
Chapter 4 
 

Quality Yield Measure with Asymmetric Tolerances 
 

A process is said to have a symmetric tolerance if the target value T is set 
to be the midpoint of the specification interval [LSL, USL], i.e. T = M = (USL 
+ LSL)/2. Most research in quality assurance literature has focus on cases in 
which the manufacturing tolerance is symmetric. Examples include Kane (1986), 
Chan et al. (1988), Choi and Owen (1990), Boyles (1991), Pearn et al. (1992), 
Vännman (1995), Vännman and Kotz (1995), and Spiring (1997). Although 
cases with symmetric tolerances are common in practical situations, cases with 
asymmetric tolerances often occur in the manufacturing industry. In general, 
asymmetric tolerances simply reflect that deviations from the target value are 
less tolerable in one direction than the other (see Boyles (1994), Vännman 
(1997), and Wu and Tang (1998)). Asymmetric tolerances can also arise from a 
situation where the tolerances are symmetric to begin with, but the process 
follows a non-normal distribution and the data is transformed to achieve 
approximate normality, as shown by Chou et al. (1998) who have used Johnson 
curves to transform non-normal process data. Unfortunately, there has been 
comparatively little research published on cases with asymmetric tolerances. 
Exceptions are Boyles (1994), Vännman (1997), Chen (1998), Pearn et al. (1998, 
1999), and Chen et al. (1999). 

In this chapter, we consider the quality yield index for processes with 
asymmetric tolerances. We consider the asymmetric loss function, and the 
corresponding truncated worth function to generalize the quality yield index. 
Comparisons among the yield, the quality yield, and some popular process 
capability indices are examined. Distributional properties of the estimated Y  
are also investigated. A confidence interval of  is constructed to estimate the 
manufacturing capability. Finally, an application example using the index Y  
to the manufacturing capability of the Light Emitting Diodes (LEDs) is 
presented to illustrate the applicability of the proposed approach. 
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4.1 Quality Yield with Asymmetric Tolerances 

Yield is currently defined as the percentage of processed units that pass 
inspection. Therefore, the yield index Y can be defined mathematically as the 
expected value of the worth W X  where W x  for LSL < x < USL and 

 for x  LSL or x USL, that is, Y E . The disadvantage 
of yield measure is that it does not distinguish the worth of the products that fall 
inside of the specification limits, i.e., they are equally good. A product has the 
maximal worth W  as the corresponding characteristic X having the target 
value T (Johnson (1992)). Using the loss function as Equation (1.6), the worth of 
the product with characteristic X is 
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Therefore, as deviation of X from T increases, the worth becomes less eventually 
becoming 0 and then negative. 

Asymmetric Loss Function 

Now, for process with manufacturing specification (LSL, T, USL), we can 
redefine W x  for x LSL or x USL and W x  for 
LSL < x < USL. Using W L , we obtain , where d T  

. On the other hand, using , we obtain , where 
= USL－T. For case of symmetry, both the two values of k reduce to , 

where . Without loss of generality, we can set W  = 1. 
Therefore, for process with manufacturing specification (LSL, T, USL), we can 
define a general truncated loss function of x as: 
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Hence, the corresponding general truncated worth function of x becomes  
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Then, the expected loss , defined as , can be expressed as: eL [ ( )]E L X
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Figure 26 displays the plot of  for a process with a process with 
asymmetric manufacturing specification (LSL, T, USL) = (10, 40, 50). Figure 27 
displays the plot of W x  for a process with asymmetric tolerance (LSL, T, 
USL) = (10, 40, 50). Now, using the worth function, we can distinguish the 
worth of the products that fall inside of the specification limits. We consider two 
items  and  with > T and x < T, satisfying the relationship 

, equal departure ratio in this case, the worth values 
given to items  and x  are the same. For example, we consider that for the 
midpoint of the left-hand side tolerance,  and the midpoint 
of the right-hand side tolerance, x T , the corresponding worth 
can be calculated as: 
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Obviously, the two points  and  have the same departure ratio (relative 
departure) . Checking process loss at x  
and , we have  and equal worth value 3/4. In fact, 0 < 

 for LSL < x < USL and W T . On the other hand, W x  
while x falls outside of the specification limits.  
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Figure 26. The plot of L(x), loss 
function for an asymmetric specification 
(LSL, T, USL) = (10, 40, 50). 

