
Chapter 2 
 

Quality-Yield Measure for Very Low Fraction Defective  
 

In this chapter, we first rewrite the quality yield as representation of process 
yield and expected relative loss, focusing on production processes with very low 
fraction of defectives. We then obtain a lower confidence bound on process 
capability index  and an upper confidence bound on the expected relative 
loss to convert the estimated quality yield value into a reliable lower confidence 
bound. The chapter is organized as follows. Section 2.1 presents the comparisons 
of yield and Q-yield, with some illustrative examples. Section 2.2 investigates 
the estimator of quality yield. Since  provides a lower bound on the 
quality yield, estimations of process yield Y and process loss  are also 
explored. In Section 2.3, we propose a reliable method to obtain a lower 
confidence bound on quality yield. Section 2.4 presents an application example 
of the amplified pressure sensor (APS). Section 2.5 demonstrates the proposed 
methodology by calculating the quality yield for pressure sensor product. 
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2.1 Comparisons of Yield and Quality Yield 

Process yield is currently defined as the percentage of the processed product 
units passing the inspections. Units are inspected according to specification 
limits placed on various key product characteristics and sorted into two 
categories: passed (conforming) and rejected (defectives). Use of yield as a 
quality measure implies that each rejected unit costs the factory an additional 
amount (scrap or repair) while each passed unit costs the factory nothing 
additional. By inference, all passed units are equally acceptable to the 
next-in-line customer. Customer in this sense refers to any user of goods such as 
materials, components, subassemblies, assemblies, or systems. 

However, customers do notice unit-to-unit difference in these characteristics, 
especially when the variance is large and/or the mean is offset from the target. A 
more customer-oriented measure  is then proposed to account for both the 
fraction of defectives and variation from target for the passed units. Penalty to 
the yield increases as the departure from the target value T increases. When all 
conforming products are on target, then = Y.  Figures 1(a)-1(b) display two 
normally distributed processes, , and  

, respectively, with the quadratic loss function. The latter process has a 
higher yield but with a lower Q-yield since it has larger departure from the 
target value than the former. Furthermore, if the process characteristic X follows 
uniform distribution, , then the yield is Y = 1.00(100% conforming) 
and Q-yield is = 0.665 (66.5% perfect), respectively. Obviously, this is a 
low-quality process. On the other hand, if X follows the chi-square distribution 
with degrees of freedom three, the yield would be Y = 0.888 (88.8% conforming) 
and Q-yield would be = 0.62 (62% perfect) (see Figures 1(c)-1(d)). 
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Figure 1(a). Plots of process 

3( , )dN T  with loss function. 

 
Figure 1(b). Plots of process 

3 6( ,+ d dN T ) with loss function. 

 
Figure 1(c). Plots of process 

 with loss function. ( ,U LSL USL)

 
Figure 1(d). Plots of process 

 with loss function. 2(3)χ

To extend the applicability of the plot for normally distributed processes, 
we rewrite the definition of Y and qY  as a function of dC  and 

v . Noting that the sub-index dC  measures the departure ratio, and 
the sub-index vC  measures the process variation relative to the specification 
tolerances. The value of d (abscissa) we considered goes from −2 to 2 and hence 

 goes from T − 2d to T + 2d. Moreover, the value of v  (ordinate) goes from 
0 to 1 to cover a wide range of . Therefore, using d  as the x-axis,  as the 
y-axis, we can plot the surface of Y and qY  with various d− ≤ and 

v , which displayed in Figures 2(a)-(b), respectively. Figures 2(c)-(d) 
display the cross-section plot of Y and qY  versus d  for various 

v =1/6, 1/4, 1/3, 1/2, 1 (top to bottom in plot). We note that the plots of Y 
and q  are invariable irrespective of the value of the specification limits. 
Processes with multiple characteristics having different characteristic 
specification limits can thus be plotted simultaneously on a single chart. 

