
Chapter 3 
 

Bootstrap Approach for Estimating Quality Yield  
 

In this chapter, we apply the bootstrap resampling technique to obtain the 
lower confidence bound on  for practical purpose. Four types of bootstrap 
confidence intervals, including the standard bootstrap confidence interval (SB), 
the percentile bootstrap confidence interval (PB), the biased corrected 
percentile bootstrap confidence interval (BCPB), and the bootstrap-t (BT) 
methods will be conducted. The practitioners can use the results to perform 
quality testing and determine the process can reproduce product items to meet 
the specified quality requirement. The lower confidence bound not only provides 
us information regarding actual process performance which is tightly related to 
both the fractions of defectives units and customer quality loss, but also is useful 
in making reliable decisions for capability testing and monitoring the 
performance of process departure for target as well.  

q̂Y

This chapter is organized as follows. In Section 3.1, we first give a brief 
introduction on quality yield for arbitrary underlying distributions. We then 
introduce the bootstrap estimation technique and the definitions of the four 
bootstrap confidence intervals in Section 3.2. Subsequently, in Section 3.3, some 
simulations on four distributions (normal, Student’s t, chi-square and lognormal) 
are conducted to examine the distribution behavior of the estimated . For 
illustrative purpose, a real-world application to the Light Emitting Diodes 
(LEDs) manufacturing process presented in Section 3.4.  

qY

3.1 Estimation of Quality Yield for Arbitrary Underlying Distributions 

In addition to point estimation of , however, a decision maker may be 
interested in a lower limit on the quality yield from the process as well. The 
sampling distribution and of  is then required but unfortunately, the 
derivation of the exact distribution of  is mathematical intractable. In 
Chapter 2, we constructed an approximate lower confidence bound of the 
estimator  for very low fraction of defectives under the assumption of 
normality. However, the calculation of the approximation is rather messy and 
cumbersome to undertake. Further, the accuracy of the approximation has not 
been investigated.  

qY

q̂Y
q̂Y

q̂Y

Normally-based process capability indices such as , ,  and 
 do not measure process fallout for non-normal process data accurately. In 

the literature, Somerville and Montgomery (1996) presented an extensive study 
to illustrate how poorly the normally based capability indices perform as a 
predictor of process fallout when the process is non-normally distributed. If the 
normally based capability indices are still used to deal with non-normal process 
data, the values of the capability indices are incorrect and might misrepresent 
the actual product quality. Although new capability indices have been developed 
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Figure 8. Distribution plots of 
normal distribution with the loss 
function under true  = 0.6. qY

 

 

Figure 9. Distribution plots of 
lognormal distribution with the 
loss function under true  = 0.6. qY

 

Figure 10. Distribution plots of 
t distribution with the loss 
function under true  = 0.6. qY

 

Figure 11. Distribution plots of 
chi-square distribution with the 
loss function under true  = 0.6. qY

 

for non-normal distributions, those indices are harder to compute and interpret, 
and are sensitive to data peculiarities such as bimodality or truncation. 
Moreover, those indices do not explicitly account for the manufacturing cost or 
customer’s loss. If a process is clearly non-normal, there is some question as to 
whether any process index is valid or should even be calculated. To illustrate the 
relationship between the squared loss function and some probability 
distributions, we plot four process distributions, normal distribution, lognormal 
distribution, Student’s t distribution and chi-square distribution, respectively, 
with the loss function and under the true value of = 0.6 (see Figures 8-11). qY

Noting that most existing capability indices require the normality 
assumption and they are generally defined based on the specification limits 
rather than the customer’s satisfactions. The advantage of using the Q-yield as 
process performance measure is that it does not rely on the normal distribution 
assumption. High values of Q-yield are desirable, which can be viewed as 
improving product quality from the customer’s viewpoint. Furthermore, Q-yield 
is more flexible because it compares the quality of different characteristics of a 
product on a single percentage scale, and indicates how close a product comes to 
meeting 100% customer satisfaction.   
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3.2 The Bootstrap Methodology  