 

 

Figure 27. The plot of W(x), worth 
function for an asymmetric specification 
(LSL, T, USL) = (10, 40, 50). 

Quality Yield with Asymmetric Tolerances 

Suppose a process characteristic X follows a distribution with the 
cumulative distribution function  and the probability density function 

. , the cumulative distribution function of , can be expressed 
as (see Appendix B): 
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Particularly, the fraction of nonconforming, the probability of an item falling 
outside specified tolerance limits, can be calculated as: 

(0) 1 ( ) ( )F F LSL F= + − .                  (4.6) 

Hence , the probability density function of W X , can be expressed as: ( )Wf w ( )
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The mean value and variance of  can be calculated as: ( )W X
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Now we can rewrite Q-yield as , the expected value of the worth 
. The Q-yield  will be between zero and one, can be used as an index to 

access the ability of a process under the consideration of process yield and 
process loss. The Q-yield index  can be interpreted as the proportion of the 
“perfect” items while the yield index Y is the proportion of conforming items. As 
the existed process capability indices (PCIs), Q-yield index Y  also has the 
large-the-better property. 
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( )W X qY
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q

This quality yield index differs from the expected relative worth index 
defined in Johnson (1992) by truncating the deviation outside the specifications. 
With this truncation, the quality yield index will be between zero and one and, 
thus provides a standardized measure. Also, by relating to the yield measure, 
which is widely accepted in the manufacturing industry, it will be better 
understood and accepted as a capability measure. The advantage of the Y  
index over the  index is the value of the former goes from zero to one. Similar 
to the yield index Y, an ideal value of  is one, which provides the user a clear 
guide about the standard. Similar to the yield Y, the yield index  requires no 
normality assumption. 
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Table 7. Normal distribution with 
µ =T  versus Y = 0.5(0.1)0.9. q

Case 1 
qY % 

µ  σ  
50 T 3.558213 
60 T 2.782604 
70 T 2.176123 
80 T 1.6512655 
90 T 1.12161 

To illustrate some basic behavior of quality yield Y  versus normal 
distribution with various application cases, we consider the following parameter 
settings as listed in Tables 7-10. For a process with asymmetric tolerance (LSL, 
T, USL) = (−3, 0, 4.5), five levels of Y , 0.5(0.1)0.9 are selected in each case. 

q

q
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And cases studied are arranged in the following manner. In Case 1, we set 
 to calculated the corresponding  in each Y  level. In Cases 2-4,  

is shifted from T to USL by , /d , and , respectively. We then solve 
for  in each setting. In Cases 5-7,  is shifted from T to LSL by , /d , 
and , respectively. We then solve for  in each cases. Finally, in Cases 
8-10,  are fixed in three levels, 1/3, 1/2, and 1. The corresponding values of 

 in each setting have again, been computed.  
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Table 8. Normal distribution with  shifted from T to USL by  
/6ud , , and , respectively, versus = 0.5(0.1)0.9. / 4ud

Case 2 Case 3 Case 4 
% 

µ  σ    µ   
50 / 6+ uT d  3.593474  3.551352 / 3+ uT d  3.4652255 
60 / 6+ uT d  2.8240045  2.767893 / 3+ uT d  2.651555 
70 / 6+ uT d  2.221167  2.1443699 / 3+ uT d  1.9813995 
80 / 6+ uT d  1.6909245  1.5751335 / 3+ uT d  1.316363 
90 / 6+ uT d  1.1111475  0.852496 / 3+ uT d  --- 

