
Chapter 6 
 

Measuring Process Loss for Asymmetric Tolerances 
 

Most research in quality assurance literature has focus on cases in which the 
manufacturing tolerance is symmetric. A process is said to have a symmetric 
tolerance if the target value T is set to be the midpoint of the specification interval 
[LSL, USL], i.e. T = M = (USL + LSL)/2. Investigations on symmetric case can be 
found in Kane (1986), Chan et al. (1988), Choi and Owen (1990), Boyles (1991), 
Pearn et al. (1992), Vännman (1995), Vännman and Kotz (1995), and Spiring 
(1997). Although cases with symmetric tolerances are common in practical 
situations, cases with asymmetric tolerances also may occur in the manufacturing 
industry.  

From the customer’s point of view, asymmetric tolerances reflect that 
deviations from the target are less tolerable in one direction than in the other (see 
Boyles (1994)), Vännman (1997), and Wu and Tang (1998)). Usually they are not 
related to the shape of the supplier’s process distribution. However, asymmetric 
tolerances can also arise in situations where the tolerances are symmetric to begin 
with, but the process distribution is skewed or follows a non-normal distribution. 
Dealing with this, the data have been transformed to achieve approximate 
normality, as shown by Chou et al. (1998) who have used Johnson curves to 
transform non-normal process data. Excluding Boyles (1994), Vännman (1997), 
Pearn et al. (1998, 1999), and Chen et al. (1999), unfortunately, there has been 
comparatively little research published on cases with asymmetric tolerances. 

Under asymmetric tolerances situation, using  would be risky and probably 
the results obtained are misleading. Consider the following example with 
asymmetric tolerance (LSL, T, USL), where T = (3USL + LSL)/4 and . 
For processes A and B with  (the midpoint of the specification 
interval) and . Both processes have the index value  

 and equal degree of clustering around the target, that is,  
for both processes A and B. However, the expected proportions non-conforming are 
approximately 0.27% for process A and 50% for process B. Obviously,  
inconsistently measures process capability in this case, and is inappropriate for 
those with asymmetric tolerances. This problem calls for a need to generalize the 
index  to cover situations with asymmetric tolerances so that appropriate use of 
the process loss index can be continued.  
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6.1 A New Generalization  eL′′

In this section, we consider a new generalization of  to handle processes 
with asymmetric tolerances. We refer to this generalization as , which may be 
defined as follows: 
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 71



where u l , u , , 
. We denoted ( /  by ,  by  and hence 

e . Obviously, if the tolerances are symmetric, then , 
, and . Accordingly, the new generalization 

defined in Equation (6.1) reduces to the original index  as in Equation (1.7). 
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In developing the new generalization, we have replaced the term  in 
e  by A. This ensures that the new index obtains the minimal value at  

regardless of whether the tolerances are symmetric or asymmetric. By substituting 
the half specification width d  by d , e  is sensitive to target value T and 
obtains larger value when T is away from M. For processes with asymmetric 
tolerances, the corresponding loss function is also asymmetric in T. We take into 
account the asymmetry of the loss function by adding the factors (  and 

 to  according to whether  is greater or less than T. The 
factors  and  ensures that if processes A and B with A  
and B  satisfy ( A u B l , then the index values given to A 
and B are the same. Also, it is easy to verify that if the process is on target, then 

 is the minimum value. 
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6.2 Comparisons of  and  eL′′ eL

To examine some basic difference between  and , in the following, the 
generalization e  is compared with the original index eL . We consider the 
following example with manufacturing specifications LSL = T – 1.50d, USL = T + 
0.50d. Table 25 displays the values of e , ot , pe , e , ot , and  for various 
values of , with fixed . And these index values of , , , , 

pe  and  versus  are plotted in Figure 54 (from bottom to top in plot). We 
note that  and  have the minimum value at the target. But their values at 
the upper specification limit (say, when the expected proportion nonconforming is 
50%) are equal to those at the midpoint M. See Table 25, the values of  and  
are 0.313 and 0.250, respectively, either for  or  