( )/T dµ= −
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C
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Therefore, high Q-yield values are desirable and can be viewed as improved 
product quality from the customer’s viewpoint. Q-yield is more flexible because 
it compares the quality of different characteristics of a product on a single 
percentage scale, and indicates how close a product comes to meeting 100% 
customer satisfaction. Comparing with the existing capability indices, we note 
that those capability indices rely on the underlying assumption of normal 
distribution. Although new capability indices have been developed for 
non-normal distributions (for example, Clements (1989) and Johnson-Kotz- 
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Figure 2(a). Surface plot of Y versus 

and .  2 2− ≤ ≤dC 0 1≤ ≤vC
 

 
Figure 2(b). Surface plot of q  versus 

and . 
Y

2 2− ≤ ≤dC 0 1≤ ≤vC

 
Figure 2(c). Plots of Y versus 

 for various vC =1/6, 
1/4, 1/3, 1/2, 1 (top to bottom). 

2− ≤ ≤dC 2

 
Figure 2(d). Plots of versus 

 for various vC =1/6, 
1/4, 1/3, 1/2, 1 (top to bottom). 

qY
2− ≤ ≤dC 2

qY p pkC pmC pmkC

Pearn (1994) methods). Those indices are more complicated to analyze and 
harder to interpret, and are sensitive to data peculiarities such as bimodality or 
truncation. Second, these indices do not explicitly account for the manufacturing 
cost or customer’s loss. Capability indices are generally defined with respect to 
the specification limits rather than the customer’s functional limits. Table 1 
summarizes values of those indices for some cases to illustrate the differences 
among Y,  and C , , , . 

Table 1. Comparisons of yield, Q-yield, and Cp, Cpk, Cpm, Cpmk. 

Case Y % qY % pC  pkC  pmC  pmkC  

( , )N T d  68.27 48.39 0.33 0.33 0.33 0.33 
( , /2)N T d  95.45 76.99 0.67 0.67 0.67 0.67 
( , /3)N T d  99.73 88.94 1.00 1.00 1.00 1.00 
( , /4)N T d  99.99 93.75 1.33 1.33 1.33 1.33 

( /3, /N T d d± 2)  90.50 69.13 0.67 0.44 0.55 0.37 
( /3, /N T d d± 3)  97.72 78.41 1.00 0.67 0.71 0.47 
( /3, /N T d d± 4) 99.62 82.70 1.33 0.89 0.80 0.53 
( /3, /N T d d± 6)  99.997 86.11 2.00 1.33 0.89 0.60 
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2.2 Estimation of Quality Yield  

Ng and Tsui (1992) proposed a sample estimator based on a finite 
population of products. Suppose  denote the sample measurements 
of product characteristics. It follows that yield and Q-yield are estimated by 
collected sample data can be defines as,

1 2, ,..., nX X X

1ˆ =
iLSL X USL

Y
n≤ ≤

∑ ,                       (2.1) 

2 21 ( )ˆ =
i

i
q

LSL X USL

X T d
Y

n≤ ≤

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ .                 (2.2) 

The sampling distribution and sampling errors are investigated. The decision 
maker would be interested in a lower bound on the quality yield rather than just 
the sample point estimate. Further, as the rapid advancement of manufacturing 
technology and customers demand, when the fraction of defectives is very low, 
such as in parts per million (ppm), products almost all fall between LSL and 
USL, one cannot even observe a defective item on inspection for a reasonable 
sample size. Thus, such approach is not applicable for the low defective processes 
(since the sample point estimate is almost certain be zero). The quality yield 
index  can be rewritten as the following: qY

2

2

( )
= ( )
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q e
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x T
Y Y dF x Y L

d
⎡ ⎤−⎢ ⎥− ⎢ ⎥ ≥ −
⎣ ⎦

∫ .           (2.3) 

Thus, the measure  provides a lower bound on the quality yield YeY L− q. For 
processes with very low fraction of defectives, the approximation of Yq using 

 would be quite accurate. Subsequently, we discuss the estimators of 
process yield Y and process loss . 

eY L−
eL

Estimation of Process Yield Y 

The index  is yield-based which provides a lower bound on the process 
yield; that is, (see Boyles (1991)). Table 2 displays 
some index values with two-sided specifications and the corresponding maximal 
non-conforming units in parts per million (ppm) calculated by the formula 

, for a normally distributed process. 

pkC
2 (3 ) 1 yield (3 )pk pkCΦ − ≤ ≤Φ C

62 10 [1 (3 )]pkC× × −Φ

Table 2. Some  index values with the corresponding  pk
defective units (in ppm) for a normally distributed process. 