Table 9. Normal distribution with  shifted from T to LSL by 
/6ld , , and , respectively, versus = 0.5(0.1)0.9. / 4ld /3ld qY

Case 5 Case 6 Case 7 
% 

µ  σ    µ   
50 / 6− lT d  3.440189  3.345944 / 3− lT d  3.221025 
60 / 6− lT d  2.6308625  2.5039585 / 3− lT d  2.3262755 
70 / 6− lT d  1.985113  1.8183015 / 3− lT d  1.576054 
80 / 6− lT d  1.4197015  1.216756 / 3− lT d  0.930123 
90 / 6− lT d  0.85078  0.5874915 / 3− lT d  --- 

Table 10. Normal distribution with  fixed in three levels, 
1/3, 1/2, and 1, respectively, versus = 0.5(0.1)0.9. 

Case 8 Case 9 Case 10 % 
µ  σ    µ   

50 3.1644764 1/3 3.1432 0.5 3.076668 1 
60 2.82646245 1/3 2.8018575 0.5 2.689652 1 
70 2.4421075 1/3 2.4135035 0.5 2.2613755 1 
80 1.9846635 1/3 1.9493365 0.5 1.744542 1 
90 1.383308 1/3 1.33217 0.5 0.960625 1 

Figures 28-31 display four selected normally distributed processes, which 
are , , and  
respectively, with the quadratic loss function and five levels of quality yield (see 
cases 1, 3, 6, 9). The relationship between the squared loss function and some 
normal probability distributions can be easily examined. Quality yield could be 
treated as traditional yield minus truncated expected relative loss within the 
specifications to quantify how well a process can reproduce product items 

( , )N T σ= ( / )uN T dµ = + ( /4, )ldµ σ 1/N
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satisfactory to the customers. While yield is the proportion of conforming 
products, Q-yield can be interpreted as the average degree of products reaching 
“perfect” or “on target”. 

 

Figure 28. Distribution plots of 
normal distribution  
with the loss function for various . 

( ,µ σ=N T
σ
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Figure 29. Distribution plots of normal 
distribution  with 
the loss function for various . 
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Figure 30. Distribution plots of normal 
distribution l with 
the loss function for various . 
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Figure 31. Distribution plots of normal 
distribution with the 
loss function for various . 

( , 1/2)µ σ =N
µ

  

4.2 Comparison of Yield, Q-Yield, and PCIs with Asymmetric Tolerances 

To illustrate the basic differences among yield Y, quality yield Y , and the 
four well-known process capability indices C , ,  and , we 
compare the measured values based on the yield Y, quality yield Y , and the 
four indices on some processes. 

q
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Comparison of Q-yield and Yield 

Both the Q-yield index Y  and the conventional yield index Y can be 
applied to processes with any distribution. The conventional yield Y, however, 
does not distinguish the products falling inside the specification tolerance. For 
example, if X follows the uniform distribution U L  with target T 
where LSL < T < USL, then yield Y = 1.00 and Q-yield = 0.667, respectively. 

q
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From manufacturing perspective all the produced units are good products, but 
certainly the consumer would consider the process low quality even although the 
yield Y = 1.00. To further demonstrate the difference between yield Y and 
Q-yield Y , we consider a set of triangular distributed processes with a < x < b 
and mode c. Table 11 displays the quality yield measure of those triangular 
distributed processes with modes c = 11(1)49, (a, b) = (LSL, USL) = (10, 50), 
and target value T = 30(5)45. For those processes, the conventional yield values 
given to all processes are Y = 1.00. On the other hand, Q-yield  obtains its 
maximum 0.833 not at  but at the mode  for those triangular 
distributed processes. The plots of Y  versus mode c = 11(1)49 with T = 
30(5)45 are displayed in Figure 32. The figure shows that  always obtaining 
the maximum 0.833 at the mode, as the target value moves from 30 to 45 by 5. 
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Figure 32. Plots of Y  for 
processes with c = 11(1)49, and 
T = 30(5)45 (left to right).  
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For a normal distributed process with mean  and standard deviation , 
we denote X ~ N . By Equation (4.5), the corresponding cumulative 
distribution function of W X  is 