. These indices, being symmetric abut the target value, do not take into 
account the location of the process mean.  
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Figure 54. Plots of , , e , ot ,  
and  versus  (top to bottom in plot). 
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On the other hand, the new index  we propose takes into account the 
location of the process mean for asymmetric tolerances. Thus, given two processes 
A and B with  and  satisfying (  and , 
B has significantly higher yield that A, so the index value of the new generalization 

 of A is greater than the index value of B. We note that  is of the 
smaller-the-better type as one may expect, since process loss is smaller the better. 
An illustrative example is = 4.063 for  and = 0.507 for 

 in Table 25. These two process means have equal departure from 
the target, but B has significantly higher yield than A, so intuitively A should score 
higher than B. Therefore, we conclude that the proposed new generalization  is 
superior to the original index .  
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6.3 Estimation of the Process Loss Indices for Asymmetric Tolerances 

We consider the case when the characteristic of the underlying process is 
normally distributed. Let  be a random sample drawing from a 
normal distribution with mean  and variance  measuring the characteristic 
under investigation.  

1 2, , , nX X X…
µ σ

6.3.1 Estimation of  eL′′

To estimate the new generalization of loss index , we consider the natural 
estimator which can be defined as follows: 
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the maximum likelihood estimator. For the case where the production tolerance is 
symmetric,  may be simplified as 

( )n ii
S X X

=
= −∑

A | . Therefore, the estimator  
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1
, the natural estimator of  discuss by 

Johnson (1992). Consequently, we may view the estimator  as a direct 
extension of . Now we focus on some statistical properties of this natural 
estimator .  

| ˆ
1 2 2)

n
i

− −

ˆ
ˆ

ˆ

2max { ,ud Z }ld Z−

X T− eL′′
ˆ ( ) (e i
L n d X T

=
= −∑ eL

eL′′
eL

eL′′

Theorem 6.1. Let  be a random sample form ,  

 , where 
1 2, , , nX X X… 2( , )N µ σ =Y

( )/X T σ= − ( ,1)δ δ =Z n  is distributed as N  and  
n ( )/σTµ− . Then Y  has a weighted non-central chi-square distribution with 

one degree of freedom (d.f.) and non-centrality parameter δ . The probability 
density function of Y is: 
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2δ , ( )/n Tδ µ σ= − , and jY  is distributed as 2
1 jχ + . For the case when  

, this formula reduces to the probability density function of a non-central chi- 
square distribution with one d.f. and non-centrality parameter . 

u ld d=
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δ

Proof. Based on the notation of Theorem 6.1, the cumulative distribution function 
of Y is: 
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Expanding  in power series, we obtain ye
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Theorem 6.2. The rth moment about zero of  is: ˆ′′eL
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Proof. For the sake of deriving the rth moment of , the following notation is 
introduced: 
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Assume that the process is normally distributed with mean  and variance 
, then K is distributed as , Y is distributed as a weighted non-central 

chi-square distribution with one d.f. and non-centrality parameter  (see Theorem 
6.1). In the notation the estimator  can be represented as . 
Thus, the rth moment of  is . Since Y is distributed 
as a weighted non-central shi-square distribution with one d.f. and non-centrality 
parameter , we have 
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where jY  is distributed as 2
1 jχ + . Let /( )j j jH Y K Y= +  and j jW K Y= + . Under 

the assumption of normality, jH  and jW  are independent random variables (see, 
for instance, Johnson and Kotz (1970)), and jH  is distributed according to 

. Furthermore, ((1 )/2, ( 1)/2)j nβ + − jW  has a chi-square distribution with (n + j) 
degrees of freedom. Therefore 
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Combining the results, we can obtain the rth moment of  as stated in Theorem 
6.2. 
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We note that the estimator  is biased. The bias of  may be computed 
as , and the mean squared error, which is more relevant to 
the analysis of process quality, is . To explore 
the behavior of the estimator , the bias and the mean squared error were 
calculated using computer software for various values of  
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ud , , and sample size n. For example, Table 26 displays the bias and the MSE of 
 for a = −1.0(0.5)1.0, b = 1,  = 5/4,  = 5/6, and n = 10(10)100. 