Traditionally, statistical research work has relied on the central limit 
theorem and normal approximations to obtain standard errors and confidence 
intervals. These techniques are valid only when the statistic, or some known 
transformation of the statistic, is asymptotically normally distributed. 
Unfortunately, many real world processes are not normally distributed and this 
departure from normality could potentially affect these estimates. A major 
motivation for the traditional reliance on normal-theory methods has been 
computational tractability. Access to powerful computation enables the use of 
statistics in new and varied ways. Idealized models and assumptions can now be 
replaced with more realistic modeling or by virtually model-free analyses. Much 
statistical work and data analysis is undertaken today by computers in ways 
which are too complicated for practical analytical treatment. The new effects of 
these computational advances are probably best reflected in the recent enormous 
success of bootstrap methodology, which shows that many problems, previously 
difficult to solve, can be conquered. For either normal or non-normal 
distributions, bootstrap method could be applied to return valid inferential 
results required. 

The essence of bootstrapping is the idea that, in the absence of any other 
knowledge about a population, the distribution of values found in a random 
sample of size n from the population is the best guide to the distribution in the 
population. By resampling observations from the observed data, the process of 
sampling observations from the population is mimicked. Instead of the using a 
sample statistic to estimate a population parameter, as is done within the 
framework of conventional parametric statistical tests, the bootstrap uses 
multiple samples derived from the original data to provided what in some 
instances may be a more accurate measure of the population parameter. 
Therefore, to approximate what would happen if the population was resampled, 
it is sensible to resample the sample. In other words, the infinite population that 
consist of the n observed sample values, each with probability 1/n, is used to 
model the unknown real population. The sampling is with replacement, which is 
the only difference in practice between bootstrapping and randomization in 
many applications.  

The bootstrap, a data based simulation technique for statistical inference 
which introduced by Efron (1979, 1982), is a nonparametric, computational 
intensive but effective estimation method. The most common application of the 
bootstrap involves estimating a population standard error and/or confidence 
interval. In particular, one can use the sampling distribution of a statistic, while 
assuming only that the sample is a representative of the population from which 
it is drawn, and that the observations are independent and identically 
distributed. The main merit of the nonparametric bootstrap is that it does not 
rely on any distributional assumptions about the underlying population. The 
more ambiguous the information is to the researcher regarding the underlying 
population distribution, the more likely it is that the bootstrap may prove useful. 
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Rather than using distribution frequency tables to compute approximate p 
probability values, the bootstrap method generates a unique sampling 
distribution based on the actual sample rather than the analytic methods. The 
formulation detail follows.   

In this method, B new samples, each of the same size as the observed data, 
are drawn with replacement from the available sample. The statistic of interest 
is then calculated for each new set of resampled data, in our case say 

, yielding a bootstrap distribution for the statistic, say . Four 
types of bootstrap confidence intervals, including the standard bootstrap 
confidence interval (SB), the percentile bootstrap confidence interval (PB), the 
biased corrected percentile bootstrap confidence interval (BCPB), and the 
bootstrap-t (BT) method introduced by Efron (1981) and Efron and 
Tibshiraniwill (1986) will be conducted. Assume the observations  
be a random sample of size n taken from a process. A bootstrap sample, denoted 
by , is a sample of size n drawn with replacement from the original 
sample. There are possibly a total of  such resamples. Each such sample is 
called a “bootstrap sample”. In our case, these resamples would then be used to 
calculate  values of . Each of these would be an estimate of  and the 
entire collection would constitute the (complete) bootstrap distribution for . 
Bootstrap sampling is equivalent to sampling (with replacement) from the 
empirical probability distribution function. Thus, the bootstrap distribution of 

 is estimator of the distribution of .  
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Due to the overwhelming computation time, it is not of practical interest to 
choose  such samples. Usually, in practice, only a random sample of n  
possible resamples is drawn, the statistic is calculated for each of these, and the 
resulting empirical distribution is referred to as the bootstrap distribution of the 
statistic. Empirical work (Eforn and Tibshirani, 1986) indicated that only rough 
minimum of 10000 bootstrap resamples are required for the procedure to be 
useful to calculate valid confidence limits for population parameters. 
Throughout our discussion, it is assumed that B = 10000 bootstrap resamples 
(each of the same size as the available data) are taken and B = 10000 bootstrap 
estimate of  are calculated and ordered from smallest to largest. The generic 
notations  and  will be used to denoted the estimator of a Q-yield 
index and the associated ordered bootstrap estimate. Construction of a 
two-sided  confidence limit will be described. We note that a lower 

 confidence limit can be obtained by using only the lower limit. If 
the calculated bootstrap lower confidence limit is found to be smaller than the 
predetermined index value, we would judge that the process is incapable. 
Quality improvement activities will be initiated. Otherwise, the process is 
considered to be capable. Four kinds of confidence intervals can be derived. 

