis testing rejection of H  is always a strong 0
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conclusion. The supplier would like to reject , thereby demonstrating that 
his process is capable. Moreover, he wants to be sure that if the process 
capability is below 0.06 there will be a high probability of judging the process 
capable (say, 0.95). One takes a random sample of size n, and calculates the 
value of . Using Table 23(b) based on the random sample of size n = 50, for 
example, we obtain . Thus, if the calculated , then we 
claim that the process is capable at least 95% of the time, or equivalently, at the 
significant level . 

0H

êL
0 0.0435c =

0.05

ˆ 0.0435eL ≤

α =
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