C

pkC  0.7 0.8 0.9 1 1.1 1.2 1.3 1.33 
ppm 35729 16395 6934 2700 967 318 96 66 

pkC  1.4 1.5 1.6 1.67 1.7 1.8 1.9 2.0 
ppm 27 6.795 1.587 0.544 0.34 0.067 0.012 0.002 
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When ,  can be expressed as .  Thus, the index 
 may be expressed as a function of the characteristic parameter , 

pkC C= /b d σ= 3 |b C ξ= + |
C ξpk

| | / |

3 3pk

d M d
C

µ σ ξ
σ

− − −
= =

|
, where .     (2.4) ( )/Mξ µ σ= −

Construction of the exact lower confidence bounds on  is complicated since 
the distribution of  involves the joint distribution of two non-central 
t-distributed random variables, or alternatively, the joint distribution of the 
folded-normal and the chi-square random variables, with an unknown process 
parameter even when the samples are given (Pearn et al. (1992)). Numerous 
methods for obtaining approximate confidence bounds of  have been 
proposed, including Bissell (1990), Chou et al. (1990), Zhang et al. (1990), 
Porter and Oakland (1991), Kushler and Hurley (1992), Rodridguez (1992), 
Nagata and Nagahata (1994), Tang et al. (1997) and many others. 

pkC
ˆ

pkC

pkC

Using the integration technique similar to that presented in Vännman 
(1997), Pearn and Lin (2002) obtained an exactly explicit form of the cumulative 
distribution function of the natural estimator 1

ˆ ( )/(3pk nC d X M S −= − − ) , 
where 12 ]

n

2

2
1 1

[ ( ) /( 1)n ii
S X X n− =

= − −∑ , under the normal assumption, which is 
expressed in terms of a mixture of the chi-square distribution and the normal 
distribution, for x > 0, where  is the cumulative distribution function of the 
chi-square distribution with degree of freedom , , and  is the 
probability density function of the standard normal distribution, 

( )G ⋅
1n − 1nχ − ( )φ ⋅

[ ]
2

ˆ 20

( 1)( )
( ) 1 ( ) ( )

9pk

b n

C

n b n tF x G t n t n dt
nx

φ ξ φ ξ
⎛ ⎞− − ⎟⎜= − + + −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ .   (2.5) 

(A brief derivation of the cumulative distribution function of  is included in 
the Appendix A.) Hence, given the sample of size n, the confidence level , the 
estimated value , and the parameter ξ, using numerical integration 
technique with iterations, the 100  lower confidence bounds for , , 
where , can be obtained by solving the following equation, 

ˆ
pkC

γ
ˆ

pkC
%γ pkC LC

3 |L Lb C ξ= + |

[ ]
2

20

( 1)( )
( ) ( ) 1ˆ9

Lb n L

pk

n b n t
G t n t n

nC
φ ξ φ ξ

⎛ ⎞− − ⎟⎜ ⎟⎜ + + − = −⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫ dt γ .    (2.6) 

An  lower confidence bound on the process yield Y can then be 
expressed as . 