n

qY
q̂Y ˆ ( )qY i

(1 2 )100%α−
(1 )100%α−
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3.2.1 Standard Bootstrap (SB)  

From the B bootstrap estimates , the sample average and the sample 
standard deviation can be obtained as 
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q
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Y Y
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= ∑ *
q̂ i ,                       (3.1) 

  * *

1

1 ˆ ˆ[ ( ) ]
1q

B

Y q
i

S Y i
B =

= −
− ∑ * 2

qY

Y

* ]Y

)100%α

α

*

* ]q
1−

z z

]

,                  (3.2) 

where is the i-th bootstrap estimate. Actually the quantity 
q

S  is an 
estimator of the standard deviation of  if the distribution of  is 
approximately normal. Thus, the  SB confidence interval for  
can be constructed as  

*ˆ ( )qY i *

q̂Y q̂Y
(1 2 )100%α− qY

*ˆ ˆ[ ,
q qq Y qY z S Y z Sα α− + ,                     (3.3) 

where  is the estimated  for the original sample, and  is the upper  
quantile of the standard normal distribution. 

q̂Y qY zα α

3.2.2 The Percentile Bootstrap (PB) 

From the ordered collection of , the α  percentage and  
percentage points are used to obtained the (  PB confidence 
interval for , 

*ˆ ( )qY i 1 α−
1 2−

qY
* *ˆ ˆ[ ( ), ((1 ) )]q qY B Y Bα − .                    (3.4) 

3.2.3 Biased-Corrected Percentile Bootstrap (BCPB)  

While the percentile confidence interval is intuitively appealing it is possible 
that due to sampling errors, the bootstrap distribution may be biased. In other 
words, it is possible that bootstrap distributions obtained using only a sample of 
the complete bootstrap distribution may be shifted higher or lower than would 
be expected. A three steps procedure is suggested to correct for the possible bias 
(Efron, 1982). First, using the ordered distribution of , calculate the 
probability . Second, we compute the inverse of the cumulative 
distribution function of a standard normal based upon  as , 

 , where  is the standard normal 
cumulative distribution function. Finally, executing these steps to obtain the 
BCPB confidence interval,    

q̂Y
0

ˆ ˆ[ qp PY y= ≤
0p 0 0( )z p= Φ

0(2 )Lp z α= Φ − 0(2 )Up z α= Φ + ()Φ ⋅

* *ˆ ˆ[ ( ), ( )q L q UY p B Y p B .                      (3.5) 

 23



3.2.4 Bootstrap-t (BT) 

By using bootstrapping to approximate the distribution of a statistic of the 
form 

q
, where  is an estimate of , with estimated 

standard error 
q
. The bootstrap approximation in this case is obtained by 

taking bootstrap samples from the original data values, calculating the 
corresponding estimates  and their estimated standard error, and hence 
finding the bootstrapped T-values 

q
. The hope is then that 

the generated distribution will mimic the distribution of T. The  
BT confidence interval for  may constitute as 

q̂ q YT Y Y S= − ˆ

*ˆ
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q q YT Y Y S= −

]
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1

ˆ ˆ[ ,
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where  and  are the upper α  and  quantile of the bootstrap 
t-distribution respectively, i.e. by finding the values that satisfy the two 
equations 

q
 and , for 

the generated bootstrap estimates. 

tα 1t α− 1 α−

[( )/ ] 1[( )/ ] 1
qq q YP Y Y S t α α−− > = −

In the literature, Franklin and Wasserman (1992) investigated the lower 
confidence bounds for the capability indices, ,  and  using the first 
three bootstrap methods. Some simulations were conducted, and a comparison 
was made among the three bootstrap methods based on the parametric 
estimates. The simulation results indicate that for normal processes the 
bootstrap confidence limits perform equally well to Chou, Owen and Borego 
(1990), Bissell (1990), and Boyles (1991). And for non-normal processes the 
bootstrap estimates performed significantly better than other methods. 