µ σ
2( , )µ σ

( )

( )F wW , , 0 1≤ ≤w

(4.11) 

where  is the cumulative distribution function of the standard normal 
distribution. The corresponding probability density function of W X  is 

Φ
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( )Wf w }{1 (( 1 )/ ) (( 1 )/ )
2 1

φ µ σ φ µ σ= − − − + − + −
− l l u ud T d w d T w

w
 ,

 (4.12) 

where 0 < w < 1, and  is the probability density function of the standard 
normal distribution. The corresponding Q-yield Y , which is defined as the 
expect function of , therefore, can be expressed as: 

φ

)
q

(W X
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Table 12 displays the comparisons of Q-yield Y  for normal distributed 
processes with = 10(1)50, = 10/3 and 20/3 respectively, where (LSL, USL) 
= (10, 50) and T = 30(5)45. For symmetric cases (T = M), the maximal Y  
occurs at = T. But for asymmetric cases (T ≠ M), the maximal Y  occurs 
not at = T, but at  which is between the target value T and M (the center 
of the specification interval). This is reasonable, because that the on-target 
process ( = T) has larger proportion low-quality products than the process 
with maximal  value. For example, let’s compare two processes A and B with 

, , , and (LSL, T, USL) = (10, 45, 50). By 
Table 12, we have Y = 0.961 for process A and Y = 0.823 for process B, the 
result corresponds that on-target process B has larger proportion low-quality 
products than process A.   
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As we mentioned earlier, two items satisfying equal departure ratio have 
equal worth. But for two processes A and B satisfying equal departure ratio 

 and σ , there are not equal average worth for 
two samples come from the two process A and B. For example, normal 
distributed processes A and B with ,  and  have 
equal yield Y, proportions of conforming items 50%, but Y  values given to 
processes A and B are different for asymmetric cases. In fact, Table 12 also 
displays that  value given to process B are less than that given to process A, 
since that average quality of products coming from process A is better than that 
coming from process B for cases of T > M.  
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Comparison of Q-yield and PCIs 

Most of the investigations for the existed PCIs, , ,  and C , 
depend heavily on the assumption of normal variability. If the underlying 
distributions are non-normal, then the capability calculations are highly 
unreliable since the conventional estimate estimator  of  is sensitive to 
departures from normality, and estimators of those indices are calculated using 

 (see Somerville and Montgomery (1997)). Table 13 displays the comparisons 
among the six indices yield Y, Q-yield Y , , ,  and C  using in 
normal processes for various values of  with fixed σ = 20/3, and (LSL, T, 
USL) = (10, 30, 50). For the symmetric case, all the six indices obtain their 
maximum at = T.  
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Figure 33 and Figure 34 display the plots of  versus Y , Y and four PCIs 
, ,  and C , respectively.  With fixed σ = 20/3, and (LSL, T, 

USL) = (10, 30, 50),  is varies from 10 to 50 by 1 to examine the sensitivity of 
these indices with respect to µ . For the symmetric case, all the six indices 
obtain their maximum at = T = 30 as one can easily check in the plots. And 
as  departs from T, except , the other five indices all decrease, as one may 
expect. 
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Figure 33. Plots of Y and Y  (top 
to bottom) versus = 10(1)50 for 
processes with fixed = 20/3, and 
(LSL, T, USL) = (10, 30, 50). 
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Figure 34. Plots of C , ,  
and  (top to bottom) versus = 
10(1)50 for processes with fixed = 
20/3, (LSL, T, USL) = (10, 30, 50). 
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Table 14 and Table 15 demonstrate the comparisons among the six indices 
using in normal processes for various values of  with fixed σ = 10/3, 20/3 
respectively, and (LSL, T, USL) = (10, 40, 50). For the asymmetric case, with 
fixed = 10/3, and (LSL, T, USL) = (10, 40, 50), Figure 35 and Figure 36 
display the plots of  versus Y , Y and four PCIs , ,  and C , 
respectively. Similarly, Figure 37 and Figure 38 display the plots of  versus 

