
Chapter 1 
 

Introduction 
 

1.1 Motivation 

Process yield is the most common criterion used in the manufacturing 
industry. Ng and Tsui (1992) proposed a more accurate, complete and 
customer-oriented measure of yield, which is referred to as quality yield . The 
index distinguishes the products within the specifications by increasing the 
penalty as the departure from the target increases. Quality yield could be 
expressed as the traditional yield minus the truncated expected relative loss 
within the specifications to quantify how well a process can reproduce product 
items satisfactory to the customers. However, only the sample point estimate of 

 has been considered in the literature. The sampling distribution and 
sampling errors are neglected. The decision maker would be interested in a lower 
bound on the quality yield rather than just the sample point estimate. Johnson 
(1992) developed the process loss index , which is defined as the ratio of the 
expected quadratic loss to the square of half specification width. A process is 
said to have a symmetric tolerance if the target value is set to be the midpoint of 
the specification interval. Most research in quality assurance literature has focus 
on cases in which the manufacturing tolerance is symmetric. Although cases 
with symmetric tolerances are common in practical situations, cases with 
asymmetric tolerances also may occur in the manufacturing industry. From the 
customer’s point of view, asymmetric tolerances reflect that deviations from the 
target are less tolerable in one direction than in the other. Usually they are not 
related to the shape of the supplier’s process distribution. Under asymmetric 
tolerances situation, using Y  and L  would be risky and probably the results 
obtained are misleading. This problem calls for a need to generalize the index 

 and L  to cover situations with asymmetric tolerances so that appropriate 
use of the process loss index can be continued.  
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1.2 Literature Review 

During the last decade, numerous process capability indices, including , 
,  and C  (see Kane (1986), Chan et al. (1988), Pearn et al. (1992)), 

have been proposed in the manufacturing industries to provide numerical 
measures on process performance. Those indices are effective tools for process 
capability analysis and quality assurance and convey critical information 
regarding whether a process is capable of reproducing items satisfying 
customers’ requirement. In practice, a minimal capability requirement would be 
preset by the customers/engineers. If the prescribed minimum capability fails to 
be met, one would conclude that the process is incapable.  
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Two process characteristics including the process location in relation to its 
target value, and the process spread (overall process variation) are used to 
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establish the formula of those capability indices. The closer the process output is 
to the target value and the smaller the process spread, the more capable is the 
process. That is, the larger the value of a process capability index, the more 
capable is the process. Because C  and C  are independent of the target 
value T, they can fail to account for process loss incurred by the departure from 
the target. For this reason, two more-advanced indices C  and C  were 
developed. Those indices have been defined explicitly as: 
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where  is the process mean,  is the process standard deviation, T is the 
target value, USL and LSL are the upper and the lower specification limits, 
respectively. We remark that the indices presented above, are designed to 
monitor the performance for normal and near-normal processes with symmetric 
tolerances. We have assumed that T = M = (USL + LSL)/2 (which is quite 
common in practical situations) in Chapters 2, 3 and 5. It is essential that 
process capability indices must be applied under the condition that the process 
is in statistical control (stable). 
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The index C  considers the overall process variability relative to the 
manufacturing tolerance, reflecting product quality consistency. Due to 
simplicity of the design, C  cannot reflect the tendency of process centering 
(targeting). The index  takes the process mean into consideration but can 
fail to distinguish between on-target processes from off-target processes. The 
index  takes the proximity of process mean from the target value into 
account, which is more sensitive to process departure than . Because  is 
based on the average process loss relative to the manufacturing tolerance, it has 
been alternatively called the Taguchi index. The index C  is constructed 
from combining the modifications to C  that produced C  and C , which 
inherits the merits of both indices. 
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In the literature, several authors have promoted the use of various process 
capability indices and examined with differing degrees of completeness. 
Examples include Chou and Owen (1989), Chou et al. (1990), Franklin and 
Wasserman (1992), Kushler and Hurley (1992), Kotz et al. (1993), Vännman and 
Kotz (1995), Vännman (1997), Kotz and Lovelace (1998), Hoffman (2001), 
Pearn and Shu (2003), and references therein. Kotz and Johnson (2002) 
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presented a thorough review for the development of process capability indices in 
the past ten years and Spiring et al. (2003) consolidated the research papers in 
process capability analysis for the period 1990-2002. Applications of those 
indices include the manufacturing of semiconductor products (Hoskins et al. 
(1988)), head/gimbals assembly for memory storage systems (Rado (1989)), 
flip-chips and chip-on-board (Noguera and Nielsen (1992)), rubber edge (Pearn 
and Kotz (1994)), aluminum electrolytic capacitors (Pearn and Chen (1997)), 
couplers and wavelength division multiplexers (Wu and Pearn (2003)). Other 
applications include performance measures on process with toolwear problem 
(Spiring (1989)), supplier selections (Tseng and Wu (1991), Chou (1994)), 
capability measures for multiple manufacturing streams (Bothe (1999)) and 
many others.  