pC pkC pmC

3.3 Distribution Plot of the Q-yield Estimator 

In this section, some Monte Carlo simulations are conducted to study the 
behavior of the sampling distribution of the estimated , for several cases 
where the underlying process distributions are normal, skewed, or heavy tailed. 
We consider two levels of , say,  = 0.9,  = 0.6, with underlying process 
distributions set to  

qY

qY qY qY

(i) Normal distribution with probability density function 
1( ) ( 2 ) exp[ (x ) /2 ]f x πσ µ σ−= − − 2 2 ,                (3.7) 

with mean  and variance , for .  µ 2σ x−∞ < <∞

(ii) Lognormal distribution with probability density function of 

 1( ) ( 2 ) exp[ (ln ) /2 ]f x x xπσ µ σ−= − − 2 2

1)

,             (3.8) 

with mean  and variance , for x > 0. 
2+ /2eα βµ =

2 22 2 (e eα β βσ += −

(iii) Student’s t distribution with degree of freedom k, where the probability 
density function  is, kt

[ ] 1 2 ( 1( ) (( 1)/2)/ ( /2) ( ) (1 / ) kf x k k k x kπ − − += Γ + Γ + )/2 ,      (3.9) 
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Figure 12. Distribution plots of true  for 
Normal distribution with n = 25, 50, 100, 300, 
500 (bottom to top) under true = 0.9. 
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Figure 13. Distribution plots of  forq̂Y  
Normal distribution with n = 25, 50, 100, 300, 
500 (bottom to top) under true = 0.6. qY
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Figure 14. Distribution plots of  for 
Lognormal distribution with n = 25, 50, 100, 
300, 500 (bottom to top) under true = 0.9. 
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Figure 15. Distribution plots of  forq̂Y  
Lognormal distribution with n = 25, 50, 100, 
300, 500 (bottom to top) under true = 0.6.qY  

 

with mean , for k > 1 and variance , for ,  
. 

0µ = 2 /( 2)k kσ = − 2k > −∞ < x
<∞

ˆ

(iv) Chi-square distribution with degree of freedom k, where the probability 
density function of  is 2

kχ
/2 /2 1 /2( ) [1/ ( /2)](1/2)k k xf x k eχ − −= Γ ,               (3.10) 

with mean  and variance , k = 1, 2, … .  kµ = 2 2kσ =

For each distribution, we randomly generate N = 20,000 samples of sizes n 
= 25, 50, 100, 300, 500, then calculate the estimated capability index . 
Figures 12-19 plot the distribution of  for the two levels of , = 0.9, and 

 = 0.6, with four process distributions, normal distribution, lognormal 
distribution, Student’s t distribution and chi-square distribution, respectively. 

qY
qY qY qY

qY
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Figure 16. Distribution plots of  for t 
distribution and n = 25, 50, 100, 300, 500 
(bottom to top) under true  = 0.9. 
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Figure 17. Distribution plots of  for t 
distribution and n = 25, 50, 100, 300, 500 
(bottom to top) under true  = 0.6. 
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Figure 18. Distribution plots of  for 
Chi-square distribution and n = 25, 50, 100, 
300, 500 (bottom to top) under true = 0.9. 
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Figure 19. Distribution plots of  forq̂Y  
Chi-square distribution and n = 25, 50, 100, 
300, 500 (bottom to top) under true = 0.6.qY  

For moderate and large sample size n, the distributions of the estimated Q-yield 
index all appear to be normal. Therefore, for processes where large sample data 
may be collected (product items may be inspected by automatic inspection 
machines), normal approximations may be used for capability testing. Otherwise, 
the proposed bootstrap methodology seems to be more reliable to make 
statistical inference on the estimated Y , when one have no idea what the 
underlying distribution really is. Especially, the bootstrap method is superior to 
other methods when the process distribution significantly deviate from 
ormality and the size of sample data is small.  