100 %γ
2 (3 ) 1LCΦ −

However, since the process parameters µ and σ are unknown, then the 
distribution characteristic parameter, ξ  is also unknown, which has to be 
estimated in real applications, naturally done by substituting µ and σ with the 
sample mean X  and the sample standard deviation S. Such approach (and 
most existing methods) introduces additional sampling errors from estimating 

 in finding the lower confidence bounds, which certainly would make our 
decisions less reliable and provide less quality assurance to the customers. To  
ξ

 11



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 
Figure 3(a). Plots of C  vs |ξ| for C = 1.00,  L pk

ˆ  
n = 25, 50, 75, 100, 150, 200 (bottom to top). 
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Figure 3(b). Plots of C  vs |ξ| for = 1.33,  L pkĈ  
n = 25, 50, 75, 100, 150, 200 (bottom to top). 
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Figure 3(c). Plots of C  vs |ξ| for = 1.67,  L

ˆ
pkC  

n = 25, 50, 75, 100, 150, 200 (bottom to top). 
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Figure 3(d). Plots of C  vs |ξ| for = 2.00,  L

ˆ
pkC  

n = 25, 50, 75, 100, 150, 200 (bottom to top). 

eliminate the need for further estimating the distribution characteristic 
parameter , we examine the behavior of the lower confidence bound values 

 against the parameter . The results indicate that the lower confidence 
bound is decreasing in  and reaches its minimum at  in all cases, 
and stays at the same value for  with accuracy up to . Figures 
3(a)-3(d) plot the curves of the lower confidence bound, , versus the 
parameter = 0(0.05)3.00, n = 25, 50, 75, 100, 150, 200 with confidence level 

= 0.95, for = 1.00, 1.33, 1.67 and 2.00, respectively. Hence, for practical 
purpose we may solve above equation with  to calculate the 
required lower confidence bounds for given C , n, and , without having to 
further estimate the parameter .  Thus, based on such approach, the  
confidence level can be ensured and the decisions made are indeed more reliable. 

ξ
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Estimation of Process Loss Le

Johnson (1992) proposed the relative expected squared error loss  by 
approaching capability from the point of view of the loss function. However, here 
the opposite concept of worth was used. It was assumed that a characteristic 
achieves its maximum worth , when X , with decreasing values of 
worth as X moves away from the target value T (eventually the worth becomes 
zero, then negative). The worth function can be described by , 
for , and it will become zero when | | .  

eL

TW T=

( )TW k X T− −
(TW k X T≥ − ( /TX T W k− =

 12



Johnson (1992) viewed the pair  in the role of 
specification limits for  and defined  by assuming the 
product has zero worth outside the specifications. The ratio of worth to 
maximum worth is called the relative worth and can be defined as 

1/2 1/2

1/ 2
( ( / ) , ( / ) )T TT W k T W k+ −

pmC ( / )Td W k=

2 2

2

( ) (( ) 1 1
T

k X T X TW X
W d
−= − = − )−

2

2

,             (2.7) 

where  is the relative loss. The expected relative loss, 
, is used to quantify capability, and is effectively equivalent 

to , since 

2( ) /X T d−
eL = 2[( ) ]/E X T d−

pmC

eL = .                       (2.8) 2(3 )pmC −

A natural unbiased estimator of  is  eL

2
2

1

1ˆ (
n

e i
i

L X
nd =

= −∑ )T

ˆ

L L U= −

.                   (2.9) 

2.3 Lower Confidence Bounds on Quality Yield  

Now we deal with the lower confidence limit on the quality yield. Given a 
sample of size n, the confidence level , the estimated value , and the 
estimated relative loss , the lower confidence bounds of  can be easily 
obtained by some mathematical manipulations. The  lower confidence 
bound of  can be expressed as: 

γ ˆ
pkC

eL qY
100 %γ

qY

( )
qq YP Y L≥ ≥ ( , )

qY q YP Y L Y L γ≥ ≥ ≥  and 

q eY Y L 2
2

ˆ
ˆ2 (3 ) 1 ˆ(1 ; )L e

n

n
C L

λ
χ γ λ

⎡ ⎤+⎢ ⎥= Φ − − ⎢ ⎥′ −⎢ ⎥⎣ ⎦
,         (2.10) 

where  is a lower  confidence bound on Y , 
e
 is an upper 

 confidence bound on , and . All derivations are shown 
below. A lower  confidence bound for  and Y simultaneously can be 
derived as (for processes with very low fraction defective, we use approximate Y

