
Appendix A 
 

Let  be a random sample of size n drawn from a normal 
distribution with mean  and variance σ  measuring the characteristic under 
investigation. The natural estimator C  is obtained by replacing the process 
mean µ and the process standard deviation σ by their conventional estimators 
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For the sake of deriving the cumulative distribution function of C , the 
following notations are introduced: 
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where  is the probability density function of the standard normal 
distribution. 
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where . Since K is distributed as , we have  1−n
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where  is the cumulative distribution function of . Substituting  
leads to the result: 
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