q

n 

3.4 An Application on LED 

We present a case study on the Light Emitting Diodes (LEDs) 
manufacturing process to illustrate the usage of the bootstrap lower confidence 
bound on . The case we investigated was taken from a manufacturing factory qY

 26



located on the Science-Based Industrial Park, Taiwan, making the LEDs. The 
application of LEDs is expanding rapidly since high intensity LEDs of wide 
range of colors have been recently developed and become available, which 
enabled application of LEDs in a wide variety of areas including color displays, 
traffic signals, roadway signs (barricade lights), airport signaling and lighting. 
Two typical LED applications including font display and white LED lamps are 
shown in Figure 20 and Figure 21. As various LED applications are developed, 
accurate specifications of LED characteristics become increasingly important. 
However, serious discrepancy in measurement is gathered from different LED 
manufacturers and users. LEDs are unique light sources which are very different 
from lamps in terms of physical size, flux level, spectrum, and spatial intensity 
distribution. A transfer of photometric scales from traditional luminous 
intensity standard lamps to LEDs is not a trivial task, and large uncertainties 
are involved. The temperature-dependent characteristics and a large variety of 
optical designs of LEDs make it even more difficult to reproduce measurements.  

 

 

Figure 20. LED application 
on font display. 

 

Figure 21. LED application 
on white lamps. 

In order to solve this problem, the factory has been requested to provide 
calibrated standard LEDs for luminous intensity and luminous flux, which 
should dramatically improve the accuracy of measurement at industry level. 
Thus, the factory develop the measurement technology and standards for LED 
luminous intensity and luminous flux measurements, and to establish calibration 
services for LEDs, thereby improving the accuracy and uniformity of LED 
measurements among optoelectronics and other industry. A photometric 
technique has been developed to determine the effective reference plane of a 
photometer with an uncertainty of 0.2 mm, using a photometric bench and a 
stable integrating sphere source instead of a tungsten filament lamp. With this 
method, any photometer head with unknown reference plane position can be 
calibrated for LED measurements at any distances longer than 10 cm within an 
uncertainty of less than 1%. The alignment of LEDs is still a major uncertainty 
component for luminous intensity. As described above LEDs generally do not 
follow the inverse-square law, so setting the distances accurately is critical to 
achieve reproducible results. One method of setting the alignment is 
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permanently mounting an LED in a mount that has a reference surface. The 
distance from the tip of the LED to the reference surface can be measured 
accurately. The angular alignment will not change because the reference surface 
will align the LED with the apparatus.  

Typically, LEDs are not mounted in a permanent fixture, they are just bare 
LEDs. The widely accepted method of aligning the bare LEDs is along their 
mechanical axis, mainly because it can be done quickly. The factory has tried 
two different methods of aligning bare LEDs, one using a mount that physically 
holds the LED by the sides and another using an optical aligning procedure. A 
mount that physically holds the sides has the advantages of the permanent 
mount once the LED is in the fixture. The fixture can be reproducibly placed in 
and out of a holder that the distances are well known. The LED is easily 
centered along the detector axis and switching from the test LED to a standard 
LED can be done very quickly. However, we found reproducibly mounting the 
bare LED in the fixture was difficult. The fixture relied on placing pressure on 
the sides of the LED, which caused the sides of the LEDs to become scratched 
and damaged. In addition, a new fixture had to be fabricated for each different 
style or size of LED. 

 

 
Figure 22. The package dimensions 
drawing (top and side) of an LCD 
backlighting application. 

 
Figure 23. The package dimensions 
drawing (bottom and polarity) of an 
LCD backlighting application. 