YL 1100 %γ LU
2100 %γ eL 1γ γ γ= × 2

qY q YP Y L Y L≥ ≥ )Y

)Y

)Y

)
. C

100 %γ qY
q 

by  in the following derivation):  eY L−

( , ) ( ) ( |Y q YqP Y L P Y L Y L= ≥ × ≥ ≥  

( ) ( |
qY e YP Y L P L Y L Y L= ≥ × ≤ − ≥   

( ) (
qY e YP Y L P L L L≥ ≥ × ≤ −  

      .                              (2.11) 1 2γ γ γ= × =

As pointed out earlier, the yield-based index  gives a lower bound on 
the process yield. Hence, the probability  is equivalent to the 
probability  Solve  for we obtain      

, where  is the  lower confidence bound on . Next, we 

pkC
( YP Y L≥

( )≥pk LP C C 1( )YP Y L γ≥ = ,YL 2 (3 )= ΦY LL
1− LC 1100 %γ pkC
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proceed with the expression 
q

 Under normality assumption, 
 is distributed as , a non-central chi-squared distribution 

with n degrees of freedom and non-centrality parameter . Let 

 be a statistic calculated from the sample data satisfying 

e
, where the confidence level  does not depend on . Then, 

 is an  upper confidence bound for . We note that 

2( ) γ≤ − = .e Y YP L L L
ˆ

eL 2

2 2

n

e LP L U γ≤ =

)

enP n Lχ λ λ′= ≥ +

2ˆ )e L nn L Uλ χ γ λ′+ = − 2 λ
2

ˆ
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( ) /n Tλ µ σ= −

eLU = 1 2( , , , )
eLU X X X…
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eLU 2100 %γ eL
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2 ˆ( ( ) ( ) / )e LU 2γ= .           (2.12) 

Thus, 
e

, where  is the  
(lower) percentile of the  distribution. An  upper confidence 
limit on  can be expressed, in terms of , as  

2( ) / (1 ; 2(1 ; )nχ γ′ − 2(1 )thγ−
( )nχ λ′ 2100 %γ

eL eL

2
2

ˆ
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χ γ λ eL
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The  can be estimated by λ 2ˆ [( )/ ]nn X T Sλ = −  where 
1

/
n

ii
X X

=
=∑ n  and 

2 1/
1

[ ( ) / ]
n

n ii
S X X

=
= −∑ 2n . Substitute the results of  and 

q
 back to the 

equation, an  lower confidence bound for  and Y simultaneously can 
be expressed as: 

YL YL
100 %γ qY

2
2

ˆ
ˆ2 (3 ) 1, 2 (3 ) 1 ˆ(1 ; )L q L

n

n
P Y C Y C L

λγ
χ γ λ

⎛ ⎞
e

⎡ ⎤+ ⎟⎜ ⎢ ⎥ ⎟⎜= ≥ Φ − ≥ Φ − − ⎟⎜ ⎢ ⎥ ⎟′ ⎟⎜⎜ −⎝ ⎠⎢ ⎥⎣ ⎦
.  (2.14) 

2.4 Application to Amplified Pressure Sensor (APS) 

We consider the following case taken from a manufacturing factory making 
series of original equipment manufacturer (OEM) pressure sensors, which 
combines state-of-the-art pressure sensor technology with signal conditioning to 
produce a fully signal conditioned, amplified, temperature compensated sensor 
in a dual in-line package (DIP) configuration. Combining the sensor and the 
signal conditioning circuitry in a single package simplifies the use of advanced 
silicon micromachined pressure sensors. Now, the pressure sensor can be directly 
mounted to a standard printed circuit board and no additional components are 
required for obtaining an amplified high level, calibrated pressure measurement. 
The pressure sensors are based on highly stable, piezoresistive pressure sensor 
chips mounted on a ceramic substrate. Two different pin configurations of the 
APS part, one for classical thru-hole printed circuit board applications and one 
for surface mount applications are available. These are shown in Figures 
4(a)-4(b). Note that the only difference between the two is the pins. The ceramic 
housing, cap and ports are identical between the two configurations. 
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Figure 4(a). Standard Thru-Hole 
Pin Configuration for the APS. 