Yield Index 

An important measure for interpreting process capability is yield, defined as  
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where  is the cumulative distribution function of the measured characteristic 
X. The disadvantage of the yield measure is that it does not distinguish among 
the products that fall inside of the specification limits. Customers do notice 
unit-to-unit differences in these characteristics, especially if the variance is large 
and/or the mean is offset from the target.  
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Loss Function  

The quadratic loss function is considered to distinguish the products fall 
inside the specification limits by increasing the penalty as the departure from 
the target increases. To provide information on the variation about the target 
value, several possibilities have been tried. Hsiang and Taguchi (1985) first 
introduced the loss function approach to quality improvement with focuses on 
the reduction of variation around the target value. This concept pays attention 
to the product designer’s original intent, that is, critical values at target lead to 
maximum product performance. In the development of this concept, Hsiang and 
Taguchi noted that any value x of a particular product’s critical characteristic X 
incurs some monetary loss, which is denoted by , to the customer and/or 
society as it moves away from the target value. This loss function is defined as 

( )L x

2( ) ( )L x k x T= − ,                        (1.6) 

where k is some positive constant. Therefore, no loss is incurred when the 
characteristic is ‘perfect’ (i.e. x = T ) and , and increasing loses are 
incurred as the measured value moves away from the target. While the reasons 
for using a continuous loss function such as the loss function (1.6) are 
understood, obtaining precise estimates for the parameter k turns out to be 
uneasy. 
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Loss Index 

The quadratic loss function itself does not provide comparison with the 
specification limits and depends on the unit of the characteristic. To address 
these issues, Johnson (1992) developed the relative expected loss L  for 
symmetric case, to provide numerical measures on process performance for 
industrial applications. Tsui (1997) interpret , which provide an 
uncontaminated separation between information concerning the potential 
relative expected loss (L ) and the relative off-target squared ( ). The index 

 is defined as the ratio of the expected quadratic loss and the square of half 
specification width as follows: 
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where d = (USL − LSL)/2 is the half specification width. If we define  
 and L , then  can be expressed as . 

Since  measures the process variation relative to the specification tolerance, 
it has been referred to as the process relative inconsistency loss index. On the 
other hand,  measures the relative process departure and has been referred 
to as the relative off-target loss index. We note that the mathematical 
relationship , , and L  can be 
established, where C ,  and  (defined as ) are 
three basic process capability indices considered by Chan et al. (1988), Kane 
(1986) and Peran et al. (1998), respectively. The most advantage of  over 

 is that the estimator of the former has better statistical properties than 
that of latter, as the former does not involve a reciprocal transformation of 
process mean and variance. The disadvantage of  index is the difficulty in 
setting a standard for the index since it increases from zero to infinity.  
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Quality Yield 

To incorporate the proportion conforming measure Y with loss function 
based index , Ng and Tsui (1992) proposed a more accurate, complete and 
customer-oriented measure of yield, which is referred to as quality yield Y .   
In contrast to the yield index Y , quality yield (Q-yield) emphasizes on the 
ability of the process clustering around the target, which therefore reflects the 
degree of the process targeting (centering) by considering only the relative loss 
within the specifications. With only taking the relative expected loss  within 
the specifications into account, Ng and Tsui (1992) defined the standardized 
quality as one minus the relative loss, and so the quality yield Y  is defined as 
the expected value of the standardized quality within the specification, that is, 
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This quality yield index differs from the expected relative worth index defined in 
Johnson (1992) by truncating the deviation outside the specifications. With this 
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truncation, the quality yield index will be between zero and one and thus 
provides a standardized measure. Also, by relating to the yield measure widely 
accepted in the manufacturing industry, it will be understood and accepted as a 
capability measure. Similar to the yield measure Y, an ideal value of  is one, 
which provides the user a clear guide about the standard. Similar to the yield Y, 
the Q-yield  requires no normality assumption. While yield is the proportion 
of conforming products, Q-yield can be interpreted as the average degree of 
products reaching “perfect” or “on target”.  
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1.3 Research Objectives 

In our investigation, we focus on obtaining lower bounds on  and extending Y  
and  to handle processes with asymmetric tolerances. The concrete contributions of 
this dissertation are threefold. The first is to propose two reliable approaches for 
measuring  by converting the estimated value into a lower confidence bound. One 
approach is for production processes with very low fraction of defectives under 
normality assumption. For arbitrary underlying distributions, we propose a bootstrap 
approach to obtain lower confidence bound on quality yield. The second is to generalize 

 and L  for asymmetric tolerances. The merit of the generalization is justified, and 
some statistical properties of the estimated generalization are investigated. The third is 
to investigate the statistical properties of these natural estimators for  and L . The 
results obtained in this dissertation are useful to the practitioners in choosing good 
estimators and making reliable decisions on judging process capability.  
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1.4 Organization 

In Chapter 1, we review some existing process capability indices and point out our 
research objectives. In Chapter 2, we propose a reliable approach for measuring  by 
converting the estimated value into a lower confidence bound for processes with very 
low fraction of defectives under normality assumption. In Chapter 3, a nonparametric 
but computer intensive method, called bootstrap, is used to obtain lower confidence 
bound on quality yield for arbitrary underlying distributions. Simulation studies are 
conducted to examine the sampling distribution of the estimated Y . The lower 
confidence bound not only provides information regarding actual process performance 
which is tightly related to both the fraction of defective units and customer quality loss, 
but also is useful in making decisions for capability testing. In Chapter 4, we generalize 
the quality yield index for asymmetric tolerances. The merit of the generalization is 
justified, and some statistical properties of the estimated generalization are investigated. 
In Chapter 5, we consider these loss indices , , , and investigate the statistical 
properties of their natural estimators. For these three indices, we obtain their UMVUEs 
and MLEs, and compare the reliability of the two estimators based on the relative mean 
square errors. In addition, we construct 90%, 95%, and 99% upper confidence limits, 
and the maximum values of  for which the process is capable 90%, 95%, and 99% of 
the time. In Chapter 6, we consider a generalization, which we refer to as , to deal 
with processes with asymmetric tolerances. The generalization is shown to be superior 
to the original index . We investigate the statistical properties of a natural estimator 
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of   and L  when the underlying process is normally distributed. We obtained 
the rth moment, expected value, and the variance of the natural estimator , , 
and . We also analyzed the bias and the mean squared error in each case. In Chapter 
7, we summarized the results obtained in our investigation. 
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