, Y and four PCIs , ,  and C , respectively. Specification limits 
are set to (LSL, T, USL) = (10, 40, 50) and = 20/3 is fixed. In this setting, 

 is varies from 10 to 50 by 1 to examine the sensitivity of these indices with 
respect to , for processes with asymmetric tolerances. 
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For the asymmetric cases, none expect  in the six indices reflects process 
performance accurately. In fact, the index Y only reflects the quantity, not 
quality of conforming items, C  cannot reflect the shift of the process mean, 

 being a yield-based index cannot reflect the departure of process mean  
from the target value T. The index  obtains its maximum at , but 
the corresponding on-target process is not the process with the best average 
quality (proportion of perfect items, under the consideration of both process 
yield and loss) for asymmetric cases as we pointed out earlier. The index  
cannot distinguish accurately the average quality of productions from different 
processes. For example, give the same zero  value to two processes A and B 
with ,  and , but as we mentioned earlier the 
average quality of productions coming from process A is better than that coming 
from process B for cases of T > M. 
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4.3 Distributional Properties of the Estimated Yq 

In the following, some distributional properties of the estimated Y  are 
investigated. A confidence interval of Y  is constructed. For factory 
applications purpose, an approximate process performance testing is also 
investigated. 

q

q
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Figure 35. Plots of Y (top) and Y  
(bottom) versus = 10(1)50, for 
processes with = 10/3, (LSL, T, 
USL) = (10, 40, 50). 
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Figure 36. Plots of (top), (left), 

(right) and C (bottom) versus 
= 10(1)50, for processes with σ = 

10/3, (LSL, T, USL) = (10, 40, 50). 
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Figure 37. Plots of Y (top) and Y  
(bottom) versus = 10(1)50, for 
processes with = 20/3, and (LSL, 
T, USL) = (10, 40, 50). 
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Figure 38. Plots of C (top), (left), 

(right) and C (bottom) versus 
= 10(1)50, = 20/3, (LSL, T, USL) 

= (10, 40, 50). 
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Estimation of Q-yield 

If the process parameters  and  are unknown, then Y  must be 
estimated from a sample. Let , , … ,  be a random sample taken from 
the process, and W , , … ,W  be the corresponding worth. To estimate the 
Q-yield , we can consider the following estimator: 
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q

.                      (4.14) 

It is easy to verify that . Therefore, Y  is an unbiased estimator of 
 with Var . Using the unbiased estimator Y  does not 

require any knowledge of process distribution. But, if the distribution of the 
characteristic X is given with cumulative distribution function F

ˆ( )qE Y Y=
1( )ar W

WF

q̂

qY 1ˆ( )qY n V−= q̂

WF
X, then the 

cumulative distribution function of the corresponding worth  can be 
calculated, and the cumulative distribution function of  can be expressed as 
the n-fold convolution of : 

q̂Y
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where G is the n-fold convolution of F . The complexity of the cumulative 
distribution function of Y  comes from the truncation property of the worth 
function. There is no analytic closed form for . But, for large sample size 
n, we can show that: 
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 confidence interval of  can be established as: 
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where  is the  quantile value of the standard normal 
distribution . We note that a lower  confidence limit can be 
obtained from the lower (one-sided) confidence interval. If the calculated lower 
confidence limit is greater than the predetermined index value, then we would 
judge that the process is capable. Otherwise, the process is considered to be 
incapable, and some quality improvement activities must be initiated. 