  
Figure 4(b). Surface-Mount Pin 
Configuration for the APS. 

 

An electronically programmable application-specific integrated circuit 
(ASIC) is contained in the same package to provide calibration and temperature 
compensation. The model is designed for operating pressure ranges from 0-5 PSI 
up to 0-100 PSI. And the sensor output is ratio metric with the supply voltage. 
Some features of the model are: Wide selection of full-scale ranges to 100 PSI; 
low pressure (from 0-0.15 PSI FS) based on unique low-pressure die; amplified, 
calibrated, fully signal conditioned amplified output of 4.0 VDC FS span (0.5 to 
4.5 V signal); output ratio metric with supply voltage; temperature compensation 
for span and offset; gage, differential, and absolute version; DIP package for 
convenient PC board mounting; small, lightweight package. Some typical 
applications are: barometric measurement; medical instrumentation; pneumatic 
control; gas flow; respirators and ventilators and ventilating and air-conditioning.  

Amplified Pressure Product Capabilities 

The series pressure product provides a significant advantage to the user due 
to a number of improvements associated with the technology used in fabricating 
this part. These advantages include integrated amplification, electronic-trim for 
more precise control of gain and offset, fewer external support components. The 
following notes are meant as an aid to the user to document some of these 
improvements. The amplified configuration has some key advantages but these 
also must be considered in designing the systems into which pressure sensor 
parts are used. For instance, a fairly standard "trick" when using an unamplified 
part in such absolute applications as barometric measurements is to use a 5 
PSIA part. This allows it to operate in the 15 PSIA range with effectively 10 PSI 
overpressure, in order to get 3X more unamplified output from the part. The 
addition of amplification at the measurement site has several key advantages. 
One of those is the required support circuitry. The pressure sensor has been 
designed to eliminate the need for external components. The pressure sensor 
requires no external components. The pressure sensor model with the gain of the 
part testing is depicted as in Figure 5. 

One of the key features of the pressure sensor is that it is electronically 
trimmed. As such, the part can be tested and verified before the final trim 
parameters are programmed. With the conventional laser-trimmed components, 
the final performance is set by how well the test system can measure millivolt 
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level signals and resistances ranging from less than 50 Ohms to over 5 MegOhm. 
All of this is done at the end of long test cables and this further makes 
measurements more uncertain. There are several alternative measures on the 
manufacturability of a part. Yield from a manufacturer's viewpoint is critical but 
so to is the distribution of parts as manufactured. The tighter the distribution on 
key parameters, the higher the quality of the part and the lower is the 
probability that the end-customer will get a part that will not meet the 
published specification. 

 

 
Figure 5. Application schematic with 1.5 mA 
drive at 25℃ after 10 second warm up. 

Table 3. APS data of 100 measurements for the Zero and Span. 

