Appendix A

Let $X_1, X_2, ..., X_n$ be a random sample of size n drawn from a normal distribution with mean μ and variance σ^2 measuring the characteristic under investigation. The natural estimator \hat{C}_{pk} is obtained by replacing the process mean μ and the process standard deviation σ by their conventional estimators \overline{X} and $S_{n-1} (= [\sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)]^{\frac{1}{2}})$, respectively. Then we have the following expression:

$$\hat{C}_{pk} = \frac{d - \left| \bar{X} - M \right|}{3S_{n-1}}.$$
 (A.1)

For the sake of deriving the cumulative distribution function of \hat{C}_{pk} , the following notations are introduced:

- 1. $K = (n-1)S_{n-1}^2 / \sigma^2$, which is distributed as χ_{n-1}^2 ,
- 2. $Z' = \sqrt{n}(\overline{X} M) / \sigma$, which is distributed as $N(\xi \sqrt{n}, 1)$ with $\xi = (\mu M) / \sigma$,
- 3. H = |Z'|, which is distributed as a folded-normal distribution with probability density function $f_H(h) = \phi(h + \xi \sqrt{n}) + \phi(h \xi \sqrt{n})$ for $h \ge 0$, where $\phi(\cdot)$ is the probability density function of the standard normal distribution.

For x > 0, the cumulative distribution function of \hat{C}_{pk} can be derived as:

$$\begin{aligned} F_{\hat{C}_{pk}}(x) &= P(\hat{C}_{pk} \leq x) = P\left(\frac{\sqrt{n-1}(b\sqrt{n}-H)}{3\sqrt{nK}} \leq x\right) \\ &= 1 - P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-H)}{3x}\right) \\ &= 1 - \int_0^\infty P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-H)}{3x} \middle| H = h\right) f_H(h) dh \\ &= 1 - \int_0^\infty P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-h)}{3x}\right) f_H(h) dh , \end{aligned}$$
(A.2)

where $b = d / \sigma$. Since K is distributed as χ^2_{n-1} , we have

$$P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-h)}{3x}\right) = 0 \text{ for } h > b\sqrt{n} \text{ and } x > 0.$$
 (A.3)

Therefore, $F_{\hat{C}_{pk}}(x) = 1 - \int_0^{b\sqrt{n}} P\left(\sqrt{nK} < \frac{\sqrt{n-1}(b\sqrt{n}-h)}{3x}\right) f_H(h) dh$

$$=1-\int_{0}^{b\sqrt{n}}G\left(\frac{(n-1)(b\sqrt{n}-h)^{2}}{9nx^{2}}\right)f_{H}(h)dh\,,\,\text{for }x>0,\qquad(A.4)$$

where $G(\cdot)$ is the cumulative distribution function of χ^2_{n-1} . Substituting $f_H(t)$ leads to the result:

$$F_{\hat{C}_{pk}}(x) = 1 - \int_{0}^{b\sqrt{n}} G\left(\frac{(n-1)(b\sqrt{n}-t)^{2}}{9nx^{2}}\right) \left[\phi(t+\xi\sqrt{n}) + \phi(t-\xi\sqrt{n})\right] dt , \text{ for } x > 0.$$
(A.5)