1 /2z α− (1 /2)α−
(0, 1)N (1 )100%α−

Distribution Plot of the Q-yield Estimator 

Some Monte Carlo simulations are conducted to investigate the behavior of 
the sampling distribution of the estimated , for several selected cases, where 
the underlying process distributions are normal, skewed, or heavy tailed. True 
value of quality yield Y = 0.6 is picked, with underlying process distributions 
set to  

qY

q

(1) Normal distribution  with probability density function 2( , )N µ σ
1( ) ( 2 ) exp[ (x ) /2 ]f x πσ µ σ−= − − 2 2 ,              (4.18) 

with mean  and variance σ , for .  µ 2 x−∞ < <∞

(2) Lognormal distribution  with probability density function  2( , )LN µ σ
− 1( ) ( 2 ) exp[ (ln ) /2 ]f x x xπσ µ σ= − − ,           (4.19) 2 2

with mean  and variance ex , for x > 
0. 

2exp( /2)µ σ+ 2 2p(2 2 ) exp(2 )µ σ µ σ+ − +

(3) Student’s t distribution  with degree of freedom k, where probability 
density function is 

kt

[ ] 1 2 ( 1( ) (( 1)/2)/ ( /2) ( ) (1 / ) kf x k k k x kπ − − += Γ + Γ +

= 2

)/2 x−∞ < <∞

>

, , (4.20) 

with mean , for k > 1 and variance , for . 0µ /( 2)k kσ = − 2k
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Figure 39. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 25.  
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Figure 40. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 50.  
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Figure 41. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 75.  
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Figure 42. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 100. 

q̂
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(4) Chi-square distribution  with degree of freedom k, where probability 
density function of is   

2
kχ

/2 /2 1 /2( ) [1/ ( /2)](1/2)k k xf x k x e− −= Γ , x > 0,           (4.21) 

with mean  and variance σ , k = 1, 2, … .  kµ = 2 2k=

(5) Weibull distribution  with probability density function ( , )W α β

( )f x αβ= 1 exp( )x xβ α− −
1−

β

β

ˆ

,                    (4.22) 

with mean  and variance σ α  1/ (1 )βµ α−= Γ + 2 2/ [ (1 2 )β β−= Γ + 1− 2(1−Γ +
1)]β− , for x > 0.   

We randomly generate N = 10,000 samples of sizes n = 25, 50, 75, 100, 150, 
200, 250, 300 for each distribution, then calculate the estimate value of Y  for 
each sample. Figures 39-46 plot the distribution of Y  for the eight levels of 
sample size with Y = 0.6, respectively. In each figure, five underlying process 
distributions including normal, lognormal, Student’s t, chi-square, and Weibull 
are drawn with fixed sample size in order to investigate how the sample size  

q

q

q
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Figure 43. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 150. 
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Figure 44. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 200. 
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Figure 45. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 250. 
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Figure 46. Distribution plots of Y  
for , , k , , 

 (bottom to top) with n = 300. 

q̂
2)2( , )N µ σ

)α β

2
kχ t ( ,LN µ σ

( ,W  

affects the distribution of Y . From those plots, one may observe that for 
moderate sample size n (about 100) the distributions of the estimated Q-yield 
index all appear quite close to normal. Therefore, for practical purpose, normal 
approximations approach may be used for capability testing of . 