ld
ˆ

ˆ

eL′′ ud ld

The results in Table 26 indicate that as  increases, the bias and the mean 
squared error also increase. Further, as the sample size increases, the bias and the 
mean squared error decrease. The bias of  versus n are plotted in Figure 55 
with a = −1.0, 0, 1.0 (from bottom to top in the plot). And Figure 56 plot the MSE 
of  versus n with a = 0, −1.0, 1.0 (from bottom to top in the plot). 
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Figure 55. Plots of bias of eL  
versus n with a = −1.0, 0, 1.0 
(bottom to top in plot). 
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Figure 56. Plots of MSE of e  
versus n with a = 0, −1.0, 1.0 
(bottom to top in plot). 
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Table 27 display the relative error and relative bias of , defined as êL′′
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for a = −1.0(0.5)1.0, b = 1, u  = 5/4, ld  = 5/6, and n = 10(10)100. The square 
root of the relative mean squared error is a direct measurement, which presents the 
expected relative error of the estimation from the true e . For example, with n = 
100, a = 0.5 we has 

d
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that the average error of would be no greater than 15.21% of the true e . On 
the other hand, the relative bias  is investigated to analyze the accuracy 
of the natural estimator . For example, with n = 100, a = 0.5 we has 

= 0.0040, that is, 0.4% relative bias for the true . 
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6.3.2 Estimation of  otL′′
2

2 * 2ˆˆ ˆ
To estimate the new off-target loss index , we consider the 

natural estimator . The rth moment about zero for  is: 
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In particular, the expected value and the variance of  can be obtained as 
follows: 
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We note that the estimator  is biased. The bias of  may be computed 
as , and the mean squared error, which is more relevant to 
the analysis of process quality, is . Table 28 
displays the bias and the MSE of  for a = −1.0(0.5)1.0, b = 1,  = 5/4,  = 
5/6, and n = 10(10)50. The results in Table 28 indicate that as  increases, the 
mean squared error also increases. Further, as the sample size increases, the bias 
and the mean squared error decrease. The bias of  versus n are plotted in 
Figure 57 with a = −1.0, 0, 1.0 (from bottom to top in the plot). And Figure 58 plots 
the MSE of  versus n with a = 0, −1.0, 1.0 (from bottom to top in the plot). 
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Figure 57. Plots of bias of otL  
versus n with a = −1.0, 0, 1.0 
(bottom to top in plot). 

ˆ′′

 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

 

Figure 58. Plots of MSE of ot  versus n with a = 0, −1.0, 1.0 
(bottom to top in plot). 
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Table 29 display the relative error and relative bias of , defined as ôtL′′
1
2ˆ[ ( )]R otMSE L′′ = 12 2ˆ{ [( )/ ] }ot ot otE L L L′′ ′′ ′′−  and , 

respectively, for a = −1.0(0.5)1.0, b = 1,  = 5/4,  = 5/6, and n = 10(10)100. 
The square root of the relative mean squared error is a direct measurement, which 
presents the expected relative error of the estimation from the true . For 
example, with n = 100, a = 0.5 we has 

ˆ( )R otBias L′′ = ˆ[ ( ) ]/ot ot otE L L L′′ ′′ ′′−
ud ld

otL′′
1ˆ

ˆ )

ˆ )

2[ ( )]R otMSE L′′ =  0.4060. Thus, for n = 100, 
a = 0.5 we expect that the average error of would be no greater than 40.6% of 
the true  On the other hand, the relative bias  is investigated to 
analyze the accuracy of the natural estimator . For example, with n = 100, a = 
0.5 we has = 0.0400, that is, 4% relative bias for the true . 