A better method is aligning the bare LEDs optically. Using a fixed telescope, 
a point in space is defined along the detector axis. The detector is on a 
translational stage with an optical encoder. The reference plane of the detector is 
moved to the point in space and then translated 100 mm or 316 mm away 
depending on the condition. The bare LED is mounted by its contacts on a stage 
that has five degrees of freedom. The stage can rotate, translate in the X, Y, and 
Z directions and tip and tilt about the point in space defined by the fixed 
telescope. By examining the LED from the side the tip of the LED is translated 
to the point in space, set parallel to the detector axis and adjusted vertically. An 
LED application on LCD backlighting package dimension are depicted in Figure 
22 and Figure 23. 
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We have established a capability for calibrating the luminous intensity of 
LEDs using the detector-based method. We have built a tentative measurement 
set up for LED measurements in the photometric bench and made the 
calibration service available for submitted LEDs. The measurement of LED 
luminous intensity currently has an overall uncertainty of 1.5% for LEDs with a 
special fixture, and 3% for normal bare LEDs with no alignment aids. A 
dedicated small photometric bench for LED measurements is to be built. 
Longterm stability and temperature dependence of these LEDs will be studied 
and standard LEDs for luminous intensity are to be developed. LEDs are unique 
light sources and are very different from traditional lamps in terms of physical 
size, flux level, spectrum and spatial distribution. The transfer of photometric 
scales from luminous intensity standard lamps to LEDs has not been trivial and 
large discrepancies among companies have been measured. The factory has 
established two measurement conditions for single element LEDs with diameters 
less than 10 mm. These two measurement techniques compare LED luminous 
intensities without strictly using point source conditions. The factory has 
started research programs to establish appropriate measurement methods and 
calibration standards for all photometric quantities of LEDs. In particular, the 
measurement of luminous intensity of LED sources will be focused in our study. 
We investigated a particular model of the LED product with the upper and the 
lower specification limits of luminous intensity are set to USL = 90 mcd, LSL = 
40 mcd, and the target value is set to T = 65 mcd. If the characteristic data does 
not fall within the tolerance (LSL, USL), the LED is said to be defective.  

For the purpose of making use of the methodology more convenient and 
accelerate the computation, an integrated S-PLUS computer program is 
developed (the program is available form the author) to calculate the bootstrap 
lower confidence bounds. The practitioners only need to input the 
manufacturing specification limits, USL, LSL, target value T, and the collected 
sample data of size n. Then the estimated values ,  and the four bootstrap 
lower confidence bounds (SB, PB, BCPB, BT) of  may be obtained. Thus, 
whether or not the process is capable may be determined. 

ˆ ˆY qY
q̂Y

Table 5. A total of 100 observations. 

62 58 52 55 58 48 76 69 86 55 
55 44 49 57 55 45 51 57 89 45 
66 67 58 49 68 69 69 59 71 45 
68 65 57 75 56 68 47 55 56 68 
62 68 61 68 88 41 70 68 57 45 
59 63 85 56 45 66 67 64 53 41 
78 78 56 43 64 55 46 59 51 79 
67 88 68 48 69 55 88 48 67 88 
85 57 57 57 43 65 49 59 86 68 
57 46 57 64 60 55 75 72 49 67 
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A total of 100 observations were collected from a stable process in the 
factory are displayed in Table 5. Figure 24 displays the histogram, and Figure 25 
displays the normal probability plot of these sample data. From the Figure 24 
and Figure 25, it is evident to conclude the data collected from the factory are 
not normal distributed. The data analysis results justify that the process is 
significantly away from the normal distribution. Proceeding with the 
calculations by running the integrated S-PLUS program with 95% of confidence, 
we obtain the values of the sample estimators  = 0.7477 and the 
corresponding bootstrap lower confidence bound (LCB) as Table 6. 
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Figure 24. Histogram plot of the 
sample data of size n = 100.  
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Figure 25. Normal probability plot 
of the sample data of size n = 100. 

Table 6. Summary of the four bootstrap lower confidence bounds. 

Type SB PB BCPB BT 
LCB 0.7010 0.7005 0.7027 0.7015 

We note that the estimated index values for all the four extensions are 
greater than 0.7. In fact, all 100 observations fall within the specification interval 
(LSL, USL) resulting that sample estimators of yield = 1. From the 
producer’s point of view, the proportion of conforming products is 100%. 
However, to quantify how well a process can meet customer requirements, the 
lower confidence bound of Y  is approximately 0.7 can be interpreted as the 
proportion of the “perfect” products is 70% approximately. From the 
corresponding lower confidence bounds on  based on four bootstrap methods, 
0.7010, 0.7005, 0.7027, and 0.7015, an example of capability testing is that if the 
Q-yield requirement preprint on the contract Y  is set to 0.7, we may only 
conclude that the process is marginally capable, with 95% of confidence. 
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