q̂

qY

4.4 An Application Example 

We consider a case study for illustration purpose. Application of LEDs is 
expanding rapidly since high intensity LEDs of wide range of colors have been 
recently developed and become available, which enabled application of LEDs in 
a wide variety of areas such as instrument cluster lighting, color displays, traffic 
signals, roadway signs (barricade lights), airport signaling and lighting, 
automotive backlighting in dashboards and switches, telecommunication 
indicator and backlighting in telephone and fax backlighting for audio and video 
equipment, backlighting in office equipment, indoor and outdoor message 
boards, flat backlight for LCDs, switches and symbols, illumination purposes, 
alternative to incandescent lamps, etc.  
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LEDs are peculiar light sources much different from lamps in terms of 
physical size, flux level, spectrum, and spatial intensity distribution. LED 
technology provides a number of benefits over incandescent bulbs. Some benefits 
of LEDs for instrument cluster lighting are: (1) LEDs have lower power 
consumption: the LED instrument cluster uses approximately 1/5 of the 
electrical current of the incandescent instrument cluster. (2) LEDs have less heat 
generation: interior thermal measurements within the instrument cluster case 
indicate that the LED design operates 10-15°C cooler than the incandescent 
design. Interior thermal measurements within the telltale cavity airspace 
indicate that the LED design operates 25-50°C cooler than the incandescent 
design. (3) LEDs provide equivalent or better lighting: some comparative 
performances are that red LEDs are 3X brighter and amber LEDs are 2X 
brighter. (4) LEDs provide better reliability: LEDs are capable of withstanding 
high degrees of mechanical shock and vibration without failure. LEDs are 
capable of withstanding over 1000 temperature cycles −40/100°C, non-operating, 
without failure. (5) LEDs allow for smaller telltales: since LEDs are available in 
sizes less than 1/8" in diameter, LED telltales can be placed on spacing of 
0.25-0.30 inches, if desired. (6) LEDs are dimmable with potentiometer: LEDs 
are normally wired in series with a current limiting resistor. In general, LEDs 
can be dimmed with a single potentiometer, as long as all series strings use the 
same number of LEDs. LEDs can also be dimmed through pulse width 
modulation. In this case, the number of lamps in each series string is not critical. 
(7) LEDs provide direct cost savings: potentially, LEDs allow for less expensive 
drive circuits. LEDs operate at lower currents (20 mA instead of 255 mA). Also, 
LEDs do not have a high inrush current when first turned on. In general, LEDs 
outperformed the incandescent bulbs for all gauge colors. 

With a focus on the critical characteristic, the luminous intensity of LED 
sources, we examine a particular LED product model, with the upper and the 
lower specification limits of luminous intensity are set to USL = 90 mcd, LSL = 
40 mcd, and the target value is set to T = 60 mcd. We note that it’s an 
asymmetric tolerances case. The LED is said to be defective if the characteristic 
data does not fall within the specification limits (LSL, USL). For the purpose of 
making use of the methodology more convenient and accelerate the computation, 
an integrated S-PLUS computer program is developed (available from the 
authors) to calculate the lower confidence bounds. We only need to input the 
manufacturing specification limits, USL, LSL, target value T, and the collected 
sample data of size n. Then the estimated values Y ,  and the lower 
confidence bounds of Y  may be obtained easily. Thus, whether or not the 
process is capable may be determined.  

ˆ
q̂Y

q̂

A total of 150 observations were collected from a stable process in the 
factory, which are displayed in Table 16. Figure 47 displays the histogram of the 
sample data. From Figure 47, it is evident from the density line that the 
underlying process distribution is away from normality. Refer to the distribution 
plots of the Q-yield estimator, a random sample of size n = 150 seems to be large 
enough to apply the normal approximation approach for capability testing of . qY

 44



Proceeding with the calculations by running the integrated S-PLUS program 
with 95% of confidence, we obtain the values of the sample estimators Y  = 
0.8082 and the corresponding lower confidence bound (LCB) 

q
 as 0.7768. We 

note that the estimated Y  index value is about 0.81. In fact, all 150 
observations fall within the specification interval (LSL, USL) resulting that 
sample estimators of yield Y = 1. From the producer’s point of view, the 
proportion of conforming products is 100%. However, to quantify how well a 
process can meet the customer requirement, the lower confidence bound of Y  
is approximately equal to 0.78 can be interpreted as the satisfaction degree of 
the products, on the average, is 78% approximately, with 95% of confidence. 
From the corresponding lower confidence bound on Y , 0.7768, an example of 
capability testing is that if the Q-yield requirement preprint on the contract Y  
is set to 0.78, we may only conclude that the process is marginally capable, with 
95% of confidence. 

ˆ

ˆ

ˆ

q

YL
q

ˆ

q

q

q
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Figure 47. Histogram plot of the 
sample data of size n = 150.  
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