
Chapter 7 
 

Conclusions 
 

Process capability indices, which establishing the relationship between the 
actual process performance and the manufacturing specifications, have been the 
focus of recent research in quality assurance and capability analysis. The quality 
yield has been proposed to calculate the process capability by taking customer 
loss into consideration. It penalizes yield for variation of the product 
characteristics from its target, combining the proportion of conformities and the 
average process loss.  

In Chapter 2, we develop a reliable approach to obtain a lower confidence 
bound of , which can be applied to production processes with very low 
fraction defective where existing method cannot be applied. The results 
obtained in this chapter allow one to perform capability testing based on yield 
and customer satisfactions. A real-world application to the amplified pressure 
sensor manufacturing process is also presented for illustrative purpose. Quality 
yield is a flexible index because it compares the quality of different 
characteristics of a product on a single percentage scale, and indicates how close 
a product comes to meeting 100% customer satisfaction. Furthermore, 
comparing with the existing capability indices, they rely on the underlying 
assumption of normality. Although new capability indices have been developed 
for non-normal distributions, those indices are harder to compute and interpret, 
and are sensitive to data peculiarities such as bimodality or truncation. If a 
process is clearly non-normal, there is some question as to whether any process 
index is valid or should even be calculated. No the other hand, these indices do 
not explicitly account for the manufacturing cost or customer’s loss.  
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In Chapter 3, the nonparametric, computational intensive but effective 
estimation bootstrap method is applied to the Q-yield measure  to obtain 
the lower confidence bounds. The lower confidence bound provides information 
regarding actual process performance for both the fractions of defectives units 
and customer quality loss. The proposed approach makes it feasible for the 
engineers to perform approximate process quality testing using the calculated 
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In Chapter 4, we used the worth function to generalize the concept of the 
Q-yield  for processes with asymmetric tolerances. The analysis and 
comparisons showed that the new generalization  incorporates the asymmetry 
of the manufacturing tolerance (with asymmetric loss function), which reflects 
process performance more accurately. We also proposed the unbiased estimator 
of  to access the ability of the considered process, which does not require the 
assumption of normal variability. Some Monte Carlo simulations are conducted 
to investigate the behavior of the sampling distribution of the estimated . 
The result showed that for moderate sample size n of no greater than 300 the 
distributions of the estimated Q-yield all appear to be normal. Therefore, 

qY
qY

qY

qY

 83



normal approximation approach may be used to perform the capability testing.  

Johnson (1992) introduced the relative expected loss , which 
provides an uncontaminated separation between information concerning the 
relative inconsistency loss ( ) and the relative off-target loss ( ). The 
definition of  and  are the square of the ratio of the deviation of mean 
from the target and the half specification width, and the ratio of the process 
variance and the square of the half specification width, respectively. Both of 
them have clear interpretation on process loss.  
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In Chapter 5, we considered the three indices, and investigate the statistical 
properties of their natural estimators. For the three indices, we obtained their 
UMVUEs and MLEs. For each index, we compare the reliability of the two 
estimators based on their relative errors (square root of the relative mean 
squared error). We summarize the definitions of the process losses indices , 

 and , accompanied with different estimators corresponding to these 
indices (see Table 30). Which estimator should be preferred for what sample 
sizes is also suggested. In addition, we constructed 90%, 95%, and 99% upper 
confidence limits, and the maximum values of  for which the process is 
capable. The results obtained in this chapter are useful for the practitioners in 
choosing good estimators and making reliable decisions on judging process 
capability.  
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Table 30. Recommended estimator of the loss indices for different sample size. 
Loss  

Indices Definition UMVUE MLE Estimator Recommended  

peL  
2

d
σ⎛ ⎞
⎜ ⎟
⎝ ⎠

 
2

1
2

nS

d
−  

2

2
nS

d
 

35n ≤ : MLE 
35n > : Difference is negligible (<0.52%) 

otL  
2

T
d

µ −⎛ ⎞
⎜ ⎟
⎝ ⎠

 
22

1
2 2

( ) nSX T

d nd
−−

−  
2

2

( )X T

d

−  
30n ≤ :UMVUE 
30n > :Difference is negligible (<0.04%) 

eL  σ µ+ −2 2

2

( )T

d
 

+ −2 2

2

( )nS X T

d
 

+ −2 2

2

( )nS X T

d
 --- 

 

In Chapter 6, we considered a new generalization , a modification of the 
process loss index e , to handle processes with asymmetric tolerances. The new 
generalization  not only takes the proximity of the target value into 
consideration, but also takes into account the asymmetry of the specification 
limits. We also investigated the statistical properties of the natural estimator of 
process loss indices , , and  assuming that the process is normally 
distributed. We obtained the rth moment, expected value, and the variance of 
the natural estimator , , and , respectively. We also analyzed the bias 
and the MSE. The new generalization  measures process loss more 
accurately than the original index eL . Therefore, the new generalization  
should be recommended for in-plant applications. 
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