otL′′
.′′otL (R otBias L′′

otL′′
(R otBias L′′ otL′′

For the case when the production tolerance is symmetric,  may be simplified 
as 

Â
| X T− | ˆ and the estimator  reduces to otL′′ 2 2ˆ )( ) /(otL X T d= − , which is the 

maximum likelihood estimator (MLE) of . This is because that otL X  is the MLE 
of , then by the invariance property of MLE the result follows. Thus, we have the 
rth moment of  for symmetric tolerance as  
µ
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   (6.19) 

6.3.3 Estimation of  pe

The index  reflects the process inconsistency loss, and its natural estimator 
can be defined as , where 

peL′′
1 /pe nL S d−′′ = 2 2 1)

n
n −

2

2 ˆ

ˆ 2 *2

) ˆ

1 1
( ) /(n ii

S X X− =
= −∑ . This 

estimator is unbiased and depends only on the complete, sufficient statistic  
for , by the Lehmann-Scheffé Theorem we know that  is an uniformly 
minimum variance unbiased estimator (UMVUE) of . On the assumption of 
normality,  is distributed as  times a chi-square variable with 

 degrees of freedom. The rth moment about zero for  is:  
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ˆ

.            (6.20) 

In particular, the expected value and the variance of  can be obtained as 
follows: 

peL′′

ˆ( )pe peE L L′′ ′′= ,                           (6.21) 
and 

 
4
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2ˆ( )
( 1)peVar L
n d
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.                      (6.22) 

For the case when the production tolerance is symmetric, d  may be simplified 
as d and the estimator  reduces to , which is an uniformly 
minimum variance unbiased estimator (UMVUE) of . The rth moment of  
for symmetric tolerance becomes  

*

ˆ 2 2ˆ
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6.4 An Application Example 

We consider a case study for illustration purpose. Consider the following 
example involving a factory manufacturing high density Light Emitting Diode 
(LED). Application of LEDs is expanding rapidly since high intensity LEDs of wide 
range of colors have been recently developed and become available, which enabled 
application of LEDs in a wide variety of areas such as instrument cluster lighting, 
color displays, traffic signals, roadway signs (barricade lights), airport signaling and 
lighting, automotive backlighting in dashboards and switches, telecommunication 
indicator and backlighting in telephone and fax backlighting for audio and video 
equipment, backlighting in office equipment, indoor and outdoor message boards, 
flat backlight for LCDs, switches and symbols, illumination purposes, alternative to 
incandescent lamps, etc.  

LEDs are peculiar light sources much different from lamps in terms of physical 
size, flux level, spectrum, and spatial intensity distribution. And LED technology 
provides a number of benefits over incandescent bulbs. With a focus on the critical 
characteristic, the luminous intensity of LED sources, we examine a particular LED 
product model. The upper and the lower specification limits of luminous intensity 
are set to USL = 100 mcd, LSL = 50 mcd, and the target value is set to T = 80 mcd. 
We note that it’s an asymmetric tolerance case.  

 
Table 30. The 30 consecutive days . êL′′

0.644 0.817 0.942 0.691 0.754 0.458 
0.485 0.610 0.707 0.577 0.732 0.512 
0.683 0.764 0.870 0.653 0.574 0.623 
0.551 0.690 0.582 0.744 0.658 0.491 
0.725 0.673 0.455 0.649 0.971 0.521 

 

Now we consider a particular type of LED manufacturing process. Historical 
data based on routine process monitoring shows that the process is under statistical 
control and the process distribution is justified and is shown to be fairly close to the 
normal distribution. A sample data collection procedure is implemented in the 
factory on a daily basis to monitor/control process quality. The factory production 
resource and schedule allows the data collection plan be implemented with a sample 
size . A simple approach to determine the true value (rather than a upper 
confidence bound) of eL  is to perform the sampling on a routine basis 
consecutively for a number of, say, 30 days. The calculated values of single-day  
for 30 consecutive days are displayed in Table 30. The average  value for the 30 
days is obtained as 0.660. Checking Table 27, the values of  is 
between –0.0065 and 0.0101. Therefore, the true value of e  can be determined as 
0.66/(1−0.65%) = 0.6643. The error of the approximation becomes negligibly small 
over time. 
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