Zero (volt) Span (volt) 
2.5445 2.5310 2.5204 2.5406 2.0512  2.0532  2.0396  2.0035  
2.5455 2.5305 2.5418 2.5390 2.0594  2.0507  2.0382  2.0512  
2.5338 2.5721 2.5430 2.5570 2.0517  2.0050  2.0276  1.9956  
2.5482 2.5573 2.5403 2.5539 2.0038  2.0300  2.0719  2.0038  
2.5306 2.5329 2.5391 2.5493 2.0532  2.0318  1.9957  2.0629  
2.5471 2.5495 2.5202 2.5452 2.0235  2.0308  2.0226  2.0409  
2.5482 2.5355 2.5470 2.5528 2.0373  1.9684  2.0113  2.0092  
2.5474 2.5611 2.5434 2.5335 2.0501  2.0037  2.0295  2.0524  
2.5532 2.5419 2.5327 2.5416 2.0575  2.0557  2.0333  2.0584  
2.5511 2.5455 2.5618 2.5506 2.0070  2.0374  2.0563  2.0094  
2.5490 2.5476 2.5490 2.5382 1.9716  2.0152  2.0392  2.0113  
2.5543 2.5375 2.5454 2.5225 2.0390  2.0504  2.0529  2.0463  
2.5454 2.5466 2.5253 2.5405 2.0316  1.9912  2.0824  2.0307  
2.5279 2.5333 2.5586 2.5432 2.0000  2.0243  2.0825  2.0180  
2.5381 2.5364 2.5563 2.5521 2.0102  1.9842  2.0300  2.0433  
2.5453 2.5396 2.5493 2.5402 2.0112  2.0482  2.0440  1.9793  
2.5379 2.5486 2.5382 2.5432 2.0024  2.0277  2.0199  2.0255  
2.5270 2.5484 2.5461 2.5409 2.0638  2.0252  2.0006  2.0227  
2.5367 2.5289 2.5335 2.5429 2.0518  2.0668  2.0142  2.0239  
2.5518 2.5346 2.5265 2.5409 2.0105  2.0254  1.9966  2.0359  
2.5462 2.5432 2.5390 2.5358 2.0536  2.0377  2.0162  1.9897  
2.5542 2.5583 2.5361 2.5454 2.0275  2.0231  2.0636  2.0289  
2.5398 2.5331 2.5440 2.5424 1.9993  1.9831  2.0533  2.0238  
2.5203 2.5464 2.5270 2.5607 1.9985  2.0519  2.0041  2.0499  
2.5291 2.5445 2.5360 2.5502 2.0254  2.0709  2.0162  2.0156  
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2.5 Q-Yield Calculation for Pressure Sensor Product 

To illustrate how the proposed Q-yield lower confidence bound could be 
established and applied to actual data collected from the factories, we consider 
the following example taken from a company located on the Science-Based 
Industrial Park in Taiwan, which manufacturing and designing pressure sensor 
product. For a particular model of amplified pressure sensor process, capability 
analysis with focus on two key characteristics Span and Zero are taken. Span 
limits are +/− 100 mV about a 2.000 volt target (USL = 2.100, LSL = 1.900, T 
= 2.000) and the Zero limits are set to +/− 80 mV about a 2.500 volt target 
(USL = 2.580, LSL = 2.420, T = 2.500). Tight control of Zero and Span during 
test will make the part more capable. We test one hundred parts in each key 
characteristic, and the collected data are displayed in Table 3. Figures 6(a)-6(b) 
display the histogram with density of the 100 APS data measurements for the 
Zero and Span, respectively.  Proceeding with the calculations with 95% level of 
confidence, we obtain the values of the calculated sample mean, sample 
derivation, estimated  index values, the  lower confidence bounds, 
estimated  values, the  upper confidence bounds, estimated yield, the 
yield lower confidence bounds, estimated Q-yield and the Q-yield lower 
confidence bounds as tabulated in Table 4. 

pkC pkC
eL eL

 
 

Table 4. Calculated statistics, estimated process capability measures 
and corresponding lower confidence bound of the APS products. 

 X  S  ˆ
pkC  LC  êL  

eLU  Ŷ  YL  q̂Y  
qYL  

Zero 2.5424 0.0099 1.2705 1.0821 0.2959 0.3983 1.0000 0.9999 0.7041 0.6016 

Span 2.0286 0.0246 0.9660 0.8165 0.1418 0.1908 1.0000 0.9962 0.8582 0.8054 
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Figure 6(a). The histogram of the 
APS data measurements for the Zero. 
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Figure 6(b). The histogram of the 
APS data measurements for the Span. 
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The plot of Q-yield versus yield is displayed in Figure 7. These two 
dimensions of product quality are useful because one dimension represents 
customer satisfaction while the other represents factory fulfillment. The triangle 
with vertices (0, 0), (1, 0) and (1, 1) contains the set of all . The objective 
of quality improvement is to move towards the point, (1, 1). The engineers can 
effectively monitor and get the most priority of all process characteristics 
simultaneously. 

( , )qY Y

 
Figure 7. The plot of Q-yield versus